
Virtual Disk Development
Kit Programming Guide

VMware vSphere 7.0 U1
Virtual Disk Development Kit 7.0 U1

You can find the most up-to-date technical documentation on the VMware website at:

https://docs.vmware.com/

VMware, Inc.
3401 Hillview Ave.
Palo Alto, CA 94304
www.vmware.com

Copyright
©

 2008-2020 VMware, Inc. All rights reserved. Copyright and trademark information.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 2

https://docs.vmware.com/
http://pubs.vmware.com/copyright-trademark.html

Contents

About This Book 9

1 Introduction to the Virtual Disk API 12
About the Virtual Disk API 12

VDDK Components 13

Virtual Disk Library 13

Disk Mount Library 13

Virtual Disk Utilities 13

Backup and Restore on vSphere 13

Backup Design for vCloud Director 14

Use Cases for the Virtual Disk Library 14

Developing for VMware Platform Products 14

Managed Disk and Hosted Disk 15

Advanced Transports 16

VDDK and VADP Compared 16

Platform Product Compatibility 16

Redistributing VDDK Components 17

2 Installing the Development Kit 18
Prerequisites 18

Development Systems 18

Programming Environments 18

VMware Platform Products 19

Storage Device Support 19

Installing the VDDK Package 19

Repackaging VDDK Libraries 20

How to Find VADP Components 21

3 Virtual Disk Interfaces 22
VMDK File Location 22

Virtual Disk Types 22

Persistence Disk Modes 23

VMDK File Naming 23

Thin Provisioned Disk 25

Internationalization and Localization 25

Virtual Disk Internal Format 25

Grain Directories and Grain Tables 25

Data Structures in Virtual Disk API 26

VMware, Inc. 3

Credentials and Privileges for VMDK Access 27

Adapter Types 27

Virtual Disk Transport Methods 28

Local File Access 28

SAN Transport 28

HotAdd Transport 29

NBDSSL Transport 31

4 Virtual Disk API Functions 36
Virtual Disk Library Functions 36

Alphabetic Table of Functions 37

Start Up 38

Initialize the Library 38

Connect to a Workstation or Server 39

VMX Specification 39

Disk Operations 40

Create a New Hosted Disk 40

Open a Local or Remote Disk 40

Read Sectors From a Disk 41

Write Sectors To a Disk 41

Close a Local or Remote Disk 42

Get Information About a Disk 42

Free Memory from Get Information 42

Metadata Handling 42

Read Metadata Key from Disk 42

Get Metadata Table from Disk 43

Write Metadata Table to Disk 43

Check and Repair Sparse Disk Metadata 43

Disk Chaining and Redo Logs 43

Create Child from Parent Disk 44

Attach Child to Parent Disk 45

Opening in a Chain 46

Redo Logs and Linked Clone Backup 46

Cloning a Virtual Disk 47

Compute Space Needed for Clone 47

Clone a Disk by Copying Data 47

Error Handling 47

Return Error Description Text 48

Free Error Description Text 48

Administrative Disk Operations 48

Rename an Existing Disk 48

Virtual Disk Development Kit Programming Guide

VMware, Inc. 4

Grow an Existing Local Disk 48

Defragment an Existing Disk 48

Shrink an Existing Local Disk 49

Unlink Extents to Remove Disk 49

Shut Down 49

Disconnect from Server 49

Clean Up and Exit 49

Advanced Transport APIs 49

Initialize Virtual Disk API 50

Phone Home Support 52

Location of Log Files 53

List Available Transport Methods 53

Connect to VMware vSphere 53

Get Selected Transport Method 55

Prepare For Access and End Access 55

SAN Mode on Linux Uses Direct Mode 56

Clean Up After Disconnect 56

Ordering of Function Calls in Sequence 57

Updating Applications for Advanced Transport 57

Algorithm for vSphere Backup 58

Backup and Recovery Example 58

Multithreading Considerations 60

Multiple Threads and VixDiskLib 60

Capabilities of Library Calls 60

Support for Managed Disk 60

Support for Hosted Disk 61

5 Virtual Disk API Sample Code 62
Compiling the Sample Program 62

Visual C++ on Windows 62

C++ on Linux Systems 63

Library Files Required 63

Usage Message 64

Walk-Through of Sample Program 65

Include Files 65

Definitions and Structures 65

Dynamic Loading 66

Wrapper Classes 66

Command Functions 66

SSL Certificate Thumbprint 70

Virtual Disk Development Kit Programming Guide

VMware, Inc. 5

6 Practical Programming Tasks 71
Scan VMDK for Virus Signatures 71

Creating Virtual Disks 72

Create Local Disk 72

Create Remote Disk 73

Special Consideration for ESXi Hosts 74

VMDK File Versions 74

Working with Virtual Disk Data 75

Reading and Writing Local Disk 75

Reading and Writing Remote Disk 75

Deleting a Disk (Unlink) 76

Renaming a Disk 76

Managing Child Disks 76

Create Redo Logs 76

Virtual Disk in Snapshots 77

RDM Disks and Virtual BIOS 77

Restore RDM Disks 77

Restore the Virtual BIOS or UEFI 78

Interfacing With VMware vSphere 79

The VIX API 79

Virus Scan all Hosted Disk 79

The vSphere Web Services API 80

Virus Scan All Managed Disk 80

Read and Write VMDK Using vSphere API 80

First Class Disk (FCD) Backup 81

7 Backing Up Virtual Disks in vSphere 85
Design and Implementation Overview 85

The Backup Process 86

Communicating With the Server 86

Information Containers as Managed Objects 87

Gathering Status and Configuration Information 88

Doing a Backup Operation 90

Restore a Virtual Machine 91

Doing a Restore Operation 92

Access Files on Virtual Disks 94

More VADP Details 95

Low Level Backup Procedures 95

Communicate with the Server 95

The PropertyCollector 96

Creating a Snapshot 102

Virtual Disk Development Kit Programming Guide

VMware, Inc. 6

Backing Up a Virtual Disk 103

Deleting a Snapshot 104

New Query Allocated Blocks Function 104

Changed Block Tracking on Virtual Disks 106

Low Level Restore Procedures 111

Restoring a Virtual Machine and Disk 111

Restore Incremental Backup Data 121

Restore with Direct Connection to ESXi Host 121

Tips and Best Practices 122

Best Practices for SAN Transport 122

Best Practices for HotAdd Transport 123

Best Practices for NBD Transport 124

General Backup and Restore 126

Backup and Restore of Thin-Provisioned Disk 127

About Changed Block Tracking 127

HotAdd and SCSI Controller IDs 128

Encrypted VM Backup and Restore 128

Backup and Restore With vTPM 130

Windows Backup Implementations 132

Disable Automount in Windows Proxy 132

Security and Remote Desktop 132

Working with Microsoft Shadow Copy 133

Enable Virtual Machine Application Consistent Quiescing 134

Application-Consistent Backup and Restore 135

New VSS Support Added in vSphere 6.5 136

The VMware VSS Implementation 136

Linux Backup Implementation 137

8 Backing Up vApps in vCloud Director 139
Introduction to Tenant vApps 139

Prerequisites 140

Other Information 141

Conceptual Overview 141

The Backup Process 142

The Restore Process 143

Use Cases Overview 144

Managing Credentials 144

Finding a vApp 144

Protecting Specified vApps 145

Recovering an Older Version of a vApp 145

Recovering a Deleted vApp 145

Virtual Disk Development Kit Programming Guide

VMware, Inc. 7

Recovering a Single Virtual Machine 145

Backing Up vCloud Director 145

vCloud API Operations 146

Getting Access to vCloud Director 146

Inventory Access 147

Retrieving Catalog information 151

Retrieving vApp Configuration 152

Preventing Updates to a vApp During Backup or Restore 154

Associating vCloud Resources with vSphere Entities 155

Restoring vApps 158

Conclusion 159

9 Virtual Disk Mount API 160
The VixMntapi Library 160

Types and Structures 160

Function Calls 161

Programming with VixMntapi 166

File System Support 167

Diagnostic Logging for VixMntapi 167

Read-Only Mount on Linux 168

Sample VixMntapi Code 168

Restrictions on Virtual Disk Mount 169

10 Errors Codes and Open Source 170
Recent Changes 170

Finding Error Code Documentation 170

Association With VIX API Errors 170

Interpreting Errors Codes 171

Troubleshooting Dynamic Libraries 171

Open Source Components 172

Virtual Disk Development Kit Programming Guide

VMware, Inc. 8

About This Book

The VMware® Virtual Disk Development Kit Programming Guide introduces the Virtual Disk
Development Kit (VDDK) and the vSphere Storage APIs – Data Protection (VADP). For VDDK it
describes how to develop software using a virtual disk library that provides a set of system-call
style interfaces for managing virtual disks on ESXi hosts. For VADP it describes how to write
backup and restore software that can be managed by vCenter Server® for vSphere.

To view this version or previous versions of this book and other public VMware API and SDK
documentation, go to http://www.vmware.com/support/pubs/sdk_pubs.html.

Revision History

Table 1-1. Revision History summarizes the significant changes in each version of this guide.

Table 1-1. Revision History

Revision Description

2020-09-16 For vSphere 7.0 Update 1. Added best practices for NBD backup. Inclusive terminology (see below).
Renamed allowed and disallowed lists for SAN transport.

2020-04-02 For vSphere 7.0. Dedicated network for NBD backups, CBT enhancements.

2019-08-20 For vSphere 6.7 Update 3. Note change of policy for phone home (CEIP) going forward.

2019-04-11 For vSphere 6.7 Update 2, minor corrections, Storage Spaces stop application quiescing.

2018-10-16 For vSphere 6.7 Update 1, enhancements to VixMntapi library on Linux, more OS support.

2018-04-17 For vSphere 6.7, async NBD, query allocated blocks, First Class Disk, vTPM, phone home.

2017-03-09 Added section to best practices about backing up and restoring encrypted virtual disks.

2017-01-11 Corrections regarding 2TB virtual disk limits, more about ESXi connections.

2016-11-15 Final version for VDDK 6.5. New support for encryption, NBDSSL compression, and VSS extensions.

2016-03-25 Removed statement that disks not associated with a virtual machine can be mounted.

2016-02-02 Fallback to NBDSSL, SCSI order for disk mount, no linked clone SAN restore, EUC non-support.

2015-07-13 Clarified connection port and RAID support, more allowed list details, added Linux freeze and thaw.

2015-05-05 Documented allowed and disallowed lists for device path selection, corrected install procedures.

2014-12-26 Final version for VDDK 6.0. Virtual volumes support. SSL certificate checking now mandatory.

2014-04-08 VDDK 5.5.1 supports GPT. Snapshot quiesce and memory are incompatible. Describe VMDK version 3.

2013-11-08 Fixed several errors involving roles and licensing, physical or virtual proxy, and log level.

2013-10-14 Corrections regarding 32-bit Windows and PackageCode. Removed Reparent and Combine APIs.

2013-09-22 Final version for the vSphere 5.5 release, with new chapter on vApp backup for vCloud Director.

VMware, Inc. 9

http://www.vmware.com/support/pubs/sdk_pubs.html

Table 1-1. Revision History (continued)

Revision Description

2012-12-21 Bug fix version of the vSphere 5.1 manual: numeric change ID policy, mount restrictions.

