
Developing Plug-Ins with VMware
vCenter Orchestrator

vCenter Orchestrator 5.5

This document supports the version of each product listed and
supports all subsequent versions until the document is
replaced by a new edition. To check for more recent editions
of this document, see http://www.vmware.com/support/pubs.

EN-001139-00

http://www.vmware.com/support/pubs

Developing Plug-Ins with VMware vCenter Orchestrator

2 VMware, Inc.

You can find the most up-to-date technical documentation on the VMware Web site at:

http://www.vmware.com/support/

The VMware Web site also provides the latest product updates.

If you have comments about this documentation, submit your feedback to:

docfeedback@vmware.com

Copyright © 2011–2013 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and
intellectual property laws. VMware products are covered by one or more patents listed at
http://www.vmware.com/go/patents.

VMware is a registered trademark or trademark of VMware, Inc. in the United States and other jurisdictions. All other marks
and names mentioned herein may be trademarks of their respective companies.

VMware, Inc.
3401 Hillview Ave.
Palo Alto, CA 94304
www.vmware.com

http://www.vmware.com/support/
mailto:docfeedback@vmware.com
http://www.vmware.com/go/patents

Contents

Developing Plug-Ins with VMware vCenter Orchestrator 9

1 Overview of Plug-Ins 11

Structure of an Orchestrator Plug-In 12
Exposing an External API to Orchestrator 13
Components of a Plug-In 13
Role of the vso.xml File 14
Roles of the Plug-In Adapter 15
Roles of the Plug-In Factory 16
Role of Finder Objects 16
Role of Scripting Objects 17
Role of Event Handlers 17

2 Contents and Structure of a Plug-In 19

Defining the Application Mapping in the vso.xml File 19
Format of the vso.xml Plug-In Definition File 20
Naming Plug-In Objects 21

Plug-In Object Naming Conventions 22
File Structure of the Plug-In 22

3 Create an Orchestrator Plug-In 25

Accessing the Orchestrator Plug-In API 26
Obtain an Application to Plug in to Orchestrator 27
Components of the Solar System Application 27

CelestialBody.java Class 28
Star.java Class 28
Planet.java Class 28
Moon.java Class 29
ISolarSystemListener.java Class 29
SolarSystemEventHandler.java Class 29
SolarSystemRepository.java Class 30

Components of the Solar System Plug-In 30
Create a Plug-In Factory 31

Set Up the Plug-In Factory Implementation 32
Set Up Event Listeners and Notification Handlers 33
Find Objects By Identifier in the Plugged-In Technology 34
Find Objects in the Plugged-In Technology By a Query 35
Find Objects By Relation Type in the Plugged-In Technology 36
Discover Whether an Object has Children of a Given Relation Type 37

Create a Plug-In Event Listener 38
Set Up the Event Listener Implementation 38

VMware, Inc. 3

Register the Event Listener with the Plugged-In Technology 39
Notify Orchestrator of Events in the Plugged-In Technology 40

Create a Plug-In Event Generator 41
Set Up the Event Generator 42
Create Event Publishers 43
Define and Publish Events to Orchestrator 44

Create a Plug-In Workflow Trigger 46
Set Up the Workflow Trigger 47
Create Instances of the PluginTrigger Class 48
Set the Properties that a Workflow Trigger Monitors 48

Create Plug-In Watchers 50
Set Up the Watcher Implementation 50
Create Instances of the PluginWatcher Class 52
Publish Plug-In Watchers 52

Define Objects and Methods to Map to the Orchestrator JavaScript API 55
Create a Plug-In Adapter 56

Set Up the Plug-In Adapter Implementation 57
Instantiate the Plug-In Factory 57
Manage Plug-In Events 59
Add Plug-In Watchers 60

Add a Tab to the Configuration Interface 61
Set Up the Configuration Adapter 62
Load and Save Configuration Information in the Configuration Server 63
Create a Configuration Action to Obtain Configuration Information from the User 65
Create a Struts-Based Web Application to Add to the Configuration Interface 67

Map the Application in the vso.xml File 70
Set Up the Global Plug-In Information 71
Map Objects in the Plugged-In Technology to Scripting Types and Inventory Objects 72
Define Enumerations 74
Map Classes and Methods to Classes and Methods in the JavaScript API 75

Create the Plug-In DAR Archive 77
Build the Solar System Application and Plug-In 78
Contents of the Solar System DAR File 78

Install a Plug-In in the Orchestrator Server 79
Interact with the Solar System Application by Using Orchestrator 80

View Plug-In Scripting Objects in the JavaScript API 80
Run Workflows on Plug-In Objects in the Inventory 81
Monitor Plug-In Events by Using Policies 82
Monitor Plug-In Events by Using Workflows 83
Access Plug-In Objects and Operations by Using a Web View 83

4 API Enhancements for Plug-In Development 85

Orchestrator Annotations API 85
Enable Annotation-Based Configuration 85
Annotating Objects 86
Java-Based Configuration API for the Plug-In Definition File 86
Using Java-Based Configuration 87

Orchestrator Spring-Based Plug-In API 88
Spring-Based API Basic Configuration 88

Developing Plug-Ins with VMware vCenter Orchestrator

4 VMware, Inc.

Orchestrator Workflow Generation API 89
Generating Actions 89
Generating Workflows 89

Orchestrator SSL Configuration API 90
SSL Configuration Methods 90
The HostValidator Helper Class 92

5 Orchestrator Plug-In API Reference 93

IAop Interface 94
IConfigurationAdaptor Interface 94
IDynamicFinder Interface 95
IPluginAdaptor Interface 95
IPluginEventPublisher Interface 96
IPluginFactory Interface 97
IPluginNotificationHandler Interface 97
IPluginPublisher Interface 98
WebConfigurationAdaptor Interface 98
BaseAction Class 99
ConfigurationError Class 99
PluginLicense Class 99
PluginTrigger Class 100
PluginWatcher Class 101
QueryResult Class 101
SDKFinderProperty Class 102
SDKHelper Class 103
PluginExecutionException Class 104
PluginLicenseException Class 104
PluginOperationException Class 104
ConfigurationError.Severity Enumeration 105
ErrorLevel Enumeration 105
HasChildrenResult Enumeration 106
ScriptingAttribute Annotation Type 107
ScriptingFunction Annotation Type 107
ScriptingParameter Annotation Type 108

6 Elements of the vso.xml Plug-In Definition File 109

module Element 110
configuration Element 111
description Element 112
deprecated Element 112
url Element 112
installation Element 113
action Element 113
webview-components-library Element 113
finder-datasources Element 114
finder-datasource Element 114
inventory Element 115
finders Element 115

Contents

VMware, Inc. 5

finder Element 116
properties Element 117
property Element 117
relations Element 118
relation Element 118
id Element 118
inventory-children Element 119
relation-link Element 119
events Element 119
trigger Element 119
trigger-properties Element 120
trigger-property Element 120
gauge Element 120
scripting-objects Element 121
object Element 121
constructors Element 122
constructor Element 122
Constructor parameters Element 122
Constructor parameter Element 122
attributes Element 123
attribute Element 123
methods Element 124
method Element 124
example Element 125
code Element 125
Method parameters Element 125
Method parameter Element 125
singleton Element 126
enumerations Element 126
enumeration Element 126
entries Element 127
entry Element 127

7 Best Practices for Orchestrator Plug-In Development 129

Approaches for Building Orchestrator Plug-Ins 129
Bottom-Up Plug-In Development 129
Top-Down Plug-In Development 130

Types of Orchestrator Plug-Ins 131
Plug-Ins for Services 131
Plug-Ins for Systems 132

Plug-In Implementation 134
Project Structure 134
Project Internals 135
Workflow Internals 136
Workflows and Actions 136
Workflow Presentation 137

Recommendations for Orchestrator Plug-In Development 138
Documenting Plug-In User Interface Strings and APIs 140

Developing Plug-Ins with VMware vCenter Orchestrator

6 VMware, Inc.

Index 143

Contents

VMware, Inc. 7

Developing Plug-Ins with VMware vCenter Orchestrator

8 VMware, Inc.

Developing Plug-Ins with VMware vCenter
Orchestrator

Developing Plug-Ins with VMware vCenter Orchestrator provides information about developing plug-ins with
VMware vCenter Orchestrator.

Intended Audience
This information is intended for plug-in developers who are familiar with virtual machine technology,
datacenter operations, and vCenter Orchestrator.

VMware, Inc. 9

Developing Plug-Ins with VMware vCenter Orchestrator

10 VMware, Inc.

Overview of Plug-Ins 1
Orchestrator plug-ins must include a standard set of components and must adhere to a standard
architecture. These practices help you to create plug-ins for the widest possible variety of external
technologies.

n Structure of an Orchestrator Plug-In on page 12
Orchestrator plug-ins have a common structure that consists of various types of layers that implement
specific functionality.

n Exposing an External API to Orchestrator on page 13
You expose an API from an external product to the Orchestrator platform by creating an Orchestrator
plug-in. You can create a plug-in for any technology that exposes an API that you can map into
JavaScript objects that Orchestrator can use.

n Components of a Plug-In on page 13
Plug-ins are composed of a standard set of components that expose the objects in the plugged-in
technology to the Orchestrator platform.

n Role of the vso.xml File on page 14
You use the vso.xml file to map the objects, classes, methods, and attributes of the plugged-in
technology to Orchestrator inventory objects, scripting types, scripting classes, scripting methods, and
attributes. The vso.xml file also defines the configuration and start-up behavior of the plug-in.

n Roles of the Plug-In Adapter on page 15
The plug-in adapter is the entry point of the plug-in to the Orchestrator server. The plug-in adapter
serves as the datastore for the plugged-in technology in the Orchestrator server, creates the plug-in
factory, and manages events that occur in the plugged-in technology.

n Roles of the Plug-In Factory on page 16
The plug-in factory defines how Orchestrator finds objects in the plugged-in technology and performs
operations on the objects.

n Role of Finder Objects on page 16
Finder objects identify and locate specific instances of managed object types in the plugged-in
technology. Orchestrator can modify and interact with objects that it finds in the plugged-in
technology by running workflows on the finder objects.

n Role of Scripting Objects on page 17
Scripting objects are JavaScript representations of objects from the plugged-in technology. Scripting
objects from plug-ins appear in the Orchestrator Javascript API and you can use them in scripted
elements in workflows and actions.

VMware, Inc. 11

n Role of Event Handlers on page 17
Events are changes in the states or attributes of the objects that Orchestrator finds in the plugged-in
technology. Orchestrator monitors events by implementing event handlers.

Structure of an Orchestrator Plug-In
Orchestrator plug-ins have a common structure that consists of various types of layers that implement
specific functionality.

The bottom three layers of a vCO plug-in, that are, infrastructure classes, wrapping classes, and scripting
objects, implement the connection between the plugged-in technology and Orchestrator.

The user-visible parts of a vCO plug-in are the top three layers that are actions, building blocks, and high
level workflows.

Figure 1‑1. Structure of a vCO Plug-In

high level workflows

building block workflows

actions

scripting objects

wrapping classes

infrastructure classes

Infrastructure classes A set of classes that provide the connection between the plugged-in
technology and Orchestrator. The infrastructure classes include the classes to
implement according to the plug-in definition, such as plug-in factory, plug-
in adaptor, and so on. The infrastructure classes also include the classes that
provide functionality for common tasks and objects such as helpers, caching,
inventory, and so on.

Wrapping classes A set of classes that adapt the object model of the plugged-in technology to
the object model that you want to expose inside Orchestrator.

Scripting objects JavaScript object types that provide access to the wrapping classes, methods,
and attributes in the plugged-in technology. In the vso.xml file you define
which wrapping classes, attributes, and methods from the plugged-in
technology will be exposed to Orchestrator.

Actions A set of JavaScript functions that you can use directly in workflows, Web
views, and scripting tasks. Actions can take multiple input parameters and
have a single return value.

Developing Plug-Ins with VMware vCenter Orchestrator

12 VMware, Inc.

Building block
workflows

A set of workflows that cover all generic functionality that you want to
provide with the plug-in. Typically, a building block workflow represents an
operation in the user interface of the orchestrated technology. The building
block workflows can be used directly or can be included inside high-level
workflows.

High level workflows A set of workflows that cover specific functionality of the plug-in. You can
provide high-level workflows to meet concrete requirements or to show
complex examples of the plug-in usage.

Exposing an External API to Orchestrator
You expose an API from an external product to the Orchestrator platform by creating an Orchestrator plug-
in. You can create a plug-in for any technology that exposes an API that you can map into JavaScript objects
that Orchestrator can use.

Plug-ins map Java objects and methods to JavaScript objects that they add to the Orchestrator scripting API.
If an external technology exposes a Java API, you can map the API directly to JavaScript for Orchestrator to
use in workflows and actions.

You can create plug-ins for applications that expose an API in a language other than Java by using WSDL
(Web service definition language), REST (Representational state transfer), or a messaging service to integrate
the exposed API with Java objects. You then map the integrated Java objects to JavaScript for Orchestrator to
use.

The plugged-in technology is independent from Orchestrator. You can create Orchestrator plug-ins for
external products even if you only have access to binary code, for example in Java archives (JAR files),
rather than source code.

Components of a Plug-In
Plug-ins are composed of a standard set of components that expose the objects in the plugged-in technology
to the Orchestrator platform.

The main components of a plug-in are the plug-in adapter, factory, and event implementations. You map
the objects and operations defined in the adapter, factory, and event implementations to Orchestrator
objects in an XML definition file named vso.xml. The vso.xml file maps objects and functions from the
plugged in technology to JavaScript scripting objects that appear in the Orchestrator JavaScript API. The
vso.xml file also maps object types from the plugged-in technology to finders, that appear in the
Orchestrator Inventory tab.

Plug-ins are composed of the following components.

Plug-In Module The plug-in itself, as defined by a set of Java classes, a vso.xml file, and
packages of the workflows and actions that interact with the objects that you
access through the plug-in. The plug-in module is mandatory.

Plug-In Adapter Defines the interface between the plugged-in technology and the
Orchestrator server. The adapter is the entry point of the plug-in to the
Orchestrator platform. The adapter creates the plug-in factory, manages the
loading and unloading of the plug-in, and manages the events that occur on
the objects in the plugged-in technology. The plug-in adapter is mandatory.

Plug-In Factory Defines how Orchestrator finds objects in the plugged-in technology and
performs operations on them. The adapter creates a factory for the client
session that opens between Orchestrator and a plugged-in technology. The
factory allows you either to share a session between all client connections or
to open one session per client connection. The plug-in factory is mandatory.

Chapter 1 Overview of Plug-Ins

VMware, Inc. 13

Configuration You can add a tab to the Orchestrator configuration interface in which you
can configure the plug-in after you install it. For example, you can add a tab
to the Orchestrator configuration interface in which users provide
information about the environment where the plugged-in technology runs.
Orchestrator does not define a standard way for the plug-in to store its
configuration. You can store configuration information by using Windows
Registries, static configuration files, storing information in a database, or in
XML files. The plug-in configuration tab is optional.

Finders Interaction rules that define how Orchestrator locates and represents the
objects in the plugged-in technology. Finders retrieve objects from the set of
objects that the plugged-in technology exposes to Orchestrator. You define in
the vso.xml file the relations between objects to allow you to navigate
through the network of objects. Orchestrator represents the object model of
the plugged-in technology in the Inventory tab. Finders are mandatory if
you want to expose objects in the plugged-in technology to Orchestrator.

Scripting Objects JavaScript object types that provide access to the objects, operations, and
attributes in the plugged-in technology. Scripting objects define how
Orchestrator accesses the object model of the plugged-in technology through
JavaScript. You map the classes and methods of the plugged-in technology to
JavaScript objects in the vso.xml file. You can access the JavaScript objects in
the Orchestrator scripting API and integrate them into Orchestrator scripted
tasks, actions, and workflows. Scripting objects are mandatory if you want to
add scripting types, classes, and methods to the Orchestrator JavaScript API.

Inventory Instances of objects in the plugged-in technology that Orchestrator locates by
using finders appear in the Inventory view in the Orchestrator client. You
can perform operations on the objects in the inventory by running workflows
on them. The inventory is optional. You can create a plug-in that only adds
scripting types and classes to the Orchestrator JavaScript API and does not
expose any instances of objects in the inventory.

Events Changes in the state of an object in the plugged-in technology. Orchestrator
can listen passively for events that occur in the plugged-in technology.
Orchestrator can also actively trigger events in the plugged-in technology.
Events are optional.

Role of the vso.xml File
You use the vso.xml file to map the objects, classes, methods, and attributes of the plugged-in technology to
Orchestrator inventory objects, scripting types, scripting classes, scripting methods, and attributes. The
vso.xml file also defines the configuration and start-up behavior of the plug-in.

The vso.xml file performs the following principal roles.

Start-Up and
Configuration Behavior

Defines the manner in which the plug-in starts and locates any configuration
implementations that the plug-in defines. Loads the plug-in adapter.

Inventory Objects Defines the types of objects that the plug-in accesses in the plugged-in
technology. The finder methods of the plug-in factory implementation locate
instances of these objects and display them in the Orchestrator inventory.

Scripting Types Adds scripting types to the Orchestrator JavaScript API to represent the
different types of object in the inventory. You can use these scripting types as
input parameters in workflows.

Developing Plug-Ins with VMware vCenter Orchestrator

14 VMware, Inc.

Scripting Classes Adds classes to the Orchestrator JavaScript API that you can use in scripted
elements in workflows, actions, policies, and so on.

Scripting Methods Adds methods to the Orchestrator JavaScript API that you can use in
scripted elements in workflows, actions, policies, and so on.

Scripting Attributes Adds the attributes of the objects in the plugged-in technology to the
Orchestrator JavaScript API that you can use in scripted elements in
workflows, actions, policies, and so on.

Roles of the Plug-In Adapter
The plug-in adapter is the entry point of the plug-in to the Orchestrator server. The plug-in adapter serves
as the datastore for the plugged-in technology in the Orchestrator server, creates the plug-in factory, and
manages events that occur in the plugged-in technology.

To create a plug-in adapter, you create a Java class that implements the IPluginAdaptor interface.

The plug-in adapter class that you create manages the plug-in factory, events, and triggers in the plugged-in
technology. The IPluginAdaptor interface provides methods that you use to perform these tasks.

The plug-in adapter performs the following principal roles.

Creates a factory The most important role of the plug-in adapter is to load and unload one
plug-in factory instance for every connection from Orchestrator to the
plugged-in technology. The plug-in adapter class calls the
IPluginAdaptor.createPluginFactory() method to create an instance of a
class that implements the IPluginFactory interface.

Manages events The plug-in adapter is the interface between the Orchestrator server and the
plugged-in technology. The plug-in adapter manages the events that
Orchestrator performs or watches for on the objects in the plugged-in
technology. The adapter manages events through event publishers. Event
publishers are instances of the IPluginEventPublisher interface that the
adapter creates by calling the IPluginAdaptor.registerEventPublisher()
method. Event publishers set triggers and gauges on objects in the plugged-
in technology, to allow Orchestrator to launch defined actions if certain
events occur on the object, or if the object's values pass certain thresholds.
Similarly, you can define PluginTrigger and PluginWatcher instances that
define events that Wait Event elements in long-running workflows await.

Sets the plug-in name You provide a name for the plug-in in the vso.xml file. The plug-in adapter
gets this name from the vso.xml file and publishes it in the Orchestrator
client Inventory view.

Installs licenses You can call methods to install any license files that the plugged-in
technology requires in the adapter implement.

For full details of the IPluginAdaptor interface, all of its methods, and all of the other classes of the plug-in
API, see Chapter 5, “Orchestrator Plug-In API Reference,” on page 93. For an examination of an example
implementation of the IPluginAdaptor interface, see “Create a Plug-In Adapter,” on page 56.

Chapter 1 Overview of Plug-Ins

VMware, Inc. 15

Roles of the Plug-In Factory
The plug-in factory defines how Orchestrator finds objects in the plugged-in technology and performs
operations on the objects.

To create the plug-in factory, you must implement and extend the IPluginFactory interface from the
Orchestrator plug-in API. The plug-in factory class that you create defines the finder functions that
Orchestrator uses to access objects in the plugged-in technology. The factory allows the Orchestrator server
to find objects by their ID, by their relation to other objects, or by searching for a query string.

The plug-in factory performs the following principal tasks.

Finds objects You can create functions that find objects according to their name and type.
You find objects by name and type by using the IPluginFactory.find()
method.

Finds objects related to
other objects

You can create functions to find objects that relate to a given object by a
given relation type. You define relations in the vso.xml file. You can also
create finders to find dependent child objects that relate to all parents by a
given relation type. You implement the IPluginFactory.findRelation()
method to find any objects that are related to a given parent object by a given
relation type. You implement the IPluginFactory.hasChildrenInRelation()
method to discover whether at least one child object exists for a parent
instance.

Define queries to find
objects according to
your own criteria

You can create object finders that implement query rules that you define.
You implement the IPluginFactory.findAll() method to find all objects that
satisfy query rules you define when the factory calls this method. You obtain
the results of the findAll() method in a QueryResult object that contains a
list of all of the objects found that match the query rules you define.

For more information about the IPluginFactory interface, all of its methods, and all of the other classes of
the plug-in API, see Chapter 5, “Orchestrator Plug-In API Reference,” on page 93. For an examination of
an example implementation of the IPluginFactory interface, see “Create a Plug-In Factory,” on page 31.

Role of Finder Objects
Finder objects identify and locate specific instances of managed object types in the plugged-in technology.
Orchestrator can modify and interact with objects that it finds in the plugged-in technology by running
workflows on the finder objects.

Every instance of a given managed object type in the plugged-in technology must have a unique identifier
so that Orchestrator finder objects can find them. The plugged-in technology provides the unique identifiers
for the object instances as strings. When a workflow runs, Orchestrator sets the unique identifiers of the
objects that it finds as workflow attribute values. Workflows that require an object of a given type as an
input parameter run on a specific instance of that type of object.

Finder objects that plug-ins add to the Orchestrator JavaScript API have the plug-in name as a prefix. For
example, the VirtualMachine managed object type from the vCenter Server API appears in Orchestrator as
the VC:VirtualMachine JavaScript type.

For example, Orchestrator accesses a specific VC:VirtualMachine instance through the vCenter Server plug-
in by implementing a finder object that uses the id attribute of the virtual machine as its unique identifier.
You can pass this object instance to workflow elements as attribute values.

Developing Plug-Ins with VMware vCenter Orchestrator

16 VMware, Inc.

An Orchestrator plug-in maps the objects from the plugged-in technology to equivalent Orchestrator finder
objects in the <finder> elements in the vso.xml file. The <finder> elements identify the method or function
from the plugged-in technology that obtains the unique identifier for a specific instance of an object. The
<finder> elements also define relations between objects, to find objects by the manner in which they relate
to other objects.

Finder objects appear in the Orchestrator Inventory tab under the plug-in that contains them.

Role of Scripting Objects
Scripting objects are JavaScript representations of objects from the plugged-in technology. Scripting objects
from plug-ins appear in the Orchestrator Javascript API and you can use them in scripted elements in
workflows and actions.

Scripting objects from plug-ins appear in the Orchestrator JavaScript API as JavaScript modules, types, and
classes. Most finder objects have a scripting object representation. The JavaScript classes can add methods
and attributes to the Orchestrator JavaScript API that represent the methods and attributes from objects
from the API of the plugged-in technology. The plugged-in technology provides the implementations of the
objects, types, classes, attributes, and methods independently of Orchestrator. For example, the vCenter
Server plug-in represents all the objects from the vCenter Server API as JavaScript objects in the
Orchestrator JavaScript API, with JavaScript representations of all the classes, methods and attributes that
the vCenter Server API defines. You can use the vCenter Server scripting classes and the methods and
attributes they define in Orchestrator scripted functions.

For example, the VirtualMachine managed object type from the vCenter Server API is found by the
VC:VirtualMachine finder and appears in the Orchestrator JavaScript API as the VcVirtualMachine
JavaScript class. The VcVirtualMachine JavaScript class in the Orchestrator JavaScript API defines all of the
same methods and attributes as the VirtualMachine managed object from the vCenter Server API.

An Orchestrator plug-in maps the objects, types, classes, attributes, and methods from the plugged-in
technology to equivalent Orchestrator JavaScript objects, types, classes, attributes, and methods in the
<scripting-objects> element in the vso.xml file.

Role of Event Handlers
Events are changes in the states or attributes of the objects that Orchestrator finds in the plugged-in
technology. Orchestrator monitors events by implementing event handlers.

Orchestrator plug-ins allow you to monitor events in a plugged-in technology in different ways. The
Orchestrator plug-in API allows you to create the following types of event handlers to monitor events in a
plugged-in technology.

Listeners Passively monitor objects in the plugged-in technology for changes in their
state. The plugged-in technology or the plug-in implementation defines the
events that listeners monitor. Listeners do not initiate events, but notify
Orchestrator when the events occur. Listeners detect events either by polling
the plugged-in technology or by receiving notifications from the plugged-in
technology. When events occur, Orchestrator policies or workflows that are
waiting for the event can react by starting operations in the Orchestrator
server. Listener components are optional.

Policies Monitor certain events in the plugged-in technology and start operations in
the Orchestrator server if the events occur. Policies can monitor policy
triggers and policy gauges. Policy triggers define an event in the plugged-in
technology that, when it occurs, causes a running policy to start an operation

Chapter 1 Overview of Plug-Ins

VMware, Inc. 17

in the Orchestrator server, for example running a workflow. Policy gauges
define ranges of values for the attributes of an object in the plugged-in
technology that, when exceeded, cause Orchestrator to start an operation.
Policies are optional.

Workflow triggers If a running workflow contains a Wait Event element, when it reaches that
element it suspends its run and waits for an event to occur in a plugged-in
technology. Workflow triggers define the events in the plugged-in
technology that Waiting Event elements in workflows await. You register
workflow triggers with watchers. Workflow triggers are optional.

Watchers Watch workflow triggers for a certain event in the plugged-in technology, on
behalf of a Waiting Event element in a workflow. When the event occurs, the
watchers notify any worklows that are waiting for that event. Watchers are
optional.

Developing Plug-Ins with VMware vCenter Orchestrator

18 VMware, Inc.

Contents and Structure of a Plug-In 2
Orchestrator plug-ins must contain a standard set of components and conform to a standard file structure.
For a plug-in to conform to the standard file structure, it must include specific folders and files.

To create an Orchestrator plug-in, you define how Orchestrator accesses and interacts with the objects in the
plugged-in technology. And, you map all of the objects and functions of the plugged-in technology to
corresponding Orchestrator objects and functions in the vso.xml file.

The vso.xml file must include a reference to every type of object or operation to expose to Orchestrator.
Every object that the plug-in finds in the plugged-in technology must have a unique identifier that you
provide. You define the object names in the finder elements and in the object elements in the vso.xml file.

A plug-in can be delivered as a standard Java archive file (JAR) or a ZIP file, but in either case, the file must
be renamed with a .dar extension.

NOTE You can use the Orchestrator configuration interface to import a DAR file to the Orchestrator server.

n Defining the Application Mapping in the vso.xml File on page 19
Objects that you include in the vso.xml file appear as scripting objects in the Orchestrator scripting
API, or as finder objects in the Orchestrator Inventory tab.

n Format of the vso.xml Plug-In Definition File on page 20
The vso.xml file defines how the Orchestrator server interacts with the plugged-in technology. You
must include a reference to every type of object or operation to expose to Orchestrator in the vso.xml
file.

n Naming Plug-In Objects on page 21
You must provide a unique identifier for every object that the plug-in finds in the plugged-in
technology. You define the object names in the <finder> elements and in the <object> elements in the
vso.xml file.

n File Structure of the Plug-In on page 22
A plug-in must conform to a standard file structure and must include certain specific folders and files.
You deliver a plug-in as a standard Java archive (JAR) or ZIP file, that you must rename with the .dar
extension.

Defining the Application Mapping in the vso.xml File
Objects that you include in the vso.xml file appear as scripting objects in the Orchestrator scripting API, or
as finder objects in the Orchestrator Inventory tab.

The vso.xml file provides the following information to the Orchestrator server:

n A version, name, and description for the plug-in

VMware, Inc. 19

n References to the classes of the plugged-in technology and to the associated plug-in adapter

n Initializes the plug-in when the Orchestrator server starts

n Scripting types to represent the types of objects in the plugged-in technology

n The relationships between object types to define how the objects display in the Orchestrator Inventory

n Scripting classes that map the objects and operations in the plugged-in technology to functions and
object types in the Orchestrator JavaScript API

n Enumerations to define a list of constant values that apply to all objects of a certain type

n Events that Orchestrator monitors in the plugged-in technology

The vso.xml file must conform to the XML schema definition of Orchestrator plug-ins. You can access the
schema definition at the VMware support site.

http://www.vmware.com/support/orchestrator/plugin-4-1.xsd

For descriptions of all of the elements of the vso.xml file, see Chapter 6, “Elements of the vso.xml Plug-In
Definition File,” on page 109.

Format of the vso.xml Plug-In Definition File
The vso.xml file defines how the Orchestrator server interacts with the plugged-in technology. You must
include a reference to every type of object or operation to expose to Orchestrator in the vso.xml file.

Objects that you include in the vso.xml file appear as scripting objects in the Orchestrator scripting API, or
as finder objects in the Orchestrator Inventory tab.

As part of the open architecture and standardized implementation of plug-ins, the vso.xml file must adhere
to a standard format.

The following diagram shows the format of the vso.xml plug-in definition file and how the elements nest
within each other.

Developing Plug-Ins with VMware vCenter Orchestrator

20 VMware, Inc.

Figure 2‑1. Format of the vso.xml Plug-In Definition File

versionheader

inventory

module

factories

scripts
installation

relations

packages

datasource

properties

adaptor

finders

events

classes

scripting objects

parameters

finders

constructors

objects

enumerations

parametersmethods

static
attributes

dynamic

configuration

configuration
adaptor

configuration
WAR

XML

DB

Naming Plug-In Objects
You must provide a unique identifier for every object that the plug-in finds in the plugged-in technology.
You define the object names in the <finder> elements and in the <object> elements in the vso.xml file.

The finder operations that you define in the factory implementation find objects in the plugged-in
technology. When the plug-in finds objects, you can use them in Orchestrator workflows and pass them
from one workflow element to another. The unique identifiers that you provide for the objects allows them
to pass between the elements in a workflow.

The Orchestrator server stores only the type and identifier of each object that it processes, and stores no
information about where or how Orchestrator obtained the object. You must name objects consistently in the
plug-in implementation so that you can track the objects you obtain from plug-ins.

If the Orchestrator server stops while workflows are running, when you restart the server the workflows
resume at the workflow element that was running when the server stopped. The workflow uses the
identifiers to retrieve objects that the element was processing when the server stopped.

Chapter 2 Contents and Structure of a Plug-In

VMware, Inc. 21

Plug-In Object Naming Conventions
You must follow Java class naming conventions when you name all objects in plug-ins.

IMPORTANT Because of the way in which the workflow engine performs data serialization, do not use the
following string sequences in object names. Using these character sequences in object identifiers causes the
workflow engine to parse workflows incorrectly, which can cause unexpected behavior when you run the
workflows.

n #;#

n #,#

n #=#

Use these guidelines when you name objects in plug-ins.

n Use an initial uppercase letter for each word in the name.

n Do not use spaces to separate words.

n For letters, only use the standard characters A to Z and a to z.

n Do not use special characters, such as accents.

n Do not use a number as the first character of a name.

n Where possible, use fewer than 10 characters.

Table 2-1 shows rules that apply to individual object types.

Table 2‑1. Plug-In Object Naming Rules

Object Type Naming Rules

Plug-In n Defined in the <module> element in the vso.xml file.
n Must adhere to Java class naming conventions.
n Must be unique. You cannot run two plug-ins with the same name in an Orchestrator

server.

Finder object n Defined in the <finder> elements in the vso.xml file.
n Must adhere to Java class naming conventions.
n Must be unique in the plug-in.
Orchestrator adds the plug-in name and a colon to the finder object names in the finder object
types in the Orchestrator scripting API. For example, the VirtualMachine object type from
the vCenter Server plug-in appears in the Orchestrator scripting API as VC:VirtualMachine.

Scripting object n Defined in the <scripting-object> elements in the vso.xml file.
n Must adhere to Java class naming conventions.
n Must be unique in the Orchestrator server.
n To avoid confusing scripting objects with finder objects of the same name or with scripting

objects from other plug-ins, always prefix the scripting object name with the name of the
plug-in, but do not add a colon. For example, the VirtualMachine class from the vCenter
Server plug-in appears in the Orchestrator scripting API as the VcVirtualMachine class.

File Structure of the Plug-In
A plug-in must conform to a standard file structure and must include certain specific folders and files. You
deliver a plug-in as a standard Java archive (JAR) or ZIP file, that you must rename with the .dar extension.

The contents of the DAR archive must use the following folder structure and naming conventions.

Developing Plug-Ins with VMware vCenter Orchestrator

22 VMware, Inc.

Table 2‑2. Structure of the DAR Archive

Folders Description

plug-in_name\VSO-INF\ Contains the vso.xml file that defines the mapping of the
objects in the plugged-in technology to Orchestrator
objects.
The VSO-INF folder and the vso.xml file are mandatory.

plug-in_name\lib\ Contains the JAR files that contain the binaries of the
plugged-in technology. Also contains JAR files that contain
the implementations of the adapter, factory, notification
handlers, and other interfaces in the plug-in.
The lib folder and JAR files are mandatory.

plug-in_name\resources\ Contains resource files that the plug-in requires. The
resources folder can include the following types of
element:
n Image files, to represent the objects of the plug-in in the

Orchestrator Inventory tab.
n Scripts, to define initialization behavior when the plug-

in starts.
n Orchestrator packages, that can contain custom

workflows, actions, Web views, and other resources
that interact with the objects that you access by using
the plug-in.

You can organize resources in subfolders. For example,
resources\images\, resources\scripts\, or
resources\packages\.
The resources folder is optional.

plug-in_name\webapps\ Contains the WAR file of the Web application that adds a
tab for the plug-in to the Orchestrator configuration
interface or the files of a Web view for the plug-in.
The webapps folder is optional.

You use the Orchestrator configuration interface to import a DAR file to the Orchestrator server.

