

VMware Advanced Customer Engagements (ACE) Team

Deploying Stateful Applications on TKGI
Using Cloud Native Storage
How-to Guide with an Example

July 2020

 / 2

Deploying Stateful Applications on TKGI Using Cloud Native Storage

Contents:

Introduction ...2
Overview of Persistent Storage Concepts and Cloud Native Storage ...2

Persistent Volumes and Persistent Volume Claims ...2
Cloud Native Storage Concepts ...3
vSphere CNS Architecture ...3

Prerequisites for CNS with TGKI ..5
Installing CSI Driver on a TGKI K8s Cluster ..5
Deploy Stateful Containerized Application .. 11
Conclusion ... 16

Introduction
This document is a quick start guide to show how to deploy stateful applications on Kubernetes (K8s) clusters
provisioned by Tanzu Kubernetes Grid Integrated (TKGI, formerly known as Enterprise PKS) using Cloud Native
Storage (CNS) persistent volumes. This document will provide details on configuration of CNS/CSI drivers in
designated K8s cluster and deploying a stateful application using K8s storage class with CNS/CSI driver.

 A stateful containerized application ‘Ghost’, defined and shared by Alexander Ullah is used to demonstrate the
use of persistence volumes.

Overview of Persistent Storage Concepts and Cloud Native Storage
In this section we provide a brief overview of K8s storage primitives and provide architectural overview of Cloud
Native Storage (CNS) pluggable architecture that implements those primitives.

Persistent Volumes and Persistent Volume Claims

K8s PersistentVolume subsystem provides a plugin based API for that abstracts details of how storage is
provided from how it is consumed. That maps to API resources: PersistentVolume and PersistentVolumeClaim.

A PersistentVolume (PV) is a piece of storage in the cluster that has been provisioned statically or dynamically,
using Storage Classes. PVs are volume plugins like Volumes (essentially directories accessible to all containers
running in a pod that preserve data across container restarts) - but have a lifecycle independent of any
individual Pod that uses them. PV captures the details of the implementation of the storage (iSCSI, NFS or a
cloud-provider-specific storage system).

A PersistentVolumeClaim (PVC) is a request for storage by a user to consume PV resources, like a Pod requests
to consume node resources. PVCs can request specific size and access modes (e.g., they can be mounted with
ReadWriteOnce, ReadOnlyMany or ReadWriteMany AccessModes).

https://github.com/beyondelastic/velero_vSphere
mailto:aullah@vmware.com?subject=Thanks%20for%20publishing%20TKG*%20CSI%20%22how%20to%22%20blog!
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#access-modes

 / 3

Deploying Stateful Applications on TKGI Using Cloud Native Storage

Cluster administrators need to be able to provision PVs that differ in multiple parameters besides size and
access modes, without exposing users to the details of how those volumes are implemented. For these needs,
there is StorageClass K8s resource

Cloud Native Storage Concepts
Cloud Native Storage (CNS) provides comprehensive data management for stateful, containerized apps, enabling
them to survive restarts and outages.

• Container Storage Interface (CSI) is effectively an API between container orchestrators and storage
providers to allow consistent interoperability. CSI implements all the volume life-cycle tasks (i.e. create,
attach, detach, delete, mount, unmount).

• Cloud Provider Interface (CPI), referred to as the Cloud Controller Manager (CCM) in the past. As there
are numerous public and on-premise private cloud providers offering Kubernetes, it was decided that
some of the tasks (control loops) previously handled by the core K8s controller should also be moved
out of core source code and into a CPI plugin format. They perform several tasks: Initialize a node with
cloud specific zone/region labels and other cloud specific instance details such as type and size.

CSI in conjunction with CPI allows for intelligent placement of Pods and PVs on vSphere infrastructure (across
Datacenters, Clusters, Hosts etc.)

vSphere CNS Architecture
Being a major contributor into Kubernetes project, VMware is also embracing the trend towards more open
source components. The Kubernetes vSphere CSI “out of tree” driver is becoming more popular as it gradually
replaces the original “in tree” implementation of vSphere storage for Kubernetes, the vSphere Cloud Provider
(also known as “Project Hatchway”). The vSphere CSI and vSphere CCM drivers are available on GitHub along
with related documentation. They are available for public use and supported components within VMware
commercial offerings.

