
vRealize Code Stream Plug-In SDK
Development Guide

vRealize Code Stream 2.2

This document supports the version of each product listed and
supports all subsequent versions until the document is
replaced by a new edition. To check for more recent editions of
this document, see http://www.vmware.com/support/pubs.

EN-002420-00

http://www.vmware.com/support/pubs

vRealize Code Stream Plug-In SDK Development Guide

2 VMware, Inc.

You can find the most up-to-date technical documentation on the VMware Web site at:

http://www.vmware.com/support/

The VMware Web site also provides the latest product updates.

If you have comments about this documentation, submit your feedback to:

docfeedback@vmware.com

Copyright © 2017 VMware, Inc. All rights reserved. Copyright and trademark information.

VMware, Inc.
3401 Hillview Ave.
Palo Alto, CA 94304
www.vmware.com

http://www.vmware.com/support/
mailto:docfeedback@vmware.com
http://pubs.vmware.com/copyright-trademark.html

Contents

About the vRealize Code Stream Plug-In SDK Development Guide 5

1 Introduction to vRealize Code Stream and the Plug-In SDK 7

Overview of the Plug-In SDK 7
Understanding Terminology 8
Using the Plug-In SDK to Extend vRealize Code Stream 8
Components of the Plug-In SDK 13

2 Preparing to Use the Plug-In SDK 15

Prerequisites 15
Prepare Your Development Appliance 16
Obtain the Plug-In SDK 16
Directory Structure of the Plug-In Bundle 17
Install and Build the Plug-In SDK 18
Deploy the Sample Plug-In 19

3 Developing Your Own Plug-In 21

Before You Create Your Own Plug-In 21
Developing Your Own Plug-In Using Maven Archetype 27
Developing Your Own Plug-In By Modifying the SDK Sample 29
Testing and Debugging Your Tiles and Views 30

Index 33

VMware, Inc. 3

vRealize Code Stream Plug-In SDK Development Guide

4 VMware, Inc.

About the vRealize Code Stream Plug-In SDK
Development Guide

The VMware vRealize Code Stream Plug-in SDK Development Guide describes how to use the plug-in Software
Development Kit (SDK) to develop your own plug-ins for use with vRealize Code Stream.

To help you integrate your own customized tasks into vRealize Code Stream, this information describes how
to develop your own plug-ins. It describes the extensibility of vRealize Code Stream for continuous
development and release automation. It shows you how to clone and install the plug-in SDK, and describes
the concepts and procedures to develop your own plug-ins. It describes the tools and examples provided
with the plug-in SDK, and provides instructions to develop your own plug-ins for use with
vRealize Code Stream.

Intended Audience
This information is intended for developers who write code to integrate customized tasks into
vRealize Code Stream.

VMware Glossary
VMware provides a glossary of terms that might be unfamiliar to you. For definitions of terms as they are
used in VMware technical documentation, go to http://www.vmware.com/support/pubs.

VMware, Inc. 5

http://www.vmware.com/support/pubs

vRealize Code Stream Plug-In SDK Development Guide

6 VMware, Inc.

Introduction to vRealize Code Stream
and the Plug-In SDK 1

vRealize Code Stream is a Dev Ops release automation solution that ensures continuous development and
integration of your applications. vRealize Code Stream runs the tasks in each stage, and ensures that each
task passes or that failed tasks are skipped, before the pipeline moves to the next stage of development.

When you set up the pipeline for your continuous development workflow, you add stages and tasks to the
pipeline. Your pipeline might include several stages. Each stage of a pipeline runs a specific set of tasks. For
example, one way to use stages and tasks is as follows:

n In the Development stage, the pipeline might obtain binaries from the latest build, install those binaries
on a server, and collect the results of unit tests. If all tests pass, the pipeline continues to the Integration
stage.

n In the Integration stage, vRealize Code Stream runs tasks to test the interactions with external services.

n Upon success in the Development and Integration stages, the pipeline advances to the Production stage
where vRealize Code Stream finalizes the build services and makes the application bits available for
delivery.

You can extend the capability of vRealize Code Stream by creating your own plug-ins using the plug-in SDK
to run tasks in your vRealize Code Stream pipelines. For example, you can build your own plug-in to make
a REST call to a remote server.

This chapter includes the following topics:

n “Overview of the Plug-In SDK,” on page 7

n “Understanding Terminology,” on page 8

n “Using the Plug-In SDK to Extend vRealize Code Stream,” on page 8

n “Components of the Plug-In SDK,” on page 13

Overview of the Plug-In SDK
The plug-in SDK for vRealize Code Stream provides a set of tools and examples that you use to build your
own Java-based plug-ins to integrate customized tasks into your vRealize Code Stream pipelines. Each plug-
in that you develop implements a single task.

To use the plug-in SDK, you clone the SDK onto your local machine, and build the SDK so that you can
deploy it to your development environment. See Chapter 2, “Preparing to Use the Plug-In SDK,” on
page 15.

VMware, Inc. 7

Understanding Terminology
vRealize Code Stream uses its own orchestration engine to run pipelines that are comprised of stages and
tasks.

The following concepts apply to vRealize Code Stream.

Table 1‑1. vRealize Code Stream Concepts

Component Description

Pipeline A collection of tasks, grouped by stages.

Stage A logical separation that divides your pipeline into units that represent the various stages of your
continuous delivery process such as Development, Staging, and Production.

Task A single item of work done during a stage such as deployment of virtual machines or running unit
tests. Tasks can run sequentially or in parallel. An individual vRealize Code Stream plug-in
implements each task.

Endpoint A specialized data type that encapsulates all the information for your tiles to access a resource
external to the vRealize Code Stream appliance. For example, the endpoint data type for a REST
service might contain the URL and credential information for the service.

The following concepts apply to developing your own plug-ins for vRealize Code Stream.

Table 1‑2. Concepts for Plug-In Developers

Component Description

Plug-in The basic extensibility unit for vRealize Code Stream. Each plug-in is packaged into a bundle that
contains several tiles, data types, and views.

Bundle The packaging for a plug-in, in a specific folder structure that is compressed into a ZIP file as part
of the Maven build process, and which can be deployed to your vRealize Code Stream appliance.

Tile A Java class that represents an action that your bundle can perform. For example, a Task tile
contains the code that runs during a vRealize Code Stream pipeline execution. The tile types
include the Task tile, Endpoint tile, and View Callable tile.