Chapter 2 Contents and Structure of a Plug-In

VMware, Inc. 23

Developing Plug-Ins with VMware vCenter Orchestrator

24 VMware, Inc.

Create an Orchestrator Plug-In 3
To create a plug-in to use Orchestrator to manage an external application, you must create a plug-in adapter
and a plug-in factory, create any event handlers, and map the objects from the plugged-in application to
Orchestrator objects in the vso.xml file.

The procedure to create a plug-in consists of several subprocedures. These procedures demonstrate the
plug-in creation process by examining the Java classes, resources, and vso.xml file for a plug-in to an
example Java application. The example application that these procedures examine represents the solar
system. The example contains Java objects to represent the Sun, the planets, and their moons. The Java
objects also define operations that you can perform on the objects. The Orchestrator plug-in for this
application allows you to use Orchestrator to manage the solar system application. When you install the
example plug-in, you can use Orchestrator to perform the operations on the objects of the solar system
application by running workflows and setting policies.

Procedure

1 Accessing the Orchestrator Plug-In API on page 26
The Orchestrator plug-in API provides Java interfaces that you implement to create the plug-in
adapter and plug-in factory. The plug-in adapter and factory expose the objects and operations of the
plugged-in technology to the Orchestrator server.

2 Obtain an Application to Plug in to Orchestrator on page 27
To create a plug-in, you must have an application to expose for Orchestrator to manage.

3 Components of the Solar System Application on page 27
The solar system application replicates a solar system and includes objects to represent stars, planets,
and moons. The solar system application also defines operations that you can perform on these
objects.

4 Components of the Solar System Plug-In on page 30
The solar system plug-in implements a plug-in adapter, plug-in factory, and event handlers to expose
the objects and functions of the solar system application to Orchestrator.

5 Create a Plug-In Factory on page 31
To create a plug-in factory, you create a Java class that implements the IPluginFactory interface from
the Orchestrator plug-in API.

6 Create a Plug-In Event Listener on page 38
Plug-in event listeners allow Orchestrator to monitor events that occur in the plugged-in technology.
To create a plug-in event listener, you create a Java class that implements the
IPluginNotificationHandler interface from the Orchestrator plug-in API.

VMware, Inc. 25

7 Create a Plug-In Event Generator on page 41
You can create one or more event generators in a plug-in to perform operations on the objects in the
plugged-in technology. The event generator generates events that the Orchestrator plug-in, rather than
the plugged-in technology, defines.

8 Create a Plug-In Workflow Trigger on page 46
You can create plug-in workflow triggers to monitor events in the plugged-in technology on behalf of
a Wait Event element in a workflow. To create a workflow trigger, you create a Java class that
implements the PluginTrigger class from the Orchestrator plug-in API.

9 Create Plug-In Watchers on page 50
Plug-in watchers watch triggers on behalf of workflows that are waiting for the event that the trigger
starts. To create a plug-in watcher, you create a Java class that implements the PluginWatcher class
from the Orchestrator plug-in API. You publish the watcher on the Orchestrator notification server by
implementing the IPluginPublisher interface.

10 Define Objects and Methods to Map to the Orchestrator JavaScript API on page 55
You can map the object types, classes, and methods of the plugged-in technology and the plug-in itself
to JavaScript types, classes, and methods that you add to the Orchestrator JavaScript API.

11 Create a Plug-In Adapter on page 56
To create a plug-in adapter, you create a Java class that implements the IPluginAdaptor interface from
the Orchestrator plug-in API. The adapter instantiates the plug-in factory and event management
implementations.

12 Add a Tab to the Configuration Interface on page 61
You can add a tab to the Orchestrator configuration interface to allow users to provide information to
the plug-in configuration that is specific to their environment or preferences.

13 Map the Application in the vso.xml File on page 70
The vso.xml file defines how Orchestrator accesses and interacts with the plugged-in technology. The
vso.xml file maps objects and operations in the plugged-in technology and in the plug-in
implementation to Orchestrator objects and operations.

14 Create the Plug-In DAR Archive on page 77
The final stage in the creation of a plug-in is to create the DAR archive that you import to Orchestrator.

15 Install a Plug-In in the Orchestrator Server on page 79
After you create the plug-in DAR file, you must install it in the Orchestrator server. You install plug-
ins in the Orchestrator configuration interface.

16 Interact with the Solar System Application by Using Orchestrator on page 80
After you install a plug-in in the Orchestrator server, you can use the objects that it adds to the
Orchestrator JavaScript API to create workflows, actions, policies, Web views, and so on. You use
these items to interact with the plugged-in technology using Orchestrator.

Accessing the Orchestrator Plug-In API
The Orchestrator plug-in API provides Java interfaces that you implement to create the plug-in adapter and
plug-in factory. The plug-in adapter and factory expose the objects and operations of the plugged-in
technology to the Orchestrator server.

The plug-in API includes interfaces, classes, and annotations that you can use when you create the plug-in
adapter, factory, and event management implementations. For the full list of the classes in the Orchestrator
plug-in API, see Chapter 5, “Orchestrator Plug-In API Reference,” on page 93.

Developing Plug-Ins with VMware vCenter Orchestrator

26 VMware, Inc.

Locating the Plug-In API Java Archives
Orchestrator provides the classes of the plug-in API in the Orchestrator plug-in API Java archive (JAR) file, .
To develop the plug-in adapter and factory implementations, you must include the file in your classpath.
You might also need the utility classes that the archive provides.

Table 3‑1. Locations of JAR File and Utility Class Archive

Option Location

If you installed the standalone version of Orchestrator.

If the vCenter Server installer installed Orchestrator.

If you develop a plug-in that requires a tab in the Orchestrator configuration interface, you must include the
file in your classpath.

Table 3‑2. Location of the Orchestrator Configuration Tab JAR File

Option Location

If you installed the standalone version of Orchestrator. install-
directory\VMware\Orchestrator\configuration\jet
ty\lib\ext

If the vCenter Server installer installed Orchestrator. install-
directory\VMware\Infrastructure\Orchestrator\co
nfiguration\jetty\lib\ext

Obtain an Application to Plug in to Orchestrator
To create a plug-in, you must have an application to expose for Orchestrator to manage.

The solar system example application demonstrates how to create a plug-in. The vCO Plug-in SDK ZIP file
that you can download from the VMware Communities site contains the source files for the solar system
application, and the source files for its plug-in implementation.

You can examine the source files of the solar system application and solar system plug-in. You can modify
the source files to adapt and extend the solar system application and solar system plug-in, and build a DAR
file to incorporate your modifications in the plug-in.

Procedure

1 Download the vCO Plug-in SDK ZIP file from the VMware Communities site.

2 Unzip the bundle to an appropriate location.

3 Navigate to the following location to view the files of the solar system application and the solar system
plug-in.

install_directory\VMware-VCO-Plug-In-SDK\samples\vCOPluginSDKSamplePlugin-SolarSystem

Components of the Solar System Application
The solar system application replicates a solar system and includes objects to represent stars, planets, and
moons. The solar system application also defines operations that you can perform on these objects.

You can find the source files of the solar system application in the VMware-VCO-Plug-In-
SDK\samples\vCOPluginSDKSamplePlugin-SolarSystem\src\o11nplugin-solarsystem-

model\src\main\java\com\vmware\solarsystem\ folder in the vCO Plug-in SDK samples bundle.

Chapter 3 Create an Orchestrator Plug-In

VMware, Inc. 27

For simplicity, the solar system application runs in the JVM of the Orchestrator server when you install the
solar system plug-in. You can create plug-ins for technologies that run independently of Orchestrator by
defining how Orchestrator connects to the application in a function in the plug-in. For example, you can add
connection information in a tab for the plug-in in the Orchestrator configuration interface.

NOTE The source files of the solar system example application and solar system plug-in are provided for
reference purposes, so that you can see the details of the application that the solar system plug-in exposes
and of the plug-in implementation. If you adapt the code of the solar system application or the solar system
plug-in, you can build the application and the DAR file to incorporate your adaptations.

CelestialBody.java Class
The CelestialBody.java class is a serializable class that defines a generic celestial body, that can be a star, a
planet, or a moon.

The CelestialBody class declares the following constructor and methods:

n CelestialBody() constructor, to create a generic celestial body instance

n getId() method, to return an object identifier

n setId() method, to set an object identifier

n getName() method, to return an object name

n setName() method, to set an object name

Star.java Class
The Star.java class extends CelestialBody to create star objects.

The Star class adds the following constructor and methods:

n Star() constructor, to create star instances

n getCircumference() method, to return the circumference of a star

n setCircumference() method, to set the circumference of a star

n getSurfaceTemp() method, to return the surface temperature of a star

n setSurfaceTemp() method, to set the surface temperature of a star

n getPlanets() method, to return a list of planets that orbit a star

n addPlanet() method, to add a planet to the list of planets that orbit a star

n removePlanet() method, to remove a planet from the list of planets that orbit a star

Planet.java Class
The Planet.java class extends CelestialBody to create planet objects.

The Planet class declares the following constructor and methods:

n Planet() constructor, to create planet instances

n getCircumference() method, to return the circumference of a planet

n setCircumference() method, to set the circumference of a planet

n getGravity() method, to return the gravity of a planet

n setGravity() method, to set the gravity of a planet

n getMoons() method, to return a list of moons that orbit a planet

Developing Plug-Ins with VMware vCenter Orchestrator

28 VMware, Inc.

n addMoon() method, to add a moon to the list of moons that orbit a planet

n removeMoon() method, to remove a moon from the list of moons that orbit a planet

n getStarId() method, to return the identifier of the star that the planet orbits

n setStarId() method, to set the identifier of the star that the planet orbits

Moon.java Class
The Moon.java class extends CelestialBody to create moon objects.

The Moon class declares the following constructor and methods:

n Moon() constructor, to create moon instances

n getVolume() method, to return the volume of a moon

n setVolume() method, to set the volume of a moon

n getPlanetId() method, to return the identifier of the planet that this moon orbits

n setPlanetId() method, to set the identifier of the planet that this moon orbits

ISolarSystemListener.java Class
The ISolarSystemListener.java class extends java.util.EventListener to create a listener that monitors
events in the solar system application.

The ISolarSystemListener class declares the following methods:

n circumferenceChanged(), to monitor changes in the circumference of a planet

n gravityChanged(), to monitor changes in the gravity of a planet

n planetAdded(), to monitor the creation of new planets

n planetRemoved(), to monitor the destruction of planets

SolarSystemEventHandler.java Class
The SolarSystemEventHandler.java class creates an array of ISolarSystemListener instances and defines
methods to handle the events that the ISolarSystemListener instances observe.

The SolarSystemEventHandler defines the following methods:

n registerListener(), to add a listener to the array of ISolarSystemListener instances

n unregisterListener(), to remove a listener from the array of ISolarSystemListener instances

n fireCircumferenceChanged(), to register a change in the circumference of a planet

n fireGravityChanged(), to register a change in the gravity of a planet

n firePlanetAdded(), to register the creation of a planet

n firePlanetRemoved(), to register the destruction of a planet

Chapter 3 Create an Orchestrator Plug-In

VMware, Inc. 29

SolarSystemRepository.java Class
The SolarSystemRepository.java class implements all of the classes of the solar system application to create
an instance of a solar system.

When the solar system application runs, it creates a unique SolarSystemRepository instance that represents
Earth's solar system. The SolarSystemRepository starts a SolarSystemEventHandler instance to monitor
events in the solar system, and creates instances of the Star, Planet, and Moon classes that represent the Sun,
Earth, Mars, Titan, and so on. The SolarSystemRepository constructor calls the Star.addPlanet() and
Planet.addMoon() methods to add the planets to the Sun and the moons to the planets, and sets their
respective names, identifiers, and attributes.

The SolarSystemRepository class defines the following constructor and methods:

n SolarSystemRepository() constructor, to create a unique SolarSystemRepository instance and a
SolarSystemEventHandler instance

n getUniqueInstance(), to return a unique SolarSystemRepository instance

n getStar(), to return the star of this solar system instance

n getAllPlanets(), to return a list of the planets that orbit the star

n getPlanetById(), to return a planet by its unique identifier

n getAllMoons(), to return a list of the moons that orbit a planet

n getMoonById(), to return a moon by its unique identifier

Components of the Solar System Plug-In
The solar system plug-in implements a plug-in adapter, plug-in factory, and event handlers to expose the
objects and functions of the solar system application to Orchestrator.

You find the source files of the solar system plug-in in the VMware-VCO-Plug-In-
SDK\samples\vCOPluginSDKSamplePlugin-SolarSystem\src\o11nplugin-solarsystem-

core\src\main\java\com\vmware\orchestrator\api\sample\solarsystem\ folder in the vCO Plug-in SDK
samples bundle .

The SolarSystemConfigureAction.java file is in the o11nplugin-solarsystem-config directory rather than in
o11nplugin-solarsystem-core.

NOTE The source files of the solar system example application and solar system plug-in are provided for
reference purposes, so that you can see the details of the application that the solar system plug-in exposes
and of the plug-in implementation. If you adapt the code of the solar system application or the solar system
plug-in, you can build the application and the DAR file to incorporate your adaptations.

The following table lists the Java files of the solar system application.

Table 3‑3. Source Files for the Solar System Plug-In Implementation

Class Name Description

SolarSystemAdapter.java Implements the IPluginAdaptor interface that defines for
Orchestrator the entry point of the solar system
application. Instantiates the solar system factory and
creates instances of event generators, publishers, and
watchers.

SolarSystemFactory.java Implements the IPluginFactory interface that defines
how Orchestrator uses the plug-in to find solar system
objects, and how to perform operations on those objects.

Developing Plug-Ins with VMware vCenter Orchestrator

30 VMware, Inc.

Table 3‑3. Source Files for the Solar System Plug-In Implementation (Continued)

Class Name Description

SolarSystemEventGenerator.java Defines methods to publish events to Orchestrator and a
method to generate solar flares on Star objects in the solar
system application. Creates a StarFlareEventListener
object that listens for solar flare events on Star objects in
the solar system application.

SolarSystemEventListener.java Implements the IPluginNotificationHandler interface,
registers listeners with the notification handler to listen for
events in the solar system application, and sends
notifications of the events to Orchestrator.

SolarSystemTriggerGenerator.java Creates triggers that allow you to start solar flare events in
the solar system application from Orchestrator.

SolarSystemWatchersManager.java Implements StarFlareEventListener to monitor solar
flare events in the solar system application and performs
functions in Orchestrator if the solar flare exceeds a certain
magnitude.

Create a Plug-In Factory
To create a plug-in factory, you create a Java class that implements the IPluginFactory interface from the
Orchestrator plug-in API.

These procedures present the steps involved in creating a plug-in factory. To illustrate the process, they
present code from the SolarSystemFactory class from the solar system plug-in.

You can download the vCO Plug-in SDK ZIP file from the VMware Communities site to obtain the sources
of the solar system example application and plug-in.

For a description of the role of the plug-in factory and the other components of a plug-in, see Chapter 1,
“Overview of Plug-Ins,” on page 11. For information about all of the methods and parameters of the factory
interface, see “IPluginFactory Interface,” on page 97.

Procedure

1 Set Up the Plug-In Factory Implementation on page 32
To create a plug-in factory, you create an implementation of the IPluginFactory interface from the
Orchestrator plug-in API.

2 Set Up Event Listeners and Notification Handlers on page 33
You activate event listeners and notification handlers for a plug-in in the factory implementation.

3 Find Objects By Identifier in the Plugged-In Technology on page 34
You can find objects by their identifier in the plugged-in technology by using the
IPluginFactory.find() method.

4 Find Objects in the Plugged-In Technology By a Query on page 35
You can find objects in the plugged-in technology by defining a query in the
IPluginFactory.findAll() method.

5 Find Objects By Relation Type in the Plugged-In Technology on page 36
You can find objects by their relationship to other objects in the plugged-in technology by using the
IPluginFactory.findRelation() method. You can also determine whether an object has any
dependent child objects by using the IPluginFactory.hasChildrenInRelation() method.

Chapter 3 Create an Orchestrator Plug-In

VMware, Inc. 31

6 Discover Whether an Object has Children of a Given Relation Type on page 37
You implement the IPluginFactory.hasChildrenInRelation() method to discover whether an object
relates to any children by a given type of relation.

Set Up the Plug-In Factory Implementation
To create a plug-in factory, you create an implementation of the IPluginFactory interface from the
Orchestrator plug-in API.

Prerequisites

n Verify that you have an application to plug in to Orchestrator.

n Verify that you have access to the Orchestrator plug-in API JAR file.

Procedure

1 Create and save a Java file for the plug-in factory implementation named
ApplicationNameFactory.java.

In the solar system example, the factory class is named SolarSystemFactory.java.

2 Declare the package that contains the Java classes of the plug-in implementation.

The solar system example declares the following package.

package com.vmware.orchestrator.api.sample.solarsystem;

3 Import the following Orchestrator plug-in API classes with a Java import statement.

import ch.dunes.vso.sdk.api.HasChildrenResult;

import ch.dunes.vso.sdk.api.IPluginFactory;

import ch.dunes.vso.sdk.api.IPluginNotificationHandler;

import ch.dunes.vso.sdk.api.PluginExecutionException;

import ch.dunes.vso.sdk.api.QueryResult;

4 Import the following classes of the application to plug in with a Java import statement.

import com.vmware.solarsystem.Planet;

import com.vmware.solarsystem.SolarSystemRepository;

5 Import any other classes that the factory implementation requires.

In the solar system example, the factory implementation requires the following classes.

import java.util.Arrays;

import java.util.Collections;

import java.util.List;

import org.apache.log4j.Logger;

6 Declare a public class that implements the IPluginFactory interface from the Orchestrator plug-in API.

The solar system example factory declares the SolarSystemFactory class.

public class SolarSystemFactory implements IPluginFactory {

}

What to do next

Set up event listeners and notifications in the plug-in factory.

Developing Plug-Ins with VMware vCenter Orchestrator

32 VMware, Inc.

Set Up Event Listeners and Notification Handlers
You activate event listeners and notification handlers for a plug-in in the factory implementation.

The plug-in adapter creates one plug-in factory for each connection between Orchestrator and the plugged-
in technology. Consequently, you set up event listeners and notification handlers in the plug-in factory to
listen for events through the connection and to send notifications about the events that the listeners
discover.

Prerequisites

n Set up the factory implementation class.

n Declare a public class that implements the IPluginFactory interface.

Procedure

1 Set up logging so that Orchestrator can record in the logs the events that occur in the plugged-in
technology.

The solar system example uses an instance of org.apache.log4j.Logger to log events.

public class SolarSystemFactory implements IPluginFactory {

 private static final Logger log = Logger.getLogger(SolarSystemFactory.class);

}

2 Set up a notification handler by implementing the IPluginNotificationHandler interface from the
Orchestrator API.

The SolarSystemFactory constructor gets an instance of IPluginNotificationHandler named
notificationHandler.

public class SolarSystemFactory implements IPluginFactory {

 private static final Logger log = Logger.getLogger(SolarSystemFactory.class);

 public SolarSystemFactory(IPluginNotificationHandler notificationHandler) {

 }

}

3 Create an instance of an event listener that implements the java.util.EventListener class.

The solar system plug-in factory creates an instance of the SolarSystemEventListener class. The
SolarSystemEventListener instance monitors an instance of the SolarSystemRepository class from the
solar system application.

public class SolarSystemFactory implements IPluginFactory {

 private static final Logger log = Logger.getLogger(SolarSystemFactory.class);

 public SolarSystemFactory(IPluginNotificationHandler notificationHandler) {

 super();

 new SolarSystemEventListener(

 SolarSystemRepository.getUniqueInstance(), notificationHandler);

 }

}

NOTE The SolarSystemEventListener class is an implementation of the ISolarSystemListener listener
that the solar system application defines. ISolarSystemListener implements java.util.EventListener.
For information about the implementation of SolarSystemEventListener, see “Create a Plug-In Event
Listener,” on page 38.

You set up the event listeners and notification handlers in the plug-in factory, to listen for events in the
plugged-in technology and to send notifications about the events.

Chapter 3 Create an Orchestrator Plug-In

VMware, Inc. 33

What to do next

Define methods in the plug-in factory to find objects in the plugged-in technology by name, type, and by
their relation to other objects.

Find Objects By Identifier in the Plugged-In Technology
You can find objects by their identifier in the plugged-in technology by using the IPluginFactory.find()
method.

All instances of objects in the plugged-in technology must have a unique name or identifier for Orchestrator
to find them. The IPluginFactory.find() method uses the type and identifier to find an object in the
plugged-in technology and returns objects of the type java.lang.Object.

Prerequisites

n Set up the factory implementation class.

n Create a public constructor that implements the IPluginFactory interface.

Procedure

1 Declare the IPluginFactory.find() method to find objects of the type java.lang.Object.

public Object find(String type, String id) {

}

2 Write in the logs the type and identifier of the objects that the plug-in factory finds.

public Object find(String type, String id) {

 log.debug("find: " + type + ", " + id);

}

3 Call the appropriate methods from the plugged-in technology to obtain the identifiers of objects of each
different type.

The SolarSystemFactory class uses an if-else statement to call the SolarSystemRepository.getStar(),
getPlanetById(), and getMoonById() methods.

public Object find(String type, String id) {

 log.debug("find: " + type + ", " + id);

 if (type.equals("Star")) {

 return SolarSystemRepository.getUniqueInstance().getStar();

 } else if (type.equals("Planet")) {

 return SolarSystemRepository.getUniqueInstance().getPlanetById(id);

 } else if (type.equals("Moon")) {

 return SolarSystemRepository.getUniqueInstance().getMoonById(id);

 } else if (type.equals("Galaxy")) {

 return null; // No object for galaxy defined yet

 } else {

 throw new IndexOutOfBoundsException("Type " + type + "

 + unknown for plugin SolarSystem");

 }

}

You implemented the IPluginFactory.find() method to find objects by identifier in the plugged-in
technology.

What to do next

Define methods in the plug-in factory to find all objects of a certain type.

Developing Plug-Ins with VMware vCenter Orchestrator

34 VMware, Inc.

Find Objects in the Plugged-In Technology By a Query
You can find objects in the plugged-in technology by defining a query in the IPluginFactory.findAll()
method.

The findAll() method takes the object type and a query as parameters. You can define the syntax of the
query in the IPluginFactory implementation to narrow the search. If you do not define query syntax,
findAll() returns all objects of the specified type. You can ignore the query and find objects by type, ignore
the type and find objects by query, or find objects by both query and type.

The findAll() method returns a QueryResult object that contains a list of the objects of the corresponding
type that the plugged-in technology contains. For information about QueryResult objects, see “QueryResult
Class,” on page 101.

Prerequisites

n Set up the factory implementation class.

n Create a public constructor that implements the IPluginFactory interface.

Procedure

1 Declare the IPluginFactory.findAll() method to obtain a QueryResult object.

public QueryResult findAll(String type, String query) {

}

2 Write in the logs the type of the objects that the plug-in factory finds and any additional query that
narrows the search.

public QueryResult findAll(String type, String query) {

 log.debug("findAll: " + type + ", " + query);

}

3 Call the appropriate methods from the plugged-in technology to obtain objects of each different type.

The SolarSystemFactory class uses an if-else statement to call the SolarSystemRepository.getStar(),
getAllPlanets(), and getAllMoons() methods.

public QueryResult findAll(String type, String query) {

 log.debug("findAll: " + type + ", " + query);

 List<?> list; // The list can contain any element from the plug-in

 if (type.equals("Star")) {

 list = Arrays.asList(SolarSystemRepository.getUniqueInstance().getStar());

 } else if (type.equals("Planet")) {

 list = SolarSystemRepository.getUniqueInstance().getAllPlanets();

 } else if (type.equals("Moon")) {

 list = SolarSystemRepository.getUniqueInstance().getAllMoons();

 } else if (type.equals("Galaxy")) {

 list = Collections.emptyList();

 } else {

 throw new IndexOutOfBoundsException("Type " + type +

 " unknown for SolarSystem plug-in ");

 }

 return new QueryResult(list);

}

The SolarSystemFactory implementation of the findAll() method does not define a custom query to
narrow the search, so it returns a list of all the objects of each given type in the QueryResult object.

Chapter 3 Create an Orchestrator Plug-In

VMware, Inc. 35

You defined methods to find objects by their type in the plugged-in technology.

What to do next

Define methods in the plug-in factory to find all objects that relate to other objects by a certain relation type.

Find Objects By Relation Type in the Plugged-In Technology
You can find objects by their relationship to other objects in the plugged-in technology by using the
IPluginFactory.findRelation() method. You can also determine whether an object has any dependent
child objects by using the IPluginFactory.hasChildrenInRelation() method.

The IPluginFactory.findRelation() returns all of the dependent child objects that relate to a parent object
by a certain relation type.

The IPluginFactory.hasChildrenInRelation() method returns HasChildrenResult objects to confirm
whether a parent object has any dependent child objects that relate to it by a given relation type. The
possible values of a HasChildrenResult object are yes, no, or unknown. For information about
HasChildrenResult objects, see “HasChildrenResult Enumeration,” on page 106.

You define the relations between the objects in the plugged-in technology in the vso.xml file for the plug-in.

Prerequisites

n Set up the factory implementation class.

n Create a public constructor that implements the IPluginFactory interface.

Procedure

1 Declare the IPluginFactory.findRelation() method to return a java.util.List instance that lists all
the child objects that relate to a parent object by a given relation.

public List findRelation(String parentType, String parentId, String relationName) {

}

2 Write in the logs the type and identifier of the parent object and the name of the relationship that the
child objects have to the parent.

public List findRelation(String parentType, String parentId, String relationName) {

 log.debug("findRelation: " + parentType + ", " + parentId + ", " + relationName);

}

3 Call the appropriate methods from the plugged-in technology to obtain lists of child objects that relate
to their parent objects by different types of relations.

The SolarSystemFactory class uses an if-else statement to call the
SolarSystemRepository.getAllPlanets() method to return a list of all of the planets that relate to a
particular star by the OrbitingPlanets relation. The if-else statement also calls Planet.getMoons() to
return a list of all of the moons that relate to a particular planet by the OrbitingMoons relation.

public List findRelation(String parentType, String parentId, String relationName) {

 log.debug("findRelation: " + parentType + ", " + parentId + ", " + relationName);

 if (parentId == null) {

 return Arrays.asList(SolarSystemRepository.getUniqueInstance().getStar());

 }

 if (parentType.equals("Star")) {

 if (relationName.equals("OrbitingPlanets")) {

 return SolarSystemRepository.getUniqueInstance().getAllPlanets();

 } else {

 throw new IndexOutOfBoundsException("Unknown relation name: "

 + relationName);

Developing Plug-Ins with VMware vCenter Orchestrator

36 VMware, Inc.

 }

 }

 if (parentType.equals("Planet")) {

 if (relationName.equals("OrbitingMoons")) {

 Planet parentPlanet =

 SolarSystemRepository.getUniqueInstance().getPlanetById(parentId);

 if (parentPlanet != null) {

 return parentPlanet.getMoons();

 }

 return Collections.emptyList();

 } else {

 throw new IndexOutOfBoundsException("Unknown relation name: "

 + relationName);

 }

 } else {

 return Collections.emptyList();

 }

}

You defined methods in the IPluginFactory implementation to find objects in the plugged-in technology
that relate to other objects by a certain relation type.

What to do next

Discover whether an object relates to any child objects by a given type of relation.

Discover Whether an Object has Children of a Given Relation Type
You implement the IPluginFactory.hasChildrenInRelation() method to discover whether an object relates
to any children by a given type of relation.

You can implement an if-else statement in the hasChildrenInRelation() method to check for child objects
that relate to a parent by a certain relation type. For example, you can implement a function that uses the
hasChildrenInRelation() method in the solar system example to check whether a Planet object has any
moons.

The possible return values of the hasChildrenInRelation() method are Yes, No, and Unknown. If you do not
implement the hasChildrenInRelation() method, it returns Unknown.

Prerequisites

n Set up the factory implementation class.

n Create a public constructor that implements the IPluginFactory interface.

Procedure

u Declare the IPluginFactory.hasChildrenInRelation() method to discover whether an object has any
children of a certain relation type.

The SolarSystemFactory example does not fully implement the hasChildrenInRelation() method and
returns unknown in all cases.

public HasChildrenResult hasChildrenInRelation(String parentType,

 String parentId, String relationName) {

 return HasChildrenResult.Unknown;

}

You called the IPluginFactory.hasChildrenInRelation() method to discover whether an object has any
children of a certain relation type.

Chapter 3 Create an Orchestrator Plug-In

VMware, Inc. 37

What to do next

Create an event listener object to allow Orchestrator to monitor events in the plugged-in technology.

Create a Plug-In Event Listener
Plug-in event listeners allow Orchestrator to monitor events that occur in the plugged-in technology. To
create a plug-in event listener, you create a Java class that implements the IPluginNotificationHandler
interface from the Orchestrator plug-in API.

These procedures present the steps involved in creating a plug-in event listener. To illustrate the process,
they present code from the SolarSystemEventListener class from the solar system example application.

You can download the vCO Plug-in SDK ZIP file from the VMware Communities site to obtain the sources
of the solar system example application and plug-in.

For a description of the role of plug-in event listeners and the other components of a plug-in, see Chapter 1,
“Overview of Plug-Ins,” on page 11. For information about all the methods and parameters of the
IPluginNotificationHandler interface, see “IPluginNotificationHandler Interface,” on page 97.

Procedure

1 Set Up the Event Listener Implementation on page 38
To create a plug-in event listener, you implement the java.util.Eventlistener interface and create an
instance of the IPluginNotification interface from the Orchestrator plug-in API.

2 Register the Event Listener with the Plugged-In Technology on page 39
To monitor events in a plugged-in technology, you must register the event listener from the plug-in
with the plugged-in technology and implement a notification handler.

3 Notify Orchestrator of Events in the Plugged-In Technology on page 40
Event listeners implement the IPluginNotificationHandler interface from the Orchestrator plug-in
API to notify Orchestrator of events in the plugged-in technology.

Set Up the Event Listener Implementation
To create a plug-in event listener, you implement the java.util.Eventlistener interface and create an
instance of the IPluginNotification interface from the Orchestrator plug-in API.

Prerequisites

n Download the bundle of Orchestrator examples.

n Unzip the examples bundle to an appropriate location.

Procedure

1 Create and save a Java file for the plug-in event listener implementation named
ApplicationNameEventListener.java.

In the solar system example, the event listener class is named SolarSystemEventListener.java.

2 Declare the package that contains the Java classes of the plug-in implementation.

The solar system example declares the following package.

package com.vmware.orchestrator.api.sample.solarsystem;

3 Import the Orchestrator plug-in API classes with a Java import statement.

In the solar system example, the event listener requires the following class:

import ch.dunes.vso.sdk.api.IPluginNotificationHandler;

Developing Plug-Ins with VMware vCenter Orchestrator

38 VMware, Inc.

4 Import any other classes that the event listener implementation requires.

In the solar system example, the event listener requires the following classes from the solar system
application:

import com.vmware.solarsystem.ISolarSystemListener;

import com.vmware.solarsystem.Planet;

import com.vmware.solarsystem.SolarSystemRepository;

5 Declare a public class for the event listener that implements the java.util.Eventlistener interface.

In the solar system example, the event listener declares the following class:

public class SolarSystemEventListener implements ISolarSystemListener {

}

The ISolarSystemListener class from the solar system application is a subclass of
java.util.Eventlistener.

6 Create an instance of the IPluginNotificationHandler interface.

The solar system event listener creates an IPluginNotificationHandler instance named
notficationHandler.

public class SolarSystemEventListener implements ISolarSystemListener {

 IPluginNotificationHandler notficationHandler;

}

You set up the plug-in event listener class.

What to do next

Register the plug-in event listener with the plugged-in technology.

Register the Event Listener with the Plugged-In Technology
To monitor events in a plugged-in technology, you must register the event listener from the plug-in with the
plugged-in technology and implement a notification handler.

An event listener requires access to the main class of the application to which it listens for events. An event
listener also requires an instance of the IPluginNotificationHandler interface from the Orchestrator plug-in
API, to send notifications to Orchestrator if the events occur.

Prerequisites

n Set up the event listener implementation class.

n Declare a public class that implements the java.util.EventListener interface.

n Create an instance of the IPluginNotificationHandler interface.

Procedure

1 Create a public constructor to create event listener instances.

The solar system example creates a constructor that takes as parameters an instance of the
SolarSystemRepository class from the solar system application and an instance of the
IPluginNotificationHandler interface.

public SolarSystemEventListener(SolarSystemRepository solarSystemRepository,

 IPluginNotificationHandler notificationHandler) {

}

Chapter 3 Create an Orchestrator Plug-In

VMware, Inc. 39

2 Register an instance of the event listener with the plugged-in technology.

You register the event listener by using the listener registration mechanism that the plugged-in
technology defines.

The SolarSystemEventListener() constructor registers the event listener with the solar system
application by calling the SolarSystemRepository.registerListener() method.

public SolarSystemEventListener(SolarSystemRepository solarSystemRepository,

 IPluginNotificationHandler notificationHandler) {

 solarSystemRepository.registerListener(this);

}

3 Associate an instance of the IPluginNotificiationHandler interface to the event listener.

The SolarSystemEventListener() constructor uses the this Java keyword to add an instance of
IPluginNotificiationHandler to the event listener.

public SolarSystemEventListener(SolarSystemRepository solarSystemRepository,

 IPluginNotificationHandler notificationHandler) {

 solarSystemRepository.registerListener(this);

 this.notificationHandler = notificationHandler;

}

You created an event listener that registers an event listener and a notification handler with the plugged-in
technology. The event listener listens for events in the plugged-in technology and sends notifications to
Orchestrator.

What to do next

Call the methods of the IPluginNotificationHandler interface to notify Orchestrator of events in the
plugged-in technology.

Notify Orchestrator of Events in the Plugged-In Technology
Event listeners implement the IPluginNotificationHandler interface from the Orchestrator plug-in API to
notify Orchestrator of events in the plugged-in technology.

The IPluginNotificationHandler interface defines methods that you implement in the event listener to
notify Orchestrator of changes in state of the objects that the event listener monitors in the plugged-in
technology.