2012-10-05 Final version of this manual for the vSphere 5.1 release.

2011-11-18 Bug fix version for 4Q 2011 refresh of the VMware vSphere Documentation Center.

2011-08-22 Final version for the VDDK 5.0 release, subsuming Designing Backup Solutions technical note.

2010-10-12 Bug fix revision for the VDDK 1.2.1 release

2010-08-05 Version for vSphere 4.1 and the VDDK 1.2 public release.

2009-05-29 Final version for the VDDK 1.1 public release.

2008-04-11 Updated version for release 1.0 of the Virtual Disk Development Kit.

2008-01-31 Initial version of the Virtual Disk Development Kit for partner release.

Inclusive Terminology

At VMware, we value inclusion. To foster this principle within our customer, partner, and internal
community, we are replacing some of the terminology in our content. We have updated this
guide to remove instances of non-inclusive terminology.

Intended Audience

This guide is intended for developers who are creating applications that manage virtual storage,
especially backup and restore applications. It assumes knowledge of C and C++ programming.
For VADP development, this guide assumes knowledge of Java.

Supported Platform Products

You can develop VDDK programs using either Linux or Windows, and test them using VMware
Workstation or ESXi and vSphere. To develop and test VADP programs, you need a vCenter
Server and ESXi hosts, preferably with shared cluster storage.

Document Feedback

VMware welcomes your suggestions for improving our developer documentation. Send your
feedback to docfeedback@vmware.com.

VMware Technical Publications

VMware Technical Publications provides a glossary of terms that might be unfamiliar to you. For
definitions of terms as they are used in VMware technical documentation go to http://
www.vmware.com/support/pubs.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 10

mailto:docfeedback@vmware.com
http://www.vmware.com/support/pubs
http://www.vmware.com/support/pubs

To access the current versions of VMware manuals, go to http://pubs.vmware.com/vsphere-50/
index.jsp.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 11

http://pubs.vmware.com/vsphere-50/index.jsp
http://pubs.vmware.com/vsphere-50/index.jsp

Introduction to the Virtual Disk
API 1
The virtual disk development kit (VDDK) is an SDK to help developers create applications that
access storage on virtual machines. The VDDK package is based on the virtual disk API,
introduced in this chapter.

The VMware Storage APIs – Data Protection (VADP) use the virtual disk API and a subset of
vSphere APIs to take snapshots of virtual machines running on ESXi, enabling full or incremental
backup and restore. VADP replaces VMware Consolidated Backup (VCB).

This chapter includes the following topics:

n About the Virtual Disk API

n VDDK Components

n Use Cases for the Virtual Disk Library

n Developing for VMware Platform Products

About the Virtual Disk API

The virtual disk API, or VixDiskLib, is a set of function calls to manipulate virtual disk files in VMDK
format (virtual machine disk). Function call semantics are patterned after C system calls for file
I/O. Using the virtual disk API, you can write programs to manage VMDK files directly from your
software applications.

These library functions can manipulate virtual disks on VMware Workstation or similar products
(hosted disk) or virtual disks residing on file system volumes of an ESXi host managed by vCenter
Server (managed disk). Hosted is a term meaning that the virtualization platform and disk are
hosted by a guest operating system such as Windows or Linux.

The VDDK package installs on either Windows or Linux, so you can write VDDK and VADP
applications using either system. Applications can manipulate the virtual disks of any operating
system that runs on a supported VMware platform product. You may repackage VDDK binaries
into your software application after signing a redistribution agreement. See the VDDK Release
Notes for a list of supported platform products and development systems.

The VDDK and VADP enable you to develop applications that work effectively across multiple
virtual disks from a central location.

VMware, Inc. 12

VDDK Components

The virtual disk development kit includes the following components:

n The virtual disk library, a set of C function calls to manipulate VMDK files

n The disk mount library, a set of C function calls to remote mount VMDK file systems

n C++ code samples that can be compiled with Visual Studio or the GNU C compiler

n PDF manuals and online HTML reference

Virtual Disk Library

VixDiskLib is a standalone wrapper library to help you develop solutions that integrate into
VMware platform products. The virtual disk library has the following capabilities:

n It allows programs to create, convert, expand, defragment, shrink, and rename virtual disk
files.

n It can create redo logs (parent-child disk chaining, or deltas) and it can delete VMDK files.

n It permits random read/write access to data anywhere in a VMDK file, and reads metadata.

n It can connect to remote vSphere storage using advanced transports, SAN or HotAdd.

For Windows, the virtual disk kernel-mode driver should be 64-bit. User libraries could be 32-bit
because Windows On Windows 64 can run 32-bit programs without alteration. VMware provides
only 64-bit libraries.

Disk Mount Library

The virtual disk mount library, vixMntapi, allows programmatic access of virtual disks as if they
were mounted disk partitions. For more information see Chapter 9 Virtual Disk Mount API. The
vixMntapi library is packaged in the VDDK with vixDiskLib.

Virtual Disk Utilities

The Virtual Disk Development Kit used to include two command-line utilities for managing virtual
disk files: disk mount and virtual disk manager. They were last delivered in the VDDK 5.0 release.
For more information see the old Disk Mount and Virtual Disk Manager User’s Guide, still
available on the Web.

Backup and Restore on vSphere

The VMware Storage APIs – Data Protection (VADP) is a collection of APIs that are useful for
developing or extending backup software so it can protect virtual machines running on ESXi
hosts in VMware based datacenters. For more information see Chapter 7 Backing Up Virtual
Disks in vSphere.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 13

Backup Design for vCloud Director

With VMware vCloud®, the self-service capabilities of vCloud Director provide three levels of
data protection. Backup providers can offer vApp protection at the system level, the tenant level,
or the end-user level. For information about vCloud data protection, see the technical note
Backup Design for vCloud Tenant vApps.

Use Cases for the Virtual Disk Library

The library provides access to virtual disks, enabling a range of use cases for application vendors
including:

n Back up a particular volume, or all volumes, associated with a virtual machine.

n Connect a backup proxy to vSphere and back up all virtual machines on a storage cluster.

n Read virtual disk and run off-line anti-virus scanning, or package analysis, of virtual machines.

n Write to virtual disk to perform off-line centralized patching of virtual machines.

n Manipulate virtual disks to defragment, expand, convert, rename, or shrink the file system
image.

n Perform data recovery or virus cleaning on corrupt or infected off-line virtual machines.

Developing for VMware Platform Products

In a VMware based data center, commercial backup software is likely to access virtual disks
remotely, perhaps from a backup proxy. The proxy can be a virtual machine or a physical
machine with backup-restore software installed and access to alternate storage such as a tape
autochanger or equivalent.

At a given point in time, during the backup window, backup software:

n Snapshots virtual machines in a cluster, one by one, or in parallel. Virtual machines run off the
snapshot.

n Copies the quiesced base disk, or (for incremental backup) only changed blocks, to backup
media.

n Records the configuration of virtual machines.

n Reverts and deletes snapshots, so virtual machines retain any changes made during the
backup window.

In the above procedure, the virtual disk library is used in the second step only. The other steps
use a portion of the vSphere API (called VADP) to snapshot and save configuration of virtual
machines. The virtual disk in a cluster is “managed” by vSphere.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 14

http://www.vmware.com/files/pdf/techpaper/Backup-Design-for-vCloud-Tenant-vApps.pdf

Managed Disk and Hosted Disk

Analogous to a hard disk drive, virtual disk files represent the storage volumes of a virtual
machine. Each is named with .vmdk suffix. On a system running VMware Workstation, file
systems of each guest OS are kept in VMDK files hosted on the system’s physical disk. VMDK
files can be accessed directly on the host.

With the virtual machine file system (VMFS) on ESXi hosts, VMDK files again represent storage
volumes of virtual machines. They are on VMFS, which often resides on shared storage in a
cluster. The vCenter Server manages the cluster storage so it can migrate (vMotion) virtual
machines from one ESXi host to another without moving VMDK files. VMFS storage is therefore
called managed disk.

VMFS disk can reside on a storage area network (SAN) attached to ESXi hosts by Fibre Channel,
iSCSI, or SAS connectors. It can also reside on network attached storage (NAS), or on directly
attached disk.

Figure 1-1. Managed Disk on vSphere depicts the arrangement of managed disk, as VMDK files in
a SAN based cluster. Figure 1-2. Hosted Disk on Workstation depicts hosted disk on VMware
Workstation, as VMDK files on physical disk.

Figure 1-1. Managed Disk on vSphere

Virtual Disk Development Kit Programming Guide

VMware, Inc. 15

Figure 1-2. Hosted Disk on Workstation

The VDDK supports both managed disk and hosted disk. Some functions are not supported for
managed disk, and others are not supported for hosted disk, as noted in documentation.
Managed virtual disk files larger than 2TB are supported by vSphere 5.5 and later.

Advanced Transports

With managed disk, VDDK applications can make use of advanced transports to perform many
I/O operations directly on the SAN, rather than over the LAN. This improves performance and
saves network bandwidth.

VDDK and VADP Compared

The Virtual Disk Development Kit (VDDK) includes a set of C library routines for manipulating
virtual disk (VixDiskLib) and for mounting virtual disk partitions (VixMntapi). The VDDK focuses on
efficient access and transfer of data on virtual disk storage.

The vSphere Storage APIs for Data Protection (VADP) is a marketing term for a subset of the
vSphere API that enables backup and restore applications. The snapshot-based VADP framework
allows efficient, off-host, centralized backup of virtual machine storage. After taking a snapshot
to quiesce virtual disk, software can then back up storage using VDDK library routines.

The vSphere API is an XML-based Web service that provides the interfaces for vCenter Server
management of virtual machines running on ESXi hosts.

Developers need both VDDK and VADP to write data protection software. VADP is presented in
Chapter 7 Backing Up Virtual Disks in vSphere.

Platform Product Compatibility

To support a new release of vSphere, in most cases you should update and recompile your
software with a corresponding new release of VDDK. This is because VDDK is continually
updated to support new features in vSphere. As of 5.0, the version number of VDDK matches the
version number of vSphere.

Since its inception in 2008, VDDK has been backward compatible with virtual platform products
such as VMware Workstation, ESXi, and vCenter Server. VMware Fusion was never supported.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 16

Redistributing VDDK Components

After you use the VDDK to develop software applications that run on VMware platform products,
you might need to repackage library components that are compiled into your software.

To qualify for VDDK redistribution, you must be in the VMware TAP program at Select level or
above, and sign a redistribution agreement. Contact your VMware alliance manager to request
the VDDK redistribution agreement. VMware would like to know how you use the VDDK, in what
products you plan to redistribute it, your company name, and your contact information.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 17

Installing the Development Kit 2
To develop virtual disk applications, install the VDDK as described in this chapter. For backup
applications, VADP development also requires the vSphere Web Services SDK.

This chapter includes the following topics:

n Prerequisites

n Installing the VDDK Package

Prerequisites

This section covers what you need to begin VDDK and VADP development.

Development Systems

The VDDK has been tested and is supported on the following systems:

n Windows 64-bit (x86-64) systems

n Linux 64-bit (x86-64) systems

See the VDDK Release Notes for specific versions, which change over time. Mac OS X is not
supported.

Programming Environments

You can compile the sample program and develop vSphere applications in the following
environments:

Visual Studio on Windows

On Windows, programmers can use the C++ compiler in Visual Studio 2005, Visual Studio 2008,
and later. Along with Visual Studio, you also need to install the 64-bit debugging tools.