CNS vSphere offers the following two components:

• CNS in vCenter Server

• vSphere volume driver in Kubernetes cluster

https://storagehub.vmware.com/t/project-hatchway/
https://github.com/kubernetes-sigs/vsphere-csi-driver
https://github.com/kubernetes-sigs/vsphere-csi-driver
https://github.com/kubernetes/cloud-provider-vsphere
https://github.com/kubernetes/cloud-provider-vsphere

 / 4

Deploying Stateful Applications on TKGI Using Cloud Native Storage

CNS control plane introduces a concept of volumes: container volumes and persistent volumes in vSphere. It is
the Storage control plane for container volumes responsible for managing the lifecycle of volumes (including
CRUD operations), also responsible for managing volume metadata, snapshots and restore, volume copy and
clone, and monitoring the health and compliance of volumes.

These volumes are independent of the VM lifecycle and have their own identity in vSphere.

CNS supports block volumes backed by First Class Disk (FCD) and file volumes backed by vSAN file shares.

A block volume can only be attached to one Kubernetes pod with ReadWriteOnce access mode at any point in
time. A file volume can be attached to one or more pods with ReadWriteMany/ReadOnlyMany access modes.

In K8s, CNS provides a volume driver that has two sub-components: the CSI driver and the syncer.

• The CSI driver is responsible for volume provisioning, attaching and detaching the volume to VMs,
mounting, formatting and unmounting volumes from the pod within the node VM, etc. The CSI driver is
built as an “out-of-tree” CSI plugin for K8s.

https://cloud-provider-vsphere.sigs.k8s.io/concepts/in_tree_vs_out_of_tree.html

 / 5

Deploying Stateful Applications on TKGI Using Cloud Native Storage

• The syncer is responsible for pushing PV, PVC, and pod metadata to CNS. It also has a CNS operator that is
used in the context of vSphere with Kubernetes.

Stateful containers can use vSphere storage primitives - standard volume, persistent volume, and dynamic
provisioning - independent of VM and container lifecycles. vSphere storage backs the volumes, and we can set a
storage policy directly on the volumes.

After creation of volumes, we can review them and their backing virtual disks, and monitor their storage policy
compliance using vSphere client.

Prerequisites for CNS with TGKI
(See documentation for complete list of pre-requisites)

o vSphere v6.7U3 or later
o NSX-T version compatible with vSphere version above

o NSX-T v2.4.0 and later, compatible with vSphere v6.7U3 (see VMware Platform Interoperability
Matrix for all versions)

o TKGI v1.7.0 or later
o Support upgrading virtual hardware version on Kubernetes cluster VMs

o Firewall and network configuration:
o Enable the following components to access vCenter:

o Cluster master nodes
o Cluster worker nodes, so their CSI components can provision their disks
o All Pods running CSI components

o TKGI K8s cluster plan configuration:
In the TKGI tile, configure a Plan with the “Allow Privileged” checkbox enabled, so containers run in
privileged mode

Installing CSI Driver on a TGKI K8s Cluster
Following are the steps to install CSI driver on a K8S cluster provisioned by TKGI (formerly ‘Enterprise PKS’):

NOTE: below steps were validated using TKGI 1.7.0 and 1.8.0 releases

1. Create CSI Secret for vSphere based on provided sample deployment file (csi-vsphere.conf in the ‘samples’
repository folder, also shown below)

[Global]

cluster-id = PKS-COMPUTE-EDGES

[VirtualCenter "192.168.2.20"]

insecure-flag = "true"

user = "administrator@vsphere.local"

password = "XXXXXX"

https://docs.pivotal.io/tkgi/1-8/vsphere-cns.html
https://www.vmware.com/resources/compatibility/sim/interop_matrix.php#interop&644=4122,4714,3954&229=3345&1=3495,3456,3221&2=3496,3457,3222,2862,2736,3364,2732
https://www.vmware.com/resources/compatibility/sim/interop_matrix.php#interop&644=4122,4714,3954&229=3345&1=3495,3456,3221&2=3496,3457,3222,2862,2736,3364,2732