The SolarSystemEventListener class monitors objects in a SolarSystemRepository instance for changes in
state that the following methods cause:

n Planet.setCircumference(), that changes the circumference of a planet.

n Planet.setGravity(), that changes the gravity of a planet.

n Star.addPlanet(), that adds a planet to a star.

n Star.removePlanet(), that removes a planet from a star.

The events that the SolarSystemEventListener class monitors are all events that the solar system application
defines.

Prerequisites

n Set up the event listener implementation class.

n Declare a public class that implements the java.util.EventListener interface.

n Create an instance of the IPluginNotificationHandler interface.

n Register the event listener and the notification handler instances with the plugged-in technology.

Developing Plug-Ins with VMware vCenter Orchestrator

40 VMware, Inc.

Procedure

1 Create methods that implement the IPluginNotificationHandler.notifyElementUpdated() method to
notify Orchestrator of changes to an existing object.

The SolarSystemEventListener class creates the following methods to inform Orchestrator of changes to
the circumference and gravity of a particular Planet object:

public void circumferenceChanged(Planet planet) {

 notificationHandler.notifyElementUpdated("Planet", planet.getId());

}

public void gravityChanged(Planet planet) {

 notificationHandler.notifyElementUpdated("Planet", planet.getId());

}

2 Create methods that implement the IPluginNotificationHandler.notifyElementInvalidate() method
to notify Orchestrator of changes in relations between objects.

The SolarSystemEventListener class creates the following method to notify Orchestrator that a child
Planet object is added to a parent Star object.

public void planetAdded(Planet planet) {

 notificationHandler.notifyElementInvalidate("Star", "SUN");

}

3 Create methods that implement the IPluginNotificationHandler.notifyElementDeleted() method to
notify Orchestrator of the removal of an object.

The SolarSystemEventListener class creates the following method to notify Orchestrator that a child
Planet object is deleted from its parent Star.

public void planetRemoved(Planet planet) {

 notificationHandler.notifyElementDeleted("Planet", planet.getId());

}

You implemented the methods of the IPluginNotificationHandler interface to notify Orchestrator of events
that occur on the objects in the plugged-in technology.

What to do next

Create an event generator to push to the plugged-in technology events that the Orchestrator plug-in defines.

Create a Plug-In Event Generator
You can create one or more event generators in a plug-in to perform operations on the objects in the
plugged-in technology. The event generator generates events that the Orchestrator plug-in, rather than the
plugged-in technology, defines.

You can implement the IPluginEventPublisher interface to publish events in the plugged-in technology to
the Orchestrator policy engine. You create methods to set policy triggers and gauges on objects in the
plugged-in technology and event listeners to listen for events on those objects.

The solar system plug-in features an event generator that implements an event publisher and creates a
method to generate solar flares on a Star object in a SolarSystemRepository instance. These procedures
present the steps involved in creating a plug-in event generator. To illustrate the process, they present code
from the SolarSystemEventGenerator class. The package of workflows, actions, and resources that
accompany the solar system example contains a policy template that monitors a gauge that the
SolarSystemEventGenerator class publishes to the policy engine.

You can download the vCO Plug-in SDK ZIP file from the VMware Communities site to obtain the sources
of the solar system example application and plug-in.

Chapter 3 Create an Orchestrator Plug-In

VMware, Inc. 41

For a description of the role of the plug-in events and the other components of a plug-in, see Chapter 1,
“Overview of Plug-Ins,” on page 11. For information about all of the methods and parameters of the event
publisher interface, see “IPluginEventPublisher Interface,” on page 96.

Procedure

1 Set Up the Event Generator on page 42
You can create IPluginEventPublisher instances and methods to generate events directly in the plug-
in adaptor implementation. However, the solar system class creates these objects in a separate class.

2 Create Event Publishers on page 43
You can create IPluginEventPublisher instances to publish event gauges and event triggers to the
Orchestrator policy engine. Policies run in the Orchestrator server and monitor objects through plug-
ins.

3 Define and Publish Events to Orchestrator on page 44
The IPluginEventPublisher interface allows you to publish to the Orchestrator policy engine events
that you define in the plug-in that occur in the plugged-in technology.

Set Up the Event Generator
You can create IPluginEventPublisher instances and methods to generate events directly in the plug-in
adaptor implementation. However, the solar system class creates these objects in a separate class.

Prerequisites

n Verify that you have an application to plug in to Orchestrator.

n Verify that you have access to the Orchestrator plug-in API JAR file.

Procedure

1 Create and save a Java file for the plug-in event generator class named
ApplicationNameEventGenerator.java.

In the solar system example, the event generator class is named SolarSystemEventGenerator.java.

2 Declare the package that contains the Java classes of the plug-in implementation.

The solar system example declares the following package.

package com.vmware.orchestrator.api.sample.solarsystem;

3 Import the following Orchestrator plug-in API classes with a Java import statement.

import ch.dunes.vso.sdk.api.IPluginEventPublisher;

import ch.dunes.vso.sdk.api.IPluginFactory;

4 Import any other classes that the event generator requires.

In the solar system example, the event generator requires the following classes:

import java.util.Collections;

import java.util.HashMap;

import java.util.LinkedList;

import java.util.List;

import java.util.Map;

import org.apache.log4j.Logger;

Developing Plug-Ins with VMware vCenter Orchestrator

42 VMware, Inc.

5 Declare a public class for the event generator implementation.

The solar system example factory declares the SolarSystemEventGenerator class.

public class SolarSystemEventGenerator {

}

6 Set up logging so that Orchestrator can record in the logs the events that the event generator generates.

The solar system example uses an instance of org.apache.log4j.Logger to log events.

public class SolarSystemEventGenerator {

 private static final Logger log = Logger.getLogger(SolarSystemEventGenerator.class);

}

7 Create an instance of the event generator class for other classes in the plug-in implementation to use.

The SolarSystemEventGenerator declares a static instance of itself named _solarSystemEventGenerator
that the plug-in adapter class instantiates when it runs.

public class SolarSystemEventGenerator {

 private static final Logger log = Logger.getLogger(SolarSystemEventGenerator.class);

 public final static SolarSystemEventGenerator _solarSystemEventGenerator =

 new SolarSystemEventGenerator();

}

You set up and instantiated a plug-in event generator class.

What to do next

Create instances of the IPluginEventPublisher interface to monitor objects in the plugged-in technology.

Create Event Publishers
You can create IPluginEventPublisher instances to publish event gauges and event triggers to the
Orchestrator policy engine. Policies run in the Orchestrator server and monitor objects through plug-ins.

Policies can implement either gauges or triggers to monitor objects in the plugged-in technology. Policy
gauges monitor the attributes of objects and push an event in the Orchestrator server if the values of the
objects exceed certain limits. Policy triggers monitor objects and push an event in the Orchestrator server if a
defined event occurs on the object. You register policy gauges and triggers with IPluginEventPublisher
instances so that Orchestrator policies can monitor them.

The SolarSystemEventGenerator class creates IPluginEventPublisher instances. The
SolarSystemEventGenerator class defines methods to add and remove the IPluginEventPublisher instances
in the Orchestrator policy engine.

Prerequisites

Set up the event generator class to create event generator instances.

Procedure

1 Create one or more instances of the IPluginEventPublisher interface with which to register the objects
to monitor.

The SolarSystemEventGenerator class creates a map to contain all of the IPluginEventPublisher
instances.

private final Map<String, List<IPluginEventPublisher>> policyElements =

Collections.synchronizedMap(new HashMap<String, List<IPluginEventPublisher>>());

Chapter 3 Create an Orchestrator Plug-In

VMware, Inc. 43

2 Define a method to register the objects to monitor with the IPluginEventPublisher instances.

The SolarSystemEventGenerator class defines a method that takes as parameters the type and identifier
of the object to monitor and an IPluginEventPublisher instance with which to monitor the object. The
addPolicyElement() method adds an IPluginEventPublisher instance for each object to the hashtable of
IPluginEventPublisher instances.

public void addPolicyElement(String sdkType, String id, IPluginEventPublisher publisher) {

 String key = sdkType + "' / '" + id;

 log.info("Registering element to watch : '" + key + "'");

 List<IPluginEventPublisher> publishers = policyElements.get(key);

 if (publishers == null) {

 publishers = Collections.synchronizedList(new LinkedList<IPluginEventPublisher>());

 policyElements.put(key, publishers);

 }

 publishers.add(publisher);

}

3 (Optional) Define a method to remove objects from the list of objects to monitor.

The SolarSystemEventGenerator class defines a method that takes as parameters the type and identifier
of the object to monitor and an IPluginEventPublisher instance with which the objects are registered.
The removePolicyElement() method removes an IPluginEventPublisher instance for the identified
object from the hashtable of IPluginEventPublisher instances.

public void removePolicyElement(String sdkType, String id, IPluginEventPublisher publisher) {

 String key = sdkType + "' / '" + id;

 log.info("Unregistering element to watch : '" + key + "'");

 List<IPluginEventPublisher> publishers = policyElements.get(key);

 publishers.remove(publisher);

 if (publishers.isEmpty()) {

 policyElements.remove(key);

 }

}

You created IPluginEventPublisher instances that publish to Orchestrator policies the events that occur on
objects in the plugged-in technology.

What to do next

Define an event to push from Orchestrator to the plugged-in technology.

Define and Publish Events to Orchestrator
The IPluginEventPublisher interface allows you to publish to the Orchestrator policy engine events that
you define in the plug-in that occur in the plugged-in technology.

You can use the methods of the IPluginEventPublisher interface to set gauges and triggers that Orchestrator
policies monitor.

The SolarSystemEventGenerator class defines a method that generates solar flares of a given magnitude on
Star objects in the solar system application. By implementing a method to create solar flares in the solar
system plug-in, the plug-in adds a function that does not exist in the solar system application. The
generateFlareEvent() method that the plug-in defines registers a policy gauge with the Orchestrator policy
engine. An Orchestrator policy can watch this gauge for solar flares that exceed a certain magnitude.

Developing Plug-Ins with VMware vCenter Orchestrator

44 VMware, Inc.

Prerequisites

n Set up the event generator class to create event generator instances.

n Create instances of the IPluginEventPublisher interface.

Procedure

1 Create functions that define event listeners and the events that the event listeners monitor.

The SolarSystemEventGenerator class declares an interface from which to create listener instances, and
adds a method to the interface to create flare events of a certain magnitude on a given Star object.

public interface StarFlareEventListener{

 void starFlareEvent(String starid, double magnitude);

}

2 Create listener instances to listen for the events that the plug-in defines.

The SolarSystemEventGenerator instantiates the StarFlareEventListener interface to create a listener
named starFlareEventListener.

private StarFlareEventListener starFlareEventListener;

3 Create functions to generate events in the plugged-in technology.

The SolarSystemEventGenerator defines the generateFlareEvent() method that takes an object type,
identifier, and a magnitude value as parameters. The method writes in the logs that the plug-in
generated a flare event on a given object.

public void generateFlareEvent(String sdkType, String id, double magnitude) {

 String key = sdkType + "' / '" + id;

 log.info("Generate Flare Event for : '" + key + "'");

}

4 Register the objects to monitor with IPluginEventPublisher instances.

The SolarSystemEventGenerator.generateFlareEvent() method adds IPluginEventPublisher instances
for each object to the policyElements hashtable of publishers that the SolarSystemEventGenerator class
creates.

public void generateFlareEvent(String sdkType, String id, double magnitude) {

 String key = sdkType + "' / '" + id;

 log.info("Generate Flare Event for : '" + key + "'");

 List<IPluginEventPublisher> publishers = policyElements.get(key);

}

5 Call the IPluginEventPublisher.pushGauge() or IPluginEventPublisher.pushTrigger() methods to
publish gauges or triggers to the Orchestrator policy engine.

The SolarSystemEventGenerator.generateFlareEvent() method calls the pushGauge() method to
publish a gauge with the Orchestrator policy engine. The generateFlareEvent() method passes the
object type, identifier, and magnitude value to the pushGauge() method, sets the gauge name to Flare
and the type of value that the gauge monitors to magnitude.

public void generateFlareEvent(String sdkType, String id, double magnitude) {

 String key = sdkType + "' / '" + id;

 log.info("Generate Flare Event for : '" + key + "'");

 List<IPluginEventPublisher> publishers = policyElements.get(key);

 if (publishers != null) {

 for (IPluginEventPublisher publisher : publishers) {

 publisher.pushGauge(sdkType, id, "Flare", "magnitude", magnitude);

 }

}

Chapter 3 Create an Orchestrator Plug-In

VMware, Inc. 45

6 Call the functions that define the events to generate and monitor.

To generate flare events, the SolarSystemEventGenerator.generateFlareEvent() method calls the
StarFlareEventListener.starFlareEvent() method that the SolarSystemEventGenerator class defines.

public void generateFlareEvent(String sdkType, String id, double magnitude) {

 String key = sdkType + "' / '" + id;

 log.info("Generate Flare Event for : '" + key + "'");

 List<IPluginEventPublisher> publishers = policyElements.get(key);

 if (publishers != null) {

 for (IPluginEventPublisher publisher : publishers) {

 publisher.pushGauge(sdkType, id, "Flare", "magnitude", magnitude);

 }

 if (sdkType.equals("Star")) {

 starFlareEventListener.starFlareEvent(id, magnitude);

 }

}

You registered a policy gauge or a trigger that an Orchestrator policy can watch for events in the plugged-in
technology. If the events occur, the policy starts an operation in the Orchestrator server.

What to do next

Create plug-in triggers to start operations in the Orchestrator server when certain events occur in the
plugged-in technology.

Create a Plug-In Workflow Trigger
You can create plug-in workflow triggers to monitor events in the plugged-in technology on behalf of a Wait
Event element in a workflow. To create a workflow trigger, you create a Java class that implements the
PluginTrigger class from the Orchestrator plug-in API.

When a workflow trigger detects a change in the properties of an object that it is monitoring, it sends a
notification to any Orchestrator workflows that are waiting for the event. When the workflow receives the
notification from the workflow trigger, it stops waiting and resumes its run.

The PluginTrigger class defines methods to obtain or set the type and name of the object to monitor, the
nature of the event, and a timeout period.

You create implementations of the PluginTrigger class exclusively for use by Wait Event elements in
workflows. You define policy triggers for Orchestrator policies in classes that define events and implement
the IPluginEventPublisher.pushTrigger() method.

The solar system plug-in features a workflow trigger that creates an instance of the PluginTrigger class to
monitor solar flare events on a Star object in a SolarSystemRepository instance. These procedures present
the steps involved in creating a workflow trigger. To illustrate the process, they present code from the
SolarSystemTriggerGenerator class. The package of workflows, actions, and resources that accompany the
solar system example provides a workflow that contains a Wait Event element that monitors the workflow
trigger for solar flare events.

For a description of the role of the plug-in triggers and the other components of a plug-in, see Chapter 1,
“Overview of Plug-Ins,” on page 11. For information about all the methods and parameters of the plug-in
trigger class, see “PluginTrigger Class,” on page 100.

Procedure

1 Set Up the Workflow Trigger on page 47
To create a workflow trigger, you create an implementation of the PluginTrigger class from the
Orchestrator plug-in API.

Developing Plug-Ins with VMware vCenter Orchestrator

46 VMware, Inc.

2 Create Instances of the PluginTrigger Class on page 48
You create a workflow trigger by instantiating the PluginTrigger class.

3 Set the Properties that a Workflow Trigger Monitors on page 48
Workflow triggers monitor changes in the properties of an object in the plugged-in technology. When
workflow triggers detect a change in the properties of an object, they notify any workflows in the
Orchestrator server that are waiting for this event.

Set Up the Workflow Trigger
To create a workflow trigger, you create an implementation of the PluginTrigger class from the Orchestrator
plug-in API.

Prerequisites

n Verify that you have an application to plug in to Orchestrator.

n Verify that you have access to the Orchestrator plug-in API JAR file.

Procedure

1 Create and save a Java file for the workflow trigger implementation.

In the solar system example, the workflow trigger class is named SolarSystemTriggerGenerator.

2 Declare the package that contains the Java classes of the plug-in implementation.

The solar system example declares the following package.

package com.vmware.orchestrator.api.sample.solarsystem;

3 Import the Orchestrator plug-in API classes with a Java import statement.

The SolarSystemTriggerGenerator class requires the following classes:

import ch.dunes.vso.sdk.api.IPluginFactory;

import ch.dunes.vso.sdk.api.PluginTrigger;

4 Import the classes of the application to plug in with a Java import statement.

The SolarSystemTriggerGenerator class requires the following class:

import com.vmware.solarsystem.Star;

5 Import any other classes that the workflow trigger implementation requires.

The SolarSystemTriggerGenerator class requires the following class:

import java.util.Properties;

6 Declare a public class to contain the workflow trigger implementation.

The SolarSystemTriggerGenerator class declares the following class:

public class SolarSystemTriggerGenerator {

}

You set up the workflow trigger implementation.

What to do next

Implement the PluginTrigger class from the Orchestrator plug-in API to create workflow trigger instances.

Chapter 3 Create an Orchestrator Plug-In

VMware, Inc. 47

Create Instances of the PluginTrigger Class
You create a workflow trigger by instantiating the PluginTrigger class.

The PluginTrigger class defines a constructor that you can use to create workflow trigger instances. The
PluginTrigger constructor can define properties such as the name of the workflow trigger, a timeout period,
and the type and identifier of the object that the workflow trigger monitors.

Prerequisites

n Set up the workflow trigger implementation class.

n Declare a public class to contain the workflow trigger implementation.

Procedure

1 Create an instance of the PluginTrigger class by calling the PluginTrigger() constructor.

The SolarSystemTriggerGenerator class defines the newTrigger() method to create a workflow trigger
named trigger.

private PluginTrigger newTrigger() {

 PluginTrigger trigger = new PluginTrigger();

 return trigger;

}

2 Call the methods of the PluginTrigger class to set the basic properties of the workflow trigger.

The SolarSystemTriggerGenerator class calls the PluginTrigger.setModuleName() method to set the
name of the workflow trigger to the same name as the plug-in itself and calls
PluginTrigger.setTimeout() to deactivate the timeout period.

private PluginTrigger newTrigger() {

 PluginTrigger trigger = new PluginTrigger();

 trigger.setModuleName(SolarSystemAdapter.pluginName);

 trigger.setTimeout(-1);

 return trigger;

}

NOTE If you find objects by their type or identifier, you implement the setSdkType() and setSdkId()
methods to set triggers on objects.

You used the PluginTrigger() constructor to create workflow trigger instances to notify waiting workflows
when defined events occur.

What to do next

Set the properties that the workflow trigger monitors in the objects in the plugged-in technology.

Set the Properties that a Workflow Trigger Monitors
Workflow triggers monitor changes in the properties of an object in the plugged-in technology. When
workflow triggers detect a change in the properties of an object, they notify any workflows in the
Orchestrator server that are waiting for this event.

You set the properties that a workflow trigger monitors by passing a java.util.Properties list to a
PluginTrigger instance.

Prerequisites

n Set up the workflow trigger class.

Developing Plug-Ins with VMware vCenter Orchestrator

48 VMware, Inc.

n Create PluginTrigger instances.

Procedure

1 Declare variables for the object and object properties that the workflow trigger monitors.

The SolarSystemTriggerGenerator class declares variables for the Star object that it monitors and for
the magnitude of any solar flare events that occur on that star.

public static final String STAR_ID = "star_id";

public static final String MAGNITUDE = "magnitude";

2 Create an instance of the PluginTrigger class in which to set the properties to monitor.

The SolarSystemTriggerGenerator class calls the SolarSystemTriggerGenerator.newTrigger() method
to create a trigger instance.

public PluginTrigger createStarFlareTrigger(Star star, double magnitude) {

 PluginTrigger trigger = newTrigger();

 return trigger;

}

3 Create an instance of a java.util.Properties list to contain the properties to monitor.

The SolarSystemTriggerGenerator class create a properties list named props.

public PluginTrigger createStarFlareTrigger(Star star, double magnitude){

 PluginTrigger trigger = newTrigger();

 Properties props = new Properties();

 return trigger;

}

4 Call the Properties.setProperty() method to add the properties to monitor to the properties list.

The SolarSystemTriggerGenerator class adds the identifier of the star object and the value of the
magnitude of the solar flare event to the properties list props.

public PluginTrigger createStarFlareTrigger(Star star, double magnitude){

 PluginTrigger trigger = newTrigger();

 Properties props = new Properties();

 props.setProperty(STAR_ID, star.getId());

 props.setProperty(MAGNITUDE, Double.toString(magnitude));

 return trigger;

}

5 Call the PluginTrigger.setProperties() method to add the properties list to the workflow trigger
instance.

The SolarSystemTriggerGenerator class adds the properties list props to the workflow trigger, to
provide the identifier of the star object and the value of the flare event to monitor.

public PluginTrigger createStarFlareTrigger(Star star, double magnitude){

 PluginTrigger trigger = newTrigger();

 Properties props = new Properties();

 props.setProperty(STAR_ID, star.getId());

 props.setProperty(MAGNITUDE, Double.toString(magnitude));

 trigger.setProperties(props);

 return trigger;

}

You added a list of properties to a workflow trigger so that it can monitor the value of a given property in
an object. If the properties of the object change, the workflow trigger notifies any workflows that are waiting
for that event.

Chapter 3 Create an Orchestrator Plug-In

VMware, Inc. 49

What to do next

Create plug-in watchers to watch the triggers for events.

Create Plug-In Watchers
Plug-in watchers watch triggers on behalf of workflows that are waiting for the event that the trigger starts.
To create a plug-in watcher, you create a Java class that implements the PluginWatcher class from the
Orchestrator plug-in API. You publish the watcher on the Orchestrator notification server by implementing
the IPluginPublisher interface.

These procedures present the steps involved in creating a plug-in watcher. To illustrate the process, they
present code from the SolarSystemWatchersManager class from the solar system plug-in.

You can download the vCO Plug-in SDK ZIP file from the VMware Communities site to obtain the sources
of the solar system example application and plug-in.

For a description of the role of plug-in event watchers and the other components of a plug-in, see Chapter 1,
“Overview of Plug-Ins,” on page 11. For information about all of the methods and parameters of the plug-in
watcher class and publisher interface, see “PluginWatcher Class,” on page 101 and “IPluginPublisher
Interface,” on page 98.

Procedure

1 Set Up the Watcher Implementation on page 50
You can create PluginWatcher instances and methods to generate events directly in the plug-in
adaptor. However, the solar system example creates the watcher instances in a separate class named
SolarSystemWatchersManager.

2 Create Instances of the PluginWatcher Class on page 52
You create a plug-in watcher to watch a workflow trigger by instantiating the PluginWatcher class.
When the event that the workflow trigger defines occurs, the plug-in watcher notifies any workflows
that are waiting for that event.

3 Publish Plug-In Watchers on page 52
You implement the IPluginPublisher interface to publish plug-in watchers to the Orchestrator
notification mechanism.

Set Up the Watcher Implementation
You can create PluginWatcher instances and methods to generate events directly in the plug-in adaptor.
However, the solar system example creates the watcher instances in a separate class named
SolarSystemWatchersManager.

Prerequisites

n Download the bundle of Orchestrator examples.

n Unzip the examples bundle to an appropriate location.

Procedure

1 Create and save a Java file for the plug-in watcher class.

In the solar system example, the watcher class is named SolarSystemWatchersManager.java.

2 Declare the package that contains the Java classes of the plug-in implementation.

The solar system example declares the following package.

package com.vmware.orchestrator.api.sample.solarsystem;

Developing Plug-Ins with VMware vCenter Orchestrator

50 VMware, Inc.

3 Import the Orchestrator plug-in API classes with a Java import statement.

In the solar system example, the event watcher requires the following classes:

import ch.dunes.vso.sdk.api.IPluginPublisher;

import ch.dunes.vso.sdk.api.PluginWatcher;

4 Import any classes that the plug-in implementation or plugged-in technology defines.

In the solar system example, the watcher requires the following class that the
SolarSystemEventGenerator class defines:

import com.vmware.orchestrator.api.sample.solarsystem.

 SolarSystemEventGenerator.StarFlareEventListener;

5 Import any other classes that the watcher implementation requires.

In the solar system example, the event watcher requires the following classes:

import java.util.Collections;

import java.util.HashMap;

import java.util.LinkedList;

import java.util.List;

import java.util.Map;

import java.util.Properties;

import org.apache.log4j.Logger;

6 Declare a public class for the event generator implementation.

The solar system example watcher declares the SolarSystemWatchersManager class, that implements the
StarFlareEventListener class.

public class SolarSystemWatchersManager implements StarFlareEventListener {

}

The StarFlareEventListener class listens for solar flare events of a certain magnitude.

7 Set up logging so that Orchestrator can record in the logs the events that the watcher observes.

The solar system example uses an instance of org.apache.log4j.Logger to log events.

public class SolarSystemWatchersManager implements StarFlareEventListener {

 private static final Logger log = Logger.getLogger(SolarSystemWatchersManager.class);

}

8 Declare a public constructor to create instances of the watcher implementation class.

The SolarSystemWatchersManager class creates a constructor that creates instances of
SolarSystemWatchersManager. The SolarSystemWatchersManager instances contain the
starFlareEventListener event listener that the SolarSystemEventGenerator class defines.

public SolarSystemWatchersManager() {

SolarSystemEventGenerator.solarSystemEventGenerator.addStarFlareUniqueEventListener(this);

}

You set up a plug-in event watcher class to create watcher instances to watch for events from triggers.

What to do next

Create instances of the PluginWatcher class.

Chapter 3 Create an Orchestrator Plug-In

VMware, Inc. 51

Create Instances of the PluginWatcher Class
You create a plug-in watcher to watch a workflow trigger by instantiating the PluginWatcher class. When the
event that the workflow trigger defines occurs, the plug-in watcher notifies any workflows that are waiting
for that event.

The PluginWatcher class defines a constructor that you can use to create plug-in watcher instances. The
PluginWatcher class defines methods to obtain or set the name of the workflow trigger to watch and a
timeout period.

Prerequisites

n Set up the plug-in watcher implementation class.

n Declare a public constructor to instantiate the plug-in watcher implementation.

Procedure

1 Create one or more instances of the PluginWatcher class with which to register the workflow triggers to
monitor.

The SolarSystemWatchersManager class creates a hashtable to contain all of the PluginWatcher instances.

private final Map<String, PluginWatcher> watchers = Collections.synchronizedMap(new

HashMap<String, PluginWatcher>());

2 Obtain watcher instances by calling the PluginWatcher.getId() method.

The SolarSystemWatchersManager class defines a method that adds a PluginWatcher instance to the
hashtable of PluginWatcher instances.

public void addWatcher(PluginWatcher watcher) {

 watchers.put(watcher.getId(), watcher);

}

3 (Optional) Remove watcher instances after an event occurs.

The SolarSystemWatchersManager class defines a method that removes a PluginWatcher instance from
the hashtable of PluginWatcher instances.

public void removeWatcher(String watcherId) {

 watchers.remove(watcherId);

}

You created instances of the PluginWatcher class to watch workflow triggers for events.

What to do next

Register the watcher instances with IPluginPublisher instances to publish the watchers to the Orchestrator
notification mechanism.

Publish Plug-In Watchers
You implement the IPluginPublisher interface to publish plug-in watchers to the Orchestrator notification
mechanism.

When a workflow trigger starts an event in the plugged-in technology, a plug-in watcher that watches that
trigger and that is registered with an IPluginPublisher instance notifies any waiting workflows that the
event has occurred.

Prerequisites

n Set up the plug-in watcher implementation class.

Developing Plug-Ins with VMware vCenter Orchestrator

52 VMware, Inc.

n Declare a public constructor to instantiate the plug-in watcher implementation.

n Create instances of the PluginWatcher class.

Procedure

1 Create an instance of the IPluginPublisher interface.

The SolarSystemWatchersManager class declares the following variable for the IPluginPublisher
instance.

private IPluginPublisher pluginPublisher;

2 Define a method to add the IPluginPublisher instance to the plug-in adapter implementation.

The SolarSystemWatchersManager class declares the following method that the SolarSystemAdapter class
calls.

public void setPluginPublisher(IPluginPublisher pluginPublisher) {

 this.pluginPublisher = pluginPublisher;

}

3 Define the event for which the watcher watches and that the publisher publishes to the Orchestrator
notification mechanism.

The SolarSystemWatchersManager class defines the starFlareEvent() method that takes a Star object
and a magnitude value as parameters. The starFlareEvent() method also gets the hashtable of watchers
and creates a list of watchers to remove from the hashtable after the event occurs.

public void starFlareEvent(String starid, double magnitude) {

 synchronized (watchers) {

 List<String> watchersToRemove = new LinkedList<String>();

 }

}

4 Call the PluginWatcher.getTrigger() and PluginTrigger.getProperties() methods to obtain the
properties to watch in the trigger.

The SolarSystemWatchersManager.starFlareEvent() method extracts the STAR_ID and MAGNITUDE
properties from the trigger and adds them to a PluginWatcher instance in the hashtable.

public void starFlareEvent(String starid, double magnitude) {

 synchronized (watchers) {

 List<String> watchersToRemove = new LinkedList<String>();

 for (PluginWatcher watcher : watchers.values()) {

 Properties props = watcher.getTrigger().getProperties();

 String wStarId = props.getProperty(SolarSystemTriggerGenerator.STAR_ID);

 String wMagnitude = props.getProperty(SolarSystemTriggerGenerator.MAGNITUDE);

 }

 }

}

Chapter 3 Create an Orchestrator Plug-In

VMware, Inc. 53

5 Define the event and publish it to the Orchestrator notification mechanism by calling the
IPluginPublisher.pushWatcherEvent() method.

The SolarSystemWatchersManager.starFlareEvent() method checks whether the magnitude value
exceeds a maximum magnitude value. If the maximum magnitude value is exceeded, the
starFlareEvent() method writes the flare event in the logs and publishes the event to the Orchestrator
notification mechanism.

public void starFlareEvent(String starid, double magnitude) {

 synchronized (watchers) {

 List<String> watchersToRemove = new LinkedList<String>();

 for (PluginWatcher watcher : watchers.values()) {

 Properties props = watcher.getTrigger().getProperties();

 String wStarId = props.getProperty(SolarSystemTriggerGenerator.STAR_ID);

 String wMagnitude = props.getProperty(SolarSystemTriggerGenerator.MAGNITUDE);

 if (wStarId != null && wStarId.equals(starid)) {

 double wMagnLimit = Double.parseDouble(wMagnitude);

 if (magnitude >= wMagnLimit) {

 log.info("pushWatcherEvent() for id '" + watcher.getId() + "'");

 pluginPublisher.pushWatcherEvent(watcher.getId(), null);

 }

 }

 }

 }

}

6 (Optional) Remove the watchers from the notification mechanism after the events occur.

The SolarSystemWatchersManager.starFlareEvent() method adds the watcher to the list of watchers to
remove and defines a method to remove that list of watchers from the hashtable.

public void starFlareEvent(String starid, double magnitude) {

 synchronized (watchers) {

 List<String> watchersToRemove = new LinkedList<String>();

 for (PluginWatcher watcher : watchers.values()) {

 Properties props = watcher.getTrigger().getProperties();

 String wStarId = props.getProperty(SolarSystemTriggerGenerator.STAR_ID);

 String wMagnitude = props.getProperty(SolarSystemTriggerGenerator.MAGNITUDE);

 if (wStarId != null && wStarId.equals(starid)) {

 double wMagnLimit = Double.parseDouble(wMagnitude);

 if (magnitude >= wMagnLimit) {

 log.info("pushWatcherEvent() for id '" + watcher.getId() + "'");

 pluginPublisher.pushWatcherEvent(watcher.getId(), null);

 watchersToRemove.add(watcher.getId());

 }

 }

 }

 for (String toRemove : watchersToRemove) {

 watchers.remove(toRemove);

 }

 }

}

You defined an event for a watcher to watch and published the event to the Orchestrator notification
mechanism. Orchestrator notifies any workflows that are waiting for that event that it has occurred.

Developing Plug-Ins with VMware vCenter Orchestrator

54 VMware, Inc.

What to do next

Define objects and methods to add to the Orchestrator JavaScript API.

Define Objects and Methods to Map to the Orchestrator JavaScript
API

You can map the object types, classes, and methods of the plugged-in technology and the plug-in itself to
JavaScript types, classes, and methods that you add to the Orchestrator JavaScript API.

You can add objects and functions to the JavaScript API that do not exist in the plugged-in technology by
defining them in the plug-in implementation. Adding objects and functions to the JavaScript API allows you
to include the objects and functions in Orchestrator actions and workflows, to perform operations on objects
in the plugged-in technology.

You map the objects and functions that you define in the plug-in implementation in <scripting-object>
elements in the vso.xml file. For information about how to map objects and functions to the JavaScript API
in the vso.xml file, see “Map the Application in the vso.xml File,” on page 70.

The vso.xml file in the solar system example maps to JavaScript objects all of the objects and methods that
the solar system application defines. The vso.xml file also maps the following objects and methods from the
solar system plug-in implementation to the Orchestrator JavaScript API.

n SolarSystemEventGenerator scripting class

n SolarSystemEventGenerator.generateFlareEvent() scripting method

n SolarSystemTriggerGenerator scripting class

n SolarSystemTriggerGenerator.createStarFlareTrigger() scripting method

To create a class to map to the Orchestrator JavaScript API, you add an instance of that class to an instance
of the IPluginFactory implementation by defining a method named createScriptingSingleton(). When the
plug-in adaptor instantiates the factory, it also instantiates the class to add to the JavaScript API.

Prerequisites

You created at least one class of the plug-in implementation, for example the adaptor, the factory, or an
event generator implementation.

Procedure

1 Create an instance of a class to map to the Orchestrator JavaScript API in one of the classes of the plug-
in implementation.

The SolarSystemEventGenerator class defines the following constructor to create instances of itself:

public final static SolarSystemEventGenerator solarSystemEventGenerator =

 new SolarSystemEventGenerator();

2 Define a method named createScriptingSingleton() that accesses the IPluginFactory implementation
of the plug-in.

The SolarSystemEventGenerator class creates the following instance of that class:

public static SolarSystemEventGenerator createScriptingSingleton(IPluginFactory factory) {

}

Chapter 3 Create an Orchestrator Plug-In

VMware, Inc. 55

3 Implement the createScriptingSingleton() method to return to the factory an instance of the class to
map to the JavaScript API.