C++ and C on Linux

On Linux, programmers can use the GNU C compiler, version 4 and higher. The sample program
compiles with the C++ compiler g++, but VDDK also works with the C compiler gcc.

VMware, Inc. 18

Java Development for VADP

When developing backup and restore software to run on vSphere, VMware recommends Eclipse
with Java, on both Windows and Linux. The vSphere Web Services SDK now includes both Axis
and JAX-WS bindings. You can call C or C++ code with wrapper classes, as in Java Native
Interface (JNI).

VMware Platform Products

Software applications developed with the VDDK and VADP target the following platform
products:

n vCenter Server managing ESXi hosts

n ESXi hosts directly connected

See the VDDK Release Notes for specific versions, which change over time.

Hosted products including VMware Workstation are neither tested nor supported.

Storage Device Support

VMware Consolidated Backup (VCB) had knowledge base article http://kb.vmware.com/kb/
1007479 showing the support matrix for storage devices and multipathing. VMware does not
provide a similar support matrix for VDDK and VADP. Customers must get this information from
you, their backup software vendor.

Installing the VDDK Package

The VDDK is packaged as a compressed archive for Windows 64-bit and for Linux 64-bit. The
VDDK packages include the following components:

n Header files vixDiskLib.h and vm_basic_types.h in the include directory.

n Function library vixDiskLib.lib (Windows) or libvixDiskLib.so (Linux) in the lib directory.

n HTML reference documentation in the doc directory and sample program in doc/samples.

Note In the VDDK 5.5 release, VMware discontinued the Windows installer and 32-bit
executables for Windows and Linux. The VDDK is available for 64-bit systems only.

To install the package on Windows:

1 On the Download page, choose the .zip file for Windows and download it to your
development system.

2 Place the .zip file in a folder under Program Files – you can choose the name – and unpack
it:

cd C:\Program Files\VMware\VDDK670

unzip VMware-vix-disklib-*.zip

Virtual Disk Development Kit Programming Guide

VMware, Inc. 19

3 Go to the bin subfolder, locate the vstor2install.bat script, and double-click to run it. The
batch script should be run in place so that the current directory for execution is the bin
subfolder. By running it, you implicitly accept the VMware license terms.

Note If vstor2 is already installed on a backup proxy, you should first uninstall it with
vstor2uninstall.bat (from its corresponding VDDK version) then run the new install script.

4 Edit the Windows registry with regedit and check for the following key. If this key exists
from a previous VDDK install, right-click to delete it. Add a registry entry with the following
key:

HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\VMware, Inc.\VMware Virtual Disk

Development Kit

For convenience you might want to edit the Windows Path environment to include the VDDK
installation folder, C:\Program Files\VMware\VDDK550\bin in the example above.

To Install the package on Linux:

1 On the Download page, choose the binary tar.gz for 64-bit Linux.

2 Unpack the archive with tar to create the vmware-vix-disklib-distrib subdirectory.

$ tar xvzf VMware-vix-disklib-*.tar.gz

3 Change to the newly created directory to see its subdirectories:

$ cd vmware-vix-disklib-distrib; ls

bin64 doc FILES include lib32 lib64

The bin64 subdirectory contains a reporting program and virtual disk manager. License terms
are in the doc/EULA file. The sample program is under doc/samples. Header files in the
include subdirectory are for compiling your VDDK applications. Normally the lib64
components are installed under /usr/lib, /usr/lib/vmware-vix-disklib/lib64 for instance.

4 Install components as needed. You might want to edit your LD_LIBRARY_PATH environment to
include the library installation path. Alternatively, you can add the library location to the list
in /etc/ld.so.conf and run ldconfig as the superuser.

Repackaging VDDK Libraries

After you develop an application based on VDDK, you might need the VDDK binaries to run your
application.

As described in Redistributing VDDK Components, partners can sign a license agreement to
redistribute VDDK binaries that support VADP applications.

To enable VDDK binaries on Windows virtual machines without VDDK installed

Virtual Disk Development Kit Programming Guide

VMware, Inc. 20

Procedure

1 Install the Microsoft Visual C++ (MSVC) redistributable, possibly as a merge module. The
latest MSVC runtime works as side-by-side component, so manually copying it might not
work on Vista. See details on the Microsoft Web site for the redistributable package, x86
processors or x64 processors. Side-by-side is also explained on the Microsoft Web site.

2 Install VMware executables and DLLs from the \bin and \lib folders of the installed VDDK,
and the vstor2-mntapi10.sys driver into the Windows\system\drivers folder or equivalent.

3 Create and install your application, compiled in a manner similar to the vixDiskLibSample.exe
code, discussed in Chapter 5 Virtual Disk API Sample Code.

How to Find VADP Components

ESXi hosts and vCenter Server similarly implement managed objects that support inventory
traversal and task requests. Before you write VADP software in Java, you need to download the
vSphere Web Services SDK. You can find documentation and ZIP file for download on the
VMware Web site.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 21

Virtual Disk Interfaces 3
VMware offers many options for virtual disk layout, encapsulated in library data structures
described here.

This chapter includes the following topics:

n VMDK File Location

n Virtual Disk Types

n Data Structures in Virtual Disk API

n Virtual Disk Transport Methods

VMDK File Location

On ESXi hosts, virtual machine disk (VMDK) files are usually located under one of the /vmfs/
volumes, perhaps on shared storage. Storage volumes are visible from the vSphere Client, in the
inventory for hosts and clusters. Typical names are datastore1 and datastore2. To see a VMDK
file, click Summary > Resources > Datastore, right-click Browse Datastore, and select a virtual
machine.

On Workstation, VMDK files are stored in the same directory with virtual machine configuration
(VMX) files, for example /path/to/disk on Linux or C:\My Documents\My Virtual Machines on
Windows.

VMDK files store data representing a virtual machine’s hard disk drive. Almost the entire portion
of a VMDK file is the virtual machine’s data, with a small portion allotted to overhead.

Virtual Disk Types

The following disk types are defined in the virtual disk library:

n VIXDISKLIB_DISK_MONOLITHIC_SPARSE – Growable virtual disk contained in a single virtual
disk file. This is the default type for hosted disk, and the only setting in the Chapter 5 Virtual
Disk API Sample Code sample program.

n VIXDISKLIB_DISK_MONOLITHIC_FLAT – Preallocated virtual disk contained in a single virtual
disk file. This takes time to create and occupies a lot of space, but might perform better than
sparse.

VMware, Inc. 22

n VIXDISKLIB_DISK_SPLIT_SPARSE – Growable virtual disk split into 2GB extents (s sequence).
These files can to 2GB, then continue growing in a new extent. This type works on older file
systems.

n VIXDISKLIB_DISK_SPLIT_FLAT – Preallocated virtual disk split into 2GB extents (f sequence).
These files start at 2GB, so they take a while to create, but available space can grow in 2GB
increments.

n VIXDISKLIB_DISK_VMFS_FLAT – Preallocated virtual disk compatible with ESX 3 and later. Also
known as thick disk. This managed disk type is discussed in Managed Disk and Hosted Disk.

n VIXDISKLIB_DISK_VMFS_SPARSE – Employs a copy-on-write (COW) mechanism to save
storage space.

n VIXDISKLIB_DISK_VMFS_THIN – Growable virtual disk that consumes only as much space as
needed, compatible with ESX 3 or later, supported by VDDK 1.1 or later, and highly
recommended.

n VIXDISKLIB_DISK_STREAM_OPTIMIZED – Monolithic sparse format compressed for streaming.
Stream optimized format does not support random reads or writes.

Persistence Disk Modes

In persistent disk mode, changes are immediately and permanently written to the virtual disk, so
that they survive even through to the next power on.

In nonpersistent mode, changes to the virtual disk are discarded when the virtual machine
powers off. The VMDK files revert to their original state.

The virtual disk library does not encapsulate this distinction, which is a virtual machine setting.

VMDK File Naming

Table 3-1. VMDK Virtual Disk Files explains the different types of virtual disk. The first column
corresponds to Virtual Disk Types but without the VIXDISKLIB_DISK prefix. The third column
gives the possible names of VMDK files as implemented on Workstation and ESXi hosts.

Note When you open a VMDK file with the virtual disk library, always open the one that points
to the others, not the split or flat sectors. The file to open is most likely the one with the shortest
name.

For information about other virtual machine files, see section “Files that Make Up a Virtual
Machine” in the VMware Workstation User’s Manual. On ESXi hosts, VMDK files are type
VMFS_FLAT or VMFS_THIN.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 23

Table 3-1. VMDK Virtual Disk Files

Disk Type in API Virtual Disk Creation on VMware Host Filename on Host

MONOLITHIC_SPARSE In Select A Disk Type, accepting the defaults by not
checking any box produces one VMDK file that can grow
larger if more space is needed. The <vmname> represents
the name of a virtual machine.

On VMFS partitions, this is name of the disk descriptor file.

<vmname>.vmdk

MONOLITHIC_FLAT

or VMFS_FLAT
or VMFS_THIN

If you select only the Allocate all disk space now check box,
space is pre-allocated, so the virtual disk cannot grow. The
first VMDK file is small and points to a much larger one,
whose filename says flat without a sequence number.

Similarly on VMFS partitions, this is the virtual disk file that
points to virtual disk data files, either thick or thin
provisioned.

<vnname>-flat.vmdk

SPLIT_SPARSE If you select only the Split disk into 2GB files check box,
virtual disk can grow when more space is needed. The first
VMDK file is small and points to a sequence of other VMDK
files, all of which have an s before a sequence number,
meaning sparse. The number of VMDK files depends on the
disk size requested. As data grows, more VMDK files are
added in sequence.

<vmname>-s<###>.vmdk

SPLIT_FLAT If you select the Allocate all disk space now and Split disk
into 2GB files check boxes, space is pre-allocated, so the
virtual disk cannot grow. The first VMDK file is small and
points to a sequence of other files, all of which have an f
before the sequence number, meaning flat. The number of
files depends on the requested size.

<vnname>-f<###>.vmdk

MONOLITHIC_SPARSE or
SPLIT_SPARSE snapshot

A redo log (or child disk or delta link) is created when a
snapshot is taken of a virtual machine, or with the virtual
disk library. Snapshot file numbers are in sequence, without
an s or f prefix. The numbered VMDK file stores changes
made to the virtual disk <diskname> since the original
parent disk, or previously numbered redo log (in other
words the previous snapshot).

<diskname>-<###>.vmdk

SE_SPARSE Space-efficient sparse (seSparse) format. In vSphere 5.1 and
later, used by VMware View to optimize linked clone
templates. In the vSphere API, see data object
SeSparseVirtualDiskSpec. Use of seSparse as a base disk
is neither documented nor supported.

n/a Snapshot of a virtual machine, which includes pointers to all
its .vmdk virtual disk files.

<vnname>Snapshot.vmsn

For lazy zeroed thick disk, all blocks are allocated, and data written to used blocks, however
unused blocks are left as-is, so they may contain data from previous use. Many storage systems
will zero-out unused blocks in the background. With eager zeroed thick disk, unused blocks are
zeroed-out at allocation time.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 24

Thin Provisioned Disk

With thin provisioned disk, the vSphere Client may report that provisioned size is greater than
disk capacity.