Data Type A YAML representation of a collection of data that can be an input to a tile, or an output from a tile.
For example, the Boolean data type represents a true or false value. You can nest data types to
make complex structures.

Properties Key-value pairs that represent the inputs to and outputs of a task.

Tile View A user interface that your tiles display in vRealize Code Stream. For example, you use the view
named config to configure the inputs that a Task tile requires when you design a pipeline.

Using the Plug-In SDK to Extend vRealize Code Stream
To extend vRealize Code Stream with your own plug-ins, you create tiles that run during the pipeline
executions. Each tile is a self-contained unit of work that you create to perform an action. Tiles provide
views for endpoint configuration, task configuration, and task results.

Each plug-in runs a single task. For example:

n A task that performs provisioning in vRealize Automation is a separate vRealize Code Stream plug-in.

n A task to run jobs in Jenkins is a separate vRealize Code Stream plug-in.

You can have multiple instances of a task anywhere in a pipeline. For example, you can have two tasks that
perform provisioning in vRealize Automation, and both tasks run the same plug-in. Or, you can have the
same type of task run in two stages, such as a task for provisioning in vRealize Automation in the
development and production stages, and both tasks run the same plug-in.

vRealize Code Stream Plug-In SDK Development Guide

8 VMware, Inc.

Packaging and Deploying Plug-ins
You use Maven build commands to compile each plug-in into a package called a bundle that includes your
data types, views, and tiles. You deploy the bundle to your vRealize Code Stream appliance.

For example, you might create a tile to perform the action of making a REST call to a remote server to start a
procedure. For more information about tiles, see “Example Tiles,” on page 24.

You create data types to represent the input and output properties for your tiles. The data type can be a
primitive, complex, or nested type. For more information about data types, see “Data Types and Example
Data Type,” on page 23.

You can host views that appear in vRealize Code Stream when users create or modify an instance of the task
with their own input, or when they view the results of the task after it ran. For more information about
views, see “Tile Views,” on page 26.

For more information about these terms, see “Understanding Terminology,” on page 8.

For more information about deploying bundles, see “Deploy the Sample Plug-In,” on page 19.

Maven Commands
The plug-in SDK includes a Maven extension that modifies the default Maven lifecycle so that your plug-ins
are packaged as bundles and deployed to your vRealize Code Stream appliance.

The following table describes the modified Maven goals and their parameters.

Table 1‑3. Maven Goals

Goal Function Use Optional Parameters

package Builds the bundle. Run as part of mvn clean
install.
Can be run separately as
mvn package to only
generate the bundle.

-Dbundle.package.excludes

Specify files to exclude from your bundle using a
comma separated list of GLOB patterns.

deploy Deploys the bundle
to
vRealize Code
Stream.

mvn clean deploy -
Dbundle.deploy.host=
VRCS_APPLIANCE

-Dbundle.deploy.privateKeyPath

Specify the path to your private key file if you use one
to connect to your vRealize Code Stream appliance.
Defaults to $HOME/.ssh/id_rsa.

Organizing Work in a Pipeline
In your plug-in, you create self-contained units of work called tiles. Each tile runs a task in a pipeline in
vRealize Code Stream to perform the actions required to run the task.

Each tile, except for view callable tiles, includes data types and views that you create when you develop the
plug-in.

Chapter 1 Introduction to vRealize Code Stream and the Plug-In SDK

VMware, Inc. 9

Each bundle includes a Task tile, which is required. It may include an Endpoint tile and one or more View
Callable tiles, which are optional. The plug-in runs the tiles when it communicates with external systems.

Table 1‑4. Tiles for vRealize Code Stream Plug-Ins

Tile Type Function Tag Typical Inputs
Typical
Outputs Views

Task Tile Represents the
work done by
a task when
the pipeline
runs.

VRCS_TASK Endpoint data type
Other task inputs

Results of the
task execution

Configuration
Result

Endpoint Tile Validates an
endpoint for a
task.

VRCS
_ENDPOINT

Endpoint data type None. The tile
succeeds when
the endpoint is
valid.

Endpoint

View Callable
Tile

Called by
views of other
tiles to gather
and format
user input.

VRCS_VIEW
_CALLABLE

Endpoint data type Information
about the task
inputs
supported by
the endpoint.

None

vRealize Code Stream Plug-In SDK Development Guide

10 VMware, Inc.

These components interact with pipelines in vRealize Code Stream in the following manner.

The top part of the diagram illustrates the task lifecycle in a vRealize Code Stream pipeline. The bottom area
illustrates the plug-in lifecycle, and indicates how it aligns with the lifecycle of the task.

How vRealize Code Stream Uses Tiles
When you create a plug-in, you model the work to be done as independent tiles that vRealize Code Stream
runs in a pipeline.

For example, with your own REST plug-in you might have vRealize Code Stream make REST calls to a
remote server to start a procedure.

After you create your REST plug-in, you perform the following steps in your vRealize Code Stream
appliance to support the action of making REST calls to the REST endpoint.

Chapter 1 Introduction to vRealize Code Stream and the Plug-In SDK

VMware, Inc. 11

Table 1‑5. How Views and Tiles Map to Pipeline Lifecycle Stages

Pipeline Lifecycle
Stage Components What Occurs

Add an endpoint
for a task

n Endpoint tile
n Endpoint view

You create an endpoint, and in the Add Endpoint page select your
REST plug-in.
The Endpoint view displays the properties that comprise the
Endpoint data type that you define in your REST plug-in. These
properties might include the URL, user name, and password.
When you save your endpoint:
n The Endpoint view passes the endpoint data type to the

endpoint tile.
n The Endpoint tile validates the information users enter, such

as the URL, user name, and password, against the REST
endpoint. The Endpoint tile attempts to pass the user name
and password credentials to the REST endpoint to ensure that
the credentials are valid and connect to the REST endpoint. It
then sends a request to the URL, and gets a response.

n When the information is valid, the endpoint tile succeeds and
stores the information.

n If the information is not valid, an error message occurs and
indicates that the endpoint tile cannot read from or write to
the URL.

Configure the task n Config view
n View callable tile

You create a pipeline that uses your REST endpoint. Then, you
add a stage, add a task, and configure the task.
When you add a task, you select the REST task as the provider.
When you configure the task, the Config view provides the input
and output parameters as defined in the Task tile of your REST
plug-in.
n For example, the Endpoint data type is an input parameter for

the Config view and can be displayed as a drop down list of
REST endpoints.

n Other input parameters for the REST request might include
the REST method, relative path, headers, expected status
codes, and the expected response body.