 / 6

Deploying Stateful Applications on TKGI Using Cloud Native Storage

port = "443"

datacenters = "PKS-NESTED-DC2"

NOTES:

o cluster-id is a unique identifier, can be a name of vSphere cluster which data store will be
used

o VirtualCenter contains IP address (FQDN) of vSphere vCenter

o user and password are credentials of vSphere admin user (or user with sufficient access level)

o datacenters are vSphere Data center(s) where clusters are contained

Create a secret for accessing vSphere Data Center/Cluster

kubectl create secret generic vsphere-config-secret --from-file=csi-vsphere.conf --namespace=kube-
system

secret/vsphere-config-secret created

2. Create RBAC objects for CSI access based on provided sample deployment file (vsphere-csi-controller-
rbac.yaml in the ‘samples’ repository folder, also shown below)

kind: ServiceAccount
apiVersion: v1
metadata:
 name: vsphere-csi-controller
 namespace: kube-system

kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: vsphere-csi-controller-role
rules:
 - apiGroups: [""]
 resources: ["nodes", "persistentvolumeclaims", "pods"]
 verbs: ["get", "list", "watch"]
 - apiGroups: [""]
 resources: ["persistentvolumes"]
 verbs: ["get", "list", "watch", "create", "update", "delete"]
 - apiGroups: [""]
 resources: ["events"]
 verbs: ["get", "list", "watch", "create", "update", "patch"]
 - apiGroups: ["storage.k8s.io"]
 resources: ["storageclasses"]
 verbs: ["get", "list", "watch"]

 / 7

Deploying Stateful Applications on TKGI Using Cloud Native Storage

 - apiGroups: ["storage.k8s.io"]
 resources: ["csinodes"]
 verbs: ["get", "list", "watch"]
 - apiGroups: ["storage.k8s.io"]
 resources: ["volumeattachments"]
 verbs: ["get", "list", "watch", "update"]

kind: ClusterRoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: vsphere-csi-controller-binding
subjects:
 - kind: ServiceAccount
 name: vsphere-csi-controller
 namespace: kube-system
roleRef:
 kind: ClusterRole
 name: vsphere-csi-controller-role
 apiGroup: rbac.authorization.k8s.io

kubectl apply -f vsphere-csi-controller-rbac.yaml

serviceaccount/vsphere-csi-controller created
clusterrole.rbac.authorization.k8s.io/vsphere-csi-controller-role created
clusterrolebinding.rbac.authorization.k8s.io/vsphere-csi-controller-binding created

Verify that created Service account, Cluster roles/Cluster role bindings exist in ‘kube-system’
namespace:

kubectl get serviceaccounts -n kube-system

NAME SECRETS AGE

.….

vrealize-med01 1 25h

vsphere-csi-controller 1 3m4s

kubectl get clusterroles -n kube-system

 NAME AGE

vrops-cadvisor 47h

vsphere-csi-controller-role <invalid>

 / 8

Deploying Stateful Applications on TKGI Using Cloud Native Storage

kubectl get clusterrolebindings -n kube-system

NAME AGE

…..

vrops-cadvisor 47h

vsphere-csi-controller-binding <invalid>

3. Install the vSphere CSI Driver using sample manifest file (vsphere-csi-controller-ss.yaml in the ‘samples’
repository folder)

kubectl apply -f vsphere-csi-controller-ss.yaml
statefulset.apps/vsphere-csi-controller created
csidriver.storage.k8s.io/csi.vsphere.vmware.com created