Provisioned size for a thin disk is the maximum size the disk will occupy when fully allocated.
Actual size is the current size of the thin disk. Overcommit means that if all thin disks were fully
provisioned, there would not be enough space to accommodate all of the thin disks.

Internationalization and Localization

VDDK libraries are not localized, but backup partners can support any locale that uses UTF-8
encoding. Other than Unicode, VDDK does not support multibyte character encodings such as
Extended Unix Code (EUC) for Chinese, Japanese, and Korean (ISO-2022).

The path name to a virtual machine and its VMDK can be expressed with any character set
supported by the host file system. As of vSphere 4 and Workstation 7, VMware supports
Unicode UTF-8 path names, although for portability to various locales, ASCII-only path names are
recommended.

Windows systems use UTF-16 for localized path names. For example, in locale FR (Français) the
VDDK sample code might mount disk at C:\Windows\Temp\vmware-Système, where è is
encoded as UTF-16 so the VixMntapi library cannot recognize it. In this case, a workaround is to
set the tmpDirectory configuration key with an ASCII-only path before program start-up; see
Initialize the Library.

For programs opening arbitrary path names, Unicode offers a GNU library with C functions
iconv_open() to initialize codeset conversion, and iconv() to convert UTF-8 to UTF-16, or
UTF-16 to UTF-8.

Virtual Disk Internal Format

The Virtual Disk Format 5.0 technical note provides possibly useful information about the VMDK
format, and is available at this URL:

http://www.vmware.com/support/developer/vddk/vmdk_50_technote.pdf

Grain Directories and Grain Tables

SPARSE type virtual disks use a hierarchical representation to organize sectors. See Virtual Disk
Format 5.0 referenced in Virtual Disk Internal Format. In this context, grain means granular unit of
data, larger than a sector. The hierarchy includes:

n Grain directory (and redundant grain directory) whose entries point to grain tables.

n Grain tables (and redundant grain tables) whose entries point to grains.

n Each grain is a block of sectors containing virtual disk data. Default size is 128 sectors
or 64KB.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 25

Data Structures in Virtual Disk API

Here are important data structure objects with brief descriptions:

n VixError – Error code of type uint64.

n VixDiskLibConnectParams – Public types designate the virtual machine credentials vmxSpec
(possibly through vCenter Server), the name of its host, and the credential type for
authentication. For details, see VMX Specification. The credType can be
VIXDISKLIB_CRED_UID (user name / password, most common), VIXDISKLIB_CRED_SESSIONID
(the HTTP session ID), VIXDISKLIB_CRED_TICKETID (vSphere ticket ID), or
VIXDISKLIB_CRED_SSPI (Windows only, current thread credentials).

typedef char * vmxSpec

typedef char * serverName

typedef VixDiskLibCredType credType

n VDDK 6.7 has a new union in the VixDiskLibConnectParams structure; see First Class Disk
(FCD) Backup.

n VixDiskLibConnectParams::VixDiskLibCreds – Credentials for either user ID or session ID.

VixDiskLibConnectParams::VixDiskLibCreds::VixDiskLibUidPasswdCreds – String data
fields represent user name and password for authentication.

VixDiskLibConnectParams::VixDiskLibCreds::VixDiskLibSessionIdCreds – String data
fields represent the session cookie, user name, and encrypted session key.

VixDiskLibConnectParams::VixDiskLibCredsb::VixDiskLibSSPICreds – String data fields
for security support provider interface (SSPI) authentication. User name and password are
null.

n VixDiskLibCreateParams – Types represent the virtual disk (see Virtual Disk Types), the disk
adapter (see Adapter Types), VMware version, and capacity of the disk sector.

typedef VixDiskLibDiskType diskType

typedef VixDiskLibAdapterType adapterType

typedef uint hwVersion

typedef VixDiskLibSectorType capacity

n VixDiskLibDiskInfo – Types represent the geometry in the BIOS and physical disk, the
capacity of the disk sector, the disk adapter (see Adapter Types), the number of child-disk
links (redo logs), and a string to help locate the parent disk (state before redo logs).

VixDiskLibGeometry biosGeo

VixDiskLibGeometry physGeo

VixDiskLibSectorType capacity

VixDiskLibAdapterType adapterType

int numLinks

char * parentFileNameHint

Virtual Disk Development Kit Programming Guide

VMware, Inc. 26

n VixDiskLibGeometry – Types specify virtual disk geometry, not necessarily the same as
physical disk geometry.

typedef uint32 cylinders

typedef uint32 heads

typedef uint32 sectors

Credentials and Privileges for VMDK Access

Local operations are supported by local VMDK. Access to ESXi hosts is authenticated by login
credentials, so with proper credentials VixDiskLib can reach any VMDK on an ESXi host. VMware
vSphere has its own set of privileges, so with the proper privileges (see below) and login
credentials, VixDiskLib can reach any VMDK on an ESXi host managed by vCenter Server.
VixDiskLib supports the following:

n Both read-only and read/write modes

n Read-only access to disk associated with any snapshot of online virtual machines

n Access to VMDK files of offline virtual machines (vCenter restricted to registered virtual
machines)

n Reading of Microsoft Virtual Hard Disk (VHD) format

With vCenter Server, the Role of the backup appliance when saving data must have these
privileges for all the virtual machines being backed up:

n VirtualMachine > Configuration > Disk change tracking

n VirtualMachine > Provisioning > Allow read-only disk access and Allow VM download

n VirtualMachine > State > Create snapshot and Remove snapshot

On the backup appliance, the user must have the following privileges:

n Datastore > Allocate space

n VirtualMachine > Configuration > Add new disk and Remove disk

n VirtualMachine > Configuration > Change resource and Settings

The user must have this privilege for vCenter Server and all ESXi hosts involved in backup:

n Global > DisableMethods and EnableMethods

If privileges are not applied at the vCenter Server level, the returned error message is somewhat
misleading: “The host is not licensed for this feature.”

Adapter Types

The library can select the following adapters:

n VIXDISKLIB_ADAPTER_IDE – Virtual disk acts like ATA, ATAPI, PATA, SATA, and so on. You
might select this adapter type when it is specifically required by legacy software.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 27

n VIXDISKLIB_ADAPTER_SCSI_BUSLOGIC – Virtual SCSI disk with Buslogic adapter. This is the
default on some platforms and is usually recommended over IDE due to higher performance.

n VIXDISKLIB_ADAPTER_SCSI_LSILOGIC – Virtual SCSI disk with LSI Logic adapter. Windows
Server 2003 and most Linux virtual machines use this type by default. Performance is about
the same as Buslogic.

Virtual Disk Transport Methods

VMware supports file-based or image-level backups of virtual machines hosted on an ESXi host
with SAN or NAS storage. Virtual machines read data directly from a shared VMFS LUN, so
backups are efficient and do not put significant load on production ESXi hosts or the virtual
network.

VMware offers interfaces for integration of storage-aware applications, including backup, with
efficient access to storage clusters. Developers can use VDDK advanced transports, which
provide efficient I/O methods to maximize backup performance. VMware supports four access
methods: local file, NBD (network block device) over LAN, NBD with SSL encryption (NBDSSL),
SAN, and SCSI HotAdd.

Local File Access

The virtual disk library can read virtual disk data from /vmfs/volumes on ESXi hosts, or from the
local file system on hosted products. This file access method is built into VixDiskLib, so it is
always available on local storage. However it is not a network transport method, and is seldom
used for vSphere backup.

SAN Transport

SAN mode requires applications to run on a backup server with access to SAN storage (Fibre
Channel, iSCSI, or SAS connected) containing the virtual disks to be accessed. As shown in the
figure below, this method is efficient because no data needs to be transferred through the
production ESXi host. A SAN backup proxy must be a physical machine. If it has optical media or
tape drive connected, backups can be made entirely LAN-free.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 28

Figure 3-1. SAN transport mode for backup

Fibre Channel/
iSCSI storage

VMFS

LAN

Cluster Storage

ESXi host

VMware
Tools

Virtual machine

Backup server

Application

Virtual Disk
API

Virtual disk

In SAN transport mode, the virtual disk library obtains information from an ESXi host about the
layout of VMFS LUNs, and using this information, reads data directly from the storage LUN where
a virtual disk resides. This is the fastest transport method for software deployed on SAN-
connected ESXi hosts.

In general, SAN transport works with any storage device that appears at the driver level as a LUN
(as opposed to a file system such as NTFS or EXT). SAN mode must be able to access the LUN
as a raw device. The real key is whether the device behaves like a direct raw connection to the
underlying LUN. SAN transport is supported in Fibre Channel, iSCSI, and SAS based storage
arrays (SAS means serial attached SCSI). SAN storage devices can contain SATA drives, but
currently there are no SATA connected SAN devices on the VMware hardware compatibility list.

SAN transport is not supported for backup or restore of virtual machines residing on VVol
datastores.

VMware vSAN, a network based storage solution with direct attached disks, does not support
SAN transport. Because vSAN uses modes that are incompatible with SAN transport, if the virtual
disk library detects the presence of vSAN, it disables SAN mode. Other advanced transports do
work.

HotAdd Transport

HotAdd is a VMware feature where devices can be added “hot” while a virtual machine is
running. Besides SCSI disk, virtual machines can add additional CPUs and memory capacity.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 29

HotAdd is a good way to get virtual disk data from a virtual machine to a backup appliance (or
backup proxy) for sending to the media server. The attached HotAdd disk is shown in the figure
below.

Figure 3-2. HotAdd transport mode for backup

Shared storage

VMFS

LAN

Shared storage
network

ESXi host

VMware
Tools

Virtual machine

ESXi host

VMware
Tools

Virtual machine

Backup proxy
Virtual appliance

Application

Virtual disk
API

Virtual disk

SCSI HotAdd

VMFS

Virtual disk

Running the backup proxy as a virtual machine has two advantages: it is easy to move a virtual
machine to a new media server, and it can back up local storage without using the LAN, although
this incurs more overhead on the physical ESXi host than when using SAN transport mode.

If backup software runs in a virtual appliance, it can take a snapshot and create a linked clone of
the target virtual machine, then attach and read the linked clone’s virtual disks for backup. This
involves a SCSI HotAdd on the ESXi host where the target VM and backup proxy are running.
Virtual disks of the linked clone are HotAdded to the backup proxy. The target virtual machine
continues to run during backup.

VixTransport handles the temporary linked clone and hot attachment of virtual disks. VixDiskLib
opens and reads the HotAdded disks as a “whole disk” VMDK (virtual disk on the local host). This
strategy works only on virtual machines with SCSI disks and is not supported for backing up
virtual IDE disks. HotAdd transport also works with virtual machines stored on NFS partitions.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 30

About the HotAdd Proxy

The HotAdd backup proxy must be a virtual machine. HotAdd involves attaching a virtual disk to
the backup proxy, like attaching disk to a virtual machine. In typical implementations, a HotAdd
proxy backs up either Windows or Linux virtual machines, but not both. For parallel backup, sites
can deploy multiple proxies.

The HotAdd proxy must have access to the same datastore as the target virtual machine, and
the VMFS version and data block sizes for the target VM must be the same as the datastore
where the HotAdd proxy resides.