In the task Config view, users can preview the response, which is
provided by a view callable tile. The preview is based on the input
parameters that the user provides.
n The Config view calls the view callable tile to confirm whether

the information that the user entered is valid.
n View callable tiles can also work with the Config view to

provide more information, such the types of headers the
server supports.

After you configure your task, the Config view saves all the
information for the Task tile to run the action.

Execute the
pipeline

Task tile When you run the pipeline, the Task tile runs the action based on
the input properties, and generates the output properties to
display in the Result view.
You can design the Task tile in your plug-in to run repeatedly
until the work it has started on the endpoint is completed, or has
failed to complete due to an error.

View the pipeline
execution results

Result view The Result view indicates that the task is in progress, and reports
the results of the pipeline execution. When the task finishes, the
Result view indicates success or failure.

For more information about sample tiles, see “Example Tiles,” on page 24.

vRealize Code Stream Plug-In SDK Development Guide

12 VMware, Inc.

Components of the Plug-In SDK
You must install the plug-in SDK, and develop plug-ins on your local development machine.

The plug-in SDK provides the following components that you use to develop your own plug-ins.

Table 1‑6. Components of the Plug-In SDK

Components Purpose

Sample plug-in code
examples

Build and test sample plug-ins. The sample plug-in includes samples tiles and sample
views.

Maven tools Help developers throughout the development lifecycle to:
n Generate plug-ins with archetype.
n Test with the test framework.
n Deploy plug-ins with the mvn deploy command.

Compile time dependencies The Java classes needed to compile tiles and write and run unit tests for them.

Chapter 1 Introduction to vRealize Code Stream and the Plug-In SDK

VMware, Inc. 13

vRealize Code Stream Plug-In SDK Development Guide

14 VMware, Inc.

Preparing to Use the Plug-In SDK 2
Before you use the vRealize Code Stream plug-in SDK, you must be familiar with the prerequisites and the
directory structure of the plug-in SDK. Then you can clone and install the plug-in SDK, and deploy the
sample plug-in to your vRealize Code Stream appliance.

When you are familiar with the plug-in SDK, you can begin to create your own custom plug-ins to run tasks
in your pipelines.

This chapter includes the following topics:

n “Prerequisites,” on page 15

n “Prepare Your Development Appliance,” on page 16

n “Obtain the Plug-In SDK,” on page 16

n “Directory Structure of the Plug-In Bundle,” on page 17

n “Install and Build the Plug-In SDK,” on page 18

n “Deploy the Sample Plug-In,” on page 19

Prerequisites
Before you create your own plug-ins for use with vRealize Code Stream, ensure that your environment
meets the prerequisites.

To build your own plug-ins, the following procedures assume that you have an independent
vRealize Code Stream appliance for development, before you deploy the plug-in to production. The
procedures also assume that you are familiar with Maven tooling, and that you have considered the security
aspects of your environment.

To build your own plug-ins, you have:

n Downloaded and installed Java Development Kit 8 on your development machine.

n Installed Apache Maven.

If you already installed the JDK on your development machine, you have the build tools and samples
required to create your own plug-ins.

n Verified that you can log in to GitHub and that you can access
https://github.com/vmwaresamples/vrcs-sdk-samples.

When you install the vRealize Code Stream Plug-In SDK, it installs all its dependencies into your local
Maven cache.

After you perform the prerequisites, review the sample plug-in source code that is included with your
vRealize Code Stream appliance.

VMware, Inc. 15

Prepare Your Development Appliance
By default, the server checks and reloads the plug-ins every 10 minutes. To reduce the interval for the server
to reload the plug-ins, you update the vRealize Code Stream properties file. This procedure is optional.

The following procedure shows you how to update the vRealize Code Stream properties file to set the
interval to reload plug-ins.

Prerequisites

n Install and build the plug-in SDK, and build the sample plug-in bundles. See “Install and Build the
Plug-In SDK,” on page 18.

Procedure

1 Use SSH to log in to your vRealize Code Stream appliance with the following command:

ssh root@VRCS_APPLIANCE

2 Edit the properties file with the following command:

vi /usr/lib/vcac/server/webapps/release-management-service/WEB-

INF/classes/configuration/application.properties

3 To have the server reload your plug-ins more frequently, change the interval in the
vRealize Code Stream properties file to the value you desire. For example, to change the interval to 30
seconds, enter:

fms.server.plugins.interval=30

4 Restart vRealize Code Stream for the changes to take effect with the following command:

service vcac-server restart

The restart can take about 15 minutes.

You have changed the interval in the vRealize Code Stream properties file so that the server reloads your
plug-ins more frequently.

What to do next

Clone the GitHub repository of the plug-in SDK. See “Obtain the Plug-In SDK,” on page 16.

Obtain the Plug-In SDK
To use the plug-in SDK, you must clone the repository and install the plug-in SDK. Then you can start to use
the plug-in SDK, test the sample plug-in, and deploy it to your existing vRealize Code Stream appliance.

The plug-in SDK includes subdirectories named lib and samples. It also includes a pom.xml for Maven.

Prerequisites

n Performed the prerequisites. See “Prerequisites,” on page 15.

n Verify that you can access the location in GitHub to clone the plug-in SDK. See
https://github.com/vmwaresamples/vrcs-sdk-samples.

Procedure

1 To clone the plug-in repository to your development machine, run the following command:

git clone https://github.com/vmwaresamples/vrcs-sdk-samples.git vrcs-plugin-sdk-2.2.0

This step creates a folder for the plug-in SDK.

vRealize Code Stream Plug-In SDK Development Guide

16 VMware, Inc.

2 Change to the folder with the command:

cd vrcs-plugin-sdk-2.2.0

The directories named lib and samples appear, with the file named pom.xml.

3 Review the directory structure and files.

You have cloned and installed the vRealize Code Stream plug-in SDK.

What to do next

Review the directory structure of the plug-in SDK. See “Directory Structure of the Plug-In Bundle,” on
page 17. Then install and build the plug-in SDK. See “Install and Build the Plug-In SDK,” on page 18.

Directory Structure of the Plug-In Bundle
After you clone the files from GitHub, the required files are extracted to your local machine.

The folders and files resemble the following structure:

vrcs-plugin-sdk-2.2.0

├── samples
│ └── rest-sample-plugin
├── lib
│ ├── tile-api.jar
│ ├── tile-api-test.jar
│ ├── tile-api-test-dependency.jar
│ ├── vrcs-simple-plugin-archetype.jar
│ ├── vrcs-bundle-maven-plugin.jar
│ └── vrcs-bundle-maven-plugin.pom
└── pom.xml

The files in the SDK folder perform specific functions.