The SolarSystemEventGenerator class returns the _solarSystemEventGenerator instance.

public static SolarSystemEventGenerator createScriptingSingleton(IPluginFactory factory) {

 return solarSystemEventGenerator;

}

You created an instance of a class that the vso.xml file can map to a scripting class in the Orchestrator
JavaScript API. The vso.xml file of the solar system example maps the _solarSystemEventGenerator instance
to the SolarSystemEventGenerator scripting class in the JavaScript API.

What to do next

Implement the plug-in adapter to instantiate all of the classes and objects that you defined in the plug-in.

Create a Plug-In Adapter
To create a plug-in adapter, you create a Java class that implements the IPluginAdaptor interface from the
Orchestrator plug-in API. The adapter instantiates the plug-in factory and event management
implementations.

These procedures present the steps involved in creating a plug-in adapter. To illustrate the process, they
present code from the SolarSystemAdapter class from the solar system example application. You can
download the vCO Plug-in SDK ZIP file from the VMware Communities site to obtain the sources of the
solar system example application.

For a description of the role of the plug-in adapter and the other components of a plug-in, see Chapter 1,
“Overview of Plug-Ins,” on page 11. For information about all of the methods and parameters of the adapter
interface, see “IPluginAdaptor Interface,” on page 95.

Procedure

1 Set Up the Plug-In Adapter Implementation on page 57
To create a plug-in adapter, you create an implementation of the IPluginAdaptor interface from the
Orchestrator plug-in API.

2 Instantiate the Plug-In Factory on page 57
You instantiate the plug-in factory in the plug-in adapter. The adapter creates one factory instance for
every connection between Orchestrator and the plugged-in technology.

3 Manage Plug-In Events on page 59
The plug-in adapter manages the events that occur in the plugged-in technology by defining event
generators and event publishers.

4 Add Plug-In Watchers on page 60
Plug-in watchers monitor the events that workflow triggers define. When an event occurs,
Orchestrator notifies any workflows that are waiting for that event.

Developing Plug-Ins with VMware vCenter Orchestrator

56 VMware, Inc.

Set Up the Plug-In Adapter Implementation
To create a plug-in adapter, you create an implementation of the IPluginAdaptor interface from the
Orchestrator plug-in API.

Procedure

1 Create and save a Java file for the plug-in adapter implementation named
ApplicationNameAdapter.java.

In the solar system example, the adapter class is SolarSystemAdapter.java.

2 Declare a package to contain the plug-in implementation.

The solar system example declares the following package to contain the adapter, factory, and event
handler implementations:

package com.vmware.orchestrator.api.sample.solarsystem;

3 Import the following Orchestrator plug-in API interfaces, classes, and enumerations with a Java import
statement.

import ch.dunes.vso.sdk.api.IPluginAdaptor;

import ch.dunes.vso.sdk.api.IPluginEventPublisher;

import ch.dunes.vso.sdk.api.IPluginFactory;

import ch.dunes.vso.sdk.api.IPluginNotificationHandler;

import ch.dunes.vso.sdk.api.IPluginPublisher;

import ch.dunes.vso.sdk.api.PluginLicense;

import ch.dunes.vso.sdk.api.PluginLicenseException;

import ch.dunes.vso.sdk.api.PluginWatcher;

4 Import any other classes that the adapter implementation requires.

In the solar system example, the adapter implementation requires the following classes:

import javax.security.auth.login.LoginException;

import org.jboss.logging.Logger;

5 Declare a public constructor that implements the IPluginAdaptor interface from the Orchestrator plug-
in API.

The solar system adapter declares the SolarSystemAdapter constructor.

public class SolarSystemAdapter implements IPluginAdaptor {

}

6 Set up a logger to write to the logs the events that occur in the adapter.

The solar system adapter uses an instance of org.jboss.logging.Logger to log events.

private static final Logger log = Logger.getLogger(SolarSystemAdapter.class);

What to do next

Create an instance of the IPluginFactory implementation.

Instantiate the Plug-In Factory
You instantiate the plug-in factory in the plug-in adapter. The adapter creates one factory instance for every
connection between Orchestrator and the plugged-in technology.

Prerequisites

n Create an implementation of the IPluginFactory interface.

Chapter 3 Create an Orchestrator Plug-In

VMware, Inc. 57

n Set up the adapter implementation class.

n Create a public constructor that implements the IPluginAdaptor interface.

Procedure

1 Declare the variables that the adapter class uses in its method calls.

The solar system adapter declares variables for the plug-in factory and plug-in name.

public class SolarSystemAdapter implements IPluginAdaptor {

 private SolarSystemFactory factory;

 static String pluginName;

}

2 Create an instance of the plug-in factory class that implements the IPluginFactory interface.

The solar system adapter calls the IPluginAdaptor.createPluginFactory() method to create an instance
of the SolarSystemFactory interface, if one does not exist already.

public IPluginFactory createPluginFactory(String sessionID, String username,

 String password, IPluginNotificationHandler notificationHandler)

 throws SecurityException, LoginException, PluginLicenseException {

 if (factory == null) {

 factory = new SolarSystemFactory();

 }

 return factory;

}

3 Set the plug-in name.

The IPluginAdaptor.setPluginName() method gets the name from the vso.xml file.

The solar system adapter uses the pluginName variable to set the name of the plug-in.

public void setPluginName(String pluginName) {

 SolarSystemAdapter.pluginName = pluginName;

}

4 (Optional) Install any licenses that Orchestrator requires to access the plugged-in technology.

You obtain licenses by calling the IPluginAdaptor.installLicenses() method to instantiate an array of
PluginLicense objects.

public void installLicenses(PluginLicense[] licenses) throws

 PluginLicenseException {

}

5 (Optional) Uninstall an existing plug-in factory.

A plug-in creates a factory instance for every client session that opens between Orchestrator and a
plugged-in technology. You can remove unnecessary plug-in factories to clean up the Orchestrator
server by calling the IPluginAdaptor.uninstallPluginFactory() method.

The solar system plug-in does not implement the IPluginAdaptor.uninstallPluginFactory() method.
You can uninstall factories by implementing a function in the uninstallPluginFactory() method
declaration.

public void uninstallPluginFactory(IPluginFactory plugin) {

}

You instantiated the IPluginFactory implementation, set the name for the plug-in, obtained any licenses
that the plug-in connection requires, and potentially defined a function to remove old factory instances from
the server.

Developing Plug-Ins with VMware vCenter Orchestrator

58 VMware, Inc.

What to do next

Instantiate event generators and publishers.

Manage Plug-In Events
The plug-in adapter manages the events that occur in the plugged-in technology by defining event
generators and event publishers.

Prerequisites

n Create a public constructor that implements the IPluginAdaptor interface.

n Instantiate the plug-in factory.

Procedure

1 Define the method to generate plug-in events.

You can define the events to manage directly in the adapter implementation. However, the solar system
plug-in implementation defines the events in a separate class, SolarSystemEventGenerator.

SolarSystemAdapter defines the following getEventGenerator() method to obtain an instance of the
SolarSystemEventGenerator class.

private SolarSystemEventGenerator getEventGenerator() {

 return SolarSystemEventGenerator.solarSystemEventGenerator;

}

2 (Optional) If Orchestrator monitors the plugged-in application for events, you can register an instance
of the IPluginEventPublisher interface with the Orchestrator policy engine by calling the
IPluginAdaptor.registerEventPublisher() method.

The solar system example adapter creates the following IPluginEventPublisher instance and registers it
with the Orchestrator policy engine by calling the SolarSystemEventGenerator.addPolicyElement()
method.

public void registerEventPublisher(

 String type, String id, IPluginEventPublisher publisher) {

 getEventGenerator().addPolicyElement(type, id, publisher);

}

3 (Optional) Unregister an IPluginEventPublisher from the Orchestrator policy engine.

The solar system example adapter unregisters an IPluginEventPublisher instance and removes it from
the Orchestrator policy engine by calling the SolarSystemEventGenerator.removePolicyElement()
method.

public void unregisterEventPublisher(

 String type, String id, IPluginEventPublisher publisher) {

 getEventGenerator().removePolicyElement(type, id, publisher);

}

You instantiated an event generator and optionally defined methods to register and unregister an event
publisher with the Orchestrator policy engine.

What to do next

Add and remove watchers that monitor workflow triggers. When the events that the workflow triggers
define occur, Orchestrator notifies any workflows that are waiting for that event.

Chapter 3 Create an Orchestrator Plug-In

VMware, Inc. 59

Add Plug-In Watchers
Plug-in watchers monitor the events that workflow triggers define. When an event occurs, Orchestrator
notifies any workflows that are waiting for that event.

Prerequisites

n Create a public constructor that implements the IPluginAdaptor interface.

n Instantiate the plug-in factory.

n Create event generators and publishers.

Procedure

1 Create an instance of the plug-in watcher implementation.

The SolarSystemAdapter class creates an instance of the SolarSystemWatchersManager class.

private static final SolarSystemWatchersManager watchersManager =

 new SolarSystemWatchersManager();

2 Add a watcher instance to the plug-in adaptor.

You add a watcher to the adapter by calling the IPluginAdaptor.addWatcher() method.

The solar system example defines a method to add the SolarSystemWatchersManager instance.

public void addWatcher(PluginWatcher watcher) {

 log.info("Adding watcher '" + watcher + "'");

 watchersManager.addWatcher(watcher);

}

3 Remove a watcher from the plug-in adaptor.

You remove a watcher by calling the IPluginAdaptor.removeWatcher() method.

The solar system example defines a method to remove a SolarSystemWatchersManager instance.

public void removeWatcher(String watcherId) {

 log.info("Removing watcher '" + watcherId + "'");

 watchersManager.removeWatcher(watcherId);

}

4 Instantiate the plug-in publisher that publishes events from the watchers to the Orchestrator
notification mechanism.

The solar system example defines a method that calls the
SolarSystemWatchersManager.setPluginPublisher() method to instantiate a plug-in publisher.

public void setPluginPublisher(IPluginPublisher pluginPublisher) {

 watchersManager.setPluginPublisher(pluginPublisher);

}

You added watchers to the plug-in adapter implementation to monitor the events that workflow triggers
generate.

What to do next

Add a tab for the plug-in to the Orchestrator configuration interface.

Developing Plug-Ins with VMware vCenter Orchestrator

60 VMware, Inc.

Add a Tab to the Configuration Interface
You can add a tab to the Orchestrator configuration interface to allow users to provide information to the
plug-in configuration that is specific to their environment or preferences.

To add a configuration tab for a plug-in to the configuration interface, you implement the
IConfigurationAdaptor interface. You can also use the SDKHelper and extend the BaseAction classes from the
Orchestrator plug-in API. You create a configuration adapter that accesses the classes of the plug-in and the
plugged-in technology for the Orchestrator configuration server. You define configuration actions to obtain
and save the configuration information that the user provides by using the configuration tab.

You must create an Apache Struts-based Web application to create the layout of the tab in the configuration
interface. The Struts Web application uses the methods that you define in the IConfigurationAdaptor
implementation to add configuration operations for the users to perform in the configuration tab for the
plug-in. The Struts Web application submits to the Orchestrator server the information that the user enters
in the configuration tab.

Creating a plug-in configuration tab requires several steps. Code from the
SolarSystemConfigurationAdapter and SolarSystemConfigureAction classes from the solar system plug-in is
included in the steps.

You can download the vCO Plug-in SDK ZIP file from the VMware Communities site to obtain the sources
of the solar system example application and plug-in.

For information about all of the methods and parameters of the configuration adapter interface, see
“IConfigurationAdaptor Interface,” on page 94. For information about the additional methods that the
SDKHelper class provides, see “SDKHelper Class,” on page 103.

NOTE It is a good practice to provide the configuration capabilities that are available in the Orchestrator
configuration interface through workflows, which users can run in the Orchestrator client. For information
about developing workflows, see Developing with VMware vCenter Orchestrator.

Procedure

1 Set Up the Configuration Adapter on page 62
To create a tab in the configuration interface for a plug-in, you create an implementation of the
IConfigurationAdaptor interface from the Orchestrator plug-in API. You also call the methods of the
SDKHelper class.

2 Load and Save Configuration Information in the Configuration Server on page 63
The IConfigurationAdaptor interface provides methods to load and save configuration information in
the Orchestrator configuration server. The configuration adapter uses these methods to locate and
update the configuration information for a plug-in by setting plug-in properties.

3 Create a Configuration Action to Obtain Configuration Information from the User on page 65
Orchestrator uses the Apache Struts framework to pass to the Orchestrator server the configuration
information that the user provides in the configuration interface.

4 Create a Struts-Based Web Application to Add to the Configuration Interface on page 67
The tab that you add to the Orchestrator configuration interface is an Apache Struts-based Web
application. You define the layout of the page by using HTML or JavaServer Pages (JSP) and add
actions to the page by implementing the Struts framework.

Chapter 3 Create an Orchestrator Plug-In

VMware, Inc. 61

Set Up the Configuration Adapter
To create a tab in the configuration interface for a plug-in, you create an implementation of the
IConfigurationAdaptor interface from the Orchestrator plug-in API. You also call the methods of the
SDKHelper class.

Prerequisites

n Verify that you have an application to plug in to Orchestrator.

n Verify that you have access to the Orchestrator plug-in API JAR file.

n Implement the plug-in adapter and factory interfaces.

Procedure

1 Create and save a Java file for the plug-in configuration adapter implementation.

In the solar system example, the configuration adapter class is named
SolarSystemConfigurationAdaptor.java.

2 Declare the package that contains the Java classes of the plug-in configuration implementation.

The solar system example declares the following package.

com.vmware.orchestrator.api.sample.solarsystem.config;

3 Import the following classes of the plug-in configuration API with a Java import statement.

import ch.dunes.vso.sdk.conf.ConfigurationError;

import ch.dunes.vso.sdk.conf.IConfigurationAdaptor;

import ch.dunes.vso.sdk.helper.SDKHelper;

4 Import the following classes of the application to plug in with a Java import statement.

import com.vmware.solarsystem.Planet;

import com.vmware.solarsystem.SolarSystemRepository;

5 Import any other classes that the configuration adapter implementation requires.

In the solar system example, the configuration adapter implementation requires the following classes:

import java.io.File;

import java.io.IOException;

import java.io.InputStream;

import java.io.OutputStream;

import java.util.HashMap;

import java.util.List;

import java.util.Map;

import java.util.Properties;

import java.util.PropertyResourceBundle;

import java.util.ResourceBundle;

6 Declare a public class that implements the IConfigurationAdaptor interface.

public class SolarSystemConfigurationAdaptor implements IConfigurationAdaptor {

}

You set up the plug-in configuration adapter implementation.

What to do next

Define methods to load and save plug-in configuration information.

Developing Plug-Ins with VMware vCenter Orchestrator

62 VMware, Inc.

Load and Save Configuration Information in the Configuration Server
The IConfigurationAdaptor interface provides methods to load and save configuration information in the
Orchestrator configuration server. The configuration adapter uses these methods to locate and update the
configuration information for a plug-in by setting plug-in properties.

You also create methods in the configuration adapter to define the values that the user can configure.
Orchestrator reloads this information each time this user connects to the Orchestrator server. You can
validate the information that the user provides.

In the solar system example, the SolarSystemConfigurationAdaptor class defines methods to allow users to
select their home planet and to define Pluto as either a planet or as a dwarf planet. The
SolarSystemConfigurationAdaptor class implements the methods of the IConfigurationAdaptor interface to
load and save configuration information and to validate the information that the users provide. The
methods that SolarSystemConfigurationAdaptor defines are implemented by the
SolarSystemConfigureAction class.

Prerequisites

n Implement the plug-in adapter and factory interfaces.

n Set up the configuration adapter implementation class.

Procedure

1 Declare variables for the plug-in name and for the configurable values.

The SolarSystemConfigurationAdaptor class declares the following variables:

private static final String pluginName = "SolarSystem";

private String homePlanet = "";

private String plutoClassifiedAsAPlanet = "yes";

2 Create a class loader to load the configuration adapter classes into the configuration server.

You can use the standard Java class ResourceBundle to locate packages of classes.

private static final ResourceBundle bundle =

PropertyResourceBundle.getBundle("com.vmware.orchestrator.api.sample.solarsystem.config.packa

ge");

3 Define methods to obtain and set the configurable values.

The SolarSystemConfigurationAdaptor class uses the bundle.getString() method to get the properties
of Pluto from the plug-in configuration server and adds them to a map. The
SolarSystemConfigurationAdaptor class also defines methods to set whether Pluto is a planet and to set
the user's home planet.

public Map<String, String> getPlutoClassifyList(){

 Map<String, String> classification = new HashMap<String, String>();

 classification.put("no", bundle.getString("select.pluto.classify.dwarfPlanet"));

 classification.put("yes", bundle.getString("select.pluto.classify.planet"));

 return classification;

}

public List<Planet> getAllPlanets(){

 return SolarSystemRepository.getUniqueInstance().getAllPlanets();

}

public String getHomePlanet() {

 return homePlanet;

}

public void setHomePlanet(String homePlanet) {

Chapter 3 Create an Orchestrator Plug-In

VMware, Inc. 63

 this.homePlanet = homePlanet;

}

public void setPlutoClassifiedAsAPlanet(String plutoClassifiedAsAPlanet) {

 this.plutoClassifiedAsAPlanet = plutoClassifiedAsAPlanet;

}

public String getPlutoClassifiedAsAPlanet() {

 return plutoClassifiedAsAPlanet;

}

4 Implement the IConfigurationAdaptor.saveConfiguration() method to save configuration information
to the configuration server by setting plug-in properties.

The SolarSystemConfigurationAdaptor.loadConfiguration() method creates a Properties list to
contain the configurable properties. The values that
SolarSystemConfigurationAdaptor.saveConfiguration() method adds to the list are the values that the
methods defined in Step 3 set. The SolarSystemConfigurationAdaptor.saveConfiguration() method
calls the SDKHelper.savePropertiesForPluginName() to save the Properties list to the configuration
server.

public void saveConfiguration(OutputStream stream) throws IOException {

 synchronized (SDKHelper.class) {

 Properties prop = new Properties();

 prop.setProperty("solar.system.home.planet", homePlanet);

 prop.setProperty("solar.system.isPlutoClassifiedAsAPlanet",

plutoClassifiedAsAPlanet);

 if (stream == null) {

 SDKHelper.savePropertiesForPluginName(prop, pluginName);

 }

 }

}

5 Implement the IConfigurationAdaptor.loadConfiguration() method to load configuration information
from the configuration server into the Orchestrator server.

The SolarSystemConfigurationAdaptor.loadConfiguration() method creates a Properties list to
contain the configurable properties. The SolarSystemConfigurationAdaptor.loadConfiguration()
method calls the SDKHelper.getConfigurationPathForPluginName() and
SDKHelper.loadPropertiesForPluginName() methods to get the properties from the plug-in and adds
them to the Properties list.

public void loadConfiguration(InputStream stream) throws IOException {

 synchronized (SDKHelper.class) {

 String path = SDKHelper.getConfigurationPathForPluginName(pluginName);

 if (new File(path).exists()) {

 Properties prop = SDKHelper.loadPropertiesForPluginName(pluginName);

 homePlanet = prop.getProperty("solar.system.home.planet", homePlanet);

 plutoClassifiedAsAPlanet =

prop.getProperty("solar.system.isPlutoClassifiedAsAPlanet", plutoClassifiedAsAPlanet);

 }

 }

}

6 Implement the IConfigurationAdaptor.setPluginName() method to set the name of the plug-in in the
configuration server.

The SolarSystemConfigurationAdaptor class does not add any additional code to the
IConfigurationAdaptor.setPluginName() method.

public void setPluginName(String name) {

}

Developing Plug-Ins with VMware vCenter Orchestrator

64 VMware, Inc.

7 Implement the IConfigurationAdaptor.validateConfiguration() method to validate the configuration
information.

The IConfigurationAdaptor.validateConfiguration() method returns a ConfigurationError instance
for each validation error. The SolarSystemConfigurationAdaptor class returns null in the event of an
invalid configuration property. You can implement more sophisticated code to perform more stringent
validation of the values that the user provides in the configuration interface.

public ConfigurationError[] validateConfiguration() {

 return null;

}

You implemented the methods of the IConfigurationAdaptor and SDKHelper classes to load and save
configuration information in the configuration server and defined methods to obtain and set the
configurable values.

What to do next

Obtain configuration information that the user sets in the configuration interface by implementing the
Apache Struts framework.

Create a Configuration Action to Obtain Configuration Information from the
User

Orchestrator uses the Apache Struts framework to pass to the Orchestrator server the configuration
information that the user provides in the configuration interface.

You can implement the action that passes configuration information from the Orchestrator configuration
interface to the configuration server directly in the configuration adapter implementation. However, the
solar system example defines this action in a separate class named SolarSystemConfigureAction. The
SolarSystemConfigureAction class uses the methods that the SolarSystemConfigurationAdaptor class
defines to load and save configuration information. The SolarSystemConfigureAction class implements the
Apache Struts framework to obtain the configuration information from the configuration interface and pass
it to the Orchestrator configuration server. The tab that you add to the configuration interface is a Struts
Web application.

Prerequisites

n Implement the plug-in adapter and factory interfaces.

n Set up the configuration adapter implementation class.

n Implement the methods of the IConfigurationAdaptor interface to load, save, and validate
configuration information.

Procedure

1 Create and save a Java file for the plug-in configuration action implementation.

In the solar system example, the configuration action class is named SolarSystemConfigureAction.java.

2 Declare the package that contains the Java classes of the plug-in configuration implementation.

The solar system example declares the following package.

com.vmware.orchestrator.api.sample.solarsystem.config;

3 Import the classes of the Orchestrator API with a Java import statement.

The SolarSystemConfigureAction class requires the following classes:

import ch.dunes.vso.configuration.web.commons.BaseAction;

import ch.dunes.vso.sdk.conf.ConfigurationError;

Chapter 3 Create an Orchestrator Plug-In

VMware, Inc. 65

4 Import the third-party Java classes that the configuration action requires.

The SolarSystemConfigureAction class requires the following classes:

import org.apache.log4j.Logger;

import com.opensymphony.xwork2.ModelDriven;

5 Declare a public class that implements the BaseAction and ModelDriven classes.

The Orchestrator BaseAction class defines how Orchestrator interacts with the Struts framework. The
OpenSymphony XWork2 ModelDriven class pushes objects to the Struts framework.

The SolarSystemConfigureAction class implements these classes and creates a generic instance of the
SolarSystemConfigurationAdaptor class.

public class SolarSystemConfigureAction extends BaseAction

 implements ModelDriven<SolarSystemConfigurationAdaptor> {

}

6 Define the variables that the BaseAction implementation requires.

The SolarSystemConfigureAction class declares variables for the unique identifier of each instance of
the serializable BaseAction class, a logger, an array of ConfigurationError instances, and the
configuration adapter instance.

private static final long serialVersionUID = 1L;

private static Logger log = Logger.getLogger(SolarSystemConfigureAction.class);

private ConfigurationError[] configErrors;

private SolarSystemConfigurationAdaptor solarSystemConfigurationAdaptor;

7 Implement the BaseAction.prepare() method to instantiate the configuration adapter and load the
configuration information.

The SolarSystemConfigureAction class creates an instance of the SolarSystemConfigurationAdaptor
class and calls the SolarSystemConfigurationAdaptor.loadConfiguration() method.

public void prepare() throws Exception {

 solarSystemConfigurationAdaptor = new SolarSystemConfigurationAdaptor();

 solarSystemConfigurationAdaptor.loadConfiguration(null);

}

8 Implement the BaseAction.execute() method to log and validate the configuration information.

The SolarSystemConfigureAction class implements the BaseAction.execute() method to record in the
logs the result of calling the SolarSystemConfigurationAdaptor.validateConfiguration() method.

public String execute() throws Exception {

 log.debug("SolarSystemConfigureAction execute method");

 configErrors = solarSystemConfigurationAdaptor.validateConfiguration();

 return SUCCESS;

}

9 Implement a save() method to save the configuration information.

The SolarSystemConfigureAction class implements the save() method to record in the logs the result of
calling the SolarSystemConfigurationAdaptor.saveConfiguration() method.

public String save() throws Exception {

 log.debug("SolarSystemConfigureAction save method");

 solarSystemConfigurationAdaptor.saveConfiguration(null);

 configErrors = solarSystemConfigurationAdaptor.validateConfiguration();

 return SUCCESS;

}

Developing Plug-Ins with VMware vCenter Orchestrator

66 VMware, Inc.

10 Add error handling to the implementation of the configuration action.

The SolarSystemConfigureAction class returns an array of errors if the configuration is invalid.

public ConfigurationError[] getConfigErrors() {

 return configErrors;

}

public void setConfigErrors(ConfigurationError[] configErrors) {

 this.configErrors = configErrors;

}

public int getConfigErrorsSize() {

 return configErrors.length;

}

11 Add the configuration adapter to the Struts Web application in the configuration interface by
implementing the ModelDriven.getModel() class from the OpenSymphony XWork2 framework.

The SolarSystemConfigureAction class passes an instance of the SolarSystemConfigurationAdaptor to
the Struts framework.

public SolarSystemConfigurationAdaptor getModel() {

 return solarSystemConfigurationAdaptor;

}

You created the configuration action that instantiates the configuration adapter and implements the
Orchestrator BaseAction and OpenSymphony ModelDriven classes. The BaseAction and ModelDriven classes
pass configuration information from the Orchestrator configuration interface to the Orchestrator server
through the Struts framework.

What to do next

Create a Struts-based Web application to add a tab to the Orchestrator configuration interface.

Create a Struts-Based Web Application to Add to the Configuration Interface
The tab that you add to the Orchestrator configuration interface is an Apache Struts-based Web application.
You define the layout of the page by using HTML or JavaServer Pages (JSP) and add actions to the page by
implementing the Struts framework.

To add a configuration tab to the Orchestrator configuration interface, you must include a Web application
archive (WAR) file in the DAR file of the plug-in.

The DAR file of the solar system plug-in contains a built WAR file for the solar system configuration tab.
You can also examine the files of the solar system configuration Web application in the bundle of source
files of the solar system plug-in.

n o11nplugin-solarsystem-config\src\main\webapp\index.jsp

n o11nplugin-solarsystem-config\src\main\webapp\WEB-INF\web.xml

n o11nplugin-solarsystem-config\src\main\webapp\WEB-INF\pages\configure.jsp

n o11nplugin-solarsystem-config\src\main\resources\struts.xml

You must be familiar with Web application development technologies, including the Struts framework and
JSP. See the Apache Struts documentation for information about Struts. For details of all the directories and
files that the WAR file contains, see “Contents of the Solar System Configuration WAR File,” on page 69.

Prerequisites

n Implement the plug-in adapter and factory interfaces.

n Create the configuration adapter and configuration action implementations.

Chapter 3 Create an Orchestrator Plug-In

VMware, Inc. 67

Procedure

1 Create an index page for the configuration tab that implements the JavaServer Pages Standard Tag
Library (JSTL).

The index page must refer to the JSTL definition.

<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>

2 Create a Web application definition XML file that provides information about the plug-in to the
Orchestrator configuration server.

The Web application definition file references the XML schemas, locates the index page, accesses
resource files, and implements security.

3 Create a JSP page that defines the layout and contents of the configuration tab.

The configuration tab can include any types of buttons, forms, lists, or menus that JSP provides.

The solar system configuration tab includes a button that the user can use to set the
plutoClassifiedAsAPlanet property to designate Pluto as a planet or a dwarf planet, a list from which
they can select their home planet from the allPlanets properties list, and a save button that calls a
Struts action named ConfigureSave.

<div id="c_content">

 <s:form action="ConfigureSave" method="POST" validate="true">

 <s:radio key="select.pluto.classify.text" name="plutoClassifiedAsAPlanet"

 list="plutoClassifyList"/>

 <s:select key="select.home.planet" list="allPlanets" listValue="name" listKey="id"

 name="homePlanet"/>

 <s:submit type="input" key="save.button"/>

 </s:form>

</div>

4 Create a Struts configuration file that implements the Struts framework to pass to the configuration
server the configuration information that the user enters.

The Struts configuration file in the solar system example implements the
OpenSymphoyOpenSymphony XWork2 ActionSupport class to pass the results of the ConfigureSave
action to the Struts framework. The ConfigureSave action calls the SolarSystemConfigureAction.save()
method.

<action name="Default" class="com.opensymphony.xwork2.ActionSupport">

 <result name="success" type="chain">Configure</result>

</action>

<action name="Configure"

 class="com.vmware.orchestrator.api.sample.solarsystem.config.SolarSystemConfigureAction">

 <result name="success">/WEB-INF/pages/configure.jsp</result>

</action>

<action name="ConfigureSave"

 class="com.vmware.orchestrator.api.sample.solarsystem.config.SolarSystemConfigureAction"

 method="save">

 <result name="success">/WEB-INF/pages/configure.jsp</result>

</action>

5 Copy all of the required JAR files in a directory named lib in the Web application directory.

You must include the JAR files that contain the implementations of the configuration adapter and
actions, and JAR files for any other technologies that configuration implementation uses.

Developing Plug-Ins with VMware vCenter Orchestrator

68 VMware, Inc.

6 Create a Web application archive to contain the Web application files.

A WAR file is a JAR file that you rename to .war.

In the solar system example, the configuration Web application files are stored in WAR file named
o11nplugin-solarsystem-config.war.

You created a Struts-based Web application that contains all of the Web application files and the Java
implementations of the configuration adapter and action.

What to do next

Map the application and the plug-in implementation to Orchestrator objects in the vso.xml file.

Contents of the Solar System Configuration WAR File
You add a configuration tab to the Orchestrator configuration interface by creating a Web application
archive (WAR) file that contains the implementations of the configuration adapter and configuration
actions, the layout of the tab, and the Struts configuration files.

The DAR file of the solar system plug-in contains a built WAR file for the solar system configuration tab.
You can also examine the files of the solar system configuration Web application in the bundle of source
files of the solar system plug-in.

The solar system DAR file contains a WAR file named o11nplugin-solarsystem-config.war.

If you modify the source files of the solar system configuration WAR file, you must rebuild the DAR file of
the solar system plug-in by using the Ant build tool. Rebuilding the plug-in DAR file rebuilds the WAR file
of the solar system configuration tab. See “Build the Solar System Application and Plug-In,” on page 78.

The following table lists the directories and files that the built WAR file for the solar system configuration
tab contains.

Table 3‑4. Contents of the Solar System Configuration WAR File

Directory Filename Description

o11nplugin-solarsystem-config\ index.jsp JSP file that defines the layout of the
configuration tab for the plug-in.

o11nplugin-solarsystem-
config\WEB-INF\

web.xml Sets up the configuration tab by
implementing the appropriate XML
schemas, locating the index page,
accessing resource files, and
implementing security.

o11nplugin-solarsystem-
config\WEB-INF\classes\

struts.xml Struts framework configuration file
that references the Java classes and
methods of the configuration
actions.

o11nplugin-solarsystem-
config\WEB-
INF\classes\com\vmware\orchestr
ator\api\sample\solarsystem\con
fig\

SolarSystemConfigureAction.class Java class that defines the
configuration actions that the
configuration tab performs.

o11nplugin-solarsystem-
config\WEB-INF\lib\

o11nplugin-solarsystem-
core-1.0.0.jar

JAR file that contains the binaries of
the solar system plug-in
implementation.

Chapter 3 Create an Orchestrator Plug-In

VMware, Inc. 69

Table 3‑4. Contents of the Solar System Configuration WAR File (Continued)

Directory Filename Description

o11nplugin-solarsystem-
config\WEB-INF\lib\

o11nplugin-solarsystem-
model-1.0.0.jar

JAR file that contains the binaries of
the solar system application.

o11nplugin-solarsystem-
config\WEB-INF\pages\

configure.jsp JSP file that adds buttons and a
drop-down list to the configuration
tab. The buttons and list implement
the configuration actions that the
SolarSystemConfigureAction
class defines and that struts.xml
maps to the Struts framework.

Map the Application in the vso.xml File
The vso.xml file defines how Orchestrator accesses and interacts with the plugged-in technology. The
vso.xml file maps objects and operations in the plugged-in technology and in the plug-in implementation to
Orchestrator objects and operations.

You can use the objects and operations that you map to create Orchestrator workflows, policies, and actions
to interact with the plugged-in technology by using Orchestrator.

You find the vso.xml file for the solar system example in the following location in the solar system source
files in the Orchestrator examples bundle:

o11nplugin-solarsystem\src\main\dar\VSO-INF\

For full descriptions of all of the elements of a vso.xml file and all of their attributes, see Chapter 6,
“Elements of the vso.xml Plug-In Definition File,” on page 109.

Prerequisites

n Verify that you have an application to plug in to Orchestrator.

n Implement the plug-in adapter and factory interfaces.

n Implement the configuration adapter interface and create the configuration Web application.

Procedure

1 Set Up the Global Plug-In Information on page 71
To create a plug-in, you must point Orchestrator to the relevant XML schema definition and the source
files for the application and plug-in. You must also define the behavior of the plug-in when
Orchestrator starts and provide a root object for the hierarchy of objects that the plug-in exposes.

2 Map Objects in the Plugged-In Technology to Scripting Types and Inventory Objects on page 72
To allow Orchestrator to access objects in a plugged-in application, you must define how and where
the plug-in finds those objects.

3 Define Enumerations on page 74
You can define enumerations in the vso.xml file to set global values that apply to all objects of a certain
category.

4 Map Classes and Methods to Classes and Methods in the JavaScript API on page 75
Orchestrator monitors objects in the plugged-in application and performs operations on them by
running workflows, policies, and actions. You map in the vso.xml file the classes and methods from
the plugged-in technology and from the plug-in implementation to JavaScript classes and methods in
the Orchestrator JavaScript API.

Developing Plug-Ins with VMware vCenter Orchestrator

70 VMware, Inc.

Set Up the Global Plug-In Information
To create a plug-in, you must point Orchestrator to the relevant XML schema definition and the source files
for the application and plug-in. You must also define the behavior of the plug-in when Orchestrator starts
and provide a root object for the hierarchy of objects that the plug-in exposes.