If the HotAdd proxy is a virtual machine that resides on a VMFS-3 volume, choose a volume with
block size appropriate for the maximum virtual disk size of virtual machines that customers want
to back up, as shown in Table 3-2. VMFS-3 Block Size for HotAdd Backup Proxy. This caveat
does not apply to VMFS-5 volumes, which always have 1MB file block size. As of vSphere 6.7,
VMFS-3 is no longer supported.

Table 3-2. VMFS-3 Block Size for HotAdd Backup Proxy

VMFS-3 Block Size Maximum Target Disk Size

1MB (also for VMFS-5) 256GB (as of vSphere 5.5, 62TB)

2MB 512GB

4MB 1024GB

8MB 2048GB

NBDSSL Transport

When no other transport is available, networked storage applications can use LAN transport for
data access, with NBD (network block device) protocol, optionally with SSL encryption, called
NBDSSL. NBD is a Linux-style kernel module that treats storage on a remote host as a block
device. NBDSSL is a VMware variant that uses SSL to encrypt all data passed over the TCP
connection. The NBDSSL transport method is built into the virtual disk library, so it is always
available, and is the fall-back when no other transport method is available.

VMware libraries often fall back to NBDSSL when other transports are not available. Backup
applications can select NBD for higher throughput.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 31

Figure 3-3. NBDSSL transport mode for backup

Local storage

VMFS

LAN

ESXi host

VMware
Tools

Virtual machine

Backup server

Application

Virtual disk
API

Virtual disk

In this mode, the ESXi host reads data from storage and sends it across a network to the backup
server. With LAN transport, large virtual disks can take a long time to transmit. This transport
mode adds traffic to the LAN, unlike SAN and HotAdd transport, but NBDSSL transport offers the
following advantages:

n The ESXi host can use any storage device, including local storage or remote-mounted NAS.

n The backup proxy can be a virtual machine, so customers can use vSphere resource pools to
minimize the performance impact of backup. For example, the backup proxy can be in a
lower-priority resource pool than the production ESXi hosts.

When VDDK opens a non-snapshot disk for NBDSSL transfer (read-only or read/write) it selects
the ESXi host where the disk’s virtual machine currently resides.

However when VDDK opens a snapshot for NBDSSL transfer, the common backup case, VDDK
passes the datastore to vCenter Server, which consults its list of ESXi hosts with access to the
datastore; vCenter picks the first host with read/write access. The list of hosts is unordered, so
the host chosen for NBDSSL transfer of the snapshot is not necessarily the ESXi host where the
snapshot’s virtual machine resides.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 32

NBDSSL Performance

When reading disk data using NBDSSL transport, VDDK makes synchronous calls. That is, VDDK
requests a block of data and waits for a response. The block is read from disk and copied into a
buffer on the server side, then sent over the network. Meanwhile, no data gets copied over the
network, adding to wait time. To some extent, you can overcome this limitation by using multiple
streams to simultaneously read from a single disk or multiple disks, taking advantage of
parallelism.

As of vSphere 6.5, NBDSSL performance can be significantly improved using data compression.
Three types are available – zlib, fastlz, and skipz – specified as flags when opening virtual
disks with the extended VixDiskLib_Open() call. See Open a Local or Remote Disk.

Asynchronous Mode NBDSSL

As of vSphere 6.7, asynchronous I/O for NBDSSL transport mode is available. Performance of
NBDSSL mode data transfer can be improved with this option.

To implement asynchronous NBDSSL, use the new functions VixDiskLib_ReadAsync and
VixDiskLib_WriteAsync in a callback, followed by VixDiskLib_Wait, to replace the VixDiskLib read
and write functions. In the development kit, see vixDiskLibSample.cpp for code examples,
following logic for the -readasyncbench and -writeasyncbench options.

VDDK has had non-public asynchronous APIs since VDDK 6.0, but behavior is different in earlier
releases. File transport mode is synchronous in all releases.

Table 3-3. Asynchronous read and write

VDDK 6.0 VDDK 6.5 6.7

VixDiskLib_ReadAsync Always synchronous. Same as 6.0. For HotAdd and SAN modes,
same as 6.0 and 6.5.

NBDSSL mode is
asynchronous if the ESXi
host supports asynchronous
NBD.

VixDiskLib_WriteAsync For HotAdd and NBDSSL
modes, always
synchronous.

For SAN mode, the API is
asynchronous. A thread
handles writes one by one
in the back-end, so
outstanding I/O is always 1.

Same as 6.0. For HotAdd and SAN modes,
same as 6.0 and 6.5.

NBDSSL mode is
asynchronous if the ESXi
host supports asynchronous
NBD, as does ESXi 6.7.

NFC Session Limits and Timeouts

Virtual Disk Development Kit Programming Guide

VMware, Inc. 33

NBDSSL employs the network file copy (NFC) protocol. Table 3-4. NFC Session Connection Limits
shows limits on the number of connections for various host types. These are host limits, not per
process limits. Additionally vCenter Server imposes a limit of 52 connections. VixDiskLib_Open()
uses one connection for every virtual disk that it accesses on an ESXi host. Clone with
VixDiskLib_Clone() also requires a connection. It is not possible to share a connection across
physical disks. These NFC session limits do not apply to SAN or HotAdd transport.

Table 3-4. NFC Session Connection Limits

Host Platform When Connecting Limits You To About

vSphere 3.5 to an ESX host 9 connections directly, 27 connections through vCenter Server

vSphere 4.x to an ESXi host 11 connections directly, 23 connections through vCenter Server

vSphere 5.x to an ESXi host or
vCenter Server

Limited by a transfer buffer for all NFC connections, enforced by the host;
the sum of all NFC connection buffers to an ESXi host cannot exceed
32MB. Also 52 connections through vCenter Server, including the above
per-host limit.

vSphere 6.x

vSphere 7.0

to an ESXi host or
vCenter Server

The sum of all NFC connection buffers cannot exceed 48MB (by default)
for the NFC server in one ESXi host. With 1MB buffers per I/O stream, 48
requests can be concurrent. When customers use vCenter to manage ESXi
hosts, the NFC memory limit is not configurable for backup. The NFC
memory limit in ESXi hosts can be set with config.xml if there is no
vCenter.

The InitEx configuration file parameter vixDiskLib.nfc.ReadTimeoutMs indicates the preferred
connection timeout for backup and restore operations, and has the effect of influencing TCP
keep-alive time when no reads occur, which they do not during prolonged restores. If the
ReadTimeoutMs value is set higher than the TCP keep-alive time on the network, then a connection
timeout could occur.

For example, if the configuration file sets ReadTimeoutMs flag to 3600000 milliseconds (60
minutes) instead of accepting the default (varies from 6 to 45 seconds) then a TCP keep-alive
packet transmits only after 60 minutes. If restoring a virtual disk takes longer, leaving network
read activity idle for 60 minutes, the connection could break so subsequent restores fail.

SSL Certificates and Security

The VDDK 5.1 release and later were security hardened, with virtual machines set to check SSL
certificates.

On Windows VDDK 5.1 and 5.5 required the VerifySSLCertificates and InstallPath registry keys
under HKEY_LOCAL_MACHINE\SOFTWARE to check SSL certificates. On Linux VDDK 5.1 and 5.5
required adding a line to the VixDiskLib_InitEx configuration file to set
linuxSSL.verifyCertificates = 1.

As of VDDK 6.0 both SSL certificate verification and SSL thumbprint checking are mandatory and
cannot be disabled. The Windows registry and Linux SSL setting are no longer checked, so
neither has any effect.

Specifically VDDK 6.0 and later use X.509 certificates with TLS cryptography, replacing SSLv3.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 34

The following library functions enforce SSL certificate checking: InitEx, PrepareForAccess,
EndAccess, GetNfcTicket, and the GetRpcConnection interface that is used by all advanced
transports. SSL verification may use thumbprints to check if two certificates are the same. The
vSphere thumbprint is a cryptographic hash of a certificate obtained from a trusted source such
as vCenter Server, and passed in the SSLVerifyParam structure of the NFC ticket.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 35

Virtual Disk API Functions 4
This chapter provides an overview of functions in the Virtual Disk API and includes the following
sections:

After a presentation of Virtual Disk API functions in alphabetic order, sections focus on what the
functions do, in the normal order they would appear in a program, except advanced transport
functions (SAN and HotAdd) appear after the shutdown functions.

This chapter includes the following topics:

n Virtual Disk Library Functions

n Start Up

n Disk Operations

n Metadata Handling

n Disk Chaining and Redo Logs

n Cloning a Virtual Disk

n Error Handling

n Administrative Disk Operations

n Shut Down

n Advanced Transport APIs

n Ordering of Function Calls in Sequence

n Updating Applications for Advanced Transport

n Multithreading Considerations

n Capabilities of Library Calls

Virtual Disk Library Functions

You can find the VixDiskLib API Reference by using a Web browser to open the doc/index.html
file in the VDDK software distribution. As in most reference manuals, functions are organized
alphabetically, whereas in this chapter, functions are ordered by how they might be called.

VMware, Inc. 36

When the API reference says that a function supports “only hosted disks,” it means virtual disk
images hosted by VMware Workstation or similar products. Virtual disk stored on VMFS
partitions managed by ESXi or vCenter Server is called “managed disk.”

The functions described in this chapter are based on concepts and employ data structures
documented in Chapter 3 Virtual Disk Interfaces.

If the library accesses virtual disk on VMFS, I/O by default goes through the ESXi host, which
manages physical disk storage. To use function calls that provide direct access to SAN storage,
start your program by calling the VixDiskLib_ConnectEx() function, as described in Advanced
Transport APIs.

Alphabetic Table of Functions

Function calls in the Virtual Disk API are listed alphabetically in Table 4-1. Virtual Disk API
Functions.

Table 4-1. Virtual Disk API Functions

Function Description

VixDiskLib_Attach Attach the child disk chain to the parent disk chain.

VixDiskLib_Cleanup Remove leftover transports. See Clean Up After Disconnect.

VixDiskLib_Clone Copy virtual disk to some destination, converting formats as appropriate.

VixDiskLib_Close Close an open virtual disk. See Close a Local or Remote Disk.

VixDiskLib_Connect Connect to the virtual disk library to obtain services. See also ConnectEx.

VixDiskLib_ConnectEx Connect to optimum transport. See Connect to VMware vSphere

VixDiskLib_Create Create a virtual disk according to specified parameters.

VixDiskLib_CreateChild Create a child disk (redo log or delta link) for a hosted virtual disk.

VixDiskLib_Defragment Defragment the sectors of a virtual disk.

VixDiskLib_Disconnect Disconnect from the library. See Disconnect from Server.

VixDiskLib_EndAccess Notify a host that it may again relocate a virtual machine. See Prepare For Access and End
Access.

VixDiskLib_Exit Release all resources held by the library. See Clean Up and Exit.

VixDiskLib_Flush Flush asynchronous write data to disk. Replaced by Wait function.

VixDiskLib_FreeErrorText Free the message buffer allocated by GetErrorText.

VixDiskLib_FreeInfo Free the memory allocated by GetInfo.

VixDiskLib_GetErrorText Return the text description of a library error code.

VixDiskLib_GetInfo Retrieve information about a virtual disk.

VixDiskLib_GetMetadataKeys Retrieve all keys in the metadata of a virtual disk.

VixDiskLib_GetTransportMode Get the current transport mode. See Get Selected Transport Method.

VixDiskLib_Grow Increase size of an existing virtual disk.