Table 2‑1. Files in the SDK Folder

Directories and Files Function

rest-sample-plugin An SDK sample that can make REST calls against a remote server.

tile-api.jar Interfaces that your Java-based tiles must implement. All the files in the lib folder
are installed in your Maven cache.

tile-api-test.jar A unit test framework that allows tiles to be run independently for test-driven
development.

tile-api-test-
dependency.jar

A dependency JAR file that contains all the classes required to independently run
the tiles.

vrcs-simple-plugin-
archetype.jar

A Maven archetype of a simple vRealize Code Stream plug-in.

vrcs-bundle-maven-
plugin.jar/.pom

A Maven plug-in that allows seamless plug-in development using Apache Maven.

The directory named lib is where you run the mvn clean install command the first time when you build
the plug-in SDK.

The directory structure for any plug-in includes the following folders and files:

my-plugin

├── src/main
│ ├── java
│ └── (Java package structure)

Chapter 2 Preparing to Use the Plug-In SDK

VMware, Inc. 17

│ ├── MyTaskTile.java
│ ├── MyEndpointTile.java
│ └── MyViewCallableTile.java
│ └── bundle
│ ├── datatypes
│ └── MyEndpoint.yaml
│ ├── ui
│ ├── config.js
│ ├── result.js
│ ├── endpoint.js
│ └── misc
│ └── bundle.yaml
└── pom.xml

The files in the plug-in SDK perform specific functions.

Table 2‑2. Files in the Plug-In SDK

Directories and Files Description

src/main/java Includes the Java package structure and the tile files.
n MyTaskTile.java provides execution logic that is called when a pipeline runs.
n MyEndpointTile.java validates all endpoint data that your plug-in needs.
n MyViewCallableTile.java helps gather inputs for the Task tile.

src/main/bundle Includes the data types, view files, and the bundle YAML file.
n datatypes/MyEndpoint.yaml is a YAML representation of any endpoint data that your

plug-in must run.
n ui/config.js provides the custom logic and user interface to configure the inputs for

your Task tile when you create a pipeline.
n ui/result.js provides the custom logic and user interface to display the results of your

Task tile after a pipeline runs.
n ui/endpoint.js provides the custom logic and user interface to configure any endpoint

data that your plug-in might require.
n misc is optional. You can add any other files your views might need in folders here, and

they can be loaded by calling VRCS.view.alpaca.importResource('misc/fileName')
in the appropriate .js file.

bundle.yaml Main file that specifies the layout of your bundle.

pom.xml File that you modify with your plug-in folder name as the artifact ID. You add any Java
dependencies required to it.

Install and Build the Plug-In SDK
You use Maven to build vRealize Code Stream plug-ins. You must install and build the plug-in SDK so that
you can use the samples to create your own plug-ins.

In this procedure, you run the install commands twice so that the second install builds the plug-in SDK
sample. You can then deploy the sample to your vRealize Code Stream appliance.

Prerequisites

n Clone the plug-in SDK. See “Obtain the Plug-In SDK,” on page 16.

Procedure

1 From the command line, change directory to the SDK folder with the following command:

cd vrcs-plugin-sdk-2.2.0

vRealize Code Stream Plug-In SDK Development Guide

18 VMware, Inc.

2 Enter the following commands to install the SDK libraries into your local Maven cache.

cd lib

mvn clean install

3 Enter the following commands to change to the root directory and build the SDK and the sample plug-
in.

cd ..

mvn clean install

This step builds the SDK sample to deploy to your vRealize Code Stream appliance.

You have installed the plug-in SDK and built the sample plug-in.

What to do next

Deploy the sample plug-in to your vRealize Code Stream appliance.

Deploy the Sample Plug-In
You can deploy a sample plug-in to your vRealize Code Stream appliance so that you can test it in your own
environment.

Each folder in the directory named samples represents a vRealize Code Stream plug-in, which includes a
bundle that is packaged during the build process. You can deploy a bundle to your vRealize Code Stream
appliance, and load it by running the commands in the plug-in directory, as shown in the following
procedure.

Perform this procedure in your development and test environments, but not in production environments.

Prerequisites

n Clone the plug-in SDK. See “Obtain the Plug-In SDK,” on page 16.

n Understand how to use the debug option. See “Testing and Debugging Your Tiles and Views,” on
page 30.

Procedure

1 On the machine where you cloned the plug-in SDK, at a command prompt open the folder named
samples.

2 Open the directory named rest-sample-plugin.

3 Deploy the plug-in to your vRealize Code Stream appliance.

a Enter, but do not run the following command:

mvn clean deploy -Dbundle.deploy.host=VRCS_APPLIANCE

b In this command, replace VRCS_APPLIANCE with the hostname or IP address of your own
vRealize Code Stream appliance.

When the results indicate that the build is successful, all sample plug-ins are deployed to your
appliance.

Chapter 2 Preparing to Use the Plug-In SDK

VMware, Inc. 19

4 Log in to your appliance and verify that all files are deployed to the appliance.

a Use SSH to log in to your vRealize Code Stream appliance with the following command:

ssh root@VRCS_APPLIANCE

b Open the directory named /var/lib/codestream/plugins.

c Verify that the sample plug-in is deployed. For example, if you deploy the REST sample, the folder
named rest-sample-plugin appears in this directory.

Your new plug-in is loaded and running in your vRealize Code Stream appliance.

5 To ensure that the cache is updated, and that your newly deployed plug-in loaded properly, log in to
your vRealize Code Stream appliance and create your pipeline.

a Log in to the appliance where you deployed your plug-in, and include the debug option.

For example, log in to your appliance using the form:
mycodestream-20.yourcompany.com/vcac/org?debug=true

b In your vRealize Code Stream appliance, click the Code Stream tab.

c Click the Endpoints tab, click Add, and create a REST endpoint.

d Click the Pipelines tab, and click Add.

e Enter a name for the new pipeline, and click Stages.

f Click Add Stage, and in the new stage, click Add Task.

g From the list of tasks, click your REST task, and provide a proper task name.

h Configure your REST task, run the task, and view the results.

You have deployed the sample plug-in to your vRealize Code Stream appliance.