Procedure

1 Create a file named vso.xml.

2 Set up the <module> element to provide basic information about the plug-in, including a pointer to the
Orchestrator plug-in XML schema definition.

The <module> element in the vso.xml file for the solar system example sets the plug-in name to
SolarSystem, sets the version number, and provides the path in the DAR archive to the icon that
represents this plug-in in the Orchestrator Inventory view and selection dialog boxes.

<?xml version="1.0" encoding="UTF-8"?>

<module xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation="http://www.vmware.com/support/orchestrator/plugin-4-1.xsd"

 name="SolarSystem" version="1.0.0" build-number="4" image="images/solarSystem-16x16.png">

3 Provide a description of the plug-in in the <description> element.

The following example shows a <description> element for the solar system.

<description>Example plug-in to a solar system application.</description>

4 Add a tab for the plug-in to the configuration interface by referencing the configuration adapter in the
<configuration> element.

The <configuration> element in the vso.xml file for the solar system example identifies an icon for the
solar system plug-in tab in the file structure of the DAR file, references the configuration adapter
implementation and the configuration Web application, and activates validation of the information that
the user provides.

<configuration

 icon="images/solarSystem_32x32.png"

 adaptor-class=

 "com.vmware.orchestrator.api.sample.solarsystem.config.SolarSystemConfigurationAdaptor"

 configuration-war="o11nplugin-solarsystem-config.war"

 validation="enabled" />

5 Set the <installation> and <action> elements to define the behavior of the plug-in when the
Orchestrator server starts.

The solar system example sets the version mode to restart the plug-in whenever a new version is
detected, and provides the path to a package of Orchestrator workflows, policies, and a Web view in
the file structure of the DAR file. Orchestrator installs this package when the plug-in starts.

<installation mode="version">

 <action type="install-package" resource="packages/com.vmware.solarsystem.package" />

 </installation>

6 Set the root of the hierarchy of object types in the <inventory> element.

The solar system plug-in defines the root of the hierarchy that represents the plug-in in the Orchestrator
scripting API as an object of the type Galaxy. All of the other solar system objects relate to the Galaxy
object.

<inventory type="Galaxy"/>

Chapter 3 Create an Orchestrator Plug-In

VMware, Inc. 71

You set up the elements that identify the plug-in to Orchestrator, added a tab to the configuration interface,
defined the start-up behavior, and defined the root scripting object type for the objects in the plug-in.

What to do next

Define the types of objects that Orchestrator finds through the plug-in by mapping the finder objects that the
plug-in factory implementation defines to <finder> elements in the vso.xml file.

Map Objects in the Plugged-In Technology to Scripting Types and Inventory
Objects

To allow Orchestrator to access objects in a plugged-in application, you must define how and where the
plug-in finds those objects.

The objects you map in the vso.xml file appear as scripting types in the Orchestrator JavaScript API.
Instances of these objects appear in the Orchestrator inventory.

Prerequisites

You must have created the vso.xml file, defined how Orchestrator identifies the plug-in, and referenced the
configuration adapter.

Procedure

1 Set the data sources for the plug-in <finder> elements in the <finder-datasources> element.

The plug-in adapter implementation is the point of access to all the classes of the plug-in.

The solar system plug-in vso.xml file sets the name of the data source to solar-datasource and points
the <finder> elements to the SolarSystemAdapter class that instantiates the SolarSystemFactory and the
other classes of the plug-in.

<finder-datasources>

 <finder-datasource name="solar-datasource"

 adaptor-class=

 "com.vmware.orchestrator.api.sample.solarsystem.SolarSystemAdapter"

 anonymous-login-mode="internal"/>

</finder-datasources>

2 Define how the plug-in finds objects in the plugged-in technology in <finder> elements.

The following extract from the solar system vso.xml file shows the <finder> element for objects of the
type Star.

<finders>

 <finder type="Star" datasource="solar-datasource"

 java-class="com.vmware.solarsystem.Star"

 script-object="Star" image="images/sun_16x16.png">

 [...]

 </finder>

 [...]

</finders>

The <finder> element for Star objects obtains their data from the data source that the <finder-
datasource> element defines. The Star finder type represents instances of the
com.vmware.solarsystem.Star class in the Orchestrator inventory. The finder element for Star objects
defines a Star scripting type that appears in the Orchestrator JavaScript API.

Developing Plug-Ins with VMware vCenter Orchestrator

72 VMware, Inc.

3 Obtain the identifier of the object in the <id> element.

The solar system example obtains the identifier of the object by calling the getId() method that the
solar system application's CelestialBody class defines.

<id accessor="getId()" />

4 Define the object's relations in the <relations> element.

The solar system example defines a relation named OrbitingPlanets to relate objects of the type Planet
to the Star object that this <finder> element finds.

<relations>

 <relation type="Planet" name="OrbitingPlanets"/>

</relations>

5 Set the hierarchy of objects in the Orchestrator inventory tab according to their relation to the parent.

The solar system example places all objects related to Star objects type by the OrbitingPlanets relation
immediately beneath the star in the inventory hierarchy.

<inventory-children>

 <relation-link name="OrbitingPlanets"></relation-link>

</inventory-children>

6 Set the object's properties in the <properties> element.

The solar system example defines name, circumference, and surfaceTemp properties for all Star objects.
The bean-property property allows Orchestrator to create get and set methods in the scripting API to
obtain and set these properties.

<properties>

 <property display-name="Name" name="name"

 bean-property="name"/>

 <property display-name="Circumference" name="circumference"

 bean-property="circumference"/>

 <property display-name="Surface Temperature" name="surfaceTemp"

 bean-property="surfaceTemp"/>

</properties>

7 Set the events that can occur on the object in the <events> element.

Events can be either gauges or triggers.

In the solar system example, the SolarSystemEventGenerator class defines a generateFlareEvent()
method to generate solar flares on Star objects. The <gauge> element monitors the values of the flare
events that occur on Star objects.

<events>

 <gauge min-value="0" name="Flare" unit="number">

 <description>Magnitude of the flare</description>

 </gauge>

</events>

You defined a <finder> element to find objects of a certain type in the plugged-in application. The objects
that the finder finds appear as scripting types in the Orchestrator JavaScript API and instances of these types
appear in the Orchestrator inventory.

What to do next

Define enumerations to set values that apply to all objects of a certain type.

Chapter 3 Create an Orchestrator Plug-In

VMware, Inc. 73

Solar System Finder Mappings
The vso.xml file for the solar system example maps objects from the solar system application to objects that
appear as scripting types in the Orchestrator JavaScript API. Instances of these objects appear in the
Orchestrator inventory.

The following table lists the mappings that the vso.xml file defines for each type of object that the solar
system application defines.

Table 3‑5. Solar System Finder Mappings

Scripting
Type Source Class Inventory Children Properties Events

Galaxy None Stars None None

Star Star, defined by application OrbitingPlanets n name

n circumference

n surfaceTemp

Flare

Planet Planet, defined by
application

OrbitingMoons n name

n circumference

n gravity

None

Moon Moon, defined by application None n name

n volume

None

Define Enumerations
You can define enumerations in the vso.xml file to set global values that apply to all objects of a certain
category.

The categories that you set in the vso.xml file appear as enumerations in the Orchestrator JavaScript API.

Prerequisites

Set up the plug-in and define <finder> elements in the vso.xml file.

Procedure

1 Define an enumeration for a certain object type in the <enumerations> element.

The solar system example defines enumerations to set a PlanetCategory enumeration on Planet objects.

<enumerations>

 <enumeration type="PlanetCategory">

 <description>Define the category of a Planet</description>

 [...]

</enumeration>

2 Define entries for the enumerations that apply values to objects in the given object category.

The solar system example defines values that represent different types of planet.

<entries>

 <entry id="gaz"

 name="Huge Gaz">Huge planet with only gaz atmosphere.

 No Physical core.</entry>

 <entry id="earth"

 name="Earth">You could live on this planet.</entry>

 <entry id="desert"

 name="Desert">Planet without water.</entry>

 <entry id="ice"

Developing Plug-Ins with VMware vCenter Orchestrator

74 VMware, Inc.

 name="Ice">Planet with water but completely frozen.</entry>

 <entry id="other"

 name="Other">Does not fit into any category.</entry>

</entries>

The vso.xml file of the solar system example also defines a StarCategory enumeration that allows you
to define a Star object as a blue dwarf, a nova, or a yellow sun.

You defined enumerations that can apply to all objects in a certain category.

What to do next

Map the classes and methods of the plugged-in technology and the plug-in implementation to JavaScript
classes and methods in the Orchestrator JavaScript API.

Map Classes and Methods to Classes and Methods in the JavaScript API
Orchestrator monitors objects in the plugged-in application and performs operations on them by running
workflows, policies, and actions. You map in the vso.xml file the classes and methods from the plugged-in
technology and from the plug-in implementation to JavaScript classes and methods in the Orchestrator
JavaScript API.

You identify in <scripting-objects><object> elements the classes and methods to map to classes and
methods in the JavaScript API.

Prerequisites

Set up the plug-in, and define <finder> elements and enumerations.

Procedure

1 Map a Java class from the plugged-in technology or from the plug-in implementation to a JavaScript
class.

The SolarSystemEventGenerator class defines the events that Orchestrator can invoke in the solar
system application. The solar system vso.xml file maps the event generator class to a JavaScript class
named _SolarSystemEventGenerator. By setting the strict attribute to true, Orchestrator can only call
the methods from the SolarSystemEventGenerator class that are mapped in the vso.xml file. To allow
scripting to instantiate a class you use the create attribute.

<scripting-objects>

 <object script-name="_SolarSystemEventGenerator"

 java-class="com.vmware.orchestrator.api.sample.solarsystem.SolarSystemEventGenerator"

 strict="true">

 <description>The entry point to generate events</description>

 [...]

 </object>

 [...]

</scripting-objects>

2 (Optional) If necessary, denote the JavaScript object as a singleton object.

In the solar system example, SolarSystemEventGenerator is a singleton object. The plug-in adaptor can
only create a single instance of the SolarSystemEventGenerator class. You can only call the methods of
the SolarSystemEventGenerator JavaScript object and cannot instantiate the class in Orchestrator scripts.

<singleton script-name="SolarSystemEventGenerator"

 datasource="solar-datasource"/>

Chapter 3 Create an Orchestrator Plug-In

VMware, Inc. 75

3 Map the methods in the Java class to methods in the Orchestrator JavaScript API in the
<object><methods> element.

The SolarSystemEventGenerator class defines a generateFlareEvent() method to generate solar flare
events. The solar system vso.xml maps this method to a JavaScript method of the same name, and sets
its parameters in the JavaScript method.

<methods>

 <method script-name="generateFlareEvent" java-name="generateFlareEvent">

 <description>Start a Solar Flare</description>

 <parameters>

 <parameter name="star" type="Star">The star which generates the event</parameter>

 <parameter name="magnitude" type="number">The magnitude of the flare</parameter>

 </parameters>

 </method>

</methods>

4 Map the attributes of a Java class to JavaScript attributes in <object><attributes> elements.

The solar system vso.xml file maps the Java attributes of the Star object to attributes of the same name
in the Star JavaScript class in the Orchestrator JavaScript API.

<object script-name="Star" java-class="com.vmware.solarsystem.Star"

 create="false" strict="true">

 [...]

 <attributes>

 <attribute script-name="id" java-name="id" return-type="string">

 The unique Id of the star</attribute>

 <attribute script-name="name" java-name="name" return-type="string">

 The name of the star</attribute>

 <attribute script-name="circumference" java-name="circumference" return-type="number">

 Circumference of the star</attribute>

 <attribute script-name="temperature" java-name="surfaceTemp" return-type="number">

 The temperature on the star's surface</attribute>

 </attributes>

 [...]

</object>

You mapped classes and their methods and attributes from the classes in the plugged-in technology and
plug-in implementation to a JavaScript class and methods in the Orchestrator JavaScript API.

What to do next

Create or rebuild the DAR file for the plug-in.

Solar System JavaScript API Mappings
The vso.xml file for the solar system example maps objects, classes, methods, and attributes from the solar
system application to scripting types, classes, methods, and attributes in the Orchestrator JavaScript API.

The following table lists the classes, methods, and attributes from the solar system application and plug-in
implemention that the vso.xml file maps to the Orchestrator JavaScript API.

Table 3‑6. Solar System JavaScript API Mappings

Scripting Class Source Class Attributes Methods

SolarSystemEventGenerator SolarSystemEventGenerator ,
defined by plug-in

None generateFlareEvent(st
ar, magnitude)

SolarSystemTriggerGenerat
or

SolarSystemTriggerGenerator
, defined by plug-in

None createStarFlareTrigge
r(star, minMagnitude)

Developing Plug-Ins with VMware vCenter Orchestrator

76 VMware, Inc.

Table 3‑6. Solar System JavaScript API Mappings (Continued)

Scripting Class Source Class Attributes Methods

Star Star, defined by application n id

n name

n circumferen
ce

n temperature

n addPlanet(planet)

n removePlanet(planet
)

Planet Planet, defined by application n id

n name

n circumferen
ce

n gravity

n starId

n addMoon(moon)

n removeMoon(moon)

Moon Moon, defined by application n id

n name

n volume

n planetId

None

Create the Plug-In DAR Archive
The final stage in the creation of a plug-in is to create the DAR archive that you import to Orchestrator.

IMPORTANT This is only necessary if you are building a skeleton project. The sample projects already include
these directories and files.

The DAR archive is a standard ZIP file that you rename to .dar. The DAR archive contains all of the
elements of the plug-in implementation and must adhere to a standard file and folder structure.

Prerequisites

n Implement the plug-in adapter and factory interfaces.

n Implement the configuration adapter interface and create the configuration Web application.

n Map the application to Orchestrator objects in the vso.xml file.

Procedure

1 Create a working directory in which to create the DAR archive.

For example, create a directory named plugin_name.

2 Create a directory named VSO-INF at the root of the working directory.

3 Copy the vso.xml file to VSO-INF.

4 Create a directory named lib at the root of the working directory.

5 Add the JAR files containing the classes of the application to plug in and the classes of the plug-in
adapter and factory implementations to lib.

6 (Optional) Create a directory named webapps at the root of the working directory.

The webapps contains the WAR file of the configuration tab Web application.

7 Create a directory named resources at the root of the working directory.

8 (Optional) Create a directory named images in the resources directory.

The resources\images directory can contain icons to represent the different objects of the plugged-in
application in the Orchestrator Inventory view and selection dialog boxes.

Chapter 3 Create an Orchestrator Plug-In

VMware, Inc. 77

9 (Optional) Create a directory named packages in the resources directory.

The resources\packages directory can contain packages of workflows, actions, policies, Web views, and
so on, that interact with the plugged-in application.

10 Create a ZIP archive that contains all of the preceding directories and files.

11 Rename the ZIP archive to plugin_name.dar.

You created the DAR archive that contains a plug-in, and imported it to Orchestrator.

What to do next

You can access the objects of the plugged-in application in the Orchestrator inventory to perform operations
on them. You can also use the objects and methods that you mapped to the Orchestrator scripting API to
create workflows, actions, policies, Web views, and so on, to interact with the objects through the plug-in.

Build the Solar System Application and Plug-In
If you adapt the solar system application or the solar system plug-in, you can build the DAR file by using
the Apache Ant building tool.

The Orchestrator examples bundle contains the scripts and build.xml file that allow you to build the solar
system DAR file and the JAR files that it contains. If you add new files to the solar system plug-in, you must
update the build.xml file.

Prerequisites

Verify that you have Apache Ant 1.7.1 or later installed and configured on your system.

Procedure

1 Navigate to the folder that contains the solar system application and plug-in.

install-directory\vco-samples-version_number-build_number\Plug-Ins\solarsystem

2 Open the maven-build.properties file in a text editor and edit the o11n.root.path property to point to
the root folder of the Orchestrator installation.

3 Open a terminal window and navigate to the install-directory\vco-samples-version_number-
build_number\Plug-Ins\solarsystem folder.

4 Type the ant command in the terminal window.

You built the solar system DAR file to incorporate any modifications that you made to the application or to
the plug-in.

What to do next

Install the solar system DAR file in the Orchestrator server.

Contents of the Solar System DAR File
The DAR file is a ZIP file that you rename to DAR. You can unzip the solar system DAR file to view the
contents and file structure of the solar system plug-in.

The solar system example o11nplugin-solarsystem.dar file contains the following directories and files.

n \lib, that contains the following JAR archives:

n o11nplugin-solarsystem-core-1.0.0.jar, that contains the classes of the plug-in adapter and
factory implementations for the solar system application.

n o11nplugin-solarsystem-model-1.0.0.jar, that contains the classes of the solar system application.

Developing Plug-Ins with VMware vCenter Orchestrator

78 VMware, Inc.

n \resources, that contains the following directories:

n \images, that contains icons that represent the different objects of the solar system application on
the Orchestrator Inventory tab.

n \packages, that contains an Orchestrator package named com.vmware.solarsystem.package. The
package contains workflows, policies, actions, and the Web view that allow Orchestrator to interact
with the solar system application.

n \VSO-INF\vso.xml, the XML file that maps the solar system application to Orchestrator objects.

n \webapps, that contains the o11nplugin-solarsystem-config.war file for the Web application of the solar
system configuration tab.

Install a Plug-In in the Orchestrator Server
After you create the plug-in DAR file, you must install it in the Orchestrator server. You install plug-ins in
the Orchestrator configuration interface.

Prerequisites

Verify that you have a completed DAR file for a plug-in.

Procedure

1 Open the Orchestrator configuration interface in a Web browser and log in.

http://orchestrator_server_DNS_name_or_IP_address:8282

2 Click Plug-ins.

3 Type the credentials for a user who is a member of the Orchestrator Administration group.

When the Orchestrator server starts, the system uses these credentials to set up the plug-ins. The system
checks the enabled plug-ins and performs any necessary internal installations such as package import,
policy run, script launch, and so on.

4 Click the magnifying glass icon and select the DAR file to install.

5 Click Open.

6 Click Upload and install.

The installed plug-in file is stored in the install_directory\app-server\server\vmo\plugins folder.

7 Click Apply changes.

Depending on the plug-in, the configuration server might restart.

8 (Optional) If the plug-in adds a configuration tab to the configuration interface, click the tab for the
plug-in.

For example, if you install the solar system plug-in, click Solar System.

9 (Optional) Configure the plug-in in its configuration tab.

For example, if you install the solar system plug-in, select your home planet and select whether Pluto is
a planet or a dwarf planet.

10 Click Apply changes.

11 Restart the Orchestrator server.

You installed and configured a plug-in.

What to do next

Use Orchestrator to interact with the plugged-in technology.

Chapter 3 Create an Orchestrator Plug-In

VMware, Inc. 79

Interact with the Solar System Application by Using Orchestrator
After you install a plug-in in the Orchestrator server, you can use the objects that it adds to the Orchestrator
JavaScript API to create workflows, actions, policies, Web views, and so on. You use these items to interact
with the plugged-in technology using Orchestrator.

The solar system plug-in includes the com.vmware.samples.solarsystem package that contains workflows,
actions, a policy, and a Web view that implement the API objects that the solar system plug-in adds to the
Orchestrator JavaScript API.

Procedure

1 View Plug-In Scripting Objects in the JavaScript API on page 80
The objects of a plugged-in technology that you map to Orchestrator scripting objects appear in the
Orchestrator JavaScript API.

2 Run Workflows on Plug-In Objects in the Inventory on page 81
You can use the scripting objects that a plug-in adds to the Orchestrator JavaScript API to write
workflows and actions to interact with the plugged-in technology.

3 Monitor Plug-In Events by Using Policies on page 82
You can use policies to monitor events in a plugged-in technology and perform defined operations
when the events occur.

4 Monitor Plug-In Events by Using Workflows on page 83
Workflows can include a Wait Event element that suspends the workflow and waits for an event to
occur in a plugged-in technology. Plug-ins can implement triggers and watchers to notify waiting
workflows of the events that occur.

5 Access Plug-In Objects and Operations by Using a Web View on page 83
With Web views, you can run workflows on objects from the Orchestrator inventory from a Web
browser instead of from the Orchestrator client.

View Plug-In Scripting Objects in the JavaScript API
The objects of a plugged-in technology that you map to Orchestrator scripting objects appear in the
Orchestrator JavaScript API.

The solar system vso.xml file maps objects from the solar system application and plug-in to classes,
methods, attributes, and enumerations in the Orchestrator JavaScript API.

Prerequisites

n Install the solar system plug-in in the Orchestrator server.

n Start the Orchestrator client.

Procedure

1 In the Orchestrator client, select Tools > API Explorer.

2 Expand the SolarSystem node in the hierarchical list of scripting objects.

You see the scripting types for the different types of celestial bodies, scripting classes for the Star,
Planet, Moon, SolarSystemEventGenerator, and SolarSystemTriggersManager objects, and enumerations
to define categories of stars and planets.

3 Expand a scripting class in the hierarchical list to see the scripting methods and attributes that it
defines.

The scripting methods and attributes are those that the vso.xml file maps for each object.

Developing Plug-Ins with VMware vCenter Orchestrator

80 VMware, Inc.

You can use the scripting objects from the plug-in to create workflows, actions, policies, and so on.

What to do next

Run a workflow on a solar system object in the Inventory view.

Run Workflows on Plug-In Objects in the Inventory
You can use the scripting objects that a plug-in adds to the Orchestrator JavaScript API to write workflows
and actions to interact with the plugged-in technology.

The solar system plug-in includes a package of workflows that you can use to perform operations on the
objects that the plug-in adds to the Orchestrator inventory.

Prerequisites

n Install the solar system plug-in in the Orchestrator server.

n Start the Orchestrator client.

Procedure

1 From the drop-down menu in the Orchestrator client, select Design.

2 Click the Workflows view.

3 Expand the Samples > SolarSystem nodes in the hierarchical list of workflows to see the list of
workflows that the solar system plug-in adds to the library.

4 Right-click the Add Planet workflow and select Edit.

5 On the Schema tab, click the Edit icon () of the scripted element.

6 Click the Scripting tab for the scripted element.

You see that Add Planet workflow calls the Star.addPlanet() method from the solar system
application.

7 Click Save and close to close the workflow editor.

8 Click the Inventory view.

9 Expand the SolarSystem node in the hierarchical list of plug-ins and select the Helios star object.

You see objects that represent the planets of Earth's solar system. The planets are the instances of the
Planet object that the SolarSystemRepository class from the solar system application creates.

10 Expand a planet node to see its moons.

The vso.xml file defines the hierarchy of planets to stars and moons to planets by setting the
OrbitingPlanets and OrbitingMoons relations.

11 Click the sun, a planet, or a moon to display its properties on the right.

12 Right-click the sun, a planet, or a moon to and select Run workflow to run a workflow on that object.

You can select a workflow to run from a contextual list of workflows that take that type of object as an
input parameter.

You can run workflows on the solar system objects in the inventory. You can add a planet to the sun's orbit
or generate or wait for a solar flare. You can modify the circumference of planets or split or destroy them.

NOTE You can use the Orchestrator workflow debugging tool to inspect the details of the workflow run. For
information about debugging workflows, see Developing with VMware vCenter Orchestrator.

Chapter 3 Create an Orchestrator Plug-In

VMware, Inc. 81

What to do next

Monitor events in the solar system application by setting a policy.

Monitor Plug-In Events by Using Policies
You can use policies to monitor events in a plugged-in technology and perform defined operations when the
events occur.

The solar system plug-in includes a policy that monitors a star object for solar flares. When flares occur, the
policy records the magnitude of the flares in the logs.

Prerequisites

n Install the solar system plug-in in the Orchestrator server.

n Start the Orchestrator client.

Procedure

1 From the drop-down menu in the Orchestrator client, select Administer.

2 Click the Policy Templates view.

3 Expand the Samples > SolarSystem nodes in the hierarchical list of policies.

4 Right-click the Star policy and select Apply Policy.

5 Add a policy description and select a Star object on which to apply the policy in the Apply Policy
dialog box and click Submit.

The Star policy opens in the Policies tab.

6 Click the Star policy and open the Scripting tab.

In the scripting tab you see that the policy is monitoring a threshold named Flare.

7 Right-click the Star policy and select Start policy.

8 Click the Inventory tab.

9 Right-click the Helios star and select Run workflow.

10 Run the Generate Flare Event workflow, setting the magnitude of the flare to 100.

The Generate Flare Event workflow includes a script that calls the
SolarSystemEventGenerator.generateFlareEvent() method. The gauge that the
SolarSystemEventGenerator class implements pushes an event object named Flare to the Orchestrator
policy engine.

11 Click the Policies tab.

12 Click the Star policy.

13 Click the Logs tab.

The policy has recorded the magnitude of the solar flare event in the logs.

The Star policy implements the solar system scripting API to monitor star objects for solar flare events and
records their magnitude. The policy keeps on running until you stop it. If you run the Generate Flare Event
again, the policy continues to record the magnitudes of the flares in the logs.

What to do next

Monitor events on objects in the plugged-in technology by running workflows.

Developing Plug-Ins with VMware vCenter Orchestrator

82 VMware, Inc.

Monitor Plug-In Events by Using Workflows
Workflows can include a Wait Event element that suspends the workflow and waits for an event to occur in
a plugged-in technology. Plug-ins can implement triggers and watchers to notify waiting workflows of the
events that occur.

The solar system example includes a workflow that implements a Wait Event element to wait for solar
flares. When a flare occurs, the waiting workflow resumes its run, records the magnitude of the flare in the
logs, then ends.

Prerequisites

n Install the solar system plug-in in the Orchestrator server.

n Start the Orchestrator client.

Procedure

1 From the drop-down menu in the Orchestrator client, select Design.

2 Click the Workflows view.

3 Expand the Samples > SolarSystem nodes in the hierarchical list of workflows to see the list of
workflows that the solar system plug-in adds to the library.

4 Right-click the Wait On Flare Event workflow, select Start workflow, and click Submit.

The Wait On Flare Event workflow calls the SolarSystemTriggerGenerator.createStarFlareTrigger()
method to create an event trigger.

5 Click the workflow token for this run of the Wait On Flare Event workflow.

In the workflow schema, you can see that the workflow has suspended its run at the Waiting Event
element. In the Logs tab you can see that the workflow is waiting for a flare of at least magnitude 10.

6 Click the Inventory view.

7 Expand the SolarSystem node in the hierarchical list of plug-ins.

8 Right-click Helios and select Run workflow > Generate Flare Event.

Set the magnitude of the flare to a value greater than 10 when you run the workflow.

9 Click Workflows.

10 Click the workflow token for Wait On Flare Event workflow.

The workflow is no longer waiting and has ended its run. In the Logs tab for this token you can see that
the workflow has recorded a flare of at least magnitude 10.

The Wait On Flare Event workflow implements the solar system scripting API to create a plug-in trigger
that waits for solar flares of a given magnitude. When a flare event occurs, the workflow ends, but you can
create a loop in the workflow to record the event and wait for the next event.

What to do next

Access the solar system objects and workflows by using the solar system Web view.

Access Plug-In Objects and Operations by Using a Web View
With Web views, you can run workflows on objects from the Orchestrator inventory from a Web browser
instead of from the Orchestrator client.

The solar system example includes a Web view that you can use to access the objects and workflows of the
solar system plug-in from a Web browser.

Chapter 3 Create an Orchestrator Plug-In

VMware, Inc. 83

Prerequisites

n Install the solar system plug-in in the Orchestrator server.

n Start the Orchestrator client.

Procedure

1 From the drop-down menu in the Orchestrator client, select Administer.

2 Click the Web Views view.

3 Right-click the SolarSystem Web view and select Publish.

4 Open a browser and go to http://orchestrator_server:8280.

In the URL, orchestrator_server is the DNS name or IP address of the Orchestrator server, and 8280 is the
default port number where Orchestrator publishes Web views.

5 On the Orchestrator home page, click Web View List.

6 Click Solar System.

7 Log in using your Orchestrator user name and password.

8 Click the buttons in the Web view to run workflows on the objects in the solar system application.

You can run workflows to add a planet to the Sun, modify, split, or remove planets from a Web browser.
You can examine the structure and files of the solar system Web view in the source files of the solar system
plug-in or exporting the Web view to a directory in Web Views in the Orchestrator client.

What to do next

You can adapt the classes of the solar system application and the plug-in implementation to experiment
with plug-in development. You can use the solar system scripting API to develop more workflows that
perform operations in the solar system application.

Developing Plug-Ins with VMware vCenter Orchestrator

84 VMware, Inc.

API Enhancements for Plug-In
Development 4

Version 5.1 of Orchestrator introduces a number of new API features that you can use to simplify the plug-
in development process. The list of new API features includes the use of annotations, Java-based
configuration, Spring features, workflow and action generation, and SSL support.

This chapter includes the following topics:

n “Orchestrator Annotations API,” on page 85

n “Orchestrator Spring-Based Plug-In API,” on page 88

n “Orchestrator Workflow Generation API,” on page 89

n “Orchestrator SSL Configuration API,” on page 90

Orchestrator Annotations API
Annotations provide a way to define plug-in elements contained in the vso.xml file, without modifying the
file directly. You can annotate the Java source files of the plug-in to define the finders and scripting objects
to be included inside the vso.xml file.

You can use annotations and Java-based configuration to define all plug-in elements. See “Java-Based
Configuration API for the Plug-In Definition File,” on page 86.

Enable Annotation-Based Configuration
You can enable annotation-based configuration by adding the proper library dependencies to the build path
of the plug-in.

The Orchestrator annotations are included inside the o11n-plugin-sdk-tools.jar file, but this library
requires other libraries to run.

Procedure

1 Add the following libraries to the Ant build.classpath path variable.

<path id="build.classpath">

 ...

 <pathelement location="${maven.repo.local}/o11n-sdkapi.jar"/>

 <pathelement location="${maven.repo.local}/o11n-model.jar"/>

 <pathelement location="${maven.repo.local}/o11n-util.jar"/>

 <pathelement location="${maven.repo.local}/o11n-plugin-sdk-tools.jar"/>

 <pathelement location="${maven.repo.local}/o11n-plugin-sdk-plugen.jar"/>

 <pathelement location="${maven.repo.local}/commons-cli-1.2.jar"/>

 <pathelement location="${maven.repo.local}/commons-collections-3.2.1.jar"/>

 <pathelement location="${maven.repo.local}/commons-lang-2.6.jar" />

VMware, Inc. 85

 <pathelement location="${maven.repo.local}/commons-logging-1.0.4.jar" />

 <pathelement location="${maven.repo.local}/spring-asm-3.1.0.RELEASE.jar"/>

 <pathelement location="${maven.repo.local}/spring-beans-3.1.0.RELEASE.jar"/>

 <pathelement location="${maven.repo.local}/spring-context-3.1.0.RELEASE.jar"/>

 <pathelement location="${maven.repo.local}/spring-core-3.1.0.RELEASE.jar"/>

 <pathelement location="${maven.repo.local}/spring-oxm-3.1.0.RELEASE.jar"/>

</path>

The vso.xml file generation process occurs at build time of the plug-in package, so the auxiliary libraries
do not need to be packaged inside the plug-in.

2 Enable the vso.xml file generation.

You can use Ant, to enable the generation of the vso.xml file by adding a new target that invokes the
VsoGenerator class.

The following is an example of an Ant target.

<target name="package" depends="compile,test" description="Package the application">

 <antcall target="generate-vso" />

 ...

</target>

<target name="generate-vso">

 <java fork="true" failonerror="yes"

classname="com.vmware.o11n.plugin.sdk.plugen.vso.VsoGenerator"

classpathref="build.classpath">

 <arg line="-name ${plugin.build.name}" />

 <arg line="-vsoDirectory ${maven.build.darDir}/VSO-INF" />

 <arg line="-moduleBuilder com.vmware.o11n.plugin.PowerShellModuleBuilder" />

 </java>

</target>

Annotating Objects
You can mark a domain class as an Orchestrator scripting object by using the @VsoObject annotation.

By default, the simple class name prefixed with your plug-in name will be used as a scripting object name.
You can override this behavior by explicitly specifying the name attribute within the annotation.

You cannot export object properties as scripting attributes by using the @VsoObject annotation. To export a
given property as a scripting attribute, you must annotate it with the @VsoProperty annotation. By default,
the field name is used as a scripting attribute name. You can use @VsoProperty on a field or on a getter
method level.

To generate the finder definition for a given scripting object, you must annotate your class with the
@VsoFinder annotation.

Java-Based Configuration API for the Plug-In Definition File
Java-based configuration provides a way to define plug-in elements contained in the vso.xml file, without
modifying the file directly. You can use a specific Java class to set the properties from the vso.xml file that
are not directly related to finders and scripting objects.

You can use Java-based configuration and annotations to define all plug-in objects. See “Orchestrator
Annotations API,” on page 85.

Developing Plug-Ins with VMware vCenter Orchestrator

86 VMware, Inc.

Using Java-Based Configuration
You can use Java-based configuration for elements that are not supported by annotation-based
configuration.

To connect fragments of the vso.xml file that are not connected to the annotated scripting objects, you must
create your own ModuleBuilder class, which extends from the
com.vmware.o11n.plugin.sdk.module.ModuleBuilder class, and to implement its configure method.

Example: Using the ModuleBuilder Class
The following code sample uses the ModuleBuilder class to generate elements in the vso.xml file.

...

public class CiscoModuleBuilder extends ModuleBuilder {

 private static final String UCSM_DATASOURCE = "ucsm-datasource";

 @Override

 public void configure() {

 module("UCSM")

 .withDescription("Cisco UCSM Plug-in.")

 .withImage("images/cisco_16x16.png")

 .basePackages("com.vmware.o11n.vmo.plugin.ucsm.model");

 configuration(CiscoUCSMConfigurationAdaptor.class, "images/cisco_16x16.png")

 .configurationWar("o11nplugin-ucsm-config.war").validatable();

 installation(InstallationMode.BUILD)

 .action(ActionType.INSTALL_PACKAGE,

 "packages/${artifactId}-package-${project.version}.package");

 inventory("System");

 finderDatasource(CiscoUCSMPluginAdaptor.class,

 UCSM_DATASOURCE).anonymousLogin(LoginMode.INTERNAL);

 }

}

You can use the annotation-based configuration method for enabling vso.xml file generation. See “Enable
Annotation-Based Configuration,” on page 85.