VixDiskLib_Init Initialize the old virtual disk library. Replaced by InitEx function.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 37

Table 4-1. Virtual Disk API Functions (continued)

Function Description

VixDiskLib_InitEx Initialize new virtual disk library. See Initialize Virtual Disk API.

VixDiskLib_ListTransportModes Available transport modes. See List Available Transport Methods.

VixDiskLib_Open Open a virtual disk. See Open a Local or Remote Disk.

VixDiskLib_PrepareForAccess Notify a host to refrain from relocating a virtual machine. See Prepare For Access and End
Access.

VixDiskLib_Read Read from an open virtual disk. See Read Sectors From a Disk.

VixDiskLib_ReadAsync Asynchronously read a range of sectors.

VixDiskLib_ReadMetadata Retrieve the value of a given key from disk metadata.

VixDiskLib_Rename Change the name of a virtual disk.

VixDiskLib_Shrink Reclaim blocks of zeroes from the virtual disk.

VixDiskLib_SpaceNeededForClone Compute the space required to clone a virtual disk, in bytes.

VixDiskLib_Unlink Delete the specified virtual disk.

VixDiskLib_Wait Wait for all asynchronous operations to complete.

VixDiskLib_Write Write to an open virtual disk. See Write Sectors To a Disk.

VixDiskLib_WriteAsync Asynchronously write a range of sectors.

VixDiskLib_WriteMetadata Update virtual disk metadata with the given key/value pair.

Start Up

The VixDiskLib_Init() and VixDiskLib_Connect() functions must appear in all virtual disk
programs.

VixDiskLib_Init() has been superseded by VixDiskLib_InitEx(). See Initialize Virtual Disk API.

Initialize the Library

VixDiskLib_Init() initializes the old virtual disk library. The arguments majorVersion and
minorVersion represent the VDDK library’s release number and dot-release number. The
optional third, fourth, and fifth arguments specify log, warning, and panic handlers. DLLs and
shared objects may be located in libDir.

VixError vixError = VixDiskLib_Init(majorVer, minorVer, &logFunc, &warnFunc, &panicFunc, libDir);

You should call VixDiskLib_Init() only once per process because of internationalization
restrictions, at the beginning of your program. You should call VixDiskLib_Exit() at the end of
your program for cleanup. For multithreaded programs you should write your own logFunc
because the default function is not thread safe.

In most cases you should replace VixDiskLib_Init() with VixDiskLib_InitEx(), which allows
you to specify a configuration file. For information about InitEx, see Initialize Virtual Disk API.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 38

Connect to a Workstation or Server

VixDiskLib_Connect() connects the library to either a local VMware host or a remote server. For
hosted disk on the local system, provide null values for most connection parameters. For
managed disk on vSphere, specify virtual machine name, vCenter Server or ESXi host, user name,
password, and port number.

vixError = VixDiskLib_Connect(&cnxParams, &srcConnection)

Always call VixDiskLib_Disconnect() before the end of your program.

Calling vixDiskLib_Disconnect() invalidates any open file handles, so if you use the VixMntapi
library, call VixMntApi_CloseDiskSet() before calling disconnect.

You can opt to use the VixDiskLibSSPICreds connection parameter to enable Security Support
Provider Interface (SSPI) authentication. SSPI has the advantage of not storing plain text
passwords in configuration files or in the registry. In order to be able to use SSPI, the following
conditions must be met:

n Connections must be made directly to a vCenter Server instance.

n Applications and their connections must employ one of two user account arrangements. The
connection must be established either using the same user context with the same user name
and password credentials on both the proxy and the vSphere Server, or using a domain user.
Attempts by applications to establish connections using the Local System account context
will fail.

n User contexts must have administrator privileges on the proxy and have VCB Backup User
role assigned in vSphere (by the vCenter Server).

If your setup meets all these conditions, you can enable SSPI authentication by setting USERNAME
to __sspi__. For SSPI, the password must be set, but it is ignored. It can be set to "" (null string).

VMX Specification

On VMware platform products, .vmx is a text file (usually located in the same directory as virtual
disk files) specifying virtual machine configuration. The Virtual Machine eXecutable (VMX)
process is the user-space component (or “world”) of a virtual machine. The virtual disk library
connects to virtual machine storage through the VMX process.

When specifying connection parameters (see Data Structures in Virtual Disk API) the preferred
syntax for vmxSpec is as follows:

n Managed object reference of the virtual machine, an opaque object that you obtain
programmatically using the PropertyCollector managed object:

moRef=<moref-of-vm>

Virtual Disk Development Kit Programming Guide

VMware, Inc. 39

The moRef of a virtual machine or disk snapshot on an ESXi host is likely different than the
moRef of the same virtual machine or disk snapshot as managed by vCenter Server. Here are
two example moRef specifications, one for ESXi and one for vCenter Server, both referring to
the same snapshot:

moref=153

moref=271

Disk Operations

These functions create, open, read, write, query, and close virtual disk.

Create a New Hosted Disk

VixDiskLib_Create() locally creates a new virtual disk, after being connected to the host. In
createParams, you must specify the disk type, adapter, hardware version, and capacity as a
number of sectors. This function supports hosted disk. For managed disk, first create a hosted
type virtual disk, then use VixDiskLib_Clone() to convert the virtual disk to managed disk.

vixError =

VixDiskLib_Create(appGlobals.connection, appGlobals.diskPath, &createParams, NULL, NULL);

Currently VixDiskLib_Create() enforces a 4GB limit for virtual disks on FAT32 and FAT file
systems, a 16TB - 54KB (hex FFFFFFF0000) limit on NTFS file systems, and a 2^64 - 1 limit (more
than an exabyte) on ReFS and exFAT file systems. Hosted virtual disk > 2TB is not supported.

POSIX based file systems including NFS version 3 no longer have a 2GB file size limit. Although
various checks are done to avoid creating impossibly large files, it becomes the customer’s
responsibility to cope with 2GB limits on NFS version 2 or Linux kernel 2.4 (EFS).

Open a Local or Remote Disk

After the library connects to a workstation or server, VixDiskLib_Open() opens a virtual disk.
With SAN or HotAdd transport, opening a remote disk for writing requires a pre-existing
snapshot.

vixError =

VixDiskLib_Open(appGlobals.connection, appGlobals.diskPath, appGlobals.openFlags, &srcHandle);

The following flags modify the open instruction:

n VIXDISKLIB_FLAG_OPEN_UNBUFFERED – Disable host disk caching.

n VIXDISKLIB_FLAG_OPEN_SINGLE_LINK – Open the current link, not the entire chain (hosted
disk only).

n VIXDISKLIB_FLAG_OPEN_READ_ONLY – Open the virtual disk read-only.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 40

As of vSphere 6.5, the following additional flags are available:

n VIXDISKLIB_FLAG_OPEN_COMPRESSION_ZLIB – Open for NBDSSL transport, zlib compression.

n VIXDISKLIB_FLAG_OPEN_COMPRESSION_FASTLZ – Open for NBDSSL transport, fastlz
compression.

n VIXDISKLIB_FLAG_OPEN_COMPRESSION_SKIPZ – Open for NBDSSL transport, skipz
compression.

Read Sectors From a Disk

VixDiskLib_Read() reads a range of sectors from an open virtual disk. You specify the beginning
sector and the number of sectors. Sector size could vary, but is defined in <vixDiskLib.h> as 512
bytes because VMDK files have that sector size.

vixError = VixDiskLib_Read(srcHandle, i, j, buf);

In vSphere 6.7 and later, you can improve performance of NBD transport with asynchronous
reads. Asynchronous calls may be used for all transport modes, because they fall back to
synchronous as needed.

// customized callback for complete notification

void myDiskLibCompletion(void *cbData, VixError result);

// a loop for multiple read requests

for (...)

 vixError = VixDiskLib_ReadAsync(srcHandle, i, j, buf, myDiskLibCompletion, cbData);

 if (vixError != VIX_ASYNC) {

 // handle error

 }

}

VixDiskLib_Wait(srcHandle); // wait ror all async read to complete

Write Sectors To a Disk

VixDiskLib_Write() writes one or more sectors to an open virtual disk. This function expects the
fourth parameter buf to be VIXDISKLIB_SECTOR_SIZE bytes long.

vixError = VixDiskLib_Write(newDisk.Handle(), i, j, buf);

In vSphere 6.7 and later, you can improve performance of NBD transport with asynchronous
writes. Your program VixDiskLib_WriteAsync in a loop, then calls VixDiskLib_Wait to let all
asynchronous writes complete.

// customized callback for complete notification

void myDiskLibCompletion(void *cbData, VixError result);

// a loop for multiple write requests

for (...)

 vixError = VixDiskLib_WriteAsync(newDisk.Handle(), i, j, buf, myDiskLibCompletion, cbData);

 if (vixError != VIX_ASYNC) {

Virtual Disk Development Kit Programming Guide

VMware, Inc. 41

 // handle error

 }

}

VixDiskLib_Wait(newDisk.Handle()); // wait for async write to complete

Close a Local or Remote Disk

VixDiskLib_Close() closes an open virtual disk.

VixDiskLib_Close(srcHandle);

VixDiskLib_Close() returns VIX_OK if successful, otherwise a suitable error code. To obtain a list
of possible return codes, see Finding Error Code Documentation.

If a program has worker threads called from a master process, errors might occur in the threads
after the master process calls VixDiskLib_Close(). Always wait for worker threads to end
before calling close.

Get Information About a Disk

vixError = VixDiskLib_GetInfo(srcHandle, diskInfo);

VixDiskLib_GetInfo() gets data about an open virtual disk, allocating a filled-in
VixDiskLibDiskInfo structure. Some of this information overlaps with metadata (see Metadata
Handling).

Free Memory from Get Information

This function deallocates memory allocated by VixDiskLib_GetInfo(). Call it to avoid a memory
leak.

vixError = VixDiskLib_FreeInfo(diskInfo);

Metadata Handling

VMware provides mechanisms for reading, writing, and repairing virtual disk metadata.