What to do next

Create your own plug-in. See “Developing Your Own Plug-In By Modifying the SDK Sample,” on page 29.

vRealize Code Stream Plug-In SDK Development Guide

20 VMware, Inc.

Developing Your Own Plug-In 3
To create your own plug-in to integrate tasks with vRealize Code Stream, you can either copy the samples
provided with the vRealize Code Stream plug-in SDK and modify them as you need. Or, you can use the
archetype provided with the plug-in SDK to create your own plug-in from the Maven archetype.

This chapter includes the following topics:

n “Before You Create Your Own Plug-In,” on page 21

n “Developing Your Own Plug-In Using Maven Archetype,” on page 27

n “Developing Your Own Plug-In By Modifying the SDK Sample,” on page 29

n “Testing and Debugging Your Tiles and Views,” on page 30

Before You Create Your Own Plug-In
You must be familiar with the directory structure provided with the plug-in SDK. You must also understand
how to create bundles, tiles, and views.

To perform the actions required before you create your own plug-in, follow the steps in Chapter 2,
“Preparing to Use the Plug-In SDK,” on page 15.

Become Familiar With the Directory Structure
The sample plug-in provided with the plug-in SDK show you how to create your own plug-ins.

Before you create your own plug-ins, familiar yourself with the directory structure and files provided by the
plug-in SDK. See “Directory Structure of the Plug-In Bundle,” on page 17.

Bundles and Example Bundle.yaml
You use Maven to compile each plug-in into a bundle that is used to package your files for deployment.
Each bundle includes data types, views, and tiles.

You must create your file named bundle.yaml. This file connects all the components into a single plug-in for
vRealize Code Stream, and establishes the relationships between the components.

The following code is for the sample bundle.yaml file that corresponds to the sample plug-in.

 bundleId: "vrcs.my-plugin" #NOTE: Plug-in namespace, tiles, dataTypes.

 version: "1.0.0" #NOTE: Bundle version. Revise as needed.

 modelVersion: "1.5.0" #NOTE: Document model version for bundle.yaml.

 apiVersion: "2.2.0" #NOTE: Corresponds to the Code Stream version your bundle targets.

 description: "{CHANGE_THIS_DESCRIPTION}"

 documentation: "{CHANGE_THIS_LINK}"

VMware, Inc. 21

 author: "{UPDATE_THIS_AUTHOR}"

 datatypes:

 - "datatypes/MyEndpoint.yaml"

 tiles:

 -

 tileId: "vrcs.my-plugin:MyTile" #See note 1.

 displayName: "My vRCS plugin"

 inputProperties:

 myEndpoint:

 type: "vrcs.my-plugin:MyEndpoint" #See note 2.

 myInputs:

 type: "String[]" #See note 3.

 outputProperties:

 myResult:

 type: "Integer"

 executorType: "JAVA"

 executor: "com.vmware.vrcs.tile.{YOUR_PACKAGE_NAME}.MyTile.java"

 tags:

 - VRCS_TASK #See note 4.

 views:

 -

 path: "/config.js"

 viewName: "config"

 viewType: "alpaca"

 -

 path: "/result.js"

 viewName: "result"

 viewType: "alpaca"

 categories: ["ALL"] # Required only for execution tiles and is always ["ALL"]

 -

 tileId: "vrcs.my-plugin:MyEndpointTile" #See note 5.

 displayName: "My vRCS plugin endpoint"

 inputProperties:

 myEndpoint:

 type: "vrcs.my-plugin:MyEndpoint"

 executorType: "JAVA"

 executor: "com.vmware.vrcs.tile.{YOUR_PACKAGE_NAME}.MyEndpointTile.java"

 tags:

 - VRCS_ENDPOINT #See note 6.

 views:

 -

 path: "/endpoint.js"

 viewName: "endpoint"

 viewType: "alpaca"

 -

 tileId: "vrcs.my-plugin:MyViewCallableTile" #See note 7.

 inputProperties:

 myEndpoint:

 type: "vrcs.my-plugin:MyEndpoint"

 outputProperties:

 myNumInputs:

 type: "Integer"

 executorType: "JAVA"

 executor: "com.vmware.vrcs.tile.{YOUR_PACKAGE_NAME}.MyViewCallableTile.java"

vRealize Code Stream Plug-In SDK Development Guide

22 VMware, Inc.

Table 3‑1. Details for Sample Bundle.yaml Code

Reference Code Description

Note 1 tileId: "vrcs.my-
plugin:MyTile"

This tile runs when a user runs a pipeline that contains the task named
My VRCS plug-in.

Note 2 type: "vrcs.my-
plugin:MyEndpoint"

Endpoint data type.

Note 3 myInputs: type:
"String[]"

Represents an array of strings.

Note 4 tags: - VRCS_TASK Indicates that this tile can be run as a task in a vRealize Code Stream
pipeline. It requires the configuration and result views to be specified
views.

Note 5 tileId: "vrcs.my-
plugin:MyEndpointTile"

This tile validates the endpoint data, and ensures that the endpoint is
reachable.

Note 6 tags: - VRCS_ENDPOINT Indicates that this tile is the type of tile that validates an endpoint, and
requires the endpoint view in the next section be specified views:

Note 7 tileId: "vrcs.my-
plugin:MyViewCallableTil
e"

The views of the other tiles call this tile to gather information such as
the number of inputs that the endpoint can accept.

For more information about the components of bundles, see “Packaging and Deploying Plug-ins,” on
page 9.

Data Types and Example Data Type
You must create the data types that represent your tile inputs. Your data types represent the input and
output properties, and include the name and type of data.

The data type can be a primitive type. Supported primitive types include:

n String. The most common data type used for string inputs and outputs.

n SecureString. Using SecureString is similar to the use of string, but is encrypted when it is stored, and
its values are masked when they appear in the user interface.

n Boolean. True and false values.

n Integer. Any positive or negative integer

n Number. Non-integer numbers.

n JSON. Represents free-form JSON object data.

n Arrays. Can use for arrays of any data type, including custom arrays. You specify an array by adding
the suffix [] to the data type name. For example, String[].

You can wrap multiple primitive types together to create your own data types. You can nest the data types,
which means that you place one custom data type inside another custom data type. An example REST data
type might include the endpoint URL, user name, and user password.

You embed the data type in your plug-in. Owners of plug-ins that interact with your plug-in know that they
must consume your data type.

For example, an endpoint named MyEndpoint has a URL, a timeout, and a username/password.

To reflect these attributes of the endpoint, you create a file named MyEndpoint.yaml, and store this file in the
folder named datatypes in the bundle directory.