Chapter 4 API Enhancements for Plug-In Development

VMware, Inc. 87

Orchestrator Spring-Based Plug-In API
The Orchestrator Spring-based plug-in API offers boilerplate code that you can use to simplify plug-in
development and add new features. You can implement additional features, such as scripting object
lifecycle management, dependency injection, and basic resource management, by using the Spring-based
plug-in API.

Spring-Based API Basic Configuration
You must extend some of the classes offered by the Spring-based API to start developing a plug-in based on
the Spring API.

The Plug-In Adapter Implementation
public final class DemoPluginAdaptor extends AbstractSpringPluginAdaptor {

 private static final String DEFAULT_CONFIG = "com/vmware/o11n/plugin/demo/pluginConfig.xml";

 @Override

 protected ApplicationContext createApplicationContext(ApplicationContext defaultParent) {

 ClassPathXmlApplicationContext applicationContext = new

ClassPathXmlApplicationContext(new String[] { DEFAULT_CONFIG }, defaultParent);

 return applicationContext;

 }

}

The Plug-In Application Context Definition
You must define the following code inside the pluginConfig.xml file.

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi=“http://www.w3.org/2001/XMLSchema-instance”>

 <context:component-scan base-package="com.vmware.o11n.plugin.demo"

scoperesolver="com.vmware.o11n.plugin.sdk.spring.VsoAnnotationsScopeResolver">

 <context:include-filter type="annotation"

expression="ch.dunes.vso.sdk.annotation.VsoFinder"/>

 <context:include-filter type="annotation"

expression="ch.dunes.vso.sdk.annotation.VsoObject"/>

 </context:component-scan>

 <bean class="com.vmware.o11n.plugin.demo.DemoPluginFactory" id="pluginFactory" autowire-

candidate="false" scope="prototype" />

</beans>

The Plug-In Factory Implementation
public final class DemoPluginFactory extends AbstractSpringPluginFactory {

 @Override

 public Object find(InventoryRef ref) {

 }

 @Override

 public QueryResult findAll(String type, String query) {

 }

 @Override

 public List<?> findChildrenInRootRelation(String type, String relationName) {

 }

Developing Plug-Ins with VMware vCenter Orchestrator

88 VMware, Inc.

 @Override

 public List<?> findChildrenInRelation(InventoryRef parent, String relationName) {

 }

}

The plug-in factory is responsible to find objects. After implementing the plug-in factory, you do not need to
implement the following methods.

n public void registerEventPublisher(String type, String id, IPluginEventPublisher

pluginEventPublisher)

n public void unregisterEventPublisher(String type, String id, IPluginEventPublisher

pluginEventPublisher)

n public Object find(String type, String id)

n public List<?> findRelation(String type, String id, String relationName)

Orchestrator Workflow Generation API
You can extend the Orchestrator functionality by creating workflows and actions based on external
definitions. The plug-in SDK contains helper classes that allow basic workflow and action generation at
runtime.

Generating Actions
You can generate actions by using the ScriptModuleBuilder class. The main attributes of an action are input
parameters, return type, and script to be executed.

You must follow the steps for generating actions.

// Cretate instance of ScriptmoduleBuilder and set required action name

ScriptModuleBuilder builder = new ScriptModuleBuilder().setName(actionName);

// Set type of returned type (Optional)

builder .setResultType(“string”);

// Add input parameters, if any

builder.addParameter(“SessionId”, "string");

// Set script to be executed

builder.setScript(“var a = 1”);

// Persist generated action in vCO

builder.insert(categoryName, factory);

Generating Workflows
You can generate workflows by using the WorkflowBuilderExt class. The main attributes of a workflow are
input and output parameters, attributes, and workflow item tasks. To have a complete workflow, you need
to define links between workflow items, and optionally enhance the workflow presentation.

You must follow the steps for generating workflows.

// Cretate an instance of WorkflowBuilderExt

WorkflowBuilderExt wb = new WorkflowBuilderExt();

// Set generated workflow name

wb.setName(workflowName);

Chapter 4 API Enhancements for Plug-In Development

VMware, Inc. 89

// Create workflow output parameter

wb.addInParameter("someParam", “string”);

// Create required workflow items and specify their location

wb.createEndItem(“endItem”, 50, 100);

ScriptingBoxItem item = wb.createScriptingBoxItem(“item1”, “var a =

someParam”).setLocation(50,50);

// In/Out parameters can be added, if needed

item.addInParameter(“someParam”, “someParam”, "string");

wb.bindItemInParameter(“item1”, “someParam”,“someParam”);

// Connect items to create real workflow

wb.connectItem(“item1”, “endItem”);

// Set workflow start item

wb.setRootItemName(“item1”);

// Persist workflow into vCO

wb.insertWorkflow(factory, targetFolder);

Orchestrator SSL Configuration API
SSL support provides a way to use the Orchestrator keystore to create secure connections based on SSL from
plug-ins’ source code. You can use SSL to manage your own plug-in keystore and to implement your own
classes to establish SSL connections between your plug-in and your configured hosts or services.

SSL Configuration Methods
You can configure SSL connections to use a specific connection method.

Plain Java URLConnection
If you want to use the Java standard URLConnection class, you have two options.

You can configure properties through the HttpsURLConnection class. The SDK provides the proper
implementations for the standard Java interfaces SSLSocketFactory and HostnameVerifier. After configuring
the properties, you can create underlying secure connections from any URL.

import java.net.URLConnection;

import javax.net.ssl.HttpsURLConnection;

import com.vmware.o11n.plugin.sdk.ssl.factory.PluginSSLSocketFactory;

import com.vmware.o11n.plugin.sdk.ssl.verifier.PluginHostnameVerifier;

...

// Initialization

HttpsURLConnection.setDefaultSSLSocketFactory(PluginSSLSocketFactory.getDefault());

// Optionally

HttpsURLConnection.setDefaultHostnameVerifier(new PluginHostnameVerifier());

...

URLConnection conn = new URL("https://...").openConnection();

...

Developing Plug-Ins with VMware vCenter Orchestrator

90 VMware, Inc.

You can create underlying secure connections directly from the PluginSSLSocketFactory class with the
PluginHostnameVerifier class configured by default.

import java.net.URLConnection;

import com.vmware.o11n.plugin.sdk.ssl.factory.PluginSSLSocketFactory;

...

URLConnection conn = PluginSSLSocketFactory.getConnection("https://...");

...

Plain Java SSLSocketFactory
If you want to use the Java standard SSLSocketFactory class directly, the SDK provides the proper
implementation to create underlying secure sockets.

import java.net.Socket;

import javax.net.ssl.SSLSocketFactory;

import com.vmware.o11n.plugin.sdk.ssl.factory.PluginSSLSocketFactory;

...

SSLSocketFactory factory = PluginSSLSocketFactory.getDefault();

Socket s = factory.createSocket(...);

...

Apache’s HttpClient 3
If you want to use Apache HttpClient version 3, you must register the secure protocol that you want to use
with your own implementation of their ProtocolSocketFactory interface. In the following examples, the
SDK provides the Orchestrator implementation of that interface for you and two different ways to register
the HTTPS protocol.

You can register the protocol manually.

import com.vmware.o11n.plugin.sdk.ssl.factory.HttpClient3PluginSSLSocketFactory;

import org.apache.commons.httpclient.protocol.Protocol;

import org.apache.commons.httpclient.protocol.ProtocolSocketFactory;

...

Protocol https = new Protocol("https", (ProtocolSocketFactory)

HttpClient3PluginSSLSocketFactory.getDefault(), 443);

Protocol.registerProtocol("https", https);

You can use HttpClient3PluginSSLSocketFactory to register the HTTPS protocol.

NOTE You should use the manual method to register other protocols or specific ports.

import com.vmware.o11n.plugin.sdk.ssl.factory.HttpClient3PluginSSLSocketFactory;

...

HttpClient3PluginSSLSocketFactory.registerHttpsProtocol();

Chapter 4 API Enhancements for Plug-In Development

VMware, Inc. 91

Apache’s HttpClient 4
If you want to use Apache HttpClient version 4, you must configure the ClientConnectionManager that you
want to use, with the secure scheme that you want, and your own implementation of their SSLSocketFactory
interface. In the following example, the SDK provides the Orchestrator implementation of that interface for
you.

import com.vmware.o11n.plugin.sdk.ssl.factory.HttpClient4PluginSSLSocketFactory;

import org.apache.http.conn.scheme.Scheme;

import org.apache.http.conn.scheme.SchemeRegistry;

import org.apache.http.impl.client.DefaultHttpClient;

import org.apache.http.impl.conn.SchemeRegistryFactory;

import org.apache.http.impl.conn.tsccm.ThreadSafeClientConnManager;

...

SchemeRegistry registry = SchemeRegistryFactory.createDefault();

Scheme https = new Scheme("https", 443, HttpClient4PluginSSLSocketFactory.getDefault());

registry.register(https);

ThreadSafeClientConnManager manager = new ThreadSafeClientConnManager(registry);

DefaultHttpClient client = new DefaultHttpClient(manager);

The HostValidator Helper Class
The HostValidator class can be used by plug-ins to retrieve, from an HTTPS URL, certificates used to
establish a connection. The SDK provides the HostValidator helper class independently of the SSL
configuration.

By using the HostValidator helper class, a plug-in can return information about certificates, that can be
accepted through a user interaction. If the certificate information is accepted, the HostValidator class installs
the certificate within the Orchestrator keystore.

You can use the features of the HostValidator helper class through the following methods.

n The constructor HostValidator(url), for which the URL is the HTTPS URL.

n The method getCertificateInfo(), which returns a map with properties available for an HTTPS
connection and its cerfiticates.

n The method installCertificates(), which installs certificates within the Orchestrator keystore.

Developing Plug-Ins with VMware vCenter Orchestrator

92 VMware, Inc.

Orchestrator Plug-In API Reference 5
The Orchestrator plug-in API defines Java interfaces and classes to implement and extend when you
develop the IPluginAdaptor and IPluginFactory implementations to create a plug-in.

All classes are contained in the ch.dunes.vso.sdk.api package, unless stated otherwise.

This chapter includes the following topics:

n “IAop Interface,” on page 94

n “IConfigurationAdaptor Interface,” on page 94

n “IDynamicFinder Interface,” on page 95

n “IPluginAdaptor Interface,” on page 95

n “IPluginEventPublisher Interface,” on page 96

n “IPluginFactory Interface,” on page 97

n “IPluginNotificationHandler Interface,” on page 97

n “IPluginPublisher Interface,” on page 98

n “WebConfigurationAdaptor Interface,” on page 98

n “BaseAction Class,” on page 99

n “ConfigurationError Class,” on page 99

n “PluginLicense Class,” on page 99

n “PluginTrigger Class,” on page 100

n “PluginWatcher Class,” on page 101

n “QueryResult Class,” on page 101

n “SDKFinderProperty Class,” on page 102

n “SDKHelper Class,” on page 103

n “PluginExecutionException Class,” on page 104

n “PluginLicenseException Class,” on page 104

n “PluginOperationException Class,” on page 104

n “ConfigurationError.Severity Enumeration,” on page 105

n “ErrorLevel Enumeration,” on page 105

n “HasChildrenResult Enumeration,” on page 106

VMware, Inc. 93

n “ScriptingAttribute Annotation Type,” on page 107

n “ScriptingFunction Annotation Type,” on page 107

n “ScriptingParameter Annotation Type,” on page 108

IAop Interface
The IAop interface provides methods to obtain and set properties on objects in the plugged-in technology.

public interface IAop

The IAop interface defines the following methods:

Method Returns Description

get(java.lang.String
propertyName, java.lang.Object
object, java.lang.Object
sdkObject)

java.lang.Object Obtains a property from a given object
in the plug-in.

set(java.lang.String
propertyName, java.lang.String
propertyValue, java.lang.Object
object)

Void Sets a property on a given object in the
plug-in.

IConfigurationAdaptor Interface
The IConfigurationAdaptor interface allows you to add a tab in the Orchestrator configuration interface.
You can use the tab to configure a plug-in.

You can extend the IConfigurationAdaptor interface to pass to the plug-in configuration information that is
specific to your environment. The SDKHelper class defines further methods to pass configuration information
from the configuration interface to the Orchestrator server.

The IConfigurationAdaptor interface is contained in the ch.dunes.vso.sdk.conf package.

The IConfigurationAdaptor interface defines the following methods.

Method Returns Description

loadConfiguration(java.io.Input
Stream stream)

Void Loads or reloads the configuration. If
the stream property is null, the plug-
in loads its default configuration.
Returns java.io.IOException if it
encounters an error.

saveConfiguration(java.io.Outpu
tStream stream)

Void Saves the configuration details. If the
stream property is null, the plug-in
saves the configuration details in the
default location when you click Apply
Changes in the configuration interface.
Returns java.io.IOException if it
encounters an error.

setPluginName(java.lang.String
name)

Void Sets the plug-in name as it appears in
the plug-in tab in the configuration
interface.

validateConfiguration() ConfigurationError[] Validates the configuration if
validation="enabled" is set.

Developing Plug-Ins with VMware vCenter Orchestrator

94 VMware, Inc.

IDynamicFinder Interface
The IDynamicFinder interface returns the ID and properties of a finder programmatically, instead defining
the ID and properties in the vso.xml file.

The IDynamicFinder Interface defines the following methods.

Method Returns Description

getIdAccessor(java.lang.String
type)

java.lang.String Provides an OGNL expression to
obtain an object ID programmatically.

getProperties(java.lang.String
type)

java.util.List<SDKFinderProper
ty>

Provides a list of object properties
programmatically.

IPluginAdaptor Interface
You implement the IPluginAdaptor interface to manage plug-in factories, events and watchers. The
IPluginAdaptor interface defines an adapter between a plug-in and the Orchestrator server.

IPluginAdaptor instances are resonsible for session management. The IPluginAdaptor Interface defines the
following methods.

Method Returns Description

addWatcher(PluginWatcher
watcher)

Void Adds a watcher to monitor for a
specific event

createPluginFactory(java.lang.S
tring sessionID,
java.lang.String username,
java.lang.String password,
IPluginNotificationHandler
notificationHandler)

IPluginFactory Creates an IPluginFactory instance.
The Orchestrator server uses the
factory to obtain objects from the
plugged-in technology by their ID, by
their relation to other objects, and so
on.
The session ID allows you to identify a
running session. For example, a user
could log into two different
Orchestrator clients and run two
sessions simultaneously.
Similarly, starting a workflow creates a
session that is independent from the
client in which the workflow started. A
workflow continues to run even if you
close the Orchestrator client.

installLicenses(PluginLicense[]
licenses)

Void Installs the license information for
standard plug-ins that VMware
provides

registerEventPublisher(java.lan
g.String type, java.lang.String
id, IPluginEventPublisher
publisher)

Void Sets triggers and gauges on an element
in the inventory

removeWatcher(java.lang.String
watcherId)

Void Removes a watcher

setPluginName(java.lang.String
pluginName)

Void Gets the plug-in name from the
vso.xml file

setPluginPublisher(IPluginPubli
sher pluginPublisher)

Void Sets the publisher of the plug-in

Chapter 5 Orchestrator Plug-In API Reference

VMware, Inc. 95

Method Returns Description

uninstallPluginFactory(IPluginF
actory plugin)

Void Uninstalls a plug-in factory.

unregisterEventPublisher(java.l
ang.String type,
java.lang.String id,
IPluginEventPublisher
publisher)

Void Removes triggers and gauges from an
element in the inventory

IPluginEventPublisher Interface
The IPluginEventPublisher interface publishes gauges and triggers on an event notification bus for
Orchestrator policies to monitor.

You can create IPluginEventPublisher instances directly in the plug-in adaptor implementation or you can
create them in separate event generator classes.

You can implement the IPluginEventPublisher interface to publish events in the plugged-in technology to
the Orchestrator policy engine. You create methods to set policy triggers and gauges on objects in the
plugged-in technology and event listeners to listen for events on those objects.

Policies can implement either gauges or triggers to monitor objects in the plugged-in technology. Policy
gauges monitor the attributes of objects and push an event in the Orchestrator server if the values of the
objects exceed certain limits. Policy triggers monitor objects and push an event in the Orchestrator server if a
defined event occurs on the object. You register policy gauges and triggers with IPluginEventPublisher
instances so that Orchestrator policies can monitor them.

The IPluginEventPublisher Interface defines the following methods.

Type Returns Description

pushGauge(java.lang.String
type, java.lang.String id,
java.lang.String gaugeName,
java.lang.String deviceName,
java.lang.Double gaugeValue)

Void Publish a gauge for policies to monitor.
Takes the following parameters:
n type: Type of the object to

monitor.
n id: Identifier of the object to

monitor.
n gaugeName: Name for this gauge.
n deviceName: Name for the type of

attribute that the gauge monitors.
n gaugeValue: Value for which the

gauge monitors the object.

pushTrigger(java.lang.String
type, java.lang.String id,
java.lang.String triggerName,
java.util.Properties
additionalProperties)

Void Publish a trigger for policies to
monitor. Takes the following
parameters:
n type: Type of the object to

monitor.
n id: Identifier of the object to

monitor.
n triggerName: Name for this

trigger.
n additionalProperties: Any

additional properties for the
trigger to monitor.

Developing Plug-Ins with VMware vCenter Orchestrator

96 VMware, Inc.

IPluginFactory Interface
The IPluginAdaptor returns IPluginFactory instances. IPluginFactory instances run commands in the
plugged-in application, and finds objects upon which to perform Orchestrator operations.

The IPluginFactory interface defines the following field:

static final java.lang.String RELATION_CHILDREN

The IPluginFactory interface defines the following methods.

Method Returns Description

executePluginCommand(java.lang.
String cmd)

Void Use the plug-in to run a command.
VMware recommends that you do not
use this method.

find(java.lang.String type,
java.lang.String id)

java.lang.Object Use the plug-in to find an object.
Identify the object by its ID and type.

findAll(java.lang.String type,
java.lang.String query)

QueryResult Use the plug-in to find objects of a
certain type and that match a query
string. You define the syntax of the
query in the IPluginFactory
implementation of the plug-in. If you
do not define query syntax,
findAll() returns all objects of the
specified type.

findRelation(java.lang.String
parentType, java.lang.String
parentId, java.lang.String
relationName)

java.util.List Determines whether an object has
children.

hasChildrenInRelation(java.lang
.String parentType,
java.lang.String parentId,
java.lang.String relationName)

HasChildrenResult Finds all children related to a given
parent by a certain relation.

invalidate(java.lang.String
type, java.lang.String id)

Void Invalidate objects by type and ID.

void invalidateAll() Void Invalidate all objects in the cache.

IPluginNotificationHandler Interface
The IPluginNotificationHandler defines methods to notify Orchestrator of different types of event that
occur on the objects Orchestrator accesses through the plug-in.

The IPluginNotificationHandler Interface defines the following methods.

Method Returns Description

getSessionID() java.lang.String Returns the current session ID

notifyElementDeleted(java.lang.
String type, java.lang.String
id)

Void Notifies the system that an object with
the given type and ID has been deleted

Chapter 5 Orchestrator Plug-In API Reference

VMware, Inc. 97

Method Returns Description

notifyElementInvalidate(java.la
ng.String type,
java.lang.String id)

Void Notifies the system that an object's
relations have changed. You can use
the notifyElementInvalidate()
method to notify Orchestrator of all
changes in relations between objects,
not only for relation changes that
invalidate an object. For example,
adding a child object to a parent
represents a change in the relation
between the two objects.

notifyElementUpdated(java.lang.
String type, java.lang.String
id)

Void Notifies the system that an object's
attributes have been modified

notifyMessage(ch.dunes.vso.sdk.
api.ErrorLevel severity,
java.lang.String type,
java.lang.String id,
java.lang.String message)

Void Publishes an error message related to
the current module

IPluginPublisher Interface
The IPluginPublisher interface publishes a watcher event on an event notification bus for long-running
workflow Wait Event elements to monitor.

When a workflow trigger starts an event in the plugged-in technology, a plug-in watcher that watches that
trigger and that is registered with an IPluginPublisher instance notifies any waiting workflows that the
event has occurred.

The IPluginPublisher Interface defines the following method.

Type Value Description

pushWatcherEvent(java.lang.Stri
ng id, java.util.Properties
properties)

Void Publish a watcher event on event
notification bus

WebConfigurationAdaptor Interface
The WebConfigurationAdaptor interface implements IConfigurationAdaptor and defines methods to locate
and install a Web application in the configuration tab for a plug-in.

NOTE The WebConfigurationAdaptor interface is deprecated since Orchestrator 4.1. To add a Web
application to the configuration, implement IConfigurationAdaptor and use the configuration-war attribute
in the vso.xml file to identify the Web application.

The WebConfigurationAdaptor interface defines the following methods.

Method Returns Description

getWebAppContext() String Locates the WAR file of the Web
application for the configuration tab.
Provide the name and path to the
WAR file from the /webapps directory
in the DAR file as a string.

setWebConfiguration(boolean
webConfiguration)

Boolean Determine whether the contents of the
configuration tab are defined by a Web
application.

Developing Plug-Ins with VMware vCenter Orchestrator

98 VMware, Inc.

BaseAction Class
The BaseAction class is a helper class that you can use to create Orchestrator actions.

In the context of creating a plug-in configuration tab, the BaseAction class provides methods that you can
implement to set up and run the configuration action that pushes configuration information to the
Orchestrator server from the configuration interface.

The BaseAction class is contained in the ch.dunes.vso.configuration.web.commons package.

The BaseAction class defines the following methods:

Method Returns Description

prepare() Void Implement this method to instantiate
the configuration adapter and load
configuration information.

execute() Void Implement this method to push the
configuration information to the
configuration server.

ConfigurationError Class
The ConfigurationError class defines the error objects that the
IConfigurationAdaptor.validateConfiguration() method returns the plug-in configuration contains errors.

public class ConfigurationError

extends java.lang.Object

implements java.io.Serializable

The ConfigurationError class uses the ConfigurationError.Severity enumeration and defines the following
fields:

n public ConfigurationError.Severity severity

n public java.lang.String title

n public java.lang.String description

Constructor
ConfigurationError(ConfigurationError.Severity severity, java.lang.String title, java.lang.String

description)

PluginLicense Class
The PluginLicense class obtains and sets any licensing information that a plug-in requires.

public class PluginLicense

extends java.lang.Object

implements java.io.Serializable

The PluginLicense class defines the following methods.

Method Returns Description

getDescription() java.lang.String Obtains the license description.

getLicenseString() java.lang.String Obtains the license key.

getOwner() java.lang.String Obtains the license owner.

Chapter 5 Orchestrator Plug-In API Reference

VMware, Inc. 99

Method Returns Description

setDescription(java.lang.String
description)

Void Sets the license description.

setLicenseString(java.lang.Stri
ng licenseString)

Void Sets the license key.

setOwner(java.lang.String
owner)

Void Obtains the license owner.

Constructor
PluginLicense()

PluginTrigger Class
The PluginTrigger class creates a trigger module that obtains information about objects and events to
monitor in the plugged-in technology, on behalf of a Wait Event element in a workflow.

The PluginTrigger class defines methods to obtain or set the type and name of the object to monitor, the
nature of the event, and a timeout period.

You create implementations of the PluginTrigger class exclusively for use by Wait Event elements in
workflows. You define policy triggers for Orchestrator policies in classes that define events and implement
the IPluginEventPublisher.pushTrigger() method.

public class PluginTrigger

extends java.lang.Object

implements java.io.Serializable

The PluginTrigger class defines the following methods:

Method Returns Description

getModuleName() java.lang.String Obtains the name of the trigger
module.

getProperties() java.util.Properties Obtains a list of properties for the
trigger.

getSdkId() java.lang.String Obtains the ID of the object to monitor
in the plugged-in technology.

getSdkType() java.lang.String Obtains the type of the object to
monitor in the plugged-in technology.

getTimeout() Long Obtains the trigger timeout period.

setModuleName(java.lang.String
moduleName)

Void Sets the name of the trigger module.

setProperties(java.util.Propert
ies properties)

Void Sets a list of properties for the trigger.

setSdkId(java.lang.String
sdkId)

Void Sets the ID of the object to monitor in
the plugged-in technology.

setSdkType(java.lang.String
sdkType)

Void Sets the type of the object to monitor in
the plugged-in technology.

setTimeout(long timeout) Void Sets a timeout period in seconds. A
negative value deactivates the timeout.

Constructors
n PluginTrigger()

Developing Plug-Ins with VMware vCenter Orchestrator

100 VMware, Inc.

n PluginTrigger(java.lang.String moduleName, long timeout, java.lang.String sdkType,

java.lang.String sdkId)

PluginWatcher Class
The PluginWatcher class watches a trigger module for a defined event in the plugged-in technology on
behalf of a long-running workflow Wait Event element.

The PluginWatcher class defines a constructor that you can use to create plug-in watcher instances. The
PluginWatcher class defines methods to obtain or set the name of the workflow trigger to watch and a
timeout period.

public class PluginWatcher

extends java.lang.Object

implements java.io.Serializable

The PluginWatcher class defines the following methods:

Method Returns Description

getId() java.lang.String Obtains the ID of the trigger

getModuleName() java.lang.String Obtains the trigger module name

getTimeoutDate() Long Obtains the trigger timeout date

getTrigger() Void Obtains a trigger

setId(java.lang.String id) Void Sets the ID of the trigger

setTimeoutDate() Void Sets the trigger timeout date

Constructor
PluginWatcher(PluginTrigger trigger)

QueryResult Class
The QueryResult class contains the results of a find query made on the objects Orchestrator accesses through
the plug-in.

public class QueryResult

extends java.lang.Object

implements java.io.Serializable

The totalCount value can be greater than the number of elements the QueryResult returns, if the total
number of results found exceeds the number of results the query returns. The number of results the query
returns is defined in the query syntax in the vso.xml file.

The QueryResult class defines the following methods:

Method Returns Description

addElement(java.lang.Object
element)

Void Adds an element to the QueryResult

addElements(java.util.List
elements)

Void Adds a list of elements to the
QueryResult

getElements() java.util.List Obtains elements from the plugged in
application

getTotalCount() Long Obtains a count of all the elements
available in the plugged in technology

Chapter 5 Orchestrator Plug-In API Reference

VMware, Inc. 101

Method Returns Description

isPartialResult() Boolean Determines whether the result
obtained is complete

removeElement(java.lang.Object
element)

Void Removes an element from the plugged
in technology

setElements(java.util.List
elements)

Void Sets elements in the plugged in
technology

setTotalCount(long totalCount) Void Sets the total number of elements
available in the plugged in technology

Constructors
n QueryResult()

n QueryResult(java.util.List ret)

n QueryResult(java.util.List elements, long totalCount)

SDKFinderProperty Class
The SDKFinderProperty class defines methods to obtain and set properties in the objects found in the
plugged in technology by the Orchestrator finder objects. The IDynanmicFinder.getProperties method
returns SDKFinderProperty objects.

public class SDKFinderProperty

extends java.lang.Object

The SDKFinderProperty class defines the following methods:

Method Returns Description

getAttributeName() java.lang.String Obtains an object attribute name

getBeanProperty() java.lang.String Obtains properties from a Java bean

getDescription() java.lang.String Obtains an object description

getDisplayName() java.lang.String Obtains an object display name

getPossibleResultType() java.lang.String Obtains the possible types of result the
finder returns

getPropertyAccessor() java.lang.String Obtains an object property accessor

getPropertyAccessorTree() java.lang.Object Obtains an object property accessor
tree

isHidden() Boolean Shows or hides the object

isShowInColumn() Boolean Shows or hides the object in the
database column

isShowInDescription() Boolean Shows or hides the object description

setAttributeName(java.lang.Stri
ng attributeName)

Void Sets an object attribute name

setBeanProperty(java.lang.Strin
g beanProperty)

Void Sets properties in a Java bean

setDescription(java.lang.String
description)

Void Sets an object description

setDisplayName(java.lang.String
displayName)

Void Sets an object display name

setHidden(boolean hidden) Void Show or hide the object

Developing Plug-Ins with VMware vCenter Orchestrator

102 VMware, Inc.

Method Returns Description

setPossibleResultType(java.lang
.String possibleResultType)

Void Sets the possible types of result the
finder returns

setPropertyAccessor(java.lang.S
tring propertyAccessor)

Void Sets an object property accessor

setPropertyAccessorTree(java.la
ng.Object propertyAccessorTree)

Void Sets an object property accessortree

setShowInColumn(boolean
showInTable)

Void Show or hide the object in the database
column

setShowInDescription(boolean
showInDescription)

Void Show or hide the object description

Constructor
SDKFinderProperty(java.lang.String attributeName, java.lang.String displayName, java.lang.String

beanProperty, java.lang.String propertyAccessor)

SDKHelper Class
You can add a tab to the Orchestrator configuration interface to allow users to configure a plug-in. The
SDKHelper class provides methods to obtain configuration information for a plug-in from the Orchestrator
configuration interface.

The SDKHelper class is contained in the ch.dunes.vso.sdk.helper package.

public class SDKHelper

extends java.lang.Object

The SDKHelper class defines the following methods.

Method Returns Description

getConfigurationPathForPluginNa
me(java.lang.String moduleName)

java.lang.String Obtains the path to the source files of
the plug-in implementation.

isPluginEnabled(java.lang.Strin
g pluginName)

Boolean Checks whether the plug-in is enabled
or disabled.

setPluginEnabled(java.lang.Stri
ng pluginName, boolean flag)

Void Enables the plug-in.

loadPropertiesForPluginName(jav
a.lang.String moduleName)

java.util.Properties Loads a list of properties that users set
in the configuration interface.

savePropertiesForPluginName(jav
a.util.Properties properties,
java.lang.String moduleName)

Void Saves in the plug-in properties that the
user sets in the configuration interface.

getPluginInstallCredentials() java.lang.String[] Obtains the credentials of the user who
sets properties in the configuration
interface.

Constructor
SDKHelper()

Chapter 5 Orchestrator Plug-In API Reference

VMware, Inc. 103

PluginExecutionException Class
The PluginExecutionException class returns an error message if the plug-in encounters an exception when it
runs an operation.

public class PluginExecutionException

extends java.lang.Exception

implements java.io.Serializable

The PluginExecutionException class inherits the following methods from class java.lang.Throwable:

fillInStackTrace, getCause, getLocalizedMessage, getMessage, getStackTrace, initCause, printStackTrace,
printStackTrace, printStackTrace, setStackTrace, toStringfillInStackTrace, getCause,
getLocalizedMessage, getMessage, getStackTrace, initCause, printStackTrace

Constructor
PluginExecutionException(java.lang.String message)

PluginLicenseException Class
The PluginLicenseException class returns an error message if the plug-in encounters an exception when it
installs a license for a plug-in.

public class PluginLicenseException

extends java.lang.Exception

implements java.io.Serializable

The PluginExecutionException class inherits the following methods from class java.lang.Throwable:

fillInStackTrace, getCause, getLocalizedMessage, getMessage, getStackTrace, initCause, printStackTrace,
printStackTrace, printStackTrace, setStackTrace, toStringfillInStackTrace, getCause,
getLocalizedMessage, getMessage, getStackTrace, initCause, printStackTrace

Constructor
PluginLicenseException(java.lang.String message)

PluginOperationException Class
The PluginOperationException class handles errors encountered during a plug-in operation.

public class PluginOperationException

extends java.lang.RuntimeException

implements java.io.Serializable

The PluginOperationException class inherits the following methods from class java.lang.Throwable:

fillInStackTrace, getCause, getLocalizedMessage, getMessage, getStackTrace, initCause, printStackTrace,
printStackTrace, printStackTrace, setStackTrace, toString

Constructor
PluginOperationException(java.lang.String message)

Developing Plug-Ins with VMware vCenter Orchestrator

104 VMware, Inc.

ConfigurationError.Severity Enumeration
The ConfigurationError class uses the ConfigurationError.Severity enumeration to set the level of severity
of configuration errors.

public static enum ConfigurationError.Severity

extends java.lang.Enum<ConfigurationError.Severity>

implements java.io.Serializable

The ConfigurationError.Severity enumeration defines the following constant values for error levels:

n public static final ConfigurationError.Severity Info

n public static final ConfigurationError.Severity Warning

n public static final ConfigurationError.Severity Error

The ConfigurationError.Severity enumeration defines the following methods.

Method Returns Description

values() public static
ConfigurationError.Severity[]

Returns an array containing the
constants of this enumeration type, in
the order that the plug-in declares
them. You can use this method to
iterate through the constants as
follows:
for (
 ConfigurationError.Severity
c :
 ConfigurationError.Severity.
 values())
 System.out.println(c);

valueOf(java.lang.String name) java.lang.String name Returns the constant value of an
enumeration with the specified name.
The string must match an identifier
that you use to declare an enumeration
constant in this type. Extraneous
whitespace characters are not
permitted.
The name parameter is the name of the
enumeration constant to return.

public int getValue() int Returns the value of the error.

The ConfigurationError.Severity enumeration inherits the following methods from class java.lang.Enum:

clone, compareTo, equals, finalize, getDeclaringClass, hashCode, name, ordinal, toString, valueOf

ErrorLevel Enumeration
The ErrorLevel enumeration defines constant values for different levels of error that a plug-in encounters.

public enum HasChildrenResult

extends java.lang.Enum<HasChildrenResult>

implements java.io.Serializable

The ErrorLevel enumeration defines the following constant values for error levels:

n public static final ErrorLevel Fatal

n public static final ErrorLevel Error

Chapter 5 Orchestrator Plug-In API Reference

VMware, Inc. 105

n public static final ErrorLevel Warning

n public static final ErrorLevel Info

n public static final ErrorLevel Debug

The ErrorLevel enumeration defines the following methods:

Method Returns Description

values() static ErrorLevel[] Returns an array containing the
constants of this enumeration type, in
the order that plug-in declares them.
You can use this method to iterate
through the constants as follows:
for (ErrorLevel c :
ErrorLevel.values())
 System.out.println(c);

valueOf(java.lang.String name) java.lang.String Returns the constant value of an
enumeration with the specified name.
The string must match an identifier
that you use to declare an enumeration
constant in this type. Extraneous
whitespace characters are not
permitted.
The name parameter is the name of the
enumeration constant to return.

getSeverity() ErrorLevel Returns the ErrorLevel value of the
error.