Read Metadata Key from Disk

vixError = VixDiskLib_ReadMetadata(disk.Handle(), appGlobals.metaKey, &val[0], requiredLen, NULL);

Retrieves the value of a given key from disk metadata. The metadata for a hosted VMDK is not as
extensive as for managed disk on an ESXi host. Held in a mapping file, VMFS metadata might also
contain information such as disk label, LUN or partition layout, number of links, file attributes,
locks, and so forth. Metadata also describes encapsulation of raw disk mapping (RDM) storage, if
applicable.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 42

Get Metadata Table from Disk

VixDiskLib_GetMetadataKeys() retrieves all existing keys from the metadata of a virtual disk,
but not the key values. Use this in conjunction with VixDiskLib_ReadMetadata().

vixError = VixDiskLib_GetMetadataKeys(disk.Handle(), &buf[0], requiredLen, NULL);

Here is an example of a simple metadata table. Uuid is the universally unique identifier for the
virtual disk.

adapterType = buslogic

geometry.sectors = 32

geometry.heads = 64

geometry.cylinders = 100

uuid = 60 00 C2 93 7b a0 3a 03-9f 22 56 c5 29 93 b7 27

Write Metadata Table to Disk

VixDiskLib_WriteMetadata() updates virtual disk metadata with the given key-value pair. If the
key-value pair is new, it gets added. If the key already exists, its value is updated. A key can be
zeroed but not deleted.

vixError = VixDiskLib_WriteMetadata(disk.Handle(), appGlobals.metaKey, appGlobals.metaVal);

Check and Repair Sparse Disk Metadata

VixDiskLib_CheckRepair() checks the metadata of a sparse disk, specified as a file on a
connection, and optionally repairs the metadata if necessary. Sparse disks occupy space on a
datastore only when a portion of the disk is used; the metadata tracks which portions are
allocated.

vixError = VixDiskLib_CheckRepair(appGlobals.connection, appGlobals.diskPath, TRUE);

Disk Chaining and Redo Logs

In VMDK terminology, all the following are synonyms: child disk, redo log, and delta link. From the
original parent disk, each child constitutes a redo log pointing back from the present state of the
virtual disk, one step at a time, to the original. This pseudo equation represents the relative
complexity of backups and snapshots:

backup image < child disk = redo log = delta link < snapshot

A backup image is less than a child disk because a backup image is merely a data stream. A
snapshot is more than a child disk because it contains virtual machine state, with pointers to
associated file states on VMDK.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 43

There exist other types of redo logs, such as those that perform progressive protection in
vSphere Replication (VR). For disk chaining, the “redo” terminology is especially appropriate for
the snapshot revert operation, when changed blocks in the redo log are applied to the base disk,
before deleting the redo log. Afterwards the base disk contains a “redo” of all changes that the
virtual machine made while the snapshot was active.

Create Child from Parent Disk

Usually you create the first child disk from the parent and create successive children from the
latest one in the chain. The disk tracks, in SPARSE format, any disk sectors changed since
inception, as illustrated below.

Figure 4-1. Child disks created from parent

Changed Sector Only

Virtual Machine Writes Here

Child3

Child2

Child1

vm.vmdk

vm-001.vmdk

vm-001.vmdk

vm-002.vmdk

Parent

vm.vmdk

vm.vmdk

vm.vmdk

vm.vmdk

Physical Disk

VixDiskLib_CreateChild() creates a child disk (or redo log) for a hosted virtual disk. After you
create a child, it is generally not necessary to open the parent, or earlier children in the disk
chain. The children’s vm.vmdk files point to redo logs, not to the parent disk, vm-flat.vmdk in this
example. To access the original parent, or earlier children in the chain, you can use
VixDiskLib_Attach() on hosted disk.

vixError = VixDiskLib_CreateChild(parent.Handle(), appGlobals.diskPath,

 VIXDISKLIB_DISK_MONOLITHIC_SPARSE, NULL, NULL);

Virtual Disk Development Kit Programming Guide

VMware, Inc. 44

Attach Child to Parent Disk

VixDiskLib_Attach() attaches the child disk into its parent disk chain. Afterwards, the parent
handle is invalid and the child handle represents the combined disk chain of redo logs. On failure
(vixError != VIX_OK) the parent handle is also invalid, so do not close it.

vixError = VixDiskLib_Attach(parent.Handle(), child.Handle());

For example, suppose you want to access the older disk image recorded by Child1. Attach the
handle of new Child1a to Child1, which provides Child1a’s parent handle, as shown below. It is now
permissible to open, read, and write the Child1a virtual disk.

The parent-child disk chain is efficient in terms of storage space, because the child VMDK records
only the sectors that changed since the last VixDiskLib_CreateChild(). The parent-child disk
chain also provides a redo mechanism, permitting programmatic access to any generation with
VixDiskLib_Attach().

Figure 4-2. Child disk attached to disk chain

Virtual Machine Writes Here

Child3

Child2

Child1

Child1a.vmdk

vm.vmdk

vm-001.vmdk

vm-001.vmdk

vm-002.vmdk

Attach

Parent

vm.vmdk

vm.vmdk

vm.vmdk

vm.vmdk

Physical Disk

Before VDDK 6.7.1 it was an error to close parentHandle after VixDiskLib_Attach succeeds. The
VDDK library now marks parentHandle internally to prevent closure and ensure cleanup. Here is
the calling sequence for open and attach:

1 Open the disk for attach.

2 Create a local connection.

3 With backed-up disk (referred to as the parent disk) still open, create child disk with a unique
name.

4 Open uniquely named tmp.vmdk (referred to as the redo log).

Virtual Disk Development Kit Programming Guide

VMware, Inc. 45

5 Attach the redo log to its parent disk.

VixDiskLib_Open(remoteConnection, virtualDiskPath, flags, &parentHandle);

VixDiskLib_Connect(NULL, &localConnection);

VixDiskLib_CreateChild(parentHandle, "C:\tmp.vmdk", VIXDISKLIB_DISK_MONOLITHIC_SPARSE, NULL, NULL);

VixDiskLib_Open(localConnection, "C:\tmp.vmdk", VIXDISKLIB_FLAG_OPEN_SINGLE_LINK, &redoHandle);

VixDiskLib_Attach(parentHandle, redoHandle);

Here is the calling sequence for close:

1 Close the redo log. Whether to close the parent disk handle is release dependent.

2 Unlink the redo log to detach it from the parent disk.

VixDiskLib_Close(redoHandle);

if (VIXDISKLIB_VERSION_MAJOR > 7) {

 VixDiskLib_Close(parentHandle); // to avoid memory leaks

}

VixDiskLib_Unlink(localConnection, "C:\tmp.vmdk");

Opening in a Chain

With (parent) base disk B and children C0, C1, and C2, opening C2 gives you the contents of B +
C0 + C1 + C2 (not really addition linked data sectors), while opening C1 gives you the contents of
B + C0 + C1.

A better solution than recording base disks and which children are descended from which is
changed block tracking, QueryChangedDiskAreas in the vSphere API. See Algorithm for vSphere
Backup.

Redo Logs and Linked Clone Backup

For managed virtual disk on vSphere, snapshots are used primarily for saving system state and
for backup, while linked clones create duplicate images for provisioning of View desktops. A
snapshot is usually a single redo log in a parent-child chain, while linked clones are usually
multiple redo logs based on the same parent.

In the vSphere 5.5 release and later, handling of linked clone hierarchies was changed to improve
the efficiency of backup and restore. The disk object now contain a “disk backing” that contains
one or more parent backing objects until the base disk is reached. This allows access anywhere in
the parent-child disk chain. With a clean never-used base virtual machine, the linked clone
hierarchy or snapshot chain always has the proper number of parent backing objects for the
nodes in the chain.

VDDK does not contain any convenience interfaces for backing up and restoring the linked clone
hierarchy (or the snapshot chain). Backup applications are responsible for discovering and saving
the hierarchy if they want to support this as a feature. Linked clones cannot be restored using
SAN transport.

In VMware View (VDI) environments, linked clone backup might not be necessary or advisable,
especially for nonpersistent desktops that revert to default after use.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 46

When the base disk or a child disk has an extra snapshot, when redo logs used to create linked
clones were never deleted, or when any parent or child in the chain needs disk consolidation or is
in a bad snapshot state, it is possible to have extra (too many) parent backing objects.
Consequently, restore applications should never assume the correct number of parent backing
objects. They must recursively query until the base parent backing object is reached, and make
sure when restoring leaf nodes that the correct parent backing object matches the node being
restored.

Cloning a Virtual Disk

On ESXi hosts in vSphere, programs cannot create managed disk, but they can call
vixDiskLib_Clone() to convert hosted disk to managed disk.

Compute Space Needed for Clone

This function computes the space required (in bytes) to clone a virtual disk, after possible format
conversion.

vixError = VixDiskLib_SpaceNeededForClone(child.Handle(), VIXDISKLIB_DISK_VMFS_FLAT, &spaceReq);

Caution VixDiskLib_SpaceNeededForClone() might not give accurate results, or could return
VIX_E_INVALID_ARG, when used with thin provisioned disk type VIXDISKLIB_DISK_VMFS_THIN.

Clone a Disk by Copying Data

This function copies data from one virtual disk to another, converting (disk type, size, hardware)
as specified.

vixError = VixDiskLib_Clone(appGlobals.connection, appGlobals.diskPath, srcConnection,

 appGlobals.srcPath, &createParams, CloneProgressFunc, NULL, TRUE);

Due to a vSphere 6.5 security enhancement, VixDiskLib_Clone() can no longer clone local disks
to remote disks that do not belong to any VM. Previous releases allowed use of a retained
username and password, but now enhanced security verification is required. The procedure for
VixDiskLib_Clone() to make a remote connection is first to get an NFC ticket from the ESXi host
based on the MoRef of the VM that manages the cloned-to disks. Then build an authenticated NFC
connection to the host using that ticket. The MoRef of the VM must be specified in vmxSpec of the
remote connection parameter passed to VixDiskLib_Clone(). The VM must be powered off, and
the target disks must already exist before cloning, not necessarily with the same names.
Afterwards the VM may be removed from the inventory with UnregisterVM, but it must remain on
the datastore with its cloned virtual disks.

Error Handling

These functions enhance the usefulness of error messages.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 47

Return Error Description Text

VixDiskLib_GetErrorText() returns the textual description of a numeric error code.

char* msg = VixDiskLib_GetErrorText(errCode, NULL);

Free Error Description Text

VixDiskLib_FreeErrorText() deallocates space associated with the error description text.

VixDiskLib_FreeErrorText(msg);

Administrative Disk Operations

These functions rename, grow, defragment, shrink, and remove virtual disk.

Rename an Existing Disk

VixDiskLib_Rename() changes the name of a virtual disk. Use this function only when the virtual
machine is powered off.

vixError = VixDiskLib_Rename(oldGlobals.diskPath, newGlobals.diskPath);

Grow an Existing Local Disk

VixDiskLib_Grow() extends an existing virtual disk by adding sectors. This function supports
hosted disk, but not managed disk.

vixError =

VixDiskLib_Grow(appGlobals.connection, appGlobals.diskPath, size, FALSE, GrowProgressFunc, NULL);

Defragment an Existing Disk

VixDiskLib_Defragment() defragments an existing virtual disk. Defragmentation is effective with
SPARSE type files, but might not do anything with FLAT type. In either case, the function returns
VIX_OK. This function supports hosted disk, but not managed disk.

vixError = VixDiskLib_Defragment(disk.Handle(), DefragProgressFunc, NULL);

Defragment consolidates data in the 2GB extents, moving data to lower-numbered extents, and
is independent of defragmentation tools in the guest OS, such as Disk > Properties > Tools >
Defragmentation in Windows, or the defrag command for the Linux Ext2 file system.

VMware recommends defragmentation from the inside out: first within the virtual machine, then
using this function or a VMware defragmentation tool, and finally within the host operating
system.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 48

Shrink an Existing Local Disk

VixDiskLib_Shrink() reclaims unused space in an existing virtual disk, unused space being
recognized as blocks of zeroes. This is more effective (gains more space) with SPARSE type files
than with pre-allocated FLAT type. On success, the function returns VIX_OK. This function
supports hosted disk, but not managed disk.

vixError = VixDiskLib_Shrink(disk.Handle(), ShrinkProgressFunc, NULL);

In VMware system utilities, “prepare” zeros out unused blocks in the VMDK so “shrink” can
reclaim them. In the API, use VixDiskLib_Write() to zero out unused blocks, and
VixDiskLib_Shrink() to reclaim space. Shrink does not change the virtual disk capacity, but it
makes more space available.