Chapter 3 Developing Your Own Plug-In

VMware, Inc. 23

The file named MyEndpoint.yaml has the following structure:

 name: "vrcs.my-plugin:MyEndpoint"

 properties:

 url:

 type: "String"

 username:

 type: "String"

 password:

 type: "SecureString"

 timeout:

 type: "Integer"

When a tile requires this endpoint as an input, you can use this data type to pass all the information at once.

Endpoint data types can persist in the vRealize Code Stream to use across multiple pipelines.

Example Tiles
Before you develop your own plug-in, you must create tiles to represent the actions for your bundle to
perform.

Each bundle runs multiple tiles, and each tile includes the data types and views to run your action in
vRealize Code Stream.

You use several types of tiles.

n The Task tile executes code that runs in a vRealize Code Stream pipeline execution.

n The Endpoint tile validates the endpoints. For example, an endpoint can be a source location of files to
download.

n The View Callable tile provides the back end work for the user interface to compose the views.

You create the Task, Endpoint, and View Callable tiles as follows:

n Create the Task tile to represent the work done by an action when the pipeline runs.

n (Optional) Create the Endpoint tile to validate any endpoint data that your plug-in requires.

n (Optional) Create the View Callable tile, which is used by the configuration, results, endpoint views.

For more information about the tiles, see “Organizing Work in a Pipeline,” on page 9.

The following code is an example of how a Task tile named MyTile.java might function to start a remote
procedure using REST on the Endpoint tile named MyEndpoint.

public class MyTile implements TileExecutable {

 private static final Logger logger = Logger.getLogger(MyTile.class.getName());

 @Override

 public void handleExecute(TileExecutableRequest request, TileExecutableResponse response) {

 // Gather inputs from the request represented as a TileProperties object

 TileProperties myEndpoint =

request.getInputProperties().getAsProperties("myEndpoint"); // See note 1.

 List<String> myInputs =

request.getInputProperties().getAsStringArray("myInputs"); // See note 2.

 MyRestClient client = new

MyRestClient(myEndpoint.getAsString("url"), // See note 3.

myEndpoint.getAsString("username"), // See note 4.

vRealize Code Stream Plug-In SDK Development Guide

24 VMware, Inc.

myEndpoint.getAsString("password")); // See note 5.

 if (request.isFirstExecution()) {

 // Begin an asynchronous task on MyEndpoint and inform the framework that you wish

to be called again in 1 sec

 String statusUrl = client.begin(myInputs);

 // Because the JAVA classes that represent tiles are stateless, any context relating

to the execution must be stored as an output property

 // using the prefix __ so that they are hidden from the final tile outputs. In this

case we store a url to get to check the task status.

 response.getOutputProperties().setAsString("__statusUrl", statusUrl);.

 response.setCompleted(false);

 response.setExecutionIntervalSeconds(1);

 } else {

 // Check if we should timeout the request

 int timeout = myEndpoint.getAsInteger("timeout", 10)); // See note 6.

 int duration = request.getDurationSeconds(); // See note 7.

 if (timeout > duration) {

 response.setFailed("Failed with timeout after " + duration + " seconds");

 return;

 }

 // Monitor the asynchronous task on MyEndpoint

 int statusUrl = response.getOutputProperties.getAsString("__statusUrl");

 int myResult = client.check(statusUrl);

 if (myResult == 0) {

 // The remote procedure is running. Keep checking every 5 sec till we get a

result and update the number of attempts

 response.setProgressMessage("Process is still running");

 response.setCompleted(false);

 response.setExecutionIntervalSeconds(5);

 } else if (myResult < 0) {

 // The remote procedure has failed, get the error and communicate it back to the

user

 response.setFailed("Failed with error: " + myResult);

 } else {

 // The remote procedure succeeded, capture the output and we are done

 response.getOutputProperties().setInteger("myResult", myResult);

 response.setCompleted(true);

 }

 }

 }

}

Table 3‑2. Details for Task Tile

Reference Code Description

Note 1 TileProperties
myEndpoint

Tile properties can be nested for complex data types or JSON.

Note 2 List<String> myInputs Array properties have specialized getters that return List<T>.

Note 3
Note 4

myEndpoint.getAsString("
url")

myEndpoint.getAsString("
username"),

Since myEndpoint is a nested tileProperties object, we can use the
same getters used on inputProperties to read its fields.

Chapter 3 Developing Your Own Plug-In

VMware, Inc. 25

Table 3‑2. Details for Task Tile (Continued)

Reference Code Description

Note 5 myEndpoint.getAsString("
password"));

Secure strings are accessed like Strings.

Note 6 myEndpoint.getAsInteger(
"timeout", 10));

Typed getters exist for all the primitive data types, and they accept
default values.

Note 7 request.getDurationSecon
ds();

The request also has metadata such as how long your tile has been
running.

For concepts about using tiles to create and run actions in vRealize Code Stream pipelines, see “Organizing
Work in a Pipeline,” on page 9.

For more information about creating your own tiles, see “Using the Plug-In SDK to Extend vRealize Code
Stream,” on page 8.

Tile Views
Several views serve as the user interfaces for your plug-in. You create these views so that they can capture
input and display the results when the plug-in runs.

In the sample version of bundle.yaml, these views are defined in the files named config.js, result.js, and
endpoint.js.

In bundle.yaml, the names of the views must always be config, result, and endpoint. The values for the
views are in the path relative to the folder named ui, which you can change to be specific for your needs.

The following views are typical views for each plug-in.

Table 3‑3. Views for Plug-Ins

View Name Mandatory Owned by Description

config Yes Task tile Allows you to set up and modify the task as desired.
This view is the interactive form that captures user input for the task to
run. This view appears in the Edit and View modes in a pipeline.

result Yes Task tile Displays the result when a user attempts to run a task. For example, if
the task fails, the Result view displays information about the cause of
the failure, and the inputs used so that you can debug the failure.
This view is read-only. All the interactive input controls in this view
will be disabled by default.

endpoint No Endpoint tile This interactive form captures user input to represent and configure a
remote endpoint.

For an example REST task tile, the views might provide the following information.

n Config view. Provides the input and output parameters as defined in your REST plug-in.

n Result view. Indicates that the task is in progress, and reports the results of the pipeline execution.
When the task finishes, the Result view indicates success or failure.

n Endpoint view. Presents properties from the Endpoint data type that you define in your REST plug-in,
such as the URL, user name, and password.