Optionally, monitor events in kube-system namespace to check initialization of vsphere-csi-controller pods:

kubectl get events -n kube-system

LAST SEEN TYPE REASON OBJECT MESSAGE
<unknown> Normal Scheduled pod/vsphere-csi-controller-0 Successfully assigned kube-
system/vsphere-csi-controller-0 to a208e18a-fbe4-4e36-a17f-6efe7c204d78
27s Normal Pulling pod/vsphere-csi-controller-0 Pulling image
"quay.io/k8scsi/csi-attacher:v1.1.1"
22s Normal Pulled pod/vsphere-csi-controller-0 Successfully pulled image
"quay.io/k8scsi/csi-attacher:v1.1.1"
20s Normal Created pod/vsphere-csi-controller-0 Created container csi-attacher
20s Normal Started pod/vsphere-csi-controller-0 Started container csi-attacher
20s Normal Pulling pod/vsphere-csi-controller-0 Pulling image "gcr.io/cloud-
provider-vsphere/csi/release/driver:v1.0.2"
7s Normal Pulled pod/vsphere-csi-controller-0 Successfully pulled image
"gcr.io/cloud-provider-vsphere/csi/release/driver:v1.0.2"
3s Normal Created pod/vsphere-csi-controller-0 Created container vsphere-csi-
controller
2s Normal Started pod/vsphere-csi-controller-0 Started container vsphere-csi-
controller
2s Normal Pulling pod/vsphere-csi-controller-0 Pulling image
"quay.io/k8scsi/livenessprobe:v1.1.0"
30s Normal SuccessfulCreate statefulset/vsphere-csi-controller create Pod vsphere-csi-
controller-0 in StatefulSet vsphere-csi-controller successful

4. Install CSI Driver DaemonSet using sample manifest file (vsphere-csi-node-ds.yaml included into ‘samples’
repository folder)

http://quay.io/k8scsi/csi-attacher:v1.1.1
http://quay.io/k8scsi/csi-attacher:v1.1.1
http://gcr.io/cloud-provider-vsphere/csi/release/driver:v1.0.2
http://gcr.io/cloud-provider-vsphere/csi/release/driver:v1.0.2
http://gcr.io/cloud-provider-vsphere/csi/release/driver:v1.0.2
http://quay.io/k8scsi/livenessprobe:v1.1.0

 / 9

Deploying Stateful Applications on TKGI Using Cloud Native Storage

kubectl apply -f vsphere-csi-node-ds.yaml

daemonset.apps/vsphere-csi-node created

Verify that DaemonSet (that is guaranteed running Pod/Node) is running on all cluster nodes:

kubectl get ds -n kube-system

NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE NODE SELECTOR AGE

vsphere-csi-node 4 4 4 4 4 <none>

 2m8s

5. Verify that CSI Driver Deployed Successfully

 Check that all pods are running in the kube-system namespace (look for vsphere-csi-… pod names)

kubectl get po --namespace=kube-system

NAME READY STATUS RESTARTS AGE

NAME READY STATUS RESTARTS AGE

coredns-5b6649768f-7zzfr 1/1 Running 0 97m

coredns-5b6649768f-8rg9m 1/1 Running 0 97m

coredns-5b6649768f-c4ktq 1/1 Running 0 97m

metrics-server-7f9887fbb5-64rtk 1/1 Running 0 97m

vsphere-csi-controller-0 5/5 Running 0 7m

vsphere-csi-node-b47k4 3/3 Running 0 5m45s

vsphere-csi-node-cvcm2 3/3 Running 0 5m45s

vsphere-csi-node-fxfsj 3/3 Running 0 5m45s

vsphere-csi-node-p4wgc 3/3 Running 0 5m45s

6. Verify that CRDs for CSI are deployed and activated:

kubectl get CSINode

NAME CREATED AT
23f8a803-50de-4d2a-be42-5f4482f35fb3 2020-06-25T19:31:44Z
3f178b02-514c-415d-9716-470b30175b44 2020-06-30T05:11:41Z
576e0ba9-5621-4ecd-a1b1-eb39af781390 2020-06-25T19:31:42Z
9dcd874c-c86e-4b59-af77-c914619fd38c 2020-06-25T19:23:29Z

kubectl describe CSINode

Name: 23f8a803-50de-4d2a-be42-5f4482f35fb3
Namespace:

 / 1 0

Deploying Stateful Applications on TKGI Using Cloud Native Storage

Labels: <none>
Annotations: <none>
API Version: storage.k8s.io/v1beta1
Kind: CSINode
Metadata:
 Creation Timestamp: 2020-06-25T19:31:44Z
 Owner References:
 API Version: v1
 Kind: Node
 Name: 23f8a803-50de-4d2a-be42-5f4482f35fb3
 UID: 2e495151-1a4a-4aac-baab-f5182b504e21
 Resource Version: 7801510
 Self Link: /apis/storage.k8s.io/v1beta1/csinodes/23f8a803-50de-4d2a-be42-5f4482f35fb3
 UID: ef1d6c57-3965-499b-8493-5952e454dadc
Spec:
 Drivers:
 Name: csi.vsphere.vmware.com
 Node ID: 23f8a803-50de-4d2a-be42-5f4482f35fb3  matches name
 Topology Keys: <nil>
Events: <none>

.…

7. Verify that CSI Driver is installed

kubectl get csidrivers
NAME CREATED AT
csi.vsphere.vmware.com 2020-07-03T02:42:08Z

8. Verify that CSI ProviderID was added to all Cluster Nodes

 kubectl describe nodes | grep "ProviderID"
ProviderID: vsphere://421c57b9-99bb-ef5a-c2d4-38b857f8d9d5
ProviderID: vsphere://421cef46-3327-d66c-4d52-5e6f2bb1bfaa
ProviderID: vsphere://421c04c4-13fd-069e-c2a9-d13166d81a4c
ProviderID: vsphere://421ce760-a829-deb2-82d9-45ff4fc5ec95

At this point, we verified that CSI driver is running on all cluster nodes and ready to deploy a stateful application
using this driver.

http://storage.k8s.io/v1beta1/csinodes/23f8a803-50de-4d2a-be42-5f4482f35fb3

 / 1 1

Deploying Stateful Applications on TKGI Using Cloud Native Storage

Deploy Stateful Containerized Application
We will use simple Ghost blogging application that preserves its state (blog entries, configuration
settings, users’ data) using PVs. As can be seen from its deployment descriptor below, it has a very
simple structure of a Deployment that spans a single stateful Pod and a Service of Load Balancer type
that exposes that deployment for external access.

1. Create storage class that is using CSI driver (using csi-sc-dan.yaml deployment descriptor file available in
‘samples’ folder and shown below)

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: demo-sts-sc
 annotations:
 storageclass.kubernetes.io/is-default-class: "true"
provisioner: csi.vsphere.vmware.com
parameters:
 datastoreurl: "ds:///vmfs/volumes/13e49faf-a5872633/"

NOTES:

o provisioner: csi.vsphere.vmware.com points to vSphere CSI driver

o datastoreurl should point to a folder path in the associated vSphere Data Store:

kubectl apply -f csi-sc-dan.yaml -n ghost

storageclass.storage.k8s.io/demo-sts-sc created

Verify that storage class object has been created at K8s cluster level:

kubectl get sc

 / 1 2

Deploying Stateful Applications on TKGI Using Cloud Native Storage

NAME PROVISIONER RECLAIMPOLICY VOLUMEBINDINGMODE
ALLOWVOLUMEEXPANSION AGE

demo-sts-sc (default) csi.vsphere.vmware.com Delete Immediate false 4m40s

2. Create PVC referencing above storage class (ghost-claim.yaml sample deployment descriptor in the
‘samples’ repository folder, also shown below)

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: blog-content-new
 namespace: ghost
 annotations:
 volume.beta.kubernetes.io/storage-class: demo-sts-sc
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 2Gi

Run the following command:

kubectl apply -f ghost-claim.yaml

persistentvolumeclaim/blog-content-new created

NOTE: on vSphere UI we can monitor tasks of creation of persistent volume:

Verify that PVC is in “bound” state:

kubectl get pvc -n ghost

NAME STATUS VOLUME CAPACITY ACCESS MODES
STORAGECLASS AGE

blog-content-new Bound pvc-0218bedf-944c-4f96-ba1b-a1db14d4a208 2Gi RWO
demo-sts-sc 5d1h2Gi RWO demo-sts-sc 119s