The ErrorLevel enumeration inherits the following methods from class java.lang.Enum:

clone, compareTo, equals, finalize, getDeclaringClass, hashCode, name, ordinal, toString, valueOf

HasChildrenResult Enumeration
The HasChildrenResult Enumeration declares whether a given parent has children. The
IPluginFactory.hasChildrenInRelation method returns HasChildrenResult objects.

public enum HasChildrenResult

extends java.lang.Enum<HasChildrenResult>

implements java.io.Serializable

The HasChildrenResult enumeration defines the following constants:

n public static final HasChildrenResult Yes

n public static final HasChildrenResult No

n public static final HasChildrenResult Unknown

The HasChildrenResult enumeration defines the following methods:

Developing Plug-Ins with VMware vCenter Orchestrator

106 VMware, Inc.

Method Returns Description

getValue() int Returns one of the following values:

1 Parent has children

-1 Parent has no children

0 Unknown, or invalid
parameter

valueOf(java.lang.String name) static HasChildrenResult Returns an enumeration constant of
this type with the specified name. The
String must match exactly an identifier
used to declare an enumeration
constant of this type. Do not use
whitespace characters in the
enumeration name.

values() static HasChildrenResult[] Returns an array containing the
constants of this enumeration type, in
the order they are declared. This
method can iterate over constants as
follows:

for (HasChildrenResult c :
HasChildrenResult.values())
System.out.println(c);

The HasChildrenResult enumeration inherits the following methods from class java.lang.Enum:

clone, compareTo, equals, finalize, getDeclaringClass, hashCode, name, ordinal, toString, valueOf

ScriptingAttribute Annotation Type
The ScriptingAttribute annotation type annotates an attribute from an object in the plugged in technology
for use as a property in scripting.

@Retention(value=RUNTIME)

@Target(value={METHOD,FIELD})

public @interface ScriptingAttribute

The ScriptingAttribute annotation type has the following value:

public abstract java.lang.String value

ScriptingFunction Annotation Type
The ScriptingFunction annotation type annotates a method for use as a property in scripting.

@Retention(value=RUNTIME)

@Target(value={METHOD,CONSTRUCTOR})

public @interface ScriptingFunction

The ScriptingFunction annotation type has the following value:

public abstract java.lang.String value

Chapter 5 Orchestrator Plug-In API Reference

VMware, Inc. 107

ScriptingParameter Annotation Type
The ScriptingParameter annotation type annotates a parameter for use as a property in scripting.

@Retention(value=RUNTIME)

@Target(value=PARAMETER)

public @interface ScriptingParameter

The ScriptingParameter annotation type has the following value:

public abstract java.lang.String value

Developing Plug-Ins with VMware vCenter Orchestrator

108 VMware, Inc.

Elements of the vso.xml Plug-In
Definition File 6

The vso.xml file contains a set of standard elements. Some of the elements are mandatory while others are
optional. Each element has attributes that define values for the objects and operations you map to
Orchestrator objects and operations.

In addition, elements can have zero or more child elements. A child element further defines the parent
element. The same child element can appear in multiple parent elements. For example, the description
element has no child elements, but appears as a child element for many parent elements: module, example,
trigger, gauge, finder, constructor, method, object, and enumeration.

Each element definition that follows lists its attributes, parents and children.

This chapter includes the following topics:

n “module Element,” on page 110

n “configuration Element,” on page 111

n “description Element,” on page 112

n “deprecated Element,” on page 112

n “url Element,” on page 112

n “installation Element,” on page 113

n “action Element,” on page 113

n “webview-components-library Element,” on page 113

n “finder-datasources Element,” on page 114

n “finder-datasource Element,” on page 114

n “inventory Element,” on page 115

n “finders Element,” on page 115

n “finder Element,” on page 116

n “properties Element,” on page 117

n “property Element,” on page 117

n “relations Element,” on page 118

n “relation Element,” on page 118

n “id Element,” on page 118

n “inventory-children Element,” on page 119

n “relation-link Element,” on page 119

VMware, Inc. 109

n “events Element,” on page 119

n “trigger Element,” on page 119

n “trigger-properties Element,” on page 120

n “trigger-property Element,” on page 120

n “gauge Element,” on page 120

n “scripting-objects Element,” on page 121

n “object Element,” on page 121

n “constructors Element,” on page 122

n “constructor Element,” on page 122

n “Constructor parameters Element,” on page 122

n “Constructor parameter Element,” on page 122

n “attributes Element,” on page 123

n “attribute Element,” on page 123

n “methods Element,” on page 124

n “method Element,” on page 124

n “example Element,” on page 125

n “code Element,” on page 125

n “Method parameters Element,” on page 125

n “Method parameter Element,” on page 125

n “singleton Element,” on page 126

n “enumerations Element,” on page 126

n “enumeration Element,” on page 126

n “entries Element,” on page 127

n “entry Element,” on page 127

module Element
A module describes a set of plug-in objects to make available to Orchestrator.

The module contains information about how data from the plugged-in technology maps to Java classes,
versioning, how to deploy the module, and how the plug-in appears in the Orchestrator inventory.

The <module> element is optional. The <module> element has the following attributes:

Attributes Value Description

name String Defines the type of all the <finder>
elements in the plug-in. Mandatory
attribute.

version Number The plug-in version number, for use
when reloading packages in a new
version of the plug-in. Mandatory
attribute.

Developing Plug-Ins with VMware vCenter Orchestrator

110 VMware, Inc.

Attributes Value Description

build-number Number The plug-in build number, for use
when reloading packages in a new
version of the plug-in. Mandatory
attribute.

image Image file The icon to display in the Orchestrator
Inventory. Mandatory attribute.

display-name String The name that appears in the
Orchestrator Inventory. Optional
attribute.

interface-mapping-allowed true or false VMware strongly discourages
interface mapping. Optional attribute.

Table 6‑1. Element Hierarchy

Parent Element Child Elements

None n <description>

n <installation>

n <configuration>

n <webview-components-library>

n <finder-datasources>

n <inventory>

n <finders>

n <scripting-objects>

n <enumerations>

configuration Element
The <configuration> element allows you to add a tab in the Orchestrator configuration interface. You can
use the tab to configure a plug-in.

The <configuration> element is optional. The <configuration> element has the following attributes:

Attributes Value Description

icon Image file Icon that represents the plug-in in the
Orchestrator configuration interface.
Mandatory attribute.

adaptor-class Java class Implementation of the
IConfigurationAdaptor Java
interface that defines the actions to
perform in the configuration interface.
Mandatory attribute.

configuration-war WAR archive Web application archive (war file) that
contains the components of the Web
application that implements the
adapter class. The pages of the Web
application appear in the configuration
interface. Optional attribute.

validation enabled or disabled Validates the configuration against a
function that you define in the adapter
class. Optional attribute.

Chapter 6 Elements of the vso.xml Plug-In Definition File

VMware, Inc. 111

Table 6‑2. Element Hierarchy

Parent Element Child Element

<module> None

description Element
The <description> elements provide descriptions of the elements of the plug-in that appear in the API
Explorer documentation.

You add the text that appears in the API Explorer documentation between the <description> and
</description> tags.

The <description> element is optional. The <description> element has no attributes.

Table 6‑3. Element Hierarchy

Parent Elements Child Elements

n <module>

n <example>

n <trigger>

n <gauge>

n <finder>

n <constructor>

n <method>

n <object>

n <enumeration>

None

deprecated Element
The <deprecated> element marks objects and methods that are deprecated in the API Explorer
documentation.

You add the text that appears in the API Explorer documentation between the <deprecated> and
</deprecated> tags.

The <deprecated> element is optional. The <deprecated> element has no attributes.

Table 6‑4. Element Hierarchy

Parent Elements Child Elements

n <method>

n <object>

None

url Element
The <url> element provides a URL that points to external documentation about an object or enumeration.

You provide the URL between the <url> and </url> tags.

The <url> element is optional. The <url> element has no attributes.

Table 6‑5. Element Hierarchy

Parent Elements Child Elements

n <enumeration>

n <object>

None

Developing Plug-Ins with VMware vCenter Orchestrator

112 VMware, Inc.

installation Element
The <installation> element allows you to install a package or run a script when the server starts.

The <installation> element is optional. The <installation> element has the following attributes:

Attributes Value Description

mode always, never, or version Setting the mode value results in the
following behavior when the
Orchestrator server starts:
n The action always runs
n The action never runs
n The action runs when the server

detects a newer version of the
plug-in

Mandatory attribute.

Table 6‑6. Element Hierarchy

Parent Element Child Element

<module> <action>

action Element
The <action> element specifies the action that runs when the Orchestrator server starts.

The <action> element attributes provide the path to the Orchestrator package or script that defines the plug-
in's behavior when it starts.

The <action> element is optional. A plug-in can have an unlimited number of <action> elements. The
<action> element has the following attributes.

Attributes Value Description

resource String The path to the Java package or script
from the root of the dar file.
Mandatory attribute.

type install-package or execute-
script

Either installs the specified
Orchestrator package in the
Orchestrator server, or runs the
specified script. Mandatory attribute.

Table 6‑7. Element Hierarchy

Parent Element Child Elements

<installation> None

webview-components-library Element
The <webview-components-library> element points to a JAR file containing custom Web view tapestry
components that extend Web view capabilities.

The <webview-components-library> element is optional. The <webview-components-library> element has the
following attributes.

Chapter 6 Elements of the vso.xml Plug-In Definition File

VMware, Inc. 113

Attributes Value Description

jar String A JAR file containing Web view
components. Mandatory attribute.

specification-path String The path in the JAR file to the Tapestry
component definition file, in the lib
folder of the *.dar file. The path must
begin with a forward slash (/).
Mandatory attribute.

Table 6‑8. Element Hierarchy

Parent Element Child Elements

<module> None

finder-datasources Element
The <finder-datasources> element is the container for the <finder-datasource> elements.

The <finder-datasources> element is optional. The <finder-datasources> element has no attributes.

Table 6‑9. Element Hierarchy

Parent Element Child Elements

<module> <finder-datasource>

finder-datasource Element
The <finder-datasource> element points to the Java class file of the IPluginAdaptor implementation that
you create for the plug-in.

You set how Orchestrator accesses the objects of the plugged-in technology in the <finder-datasource>
element. The <finder-datasource> element identifies the Java class of the plug-in adapter that you create.
The plug-in adapter class instantiates the plug-in factory that you create. The plug-in factory defines the
methods that find objects in the plugged-in technology. You can set timeouts in the <finder-datasource>
element for the finder method calls that the factory performs. Different timeouts apply to the different finder
methods from the IPluginFactory interface.

The <finder-datasource> element is optional. A plug-in can have an unlimited number of <finder-
datasources> elements. The <finder-datasource> element has the following attributes.

Attributes Value Description

name String Identifies the data source in the
<finder> element datasource
attributes. Equivalent to an XML id.
Mandatory attribute.

adaptor-class Java class Points to the IPluginAdaptor
implementation you define to create
the plug-in adapter, for example,
com.vmware.plugins.sample.Adapt
or. Mandatory attribute.

concurrent-call true (default) or false Allows multiple users to access the
adapter at the same time. You must set
concurrent-call to false if the
plug-in does not support concurrent
calls. Optional attribute.

Developing Plug-Ins with VMware vCenter Orchestrator

114 VMware, Inc.

Attributes Value Description

invoker-mode direct (default) or timeout Sets a timeout on the finder function. If
set to direct, calls to finder functions
never time out. If set to timeout, the
Orchestrator server applies the timeout
period that corresponds to the finder
method. Optional attribute.

anonymous-login-mode never (default) or always Passes or does not pass the user's
username and password to the plug-
in. Optional attribute.

timeout-fetch-relation Number; default 30 seconds Applies to calls from
findRelation(). Optional attribute.

timeout-find-all Number; default 60 seconds Applies to calls from findAll().
Optional attribute.

timeout-find Number; default 60 seconds Applies to calls from find(). Optional
attribute.

timeout-has-children-in-
relation

Number; default 2 seconds Applies to calls from
findChildrenInRelation().
Optional attribute.

timeout-execute-plugin-command Number; default 30 seconds Applies to calls from
executePluginCommand(). Optional
attribute.

Table 6‑10. Element Hierarchy

Parent Element Child Elements

<finder-datasources> None

inventory Element
The <inventory> element defines the root of the hierarchical list for the plug-in that appears in the
Orchestrator client Inventory view and object selection dialog boxes.

The <inventory> element does not represent an object in the plugged-in application, but rather represents
the plug-in itself as an object in the Orchestrator scripting API.

The <inventory> element is optional. The <inventory> element has the following attribute.

Attributes Value Description

type An Orchestrator object type The type of the <finder> element that
represents the root of the hierarchy of
objects. Mandatory attribute.

Table 6‑11. Element Hierarchy

Parent Element Child Elements

<module> None

finders Element
The <finders> element is the container for all the <finder> elements.

The <finders> element is optional. The <finders> element has no attributes.

Chapter 6 Elements of the vso.xml Plug-In Definition File

VMware, Inc. 115

Table 6‑12. Element Hierarchy

Parent Element Child Element

<module> <finder>

finder Element
The <finder> element represents in the Orchestrator client a type of object found through the plug-in.

The <finder> element identifies the Java class that defines the object the object finder represents. The
<finder> element defines how the object appears in the Orchestrator client interface. It also identifies the
scripting object that the Orchestrator scripting API defines to represent this object.

Finders act as an interface between object formats used by different types of plugged-in technologies.

The <finder> element is optional. A plug-in can have an unlimited number of <finder> elements. The
<finder> element defines the following attributes:

Attributes Value Description

type An Orchestrator object type Type of object represented by the
finder. Mandatory attribute.

datasource <finder-datasource name>
attribute

Identifies the Java class that defines the
object by using the datasource refid.
Mandatory attribute.

dynamic-finder Java method Defines a custom finder method you
implement in an IDynamicFinder
instance, to return the ID and
properties of a finder
programmatically, instead defining it
in the vso.xml file. Optional attribute.

hidden true or false (default) If true, hides the finder in the
Orchestrator client. Optional attribute.

image Path to a graphic file A 16x16 icon to represent the finder in
hierarchical lists in the Orchestrator
client. Optional attribute.

java-class Name of a Java class The Java class that defines the object
the finder finds and maps to a
scripting object. Optional attribute.

script-object <scripting-object type>
attribute

The <scripting-object> type, if
any, to which to map this finder.
Optional attribute.

Table 6‑13. Element Hierarchy

Parent Element Child Elements

<finders> n <id>

n <description>

n <properties>

n <default-sorting>

n <inventory-children>

n <relations>

n <inventory-tabs>

n <events>

Developing Plug-Ins with VMware vCenter Orchestrator

116 VMware, Inc.

properties Element
The <properties> element is the container for <finder><property> elements.

The <properties> element is optional. The <properties> element has no attributes.

Table 6‑14. Element Hierarchy

Parent Element Child Element

<finder> <property>

property Element
The <property> element maps the found object's properties to Java properties or method calls.

You can call on the methods of the SDKFinderProperty class when you implement the plug-in factory to
obtain properties for the plug-in factory implementation to process.

You can show or hide object properties in the views in the Orchestrator client. You can also use
enumerations to define object properties.

The <property> element is optional. A plug-in can have an unlimited number of <property> elements. The
<property> element has the following attributes.

Attributes Value Description

name Finder name The name the FinderResult uses to
store the element. Mandatory attribute.

display-name Finder name The displayed property name.
Optional attribute.

bean-property Property name You use the bean-property attribute
to identify a property to obtain using
get and set operations. If you identify
a property named MyProperty, the
plug-in defines getMyProperty and
setMyProperty operations.
You set one or the other of bean-
property or property-accessor, but
not both. Optional attribute.

property-accessor The method that obtains a property
value from an object

The property-accessor attribute
allows you to define an OGNL
expression to validate an object's
properties.
You set one or the other of bean-
property or property-accessor, but
not both. Optional attribute.

show-in-column true (default) or false If true, this property shows in the
Orchestrator client results table.
Optional attribute.

show-in-description true (default) or false If true, this property shows in the
object description. Optional attribute.

hidden true or false (default) If true, this property is hidden in all
cases. Optional attribute.

linked-enumeration Enumeration name Links a finder property to an
enumeration. Optional attribute.

Chapter 6 Elements of the vso.xml Plug-In Definition File

VMware, Inc. 117

Table 6‑15. Element Hierarchy

Parent Element Child Elements

<properties> Child Elements

relations Element
The <relations> element is the container for <finder><relation> elements.

The <relations> element is optional. The <relations> element has no attributes.

Table 6‑16. Element Hierarchy

Parent Element Child Element

<finder> <relation>

relation Element
The <relation> element defines how objects relate to other objects.

You define the relation name in the <relation> element.

The <relation> element is optional. A plug-in can have an unlimited number of <relation> elements. The
<relation> element has the following attributes.

Attributes Value Description

name Relation name A name for this relation. Mandatory
attribute.

type Orchestrator object type The type of the object that relates to
another object by this relation.
Mandatory attribute.

cardinality to-one or to-many Defines the relation between the
objects as one-to-one or one-to-many.
Optional attribute.

Table 6‑17. Element Hierarchy

Parent Element Child Elements

<relations> None

id Element
The <id> element defines a method to obtain the unique ID of the object that the finder identifies.

The <id> element is optional. The <id> element has the following attributes.

Attributes Value Description

accessor Method name The accessor attribute allows you to
define an OGNL expression to validate
an object's properties. Mandatory
attribute.

Developing Plug-Ins with VMware vCenter Orchestrator

118 VMware, Inc.

Table 6‑18. Element Hierarchy

Parent Element Child Elements

<finder> None

inventory-children Element
The <inventory-children> element defines the hierarchy of the lists that show the objects in the
Orchestrator client Inventory view and object selection boxes.

The <inventory-children> element is optional. The <inventory-children> element has no attributes.

Table 6‑19. Element Hierarchy

Parent Element Child Element

<finder> <relation-link>

relation-link Element
The <relation-link> element defines the hierarchies between parent and child objects in the Inventory tab.

The <relation-link> element is optional. A plug-in can have an unlimited number of <relation-link>
elements. The <relation-link> element has the following attribute.

Type Value Description

name Relation name A refid to a relation name.
Mandatory attribute.

Table 6‑20. Element Hierarchy

Parent Element Child Elements

<inventory-children> None

events Element
The <events> element is the container for the <trigger> and <gauge> elements.

The <events> element can contain an unlimited number of triggers or gauges.

The <events> element is optional. The <events> element has no attributes.

Table 6‑21. Element Hierarchy

Parent Element Child Elements

<finder> n <trigger>

n <gauge>

trigger Element
The <trigger> element declares the triggers you can use for this finder. You must implement the
registerEventPublisher() and unregisterEventPublisher() methods of IPluginAdaptor to set triggers.

The <trigger> element is optional. The <trigger> element has the following attribute.

Chapter 6 Elements of the vso.xml Plug-In Definition File

VMware, Inc. 119

Type Value Description

name Trigger name A name for this trigger. Mandatory
attribute.

Table 6‑22. Element Hierarchy

Parent Element Child Elements

<events> n <description>

n <trigger-properties>

trigger-properties Element
The <trigger-properties> element is the container for the <trigger-property> elements.

The <trigger-properties> element is optional. The <trigger-properties> element has no attributes.

Table 6‑23. Element Hierarchy

Parent Element Child Element

<trigger> <trigger-property>

trigger-property Element
The <trigger-property> element defines the properties that identify a trigger object.

The <trigger-property> element is optional. A plug-in can have an unlimited number of <trigger-
property> elements. The <trigger-property> element has the following attributes.

Type Value Description

name Trigger name A name for the trigger. Optional
attribute.

display-name Trigger name The name that displays in the
Orchestrator client. Optional attribute.

type Trigger type The object type that defines the trigger.
Mandatory attribute.

Table 6‑24. Element Hierarchy

Parent Element Child Elements

<trigger-properties> None

gauge Element
The <gauge> element defines the gauges you can use for this finder. You must implement
theregisterEventPublisher() and unregisterEventPublisher() methods of IPluginAdaptor to set gauges.

The <gauge> element is optional. A plug-in can have an unlimited number of <gauge> elements. The <gauge>
element has the following attributes.

Developing Plug-Ins with VMware vCenter Orchestrator

120 VMware, Inc.

Type Value Description

name Gauge name A name for the gauge. Mandatory
attribute.

min-value Number Minimum threshold. Optional
attribute.

max-value Number Maximum threshold. Optional
attribute.

unit Object type Object type that defines the gauge.
Mandatory attribute.

format String The format of the monitored value.
Optional attribute.

Table 6‑25. Element Hierarchy

Parent Element Child Element

<events> <description>

scripting-objects Element
The <scripting-objects> element is the container for the <object> elements.

The <scripting-objects> element is optional. The <scripting-objects> element has no attributes.

Table 6‑26. Element Hierarchy

Parent Element Child Element

<module> <object>

object Element
The <object> element maps the plugged-in technology's constructors, attributes, and methods to JavaScript
object types that the Orchestrator scripting API exposes.

See “Naming Plug-In Objects,” on page 21 for object naming conventions.

The <object> element is optional. A plug-in can have an unlimited number of <object> elements. The
<object> element has the following attributes.

Type Value Description

script-name JavaScript name Scripting name of the class. Must be
globally unique. Mandatory attribute.

java-class Java class The Java class wrapped by this
JavaScript class. Mandatory attribute.

create true (default) or false If true, you can create a new instance
of this class. Optional attribute.

strict true or false (default) If true, you can only call methods you
annotate or declare in the vso.xml file.
Optional attribute.

is-deprecated true or false (default) If true, the object maps a deprecated
Java class. Optional attribute.

since-version String Version since the Java class is
deprecated. Optional attribute.

Chapter 6 Elements of the vso.xml Plug-In Definition File

VMware, Inc. 121

Table 6‑27. Element Hierarchy

Parent Element Child Elements

<scripting-objects> n <description>

n <deprecated>

n <url>

n <constructors>

n <attributes>

n <methods>

n <singleton>

constructors Element
The <constructors> element is the container for the <object><constructor> elements.

The <constructors> element is optional. The <constructors> element has no attributes.

Table 6‑28. Element Hierarchy

Parent Element Child Element

<object> <constructor>

constructor Element
The <constructor> element defines a constructor method. The <constructor> method produces
documentation in the API Explorer.

The <constructor> element is optional. A plug-in can have an unlimited number of <constructor> elements.
The <constructor> element has no attributes.

Table 6‑29. Element Hierarchy

Parent Element Child Elements

<constructors> n <description>

n <parameters>

Constructor parameters Element
The <parameters> element is the container for the <constructor><parameter> elements.

The <parameters> element is optional. The <parameters> element has no attributes.

Table 6‑30. Element Hierarchy

Parent Element Child Element

<constructor> <parameter>

Constructor parameter Element
The <parameter> element defines the constructor's parameters.

The <parameter> element is optional. A plug-in can have an unlimited number of <parameter> elements. The
<parameter> element has the following attributes.

Developing Plug-Ins with VMware vCenter Orchestrator

122 VMware, Inc.

Type Value Description

name String Parameter name to use in API
documentation. Mandatory attribute.

type Orchestrator parameter type Parameter type to use in API
documentation. Mandatory attribute.

is-optional true or false If true, value can be null. Optional
attribute.

since-version String Method version. Optional attribute.

Table 6‑31. Element Hierarchy

Parent Element Child Elements

<parameters> None

attributes Element
The <attributes> element is the container for the <object><attribute> elements.

The <attributes> element is optional. The <attributes> element has no attributes.

Table 6‑32. Element Hierarchy

Parent Element Child Element

<object> <attribute>

attribute Element
The <attribute> element maps the attributes of a Java class from the plugged-in technology to JavaScript
attributes that the Orchestrator JavaScript engine exposes.

The <attribute> element is optional. A plug-in can have an unlimited number of <attribute> elements. The
<attribute> element has the following attributes.

Type Value Description

java-name Java attribute Name of the Java attribute. Mandatory
attribute.

script-name JavaScript object Name of the corresponding JavaScript
object. Mandatory attribute.

return-type String The type of object this attribute
returns. Appears in the API Explorer
documentation. Optional attribute.

read-only true or false If true, you cannot modify this
attribute. Optional attribute.

is-optional true or false If true, this field can be null. Optional
attribute.

show-in-api true or false If false, this attribute does not appear
in API documentation. Optional
attribute.

is-deprecated true or false If true, the object maps a deprecated
attribute. Optional attribute.

since-version Number The version at which the attribute was
deprecated. Optional attribute.

Chapter 6 Elements of the vso.xml Plug-In Definition File

VMware, Inc. 123

Table 6‑33. Element Hierarchy

Parent Element Child Elements

<attributes> None

methods Element
The <methods> element is the container for the <object><method> elements.

The <methods> element is optional. The <methods> element has no attributes.

Table 6‑34. Element Hierarchy

Parent Element Child Element

<object> <method>

method Element
The <method> element maps a Java method from the plugged-in technology to a JavaScript method that the
Orchestrator JavaScript engine exposes.

The <method> element is optional. A plug-in can have an unlimited number of <method> elements. The
<method> element has the following attributes.

Type Value Description

java-name Java method Name of the Java method signature
with argument types in parenthesis,
for example, getVms(DataStore).
Mandatory attribute.

script-name JavaScript method Name of the corresponding JavaScript
method. Mandatory attribute.

return-type Java object type The type this method obtains. Optional
attribute.

static true or false If true, this method is static. Optional
attribute.

show-in-api true or false If false, this method does not appear
in API documentation. Optional
attribute.

is-deprecated true or false If true, the object maps a deprecated
method. Optional attribute.

since-version Number The version at which the method was
deprecated. Optional attribute.

Table 6‑35. Element Hierarchy

Parent Element Child Elements

<methods> n <deprecated>

n <description>

n <example>

n <parameters>

Developing Plug-Ins with VMware vCenter Orchestrator

124 VMware, Inc.

example Element
The <example> element allows you to add code examples to Javascript methods that appear in the API
Explorer documentation.

The <example> element is optional. The <example> element has no attributes.

Table 6‑36. Element Hierarchy

Parent Element Child Elements

<method> n <code>

n <description>

code Element
The <code> element provides example code that appears in the API Explorer documentation.

You provide the code example between the <code> and </code> tags. The <code> element is optional. The
<code> element has no attributes.

Table 6‑37. Element Hierarchy

Parent Element Child Elements

<example> None

Method parameters Element
The <parameters> element is the container for the <method><parameter> elements.

The <parameters> element is optional. The <parameters> element has no attributes.

Table 6‑38.

Parent Element Child Element

<method> <parameter>

Method parameter Element
The <parameter> element defines the method's input parameters.

The <parameter> element is optional. A plug-in can have an unlimited number of <parameter> elements. The
<parameter> element has the following attributes.

Type Value Description

name String Parameter name. Mandatory attribute.

type Orchestrator parameter type Parameter type. Mandatory attribute.

is-optional true or false If true, value can be null. Optional
attribute.

since-version String Method version. Optional attribute.

Table 6‑39. Element Hierarchy

Parent Element Child Element

<parameters> None

Chapter 6 Elements of the vso.xml Plug-In Definition File

VMware, Inc. 125

singleton Element
The <singleton> element creates a JavaScript scripting object as a singleton instance.

A singleton object behaves in the same way as a static Java class. Singleton objects define generic objects for
the plug-in to use, rather than defining specific instances of objects that Orchestrator accesses in the
plugged-in technology. For example, you can use a singleton object to establish the connection to the
plugged-in technology.

The <singleton> element is optional. The <singleton> element has the following attributes.

Type Value Description

script-name JavaScript object Name of the corresponding JavaScript
object. Mandatory attribute.

datasource Java object The source Java object for this
JavaScript object. Mandatory attribute.

Table 6‑40. Element Hierarchy

Parent Element Child Element

<object> None

enumerations Element
The <enumerations> element is the container for the <enumeration> elements.

The <enumerations> element is optional. The <enumerations> element has no attributes.

Table 6‑41. Element Hierarchy

Parent Element Child Element

<module> <enumeration>

enumeration Element
The <enumeration> element defines common values that apply to all objects of a certain type.

If all objects of a certain type require a certain attribute, and if the range of values for that attribute is
limited, you can define the different values as enumeration entries. For example, if a type of object requires a
color attribute, and if the only available colors are red, blue, and green, you can define three enumeration
entries to define these three color values. You define entries as child elements of the enumeration element.

The <enumeration> element is optional. A plug-in can have an unlimited number of <enumeration> elements.
The <enumeration> element has the following attribute.

Type Value Description

type Orchestrator object type Enumeration type. Mandatory
attribute.

Developing Plug-Ins with VMware vCenter Orchestrator

126 VMware, Inc.

Table 6‑42. Element Hierarchy

Parent Element Child Elements

<enumerations> n <url>

n <description>

n <entries>

entries Element
The <entries> element is the container for the <enumeration><entry> elements.

The <entries> element is optional. The <entries> element has no attributes.

Table 6‑43. Element Hierarchy

Parent Element Child Element

<enumeration> <entry>

entry Element
The <entry> element provides a value for an enumeration attribute.

The <entry> element is optional. A plug-in can have an unlimited number of <entry> elements. The <entry>
element has the following attributes.

Type Value Description

id Text The identifier that objects use to set the
enumeration entry as an attribute.
Mandatory attribute.

name Text The entry name. Mandatory attribute.

Table 6‑44. Element Hierarchy

Parent Element Child Elements

<entries> None

Chapter 6 Elements of the vso.xml Plug-In Definition File

VMware, Inc. 127

Developing Plug-Ins with VMware vCenter Orchestrator

128 VMware, Inc.

Best Practices for Orchestrator Plug-
In Development 7

You can improve certain aspects of the Orchestrator plug-ins that you develop by understanding the
structure and content of plug-ins, as well as by understanding how to avoid specific problems.

n Approaches for Building Orchestrator Plug-Ins on page 129
You can use different approaches to build your Orchestrator plug-ins. You can start building a plug-in
layer by layer or you can start building all layers of the plug-in at the same time.

n Types of Orchestrator Plug-Ins on page 131
Using plug-ins, you can integrate in Orchestrator general-purpose libraries or utilities like XML or
SSH as well as entire systems such as vCloud. Depending on the technology that you integrate in
Orchestrator, plug-ins can be categorized as plug-ins for services, or general purpose plug-ins, and
plug-ins for systems.

n Plug-In Implementation on page 134
You can use certain helpful practices and techniques when you structure your plug-ins, implement the
required Java classes and JavaScript objects, develop the plug-in workflows and actions as well as
provide the workflow presentation.

n Recommendations for Orchestrator Plug-In Development on page 138
You can consider certain recommendations when developing the different components of your
Orchestrator plug-ins.

n Documenting Plug-In User Interface Strings and APIs on page 140
When you write user interface (UI) strings for vCO plug-ins and the related API documentation, it is
best practice to follow the accepted rules of style and format.

Approaches for Building Orchestrator Plug-Ins
You can use different approaches to build your Orchestrator plug-ins. You can start building a plug-in layer
by layer or you can start building all layers of the plug-in at the same time.

For information about plug-in layers, see “Structure of an Orchestrator Plug-In,” on page 12.

Bottom-Up Plug-In Development
A plug-in can be built layer by layer using bottom-up development approach.

Bottom-up development approach builds the plug-in layer by layer starting from the lower level layers and
continuing with the higher level layers. When this approach is mixed with an interactive and iterative
development approach, then part or whole layer is delivered for each iteration. At the end of the N
iterations the plug-in is completely finished.

VMware, Inc. 129

Figure 7‑1. Bottom-up plug-in development

high level workflows

building block workflows

actions

scripting objects

wrapping classes

infrastructure classes iteration 1

iteration n

An advantage of the bottom-up plug-in development approach is that development is focused on one layer
at a time.

Consider the following disadvantages of bottom-up plug-in development approach.

n The progress of the plug-in development is difficult to show until some insertions are completed.

n It does not fit very well in an Agile development practices.

The bottom-up development process is considered good enough for small plug-ins, with reduced or non-
existent set of wrapping classes, scripting objects, actions, or workflows.

Top-Down Plug-In Development
A plug-in can be built by slicing it into top-down functionality, using top-down development approach.

When the top-down approach is mixed with an Agile development process, new functionality is delivered
for each iteration. As a result, at the end of the iteration N the plug-in is completely implemented.

Figure 7‑2. Top-down plug-in development

high level workflows

building block workflows

actions

scripting objects

wrapping classes

infrastructure classes

iteration 1 iteration n

Developing Plug-Ins with VMware vCenter Orchestrator

130 VMware, Inc.

The top-down plug-in development approach has the following advantages.

n The progress of the plug-in development is easy to show from the first iteration because new
functionality is completed for each iteration and the plug-in can be released and used after every
iteration.

n Completing a vertical slice of functionality allows for very clearly defined success criteria and definition
of what has been done, as well as better communication between developers, product management,
and quality assurance (QA) engineers.

n Allows the QA engineers to start testing and automating from the beginning of the development
process. Such an approach results in valuable feedback and decreases the overall project delivery time
frame.

A disadvantage of the top-down plug-in development approach is that the development is in progress on
different layers at the same time.

You should apply the top-down plug-in development process for most plug-ins. It is appropriate for plug-
ins with dynamic requirements.

Types of Orchestrator Plug-Ins
Using plug-ins, you can integrate in Orchestrator general-purpose libraries or utilities like XML or SSH as
well as entire systems such as vCloud. Depending on the technology that you integrate in Orchestrator,
plug-ins can be categorized as plug-ins for services, or general purpose plug-ins, and plug-ins for systems.

Plug-Ins for Services
Plug-ins for services or general-purpose plug-ins provide functionality that can be considered as a service
inside vCenter Orchestrator.

Figure 7‑3. Archnitectire of plug-ins for services

plugin
core adaptor generic

libraryvCO service

service plugin

Plug-ins for services expose generic libraries or utilities to Orchestrator, such as XML, SSH or SOAP. For
example, the following plug-ins that are available in Orchestrator are plug-ins for services.

JDBC plug-in Allows you to use any database within a workflow.

Mail plug-in Allows you to send emails within a workflow.

SSH plug-in Allows you to open SSH connections and run commands within a workflow.

XML plug-in Allows you to manage XML documents within a workflow.