For more information about creating your own views, see “Framework to Create Views,” on page 27.

To understand the sample version of bundle.yaml, see “Bundles and Example Bundle.yaml,” on page 21.

vRealize Code Stream Plug-In SDK Development Guide

26 VMware, Inc.

Framework to Create Views
To simplify your experience of creating the views for your tiles, the plug-in SDK includes a schema-based
framework on top of Alpaca JS.

With the schema-based framework, you can easily generate highly interactive forms based on a set of JSON
schema without getting too involved with the HTML and CSS.

You define your Alpaca configuration in JavaScript. The plug-in framework provided with the SDK
generates any needed HTML, and injects all the necessary JavaScript and CSS dependencies into the page.
For more information, see the Alpaca documentation at http://alpacajs.org/documentation.html.

The view framework includes the following third-party JavaScript libraries that you can use directly in your
views:

n jQuery 1.11.1

n Bootstrap 3.1.1

n Bootstrap Tokenfield 0.12.1

n Ace.js 1.2.5

For example plug-in code, see the documentation in GitHub at https://github.com/vmwaresamples/vrcs-
sdk-samples.

After you develop the code for your plug-in, to run the plug-in, you compile your bundle, and deploy it in
your vRealize Code Stream appliance. See “Tile Views,” on page 26.

Developing Your Own Plug-In Using Maven Archetype
You can create your own plug-in from the Maven archetype provided with the plug-in SDK.

You build an archetype, which creates a blank boilerplate plug-in. To create a plug-in from the archetype,
follow this procedure.

For more information to create your plug-in from a sample plug-in, see the documentation in GitHub at
https://github.com/vmwaresamples/vrcs-sdk-samples.

Prerequisites

n Become familiar with the properties used to create plug-ins from the archetype, and the required
naming conventions. See “Properties for Archetype Plug-Ins,” on page 28.

Procedure

1 On the machine where you cloned the plug-in SDK, create a folder where you will create your own
plug-in.

You can generate your own plug-in from any folder.

2 To build a new archetype, run the following command.

mvn archetype:generate -DarchetypeArtifactId=vrcs-simple-plugin-archetype -

DarchetypeVersion=2.2.0 -DarchetypeGroupId=com.vmware.vrcs

3 Follow the prompts and enter the properties for the plug-in, and use the required naming conventions,
as defined in “Properties for Archetype Plug-Ins,” on page 28.

4 When you are prompted, to agree with the values enter Y. Or, to change the values, enter N.

The result indicates that the build was successful.

Chapter 3 Developing Your Own Plug-In

VMware, Inc. 27

http://alpacajs.org/documentation.html

5 Verify that the build created your plug-in and file structure.

a Open the plug-in directory, and verify that the pom.xml and the directory named src appear.

b Open the directory named src, and verify that a directory named main appears.

This directories named bundle and java appear.

6 Deploy your plug-in to your vRealize Code Stream appliance.

a Open the plug-in bundle directory for your archetype plug-in.

b To build and deploy the bundle, enter the following command, and replace VRCS_APPLIANCE with
your own vRealize Code Stream appliance.

mvn clean deploy -Dbundle.deploy.host=VRCS_APPLIANCE

This command deploys the bundle without reloading the plug-in.

c On your vRealize Code Stream appliance, verify that your plug-in was deployed.

7 Log in to your vRealize Code Stream appliance and create your pipeline.

a Log in to the appliance where you deployed your plug-in, and include the debug option.

For example, log in to your appliance using the form:
mycodestream-20.yourcompany.com/vcac/org?debug=true

b In your vRealize Code Stream appliance, click the Code Stream tab.

c Click the Endpoints tab, click Add, and select your endpoint from the list.

d Click Pipelines, and click Add.

e Enter a name for the new pipeline, and click Stages.

f Click Add Stage, and in the new stage, click Add Task.

g From the list of tasks, click your new task. The task name is based on the name of the plug-in that
you created.

You have created your own plug-in from the archetype provided with the plug-in SDK, and deployed your
new plug-in to your vRealize Code Stream appliance. The plug-in does not run any action until you add
some code to your Task tile.

What to do next

Finish creating your pipeline with this task. Then, run the pipeline and view the results.

Properties for Archetype Plug-Ins
When you create a plug-in from Archetype, you must define the value for the required properties.

The following properties indicate the required properties and examples. When you enter the properties, you
must follow the naming conventions.

vRealize Code Stream Plug-In SDK Development Guide

28 VMware, Inc.

Table 3‑4. Properties for Archetype Plug-Ins

Property Example Explanation Naming Convention

groupId com.vmware.vrcs Identifies the project uniquely
across all projects.

Must follow the package name
rules. You must control the
domain name. You can create as
many subgroups as desired.

artifactId simple-sample-plugin Name of the JAR file without
a version number. For a third-
party JAR, you must use the
name of the JAR as it is
distributed.

Choose any name desired, with
lowercase letters, and without
spaces or symbols.

version 1.0.0 If you distribute the plug-in,
you can choose any typical
version with numbers and
dots, such as 1.0, 1.1, 1.0.1.

Do not use dates, because they
are associated with SNAPSHOT
(nightly) builds.

package com.vmware.vrcs.tile A grouping of related types
that provide access protection
and name space management.

Package names are written in
all lower case. Do not start with
a digit or other character that is
illegal to use as the beginning
of a Java name.

vrcsEndpointID simpleEndpoint A unique identifier for the
endpoint tile.

Choose any name desired, with
lowercase letters, and without
spaces or symbols.

vrcsEndpointName Simple Endpoint Name of the endpoint that
appears at the user interface.

Choose any name desired.

vrcsEndpointType simpleServer A unique identifier of the
endpoint data type.

Choose any name desired, with
lowercase letters, and without
spaces or symbols.

vrcsPlugin Author VMware Inc Author of the plug-in. Choose any name desired.

vrcsPluginID simple-sample A unique identifier for the
plug-in across all plug-ins.

Choose any name desired, with
lowercase letters, and without
spaces or symbols.

vrcsPluginNamespace vrcs A set of symbols that are used
to organize objects of various
kinds, so that these objects
may be referred to by name.

Choose any name desired, with
lowercase letters, and without
spaces or symbols.

vrcsTaskID build_job A unique identifier for the
task tile.

Choose any name desired, with
lowercase letters, and without
spaces or symbols.

vrcsTaskName Build Job Name of the task that appears
at the user interface.

Choose any name desired.