NOTES:

o if PVC is not in Bound state after a while (e.g. remains in Pending) – that means it cannot be used
by pods. Examine events log in the K8s cluster and try to resolve the issue.

o As mentioned above, Cloud Administrator can view CNS Persistent volumes provisioned in
Datastore via Monitor  Cloud Native Storage Container Volumes view of vSphere client

 / 1 3

Deploying Stateful Applications on TKGI Using Cloud Native Storage

3. Deploy Ghost stateful application that uses blog-content-new PVC created above to mount its content
volume (use ghost-new.yaml sample deployment descriptor file in the ‘samples’ folder also shown below):

apiVersion: v1
kind: Service
metadata:
 labels:
 name: blog
 name: blog
 namespace: ghost
spec:
 ports:
 - port: 80
 targetPort: 2368
 selector:
 app: blog
 type: LoadBalancer

apiVersion: apps/v1
kind: Deployment
metadata:
 name: blog
 namespace: ghost
 labels:
 app: blog
spec:
 replicas: 1
 selector:
 matchLabels:
 app: blog
 template:

 / 1 4

Deploying Stateful Applications on TKGI Using Cloud Native Storage

 metadata:
 labels:
 app: blog
 spec:
 containers:
 - name: blog
 image: ghost:latest
 imagePullPolicy: Always
 ports:
 - containerPort: 2368
 env:
 - name: url
 value: http://my-blog.acelab.local
 volumeMounts:
 - mountPath: /var/lib/ghost/content
 name: content
 volumes:
 - name: content
 persistentVolumeClaim:
 claimName: blog-content-new

NOTES:

o Value of url environment variable should have a DNS record matching value of EXTERNAL-IP
shown in the next step in order to access application by its URL, e.g. http://my-
blog.acelab.local

o Value of claimName should match name of PVC created in previous steps

--

 Deploy Ghost stateful application:

 kubectl apply -f ghost-new.yaml

service/blog created

deployment.apps/blog created

4. Verify that all application objects have been created in the destination K8s namespace:

kubectl get all -n ghost

NAME READY STATUS RESTARTS AGE

pod/blog-8646cd4d56-fpqz9 1/1 Running 0 10m

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

 / 1 5

Deploying Stateful Applications on TKGI Using Cloud Native Storage

service/blog LoadBalancer 10.100.200.102 192.168.74.81 80:35713/TCP 10m

NAME READY UP-TO-DATE AVAILABLE AGE

deployment.apps/blog 1/1 1 1 10m

To access the ghost application, navigate to the URL defined by EXTERNAL-IP address of LoadBalancer
service (and corresponding DNS record) to access the Ghost application UI:

Now we can start using the Ghost application as it is intended – posting blogs, tagging contents etc.
The configuration settings and published blog content will be saved in the ‘content’ volume that is
using vSphere based persistent storage.

 / 1 6

Deploying Stateful Applications on TKGI Using Cloud Native Storage

NOTE: Other, more complex multi-tier applications using Persistent volumes for Database tier (e.g. popular Yelb
restaurant review application) can be successfully deployed using CNS Storage Class/PVCs similarly, as we
verified in our Lab.

Conclusion

In this post, we have refreshed understanding of Persistent storage concepts in K8s, reviewed details of the
“out-of-tree “ vSphere Cloud Native Storage (CNS) architecture and components, and walked through CSI driver
installation and usage on TKGI cluster for deployment of a stateful containerized application Ghost.

We hope this document was useful. As you try these configuration steps, please provide any feedback or
questions in the comments section for this document on code.vmware.com. Also, please let us know if you have
any suggestions or if you would like to see guidance on other topics.

https://github.com/mreferre/yelb

	Introduction
	Overview of Persistent Storage Concepts and Cloud Native Storage
	Persistent Volumes and Persistent Volume Claims
	Cloud Native Storage Concepts
	vSphere CNS Architecture

	Prerequisites for CNS with TGKI
	Installing CSI Driver on a TGKI K8s Cluster
	Deploy Stateful Containerized Application
	Conclusion