Chapter 7 Best Practices for Orchestrator Plug-In Development

VMware, Inc. 131

Plug-ins for services have the following characteristics.

Complexity Plug-ins for services have from low to medium level of complexity. Plug-ins
for services expose a specific library, or part of a library, inside Orchestrator
so as to provide concrete functionality. For example, the XML plug-in adds
an implementation of a Document Object Model (DOM) XML parser to the
Orchestrator JavaScript API.

Size Plug-ins for services are relatively small in size. They require a basic set of
classes that are the same as for all plug-ins, and other classes that offer new
scripting objects to add new functionality.

Inventory Plug-ins for services require a small inventory of objects to work, or they do
not require an inventory at all. Plug-ins for services have a generic and small
object model, and so, they do not need to show this model inside the vCO
inventory.

Plug-Ins for Systems
Plug-ins for systems connect the vCO workflow engine to an external system so that you can orchestrate the
external system.

Following are examples for plug-ins for systems.

vCenter Server plug-in Allows you to manage vCenter Server instances using workflows.

vCloud Director plug-in Allows you to interact with a vCloud Director installation within a
workflow.

Cisco UCSM plug-in Allows you to interact with Cisco entities within a workflow.

Following are the main characteristics of plug-ins for systems.

Complexity Plug-ins for systems have higher level of complexity, because the
technologies that they expose are relatively complex. Plug-ins for systems
must represent all the elements of the external system inside Orchestrator to
interact with the external system and offer the same functionality as that
system in Orchestrator. If the external system provides an integration
mechanism, you can use it to expose the functionality of the system in
Orchestrator more easily. However, besides representing the elements of the
external system in Orchestrator, plug-ins for systems might also need to offer
high scalability, provide a caching mechanism, deal with events and
notifications, and so on.

Size Plug-ins for system are from medium to big in size. Plug-ins for systems
require many classes apart from the basic set of classes because usually they
offer a large number of scripting objects. Plug-ins for systems might require
some other helper and auxiliary classes that will interact with them.

Inventory Usually, plug-ins for systems have a large number of objects, and you must
expose these objects properly in the inventory so that you can locate them
and work with them easily in vCO. Because of the large number of objects
that plug-ins for systems need to expose, you should build auxiliary tool or a
process to auto-generate as much code as possible for the plug-in. For
example, vCenter Server plug-in provides such a tool.

n Plug-Ins for Object-Oriented Systems on page 133
Object-oriented systems offer an interaction mechanism that is based on objects and RPC.

Developing Plug-Ins with VMware vCenter Orchestrator

132 VMware, Inc.

n Plug-Ins for Resource-Oriented Systems on page 133
Resource-oriented systems provide an interaction mechanism that is based on resources and simple
operations that use HTTP methods.

Plug-Ins for Object-Oriented Systems
Object-oriented systems offer an interaction mechanism that is based on objects and RPC.

The most widely used model for an object-oriented system is the Web service model that uses SOAP. The
objects inside this model have a set of attributes that are related to the state of the objects and offer a set of
remote methods that are invoked on the target system side.

Figure 7‑4. Plug-Ins for Object-Oriented Systems

plugin
core adaptor specific

libraryvCO

e.g.
WSDL

generation

system

object-oriented system plugin

You can consider the following when you implement plug-ins for object-oriented systems.

n If you use SOAP, you can use the WSDL file to generate a set of classes that combine the object model
and the communication mechanism.

n This object model is almost everything that you have to expose inside vCenter Orchestrator.

Plug-Ins for Resource-Oriented Systems
Resource-oriented systems provide an interaction mechanism that is based on resources and simple
operations that use HTTP methods.

The most representative model for a resource-oriented system is the REST model, combined for example
with XML. The objects inside this model have a set of attributes that are related to their state. To invoke
methods on the target system (communication mechanism), you must use the standard HTTP methods such
as GET, POST, PUT, and so on, and follow some conventions.

Figure 7‑5. Plug-ins for resource-oriented systems

model
library

plugin
core adaptor

comm.
library

vCO

generation

system

resource-oriented system plugin

e.g.
XSD

You can consider the following when you develop plug-ins for resource-oriented systems.

n If you use REST or only HTTP with XML, you get one or more XML schema files to be able to read and
write messages. From these schemas, you can generate a set of classes that define the object model. This
set of classes only defines the state of the objects because the operations are defined implicitly with the
HTTP methods, for example, as defined in the vCloud Director plug-in, or explicitly with some specific
XML messages, like the Cisco UCSM plug-in.

Chapter 7 Best Practices for Orchestrator Plug-In Development

VMware, Inc. 133

n You need to implement the communication mechanism in another set of classes. This set of classes
defines a new object model to interact with the original object model. The object model for the
communication mechanism consists of objects and methods only.

n You can expose both the original object model and the object model for the communication mechanism
inside vCO. This could add some extra complexity depending on how both object models are exposed,
and on whether you are merging related objects from both sides (to simulate an object-oriented system)
or keeping them separate.

Plug-In Implementation
You can use certain helpful practices and techniques when you structure your plug-ins, implement the
required Java classes and JavaScript objects, develop the plug-in workflows and actions as well as provide
the workflow presentation.

n Project Structure on page 134
You can apply a standard structure for the projects of your Orchestrator plug-ins.

n Project Internals on page 135
You can apply certain approaches when implementing your plug-in, for example, cash objects, bring
object in background, clone object, and so on. By applying such approaches, you can improve the
performance of your plug-ins, avoid concurrency problems, and improve the responsiveness of the
Orchestrator client.

n Workflow Internals on page 136
You can implement a workflow to monitor long-time operations that your vCO plug-in performs.

n Workflows and Actions on page 136
To ease the workflow development and usage, you can use certain good practices.

n Workflow Presentation on page 137
When you create the presentation of a workflow, you should apply certain structure and rules.

Project Structure
You can apply a standard structure for the projects of your Orchestrator plug-ins.

You can a use a standard Maven structure with modules for your plug-in projects to bring clarity in where
every peace of functionality resides.

Table 7‑1. Structure of a plug-in project

Module Description

/myAwesomePlugin-plugin Root of the plug-in project.

/o11nplugin-myAwesomePlugin Module that composes the final plug-in DAR file.

/o11nplugin-myAwesomePlugin-config Module that contains the plug-in configuration Web
application. It generates a standard WAR file.

/o11nplugin-myAwesomePlugin-core Module that contains all the classes that implement any of
the standard Orchestrator plug-in interfaces and other
auxiliary classes that they use. It generates a standard JAR
file.

Developing Plug-Ins with VMware vCenter Orchestrator

134 VMware, Inc.

Table 7‑1. Structure of a plug-in project (Continued)

Module Description

/o11nplugin-myAwesomePlugin-model Module that contains all the classes that help you to
integrate the third-party technology with Orchestrator
through the plug-in. The classes should not contain any
direct reference to the standard Orchestrator plug-in APIs.

/o11nplugin-myAwesomePlugin-package Module that imports an external Orchestrator package file
with actions and workflows to include it inside the final
plug-in DAR file. The module is optional.

Project Internals
You can apply certain approaches when implementing your plug-in, for example, cash objects, bring object
in background, clone object, and so on. By applying such approaches, you can improve the performance of
your plug-ins, avoid concurrency problems, and improve the responsiveness of the Orchestrator client.

Cache Objects if Possible
Your plug-in can interact with a remote service, and this interaction is provided by local objects that
represent remote objects on the service side. To achieve good performance of the plug-in as well as good
responsiveness of the Orchestrator UI, you can cash the local objects instead of getting them every time from
the remote service. You can consider the scope of the cache, for example, one cache for all the plug-in clients,
one cache per user of the plug-in, and one cache per user of the third-party service. When implemented,
your caching mechanism will be integrated with the plug-in interface for finding and invalidating objects.

Bring Objects in Background
If you have to show large lists of objects in the plug-in inventory and you do not have a fast way to retrieve
those objects, you can bring objects in background. You can bring object in background, for example, by
having objects with two states, fake and loaded. Assume that the fake objects are very easy to create and they
provide the minimal information that you have to show in the inventory, like name and ID. Then it would
be possible to always return fake objects, and when all the information (the real object) is really needed, the
using entity or the plug-in can invoke a method load automatically to get the real object. You can even
configure the process of loading objects to start automatically after the fake objects are returned, to
anticipate the actions of the using entity.

Clone Objects to Avoid Concurrency Problems
If you use a cache for your plug-in, you have to clone objects. If you have a cache and you always return the
same instance of an object to every entity that requests it, then unwanted effects might occur. For example,
entity A requests object O and the entity views the object in the inventory with all its attributes. At the same
time, entity B requests object O as well, and entity A runs a workflow that starts changing the attributes of
object O. At the end of its run, the workflow invokes the object's update method to update the object on the
server side. If entity A and entity B get the same instance of object O, entity A views in the inventory all the
changes that entity B performs, even before the changes are committed on the server side. If the run goes
fine, it should not be a problem, but if the run fails, the attributes of object O for entity A will not be
reverted. In such case, if the cache (the find operations of the plug-in) returns a clone of the object instead of
the same instance all the time, each using entity views and modifies its own copy, avoiding concurrency
issues, at least within Orchestrator.

Notify Changes to Others
Problems might occur when you use a cache and you clone objects simultaneously. The biggest one is that
the object that a using entity views might not be the last version that is available for the object. For example,
if an entity displays the inventory, the objects are loaded once, but at the same time, if another entity is
changing some of the objects, the first entity does not view the changes. To avoid this problem, you can use

Chapter 7 Best Practices for Orchestrator Plug-In Development

VMware, Inc. 135

the PluginWatcher, IPluginPublisher methods from the Orchestrator plug-in API to notify that something
has changed to allow other instances of Orchestrator clients to see the changes. This also applies to a unique
instance of the Orchestrator client when changes from one object from the inventory affect other objects of
the inventory and they need to be notified too. The operations that are prone to use notifications are adding,
updating, and deleting objects when these objects, or some properties of these objects, are shown in the
inventory.

Enable Finding Any Object at Any Time
You must implement the find method of the IPluginFactory interface to find objects just by type and ID.
The find method could be invoked directly after restarting Orchestrator and resuming a workflow.

Simulate a Query Service if You Do Not Have One
The Orchestrator client can require querying for some objects in specific cases or showing them not as a tree
but as a list or as a table, for example. This means that your plug-in must be able to query for some set of
objects at any moment. If the third-party technology offers a query service, you need to adapt and use this
service. Otherwise, you should be able to simulate a query service, despite of the higher complexity or the
lower performance of the solution.

Find Methods Should Not Return Runtime Exceptions
The methods from the IPluginFactory interface that implement the searches inside the plug-in, should not
throw controlled or uncontrolled runtime exceptions. This could be the cause of strange validation error
failures when a workflow is running. For example, between two nodes of a workflow, the find method will
be invoked if an output from the first node is an input of the second node. At that moment, if the object is
not found because any runtime exception, probably you will get no more information than a validation error
in the vCenter Orchestrator client. After that, it depends on how the plug-in logs the exceptions in to get
more or less information inside the log files.

Workflow Internals
You can implement a workflow to monitor long-time operations that your vCO plug-in performs.

You should implement a workflow for monitoring long-time running operations such as task monitoring.
This workflow can be based on Orchestrator triggers and waiting events. You have to consider that a
workflow that is blocked waiting for a task can be resumed as soon as the Orchestrator server starts, the
plug-in must be able to get all the required information to resume the monitoring process properly.

The monitoring workflow or the task that it can? use internally should provide a mechanism to specify the
pooling rate and a possible timeout.

The process of debugging a piece of scripting code inside a workflow is not easy, especially if the code does
not invoke any Java code. Because of this, sometimes the only option is to use the logging methods offered
by the default Orchestrator scripting objects.

Workflows and Actions
To ease the workflow development and usage, you can use certain good practices.

Start Developing Workflows as Building Blocks
A building block can be a simple workflow that requires a few input parameters and returns a simple
output. If you have a rich set of building blocks, you can create higher-level workflows easily, and you can
offer a better set of tools for composing own complex workflows.

Developing Plug-Ins with VMware vCenter Orchestrator

136 VMware, Inc.

Create Higher-Level Workflows Based on Smaller Components
If you have to develop a complex workflow with lots of inputs and internal steps, you can split it in smaller
and simpler building block workflows and actions.

Create Actions Whenever Possible
You can create actions to achieve additional flexibility when you develop workflows.

n To create complex objects or parameters for scripting methods easily.

n To avoid repeating common pieces of code all the time.

n To perform UI validations.

Workflows Should Invoke Actions Whenever Possible
Actions can be invoked directly as nodes inside the workflow schema. This can keep the workflow schema
simpler, because you do not need to add scripting code blocks to invoke a single action.

Fill In the Expected Information
Provide information for every element of a workflow or an action.

n Provide a description of the workflow or action.

n Provide a description of the input parameters.

n Provide a description of the outputs.

n Provide a description of the attributes for the workflows.

Keep the Version Information Updated
When you version plug-ins, add meaningful comments with information such as major updates of the plug-
in, important implementation details, and so on.

Workflow Presentation
When you create the presentation of a workflow, you should apply certain structure and rules.

Use the following properties for the workflow inputs in the workflow presentation.

Table 7‑2. Properties for Workflow Inputs

Properties Usage

Show in Inventory Use this property to help the user to run a workflow from
the inventory view by clicking with the right button on it.

Specify a root object to be shown in the
chooser

Use this property to help the user to choose inputs easily. If
the root object can be refreshed in the presentation, or it is
an attribute of an attribute of, or it is retrieved by an object
method, you need to create or set an appropriate action to
refresh the object in the presentation.

Maximum string length Use this property for long strings such as names,
descriptions, file paths, and so on.

Chapter 7 Best Practices for Orchestrator Plug-In Development

VMware, Inc. 137

Table 7‑2. Properties for Workflow Inputs (Continued)

Properties Usage

Minimum string length Use this property to avoid empty strings from the testing
tools.

Custom validation Non-simple validations must be implemented with actions.

Organize the inputs with steps and display group. Such organization helps the user to identify and
distinguish all the input parameters of a workflow.

Recommendations for Orchestrator Plug-In Development
You can consider certain recommendations when developing the different components of your Orchestrator
plug-ins.

Table 7‑3. Useful practices in plug-in implementation

Component Item Description

General Access to third-party API Plug-ins should provide simplified methods for accessing the
third-party API wherever possible.

Interface Plug-ins should provide a coherent and standard interface for
users, even when the API does not.

Action Scripting objects You should create actions for every creation, modification, or
deletion of a scripting object, and for every other method that
is available on the object.

Description The description of an action should describe what the action
does instead of how it works.

Scripting When you use scripting to get the properties or methods of an
object, you can check whether the object value is different
from null or undefined.

Deprecation If an action is deprecated, the comment or the throw statement
should indicate the replacement action, or the action should
call a new replacement action so that solutions that are built
on the deprecated version of the action do not break.

Workflow User interface operations in
the orchestrated technology

You should create a workflow for every operation that is
available in the user interface of the orchestrated technology.

Description The description of a workflow should describes what the
workflow does instead of how it works.

Presentation property
mandatory input

You need to set the mandatory input property for all
mandatory workflow inputs.

Presentation property default
value

If you develop a workflow that configures an entity, the
workflow presentation should load the default configuration
values for this entity. For example, if you develop a workflow
that is named Host Configuration, the presentation of the
workflow must load the default values of the host
configuration.

Presentation property Show in
inventory

You need to set the Show in inventory property to have
contextual workflows on inventory objects.

Presentation property specify
a root parameter

You should use this property in workflows when it is not
necessary to browse the inventory from the tree root.

Workflow validation You must validate workflows and fix all errors.

Object creation All workflows that create a new object should return the new
object as an output parameter.

Developing Plug-Ins with VMware vCenter Orchestrator

138 VMware, Inc.

Table 7‑3. Useful practices in plug-in implementation (Continued)

Component Item Description

Deprecation If a workflow is deprecated, the comment or the throw
statement should indicate the replacement workflow, or the
deprecated workflow should call a new replacement
workflow to avoid breaking solutions that are built on
previous versions of the workflow.

Inventory Host disconnection If your inventory contains a connection to a host and this host
becomes unavailable, you should indicate that the host is
disconnected. You can do this either by renaming the root
object by appending - disconnected or by removing the tree of
objects underneath this object, in the same manner as the
vCloud Director plug-in does.

Select value as list
property

An inventory object must be selectable as treeview or a list.

Host manager If the plug-in implements a host object for the target system,
then a parent hostmanager root object should exist with
properties for adding, removing, or editing host properties.

Getting or updating objects If a query service is running on the orchestrated technology,
you should use it for mass getting objects.

Child discovery If you need to retrieve object children separately, the retrieval
process must be multithreaded and nonblocking on a single
error.

vCenter Orchestrator object
change

All workflows that can change the state of an element in the
inventory must update the inventory to avoid having objects
out of synchronization.

External object change You can use a notification mechanism to notify about changes
in the orchestrated technology that occur as a result of
operations that are performed outside of vCO. In case such
operations lead to removal of objects from the orchestrated
technology, you must refresh the inventory accordingly to
avoid failures or loss of data. For example, if a virtual machine
is deleted from vCenter Server, the vCenter Server plug-in
updates the inventory to remove the object of the removed
virtual machine.

Finder object Finder objects should have properties that can be used to
differentiate between objects. These are typically the
properties that are present in the user interface.

Scripting object Implementation The equals method must be implemented to insure that ==
operation works on the same object as in some cases the object
may have two instances.

Plug-in object properties Objects that have parent objects should implement a parent
property.

Plug-in object properties Objects that have child objects should implement get
methods that return arrays of child objects.

Inventory objects Inventory objects should be searchable with Server.find.

All inventory objects should be serializable so they can be
used as input or output attributes in a workflow.

Constructor and methods In most cases, scriptable objects should have either a
constructor, or should be returned by other object attributes or
methods.

Object ID Objects that have an ID that is issued from an external system,
should use an internal ID to ensure that no ID collision occurs
when you are orchestrating more than one server.

Chapter 7 Best Practices for Orchestrator Plug-In Development

VMware, Inc. 139

Table 7‑3. Useful practices in plug-in implementation (Continued)

Component Item Description

Searching for objects search or find methods should implement a filter so that the
specified name or ID can be found instead of just all objects.
For example, the vCO server has a Server.FindForId
method that allows finding a plug-in object by its ID. To do
this, the method must be implemented for each findable object
in the plug-in.

Trigger If possible, triggers should be available for objects that change
so that vCO may have policies triggered on various events.
For example, a trigger or an event in the vCenter plug-in on
the Datacenter object could be monitored by vCenter
Orchestrator to determine when a new virtual machine is
added, powered on, powered off, and so on.

Object properties Objects that reside in other plug-ins should have properties
for being easily converted from one plug-in object to another.
For example, virtual machine objects need to have a moref
(managed object reference ID).

Session manager If you are connecting to a remote server that has a possibility
for different session, the plug-in should implement a shared
session and a session per user.

Trigger Trigger All long operations and blocking methods should be able to
start asynchronously with a task returned, and generate a
trigger event on completion.

Enumerations Enums Enumerations for a given type should have an inventory
object that allows selecting from the different values in the
enumeration.

Logging Logs Methods should implement different log levels.

Versioning Plug-in version Plug-in version should follow the standards and be updated
along with the plug-in update.

API documentation Methods Methods that are described in the API documentation should
never throw the exception no xyz method / property on
an object. Instead, methods should return null when no
properties are available and be documented with details when
these properties are not available.

vso.xml All objects, methods, and properties must be documented in
vso.xml.

Documenting Plug-In User Interface Strings and APIs
When you write user interface (UI) strings for vCO plug-ins and the related API documentation, it is best
practice to follow the accepted rules of style and format.

General Recommendations
n Use the official names for any of VMware products involved in the plug-in. For example, use the official

names for the following products and VMware terminology.

Correct Term Do Not Use

vCenter Server VC or vCenter

vCloud Director vCloud

virtual machine VM

Developing Plug-Ins with VMware vCenter Orchestrator

140 VMware, Inc.

n End all complete sentences with a period. For example, Creates a new Organization. is a workflow
description.

n Use a text editor with a spell checker to write the descriptions and then move them to the plug-in.

n Ensure that the name of the plug-in exactly matches the approved third-party product name that it is
associated with.

Workflows and Actions
n Write informative descriptions. One or two sentences are enough for most of the actions and

workflows.

n Higher-level workflows might include more extensive descriptions and comments.

n Start descriptions with a verb, for example, Creates…. Do not use self-referential language like This
workflow creates….

n Put a period at the end of descriptions that are complete sentences.

n Describe what a workflow or action does instead of how it is implemented.

n Workflows and actions usually are included in folders and packages. The enclosing folders and
packages should include a small description as well. For example, a workflow folder can have a
description similar to Set of workflows related to vApp Template management.

Parameters of Workflows and Actions
n Start workflow and action descriptions with a descriptive noun phrase, for example, Name of…. Do not

use a phrase like It's the name of….

n Do not put a period at the end of parameter and action descriptions. They are not complete sentences.

n Input parameters of workflows must specify a label with appropriate names in the presentation view.
In many cases, you can combine related inputs in a display group. For example, instead of having two
inputs with the labels Name of the Organization and Full name of the Organization, you can create a
display group with the label Organization and place the inputs Name and Full name in the
Organization group.

n For steps and display groups, add descriptions or comments that appear in the workflow presentation
as well.

Plug-in API
n The documentation of the API refers to all of the documentation in the vso.xml file and the Java source

files.

n For the vso.xml file, use the same rules for the descriptions of finder objects and scripting objects with
their methods that you use for workflows and actions. Descriptions of object attributes and method
parameters use the same rules as the workflow and action parameters.

n Avoid special characters in the vso.xml file by including the descriptions inside a <![CDATA[insert your
description here!]]> tag.

n Use the standard Javadoc style for the Java source files.

Chapter 7 Best Practices for Orchestrator Plug-In Development

VMware, Inc. 141

Developing Plug-Ins with VMware vCenter Orchestrator

142 VMware, Inc.

Index

A
advices 136
API

action generation 89
annotate objects 86
annotation-based configuration 85
annotations 85
enhancements 85
generating actions 89
generating workflows 89
Java-based configuration 86
Java-based configuration usage 87
Spring-based basic configuration 88
Spring-based plug-in API 88
SSL 90
SSL configuration 90
SSL HostValidator helper class 92
workflow generation 89

API documentation 140

B
best practices 129

H
HasChildrenResult Enumeration 106

I
IConfigurationAdaptor interface 94
IDynamicFinder interface 95
IPluginAdaptor interface 15, 56, 57, 95
IPluginEventPublisher interface 44, 96
IPluginFactory 31
IPluginFactory interface 16, 57, 97
IPluginNotificationHandler 97
IPluginPublisher interface 50, 98

J
JavaScript API

adding functions 55
adding objects 55

N
new features 85

P
plug-in adapter, creating 15
plug-in API

HasChildrenResult Enumeration 106
IDynamicFinder interface 95
IPluginAdaptor interface 95
IPluginEventPublisher interface 96
IPluginFactory interface 97
IPluginNotificationHandler 97
IPluginPublisher interface 98
PluginExecutionException 104
PluginLicenseException 104
PluginOperationException 104
PluginTrigger 100
PluginWatcher 101
QueryResult 101
ScriptingAttribute annotation 107
ScriptingFunction annotation 107
ScriptingParameter annotation 108
SDKFinderProperty class 102

plug-in development
best practices 129
bottom-up 129
top-down 130

plug-in factory, creating 16
plug-in implementation

project internals 135
project structure 134
workflow internals 136
workflow presentation 137

plug-in strings 140
plug-in structure 12
plug-in types

plug-ins for services 131
plug-ins for systems 132

plug-ins
access from Web view 83
adapter 15, 26, 56, 60
add configuration tab 62, 63, 65, 67, 69
adding to JavaScript API 55
architecture 11
BaseAction class 65, 99
building approaches 129
components 13
configuration 111

VMware, Inc. 143

configuration action 61
configuration adapter 61–63, 65
configuration tab 103
ConfigurationError class 99, 105
ConfigurationError.Severity enumeration 105
contents 19
contents of DAR 78
create DAR 77
create event generator 41, 42
create event publishers 43
create scripting singleton 55
create watchers 50, 52
create workflow triggers 47, 48
creating 25
creating workflow triggers 46, 48
DAR archive 22
DAR file 77
define finders 72
enumerations 74
ErrorLevel enumeration 105
event handlers 17
event listeners 33, 38
event notifications 40
example application 27
expose external API 13
factory 16, 26, 31–37
find objects by identifier 34
find objects by relation 36
find objects by type 35
find() method 34
findAll() method 35
finder objects 16, 17
findRelation() method 36
gauges 43, 44
hasChildrenInRelation() method 36, 37
IAop interface 94
IConfigurationAdaptor interface 61–63, 65
implementing notification handlers 39
installation 79
instantiate factory 57
interact with plugged-in technology 80
IPluginEventPublisher interface 41, 43, 44
IPluginFactory interface 55
IPluginNotificationHandler interface 38–40
IPluginPublisher interface 50, 52
JAR files 22
listeners 17
manage events 59
mapping classes 75
mapping methods 75
monitor events 82, 83

monitor object properties 48
naming objects 21
notification handling 33
obtain configuration from user 65
parts of a plug-in 11
PluginLicense class 99
PluginTrigger class 48
PluginWatcher class 50, 52
polices 82
policies 17
policy gauges 17
policy triggers 17
publish events 59
publish watchers 52
push events 44
registering event listeners 39
role of vso.xml file 14
run workflows on objects 81
SDKHelper class 61–63, 65, 103
set up adapter 57
set up factory 32
solar system DAR file 78
solar system finder mappings 74
solar system JavaScript mappings 76
solar system WAR file 69
SolarSystemEventListener class 38
structure 19
Struts framework 65, 67
triggers 43, 83
using the solar system plug-in 80
view scripting objects 80
vso.xml 74
vso.xml file 22, 70
waiting workflows 83
WAR file 22
watchers 17, 50
WebConfigurationAdaptor interface 98
workflow triggers 17, 46, 47

plug-ins for systems
object-oriented systems 133
resource-oriented systems 133

plug-ins, add configuration tab 61
plug-ins, build solar system DAR 78
plug-ins, CelestialBody.java 28
plug-ins, errors 105
plug-ins, ISolarSystemListener.java 29
Plug-ins, Moon.java 29
plug-ins, Planet.java 28
plug-ins, scripting objects 17
plug-ins, SolarSystemEventHandler.java 29
plug-ins, SolarSystemRepository.java 30

Developing Plug-Ins with VMware vCenter Orchestrator

144 VMware, Inc.

plug-ins, Star.java 28
plug-ins, watchers 60
PluginExecutionException 104
PluginLicenseException 104
PluginOperationException 104
PluginTrigger 48, 100
PluginTrigger class 46
PluginWatcher 101
PluginWatcher class 50
plugs-in, PluginTrigger class 46
policies 43, 44

Q
QueryResult 101

S
ScriptingAttribute annotation 107
ScriptingFunction annotation 107
ScriptingParameter annotation 108
SDKFinderProperty class 102
solar system application, components 27
solar system plug-in

components 30
set up 71

V
vso.xml

action element 113, 125
architecture 20
attribute element 123
attributes element 123
code element 125
configuration element 111
constructor element 122
constructor parameter element 122
constructors element 122
description element 112
entries element 127
entry element 127
enumeration element 126
enumerations element 126
events element 119
finder element 116
finder-datasource element 114
finder-datasources element 114
finders element 115
gauge element 120
id element 118
installation element 113
inventory element 115
inventory-children element 119
method element 124

method parameter element 125
method parameters element 125
methods element 124
object element 121
parameters element 122
properties element 117
property element 117
relation element 118
relation-link element 119
relations element 118
scripting-objects element 121
singleton element 126
trigger element 119
trigger-properties element 120
trigger-property element 120
url element 112
webview-components-library element 113

vso.xml file
definition 19
elements 109
module element 110

Index

VMware, Inc. 145

Developing Plug-Ins with VMware vCenter Orchestrator

146 VMware, Inc.

	Developing Plug-Ins with VMware vCenter Orchestrator
	Contents
	Developing Plug-Ins with VMware vCenter Orchestrator
	Overview of Plug-Ins
	Structure of an Orchestrator Plug-In
	Exposing an External API to Orchestrator
	Components of a Plug-In
	Role of the vso.xml File
	Roles of the Plug-In Adapter
	Roles of the Plug-In Factory
	Role of Finder Objects
	Role of Scripting Objects
	Role of Event Handlers

	Contents and Structure of a Plug-In
	Defining the Application Mapping in the vso.xml File
	Format of the vso.xml Plug-In Definition File
	Naming Plug-In Objects
	Plug-In Object Naming Conventions

	File Structure of the Plug-In

	Create an Orchestrator Plug-In
	Accessing the Orchestrator Plug-In API
	Obtain an Application to Plug in to Orchestrator
	Components of the Solar System Application
	CelestialBody.java Class
	Star.java Class
	Planet.java Class
	Moon.java Class
	ISolarSystemListener.java Class
	SolarSystemEventHandler.java Class
	SolarSystemRepository.java Class

	Components of the Solar System Plug-In
	Create a Plug-In Factory
	Set Up the Plug-In Factory Implementation
	Set Up Event Listeners and Notification Handlers
	Find Objects By Identifier in the Plugged-In Technology
	Find Objects in the Plugged-In Technology By a Query
	Find Objects By Relation Type in the Plugged-In Technology
	Discover Whether an Object has Children of a Given Relation Type

	Create a Plug-In Event Listener
	Set Up the Event Listener Implementation
	Register the Event Listener with the Plugged-In Technology
	Notify Orchestrator of Events in the Plugged-In Technology

	Create a Plug-In Event Generator
	Set Up the Event Generator
	Create Event Publishers
	Define and Publish Events to Orchestrator

	Create a Plug-In Workflow Trigger
	Set Up the Workflow Trigger
	Create Instances of the PluginTrigger Class
	Set the Properties that a Workflow Trigger Monitors

	Create Plug-In Watchers
	Set Up the Watcher Implementation
	Create Instances of the PluginWatcher Class
	Publish Plug-In Watchers

	Define Objects and Methods to Map to the Orchestrator JavaScript API
	Create a Plug-In Adapter
	Set Up the Plug-In Adapter Implementation
	Instantiate the Plug-In Factory
	Manage Plug-In Events
	Add Plug-In Watchers

	Add a Tab to the Configuration Interface
	Set Up the Configuration Adapter
	Load and Save Configuration Information in the Configuration Server
	Create a Configuration Action to Obtain Configuration Information from the User
	Create a Struts-Based Web Application to Add to the Configuration Interface
	Contents of the Solar System Configuration WAR File

	Map the Application in the vso.xml File
	Set Up the Global Plug-In Information
	Map Objects in the Plugged-In Technology to Scripting Types and Inventory Objects
	Solar System Finder Mappings

	Define Enumerations
	Map Classes and Methods to Classes and Methods in the JavaScript API
	Solar System JavaScript API Mappings

	Create the Plug-In DAR Archive
	Build the Solar System Application and Plug-In
	Contents of the Solar System DAR File

	Install a Plug-In in the Orchestrator Server
	Interact with the Solar System Application by Using Orchestrator
	View Plug-In Scripting Objects in the JavaScript API
	Run Workflows on Plug-In Objects in the Inventory
	Monitor Plug-In Events by Using Policies
	Monitor Plug-In Events by Using Workflows
	Access Plug-In Objects and Operations by Using a Web View

	API Enhancements for Plug-In Development
	Orchestrator Annotations API
	Enable Annotation-Based Configuration
	Annotating Objects
	Java-Based Configuration API for the Plug-In Definition File
	Using Java-Based Configuration

	Orchestrator Spring-Based Plug-In API
	Spring-Based API Basic Configuration

	Orchestrator Workflow Generation API
	Generating Actions
	Generating Workflows

	Orchestrator SSL Configuration API
	SSL Configuration Methods
	The HostValidator Helper Class

	Orchestrator Plug-In API Reference
	IAop Interface
	IConfigurationAdaptor Interface
	IDynamicFinder Interface
	IPluginAdaptor Interface
	IPluginEventPublisher Interface
	IPluginFactory Interface
	IPluginNotificationHandler Interface
	IPluginPublisher Interface
	WebConfigurationAdaptor Interface
	BaseAction Class
	ConfigurationError Class
	PluginLicense Class
	PluginTrigger Class
	PluginWatcher Class
	QueryResult Class
	SDKFinderProperty Class
	SDKHelper Class
	PluginExecutionException Class
	PluginLicenseException Class
	PluginOperationException Class
	ConfigurationError.Severity Enumeration
	ErrorLevel Enumeration
	HasChildrenResult Enumeration
	ScriptingAttribute Annotation Type
	ScriptingFunction Annotation Type
	ScriptingParameter Annotation Type

	Elements of the vso.xml Plug-In Definition File
	module Element
	configuration Element
	description Element
	deprecated Element
	url Element
	installation Element
	action Element
	webview-components-library Element
	finder-datasources Element
	finder-datasource Element
	inventory Element
	finders Element
	finder Element
	properties Element
	property Element
	relations Element
	relation Element
	id Element
	inventory-children Element
	relation-link Element
	events Element
	trigger Element
	trigger-properties Element
	trigger-property Element
	gauge Element
	scripting-objects Element
	object Element
	constructors Element
	constructor Element
	Constructor parameters Element
	Constructor parameter Element
	attributes Element
	attribute Element
	methods Element
	method Element
	example Element
	code Element
	Method parameters Element
	Method parameter Element
	singleton Element
	enumerations Element
	enumeration Element
	entries Element
	entry Element

	Best Practices for Orchestrator Plug-In Development
	Approaches for Building Orchestrator Plug-Ins
	Bottom-Up Plug-In Development
	Top-Down Plug-In Development

	Types of Orchestrator Plug-Ins
	Plug-Ins for Services
	Plug-Ins for Systems
	Plug-Ins for Object-Oriented Systems
	Plug-Ins for Resource-Oriented Systems

	Plug-In Implementation
	Project Structure
	Project Internals
	Workflow Internals
	Workflows and Actions
	Workflow Presentation

	Recommendations for Orchestrator Plug-In Development
	Documenting Plug-In User Interface Strings and APIs

	Index