Developing Your Own Plug-In By Modifying the SDK Sample
The plug-in that is included with the plug-in SDK, which you clone from GitHub, provides a sample
implementation to develop your own plug-in.

You can copy the sample plug-in to any folder on your development machine, even outside of the SDK
folder structure, as long as it is within a Maven project.

Procedure

1 Copy the rest-sample-plugin to your own workspace.

Chapter 3 Developing Your Own Plug-In

VMware, Inc. 29

2 Update the SDK root pom.xml file and include the path to the folder.

This step ensures that your plug-in can be built.

What to do next

For more information to develop your own plug-in from the sample, see the documentation at
https://github.com/vmwaresamples/vrcs-sdk-samples.

Testing and Debugging Your Tiles and Views
If a tile or view for your plug-in fails, you can use the debug options to troubleshoot your plug-in and the
Java code in real time.

In your development appliance, you can debug your tiles in real time. You use SSH to log in to your
vRealize Code Stream appliance, edit the runtime for your plug-in, enable the debug value, and restart the
appliance for the changes to take effect.

The views for your plug-in are cached in the browser. As a result, the changes might not always be visible
on the view, even if you modify your code and rebuild your plug-in. If this behavior occurs, you must pass a
special query parameter to the URL for your vRealize Code Stream appliance.

Use the procedures that follow to run your tiles in debug mode, and to debug the views for your tiles.

Caution Do not enable debugging in your production environment.

Debug Tile Views
You can debug the views for your tiles when you access your vRealize Code Stream appliance.

To debug the views for your tiles, you modify the URL when you access your vRealize Code Stream
appliance.

Procedure

u From your development machine, enter the following URL and update it with your own appliance
name:

https://your.vcac.appliance.url/vcac/org/qe/?debug=true&code=...

After you reload the page, the modified view loads, and more debug logs appear in your browser developer
console.

When you log in to your appliance again, debug=true is not added to the URL by default. If you notice that
an item on the view is not updated, you must watch the debug flag during development.

Run Tiles in Debug Mode
Use the following procedure to modify your development appliance so that you can run your tiles in debug
mode.

To enable debug mode, you modify the debug setting in the runtime file for the plug-in.

Note The remote debug server runs at VRCS_APPLIANCE:8001, and you can connect your IDE of choice.

Procedure

1 From your development machine, log in to your vRealize Code Stream appliance using SSH:

ssh root@VRCS_APPLIANCE

vRealize Code Stream Plug-In SDK Development Guide

30 VMware, Inc.

2 Edit the runtime control file:

vi /usr/local/tekton/tektonruntime-ctl.sh

3 To enable the debug option, modify the setting:

DEBUG_ENABLED=yes

4 To restart the server, enter:

service tekton-server restart

You have enabled debug mode, and restarted the appliance for the changes to take effect.

Using Logs for Troubleshooting
You can use the following logs for troubleshooting problems that occur.

Log URL Location

Plug-in Logs /var/log/vmware/tekton/tekton_server.log on the vRCS
appliance

vRealize Code Stream
appliance

vRealize Code Stream
Logs

/var/log/vcac/catalina.out vRealize Code Stream
appliance

View Logs Available when debug=true flag is set. Browser Developer
Console

Chapter 3 Developing Your Own Plug-In

VMware, Inc. 31

vRealize Code Stream Plug-In SDK Development Guide

32 VMware, Inc.

Index

A
Alpaca JS 27
archetype

develop your plug-in 27
properties 28

B
before creating plug-ins 21
build SDK 18
built-in frameworks for views 27
bundle.yaml 21

C
clone plug-in SDK 16
commands, Maven 9
components

plug-in SDK 13
plug-ins 8

D
data types 8, 9, 17, 21, 23
debug mode 30
debugging your plug-in 30
deploy sample plug-in 19
deployment bundles 9
develop your plug-in

using SDK sample in GitHub 29
using archetype 27

directory structure for plug-in SDK 17

E
examples

bundle.yaml 21
tiles 24

extend vRealize Code Stream 8

F
frameworks for views 27

G
get plug-in SDK content in GitHub 15
GitHub, get plug-in SDK content 15

I
install and build SDK 18
interval to reload plug-ins 16

L
logs for troubleshooting 30, 31

M
Maven commands 9

O
orchestration engine 8
overview of plug-in SDK 7

P
pipeline tasks in tiles 9
plug-in SDK

cloning 16
components 13
directory structure 17
introduction 7
overview 7
preparing to use 15
prerequisites 15

plug-ins
before creating 21
components 8
developing 21
interval to reload 16
testing and debugging 30

prepare to use the plug-in SDK 15
prerequisites, SDK 15
properties for Archetype plug-ins 28
properties file for plug-in reload interval 16

S
sample data types 23
schema-based framework 27
SDK

install and build 18
introduction 7
preparing to use 15

T
testing your plug-in 30
tiles

deployment bundles 9
example 24

VMware, Inc. 33

for plug-in 8
views 26

troubleshooting
debug mode 30
debug views 30
logs 30, 31

troubleshooting your plug-in 30

U
update plug-in reload interval properties 16
using tiles to organize work 9

V
views

deployment bundles 9
for tiles 26

vRealize Code Stream Plug-In SDK Development Guide

34 VMware, Inc.

	vRealize Code Stream Plug-In SDK Development Guide
	Contents
	About the vRealize Code Stream Plug-In SDK Development Guide
	Introduction to vRealize Code Stream and the Plug-In SDK
	Overview of the Plug-In SDK
	Understanding Terminology
	Using the Plug-In SDK to Extend vRealize Code Stream
	Packaging and Deploying Plug-ins
	Maven Commands
	Organizing Work in a Pipeline

	Components of the Plug-In SDK

	Preparing to Use the Plug-In SDK
	Prerequisites
	Prepare Your Development Appliance
	Obtain the Plug-In SDK
	Directory Structure of the Plug-In Bundle
	Install and Build the Plug-In SDK
	Deploy the Sample Plug-In

	Developing Your Own Plug-In
	Before You Create Your Own Plug-In
	Bundles and Example Bundle.yaml
	Data Types and Example Data Type
	Example Tiles
	Tile Views
	Framework to Create Views

	Developing Your Own Plug-In Using Maven Archetype
	Properties for Archetype Plug-Ins

	Developing Your Own Plug-In By Modifying the SDK Sample
	Testing and Debugging Your Tiles and Views
	Debug Tile Views
	Run Tiles in Debug Mode
	Using Logs for Troubleshooting

	Index