Unlink Extents to Remove Disk

VixDiskLib_Unlink() deletes all extents of the specified virtual disk, which unlinks (removes) the
disk data. This is similar to the remove or erase command in a command tool.

vixError = VixDiskLib_Unlink(appGlobals.connection, appGlobals.diskPath);

Shut Down

All Virtual Disk API applications should call these functions at end of program.

Disconnect from Server

VixDiskLib_Disconnect() breaks an existing connection.

VixDiskLib_Disconnect(srcConnection);

Clean Up and Exit

VixDiskLib_Exit() cleans up the library before exit.

VixDiskLib_Exit();

Advanced Transport APIs

For managed disk, the first release of VDDK required network access ESXi host (LAN or NBDSSL
transport). With VDDK 1.1 programs can access virtual disks directly on a storage device, LAN-
free. Direct SAN access increases I/O performance. To select the most efficient transport
method, a set of APIs is available, including:

n VixDiskLib_InitEx() – Initializes the advanced transport library. You must specify the library
location. Replaces VixDiskLib_Init() in your application.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 49

n VixDiskLib_ListTransportModes() – Lists transport modes that the virtual disk library
supports.

n VixDiskLib_ConnectEx() – Establishes a connection using the best transport mode available,
or one you select, to access a given machine’s virtual disk. Currently it does not check validity
of transport type. Replaces VixDiskLib_Connect() in your application.

Initialize Virtual Disk API

VixDiskLib_InitEx() replaces VixDiskLib_Init() to initialize new releases of the library.
Parameters are similar, except you should specify an actual libDir, and the configFile
parameter is new. For multithreaded programming, you should write your own logFunc, because
the default logging function is not thread-safe. VixDiskLib loads many libraries (DLLs or shared
objects) at start time using the Path or LD_LIBRARY_PATH environment. At run time, libDir
specifies where to load advanced transport modes, allowed list, and disallowed list. On Windows,
*libDir could be C:\Program Files\VMware\VMware Virtual Disk Development Kit. On Linux,
*libDir could be /usr/lib/vmware-vix-disklib.

VixError vixErr = VixDiskLib_InitEx(majorVersion, minorVersion, &logFunc, &warnFunc, &panicFunc,

*libDir, *configFile);

Logged messages appear by default in a temporary folder or log directory, for VDDK and for
many other VMware products. See Location of Log Files.

The currently supported entries in the configFile are listed below. The correct way to specify a
configuration is name=value. See below for a sample configuration file.

n tmpDirectory = "<TempDirectoryForLogging>" – Programs should set this because VDDK's
default temporary folder can change from backup job to job, which could cause cleanup
issues.

n vixDiskLib.transport.LogLevel – Overrides default logging for vixDiskLib advanced
transport functions, not including NFC (see nfc.LogLevel below). The default value is 3,
indicating audit. Each level includes all of the messages generated by lower numbered levels.
Here are the levels:

n 0 = Panic (failure only)

n 1 = Error

n 2 = Warning

n 3 = Audit

n 4 = Info

n 5 = Verbose

n 6 = Trivia

Virtual Disk Development Kit Programming Guide

VMware, Inc. 50

n vixDiskLib.transport.san.disallowed – Specifies a device node path, or a comma
separated list of device node paths, that VDDK uses as a list of LUNs on which not to attempt
VMFS file system discovery. This has the effect of making fewer device nodes available to
SAN transport, and avoids I/O on specific device node paths. The special string all indicates
that VDDK should use only the device node paths specified by
vixDiskLib.transport.san.allowed.

n vixDiskLib.transport.san.allowed – Specifies a device node path, or a comma separated
list of device node paths, that VDDK uses as a list of LUNs on which to attempt VMFS file
system discovery. This has the effect of making more device nodes available to SAN
transport, encouraging I/O on specific device node paths. Backup applications may create a
special device node and allow this device node for use in addition to those found by VDDK’s
device node scanner. Backup applications can also disallow specific devices found by VDDK’s
device node scanner to prevent use by SAN transport. Combining allowed and disallowed
lists, applications can establish a preferred device policy for backup I/O.

n vixDiskLib.disklib.EnableCache – Caching by vixDiskLib is off (0) by default. Setting 1
turns it on. Caching increases performance when information is read repeatedly, or accessed
randomly. In backup applications, information is usually accessed sequentially, and caching
can actually reduce performance. Moreover with caching, backup applications risk getting
stale information if a disk sector is rewritten (by another application) before the cache is
refreshed.

n vixDiskLib.linuxSSL.verifyCertificates – Whether to check SSL certificates and
thumbprints when connecting to a virtual machine. The only valid value is 1 for On, which is
the default.

n vixDiskLib.ssl.enableSslFIPS – Set this value to 1 (for On) to enable FIPS validated
cryptography with OpenSSL.

The following NFC related options override the default numbers provided to the various NFC
functions. The NFC timeouts shown in the example (below LogLevel) correspond to default
values on ESXi 5.x hosts.

n vixDiskLib.nfc.AcceptTimeoutMs – Overrides default value (3 minutes) for NFC accept
operations.

n vixDiskLib.nfc.RequestTimeoutMs – Overrides default value (3 minutes) for NFC request
operations.

n vixDiskLib.nfc.ReadTimeoutMs – Overrides default value (one minute) for NFC read
operations. Similar to TCP keep-alive interval. See NFC Session Limits and Timeouts.

n vixDiskLib.nfc.WriteTimeoutMs – Overrides default value (ten minutes) for NFC write
operations.

n vixDiskLib.nfcFssrvr.TimeoutMs – Overrides the default value (default is 0, indefinite
waiting) for NFC file system operations. If you specify a value, then a timeout occurs if the file
system is idle for the indicated period of time. The hazard of using the default value is that in
the rare case of a catastrophic communications failure, the file system will remain locked.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 51

n vixDiskLib.nfcFssrvrWrite.TimeoutMs – Overrides the default value (default is no timeout)
for NFC file system write operations. The timeout is specified in milliseconds. If you specify a
value, it will time out when a write operation fails to complete in the specified time interval.

n vixDiskLib.nfc.LogLevel – Overrides the default logging level for NFC operations. The
default value is 1, indicating error messages only. The meaning of values is listed here. Each
level includes all of the messages generated by lower numbered levels. This is the final NFC
setting.

n 0 = Quiet (minimal logging)

n 1 = Error

n 2 = Warning

n 3 = Info

n 4 = Debug

Here is a sample InitEx configuration file:

temporary directory for logs etc.

tmpDirectory="/usr/local/vendorapp/var/vmware/temp"

log level 0 to 6 for quiet ranging to verbose

vixDiskLib.transport.LogLevel=2

disable caching to disk

vixDiskLib.disklib.EnableCache=0

whether to check SSL thumbprint on Linux - has no effect

vixDiskLib.linuxSSL.verifyCertificates=1

network file copy options

vixDiskLib.nfc.AcceptTimeoutMs=180000

vixDiskLib.nfc.RequestTimeoutMs=180000

vixDiskLib.nfc.ReadTimeoutsMs=60000

vixDiskLib.nfc.WriteTimeoutsMs=600000

vixDiskLib.nfcFssrvr.TimeoutMs=0

vixDiskLib.nfcFssrvrWrite.TimeoutMs=0

nfc.LogLevel (0 = Quiet, 1 = Error, 2 = Warning, 3 = Info, 4 = Debug)

vixDiskLib.nfc.LogLevel=2

Timeout values are stored in a 32-bit field, so the maximum timeout you may specify is 2G
(2,147,483,648). Timeouts are specified in milliseconds and apply to each disk handle. NFC
settings apply to NBD and NBDSSL, but not to SAN or HotAdd.

Phone Home Support

The Customer Experience Improvement Program (CEIP) helps VMware understand what
products and versions have been installed in a datacenter. This information is collected to assist
and streamline problem determination and resolution.

Whether this information gets sent to VMware is a customer choice (on-premise) with CEIP opt-in
and opt-out, or as part of their Terms of Service. VMware collects the product name, version, and
transport to assist in problem resolution. No other partner-specific information is collected.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 52

VMware asks that vendors add these lines to the VDDK configuration file for identification. Legal
characters: 26 letters, digits, underscore (_), minus (-), period (.), and space. Double quotes are
needed if settings contain spaces. Optional DatabaseDir stores phone home data in a separate
folder.

vixDiskLib.phoneHome.ProductName = vendorName or ApplicationName

vixDiskLib.phoneHome.ProductVersion = versionNumber

vixDiskLib.phoneHome.DatabaseDir = folderName

Using the vSphere Client, customers can join or leave CEIP by clicking Menu > Administration >
Customer Experience Improvement Program. When customers leave CEIP, they disable phone-
home for all products, including VDDK.

Location of Log Files

On Linux, log messages appear under /var/log by default. On Windows, they appear in a
temporary folder, whose location can change from time to time. Early Windows systems used
C:\Windows\Temp. Windows XP and Server 2003 use C:\Documents and Settings\<user>\Local
Settings\Temp\vmware-<user>. Vista, Windows 7, and Server 2008 use C:\Users
\<user>AppData\Local\Temp\vmware-<user>.

On all versions of Windows the user’s TEMP environment setting overrides the default Temp
folder location. Temporary is something of a misnomer because files are never deleted from the
Temp folder, unless the user or an application deletes them. If the TEMP or Windows default Temp
folder is not found, VDDK (and other VMware software) have a fallback to <localAppDir>\Temp.

Alternatively, your software can set a custom temporary directory, as shown in the sample InitEx
file.

List Available Transport Methods

The VixDiskLib_ListTransportModes() function returns the currently supported transport
methods as a colon-separated string value, currently “file:san:hotadd:nbdssl” where nbdssl
indicates LAN transport. The default transport priority over the network is san:hotadd:nbdssl
assuming all are available.

printf("Transport methods: %s\n", VixDiskLib_ListTransportModes());

Connect to VMware vSphere

VixDiskLib_ConnectEx() connects the library to managed disk on a remote ESXi host or through
VMware vCenter Server. For hosted disk on the local system, it works the same as
VixDiskLib_Connect(). VixDiskLib_ConnectEx() takes three additional parameters:

n Boolean indicating TRUE for read-only access, often faster, or FALSE for read/write access. If
connecting read-only, later calls to VixDiskLib_Open() are always read-only regardless of
the openFlags setting.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 53

n Managed object reference (MoRef) of the snapshot to access using this connection. This is
required for most transport methods (SAN, HotAdd, NBDSSL) and to access a powered-on
virtual machine. You must also specify the associated vmxSpec property in connectParams.
When connecting to an ESXi host, provide the ESXi MoRef. When connecting by vCenter
Server, pass the vSphere MoRef, which differs.

n Preferred transport method, or NULL to accept the defaults. If you specify any advanced
transport mode as the only method, and that method is not available, the
VixDiskLib_ConnectEx() call does not fail, but the subsequent VixDiskLib_Open() call will
fall back to NBDSSL mode.

VixDiskLibConnectParams cnxParams = {0};

if (appGlobals.isRemote) {

 cnxParams.vmName = vmxSpec;

 cnxParams.serverName = hostName;

 cnxParams.credType = VIXDISKLIB_CRED_UID;

 cnxParams.creds.uid.userName = userName;

 cnxParams.creds.uid.password = password;

 cnxParams.port = port;

}

VixError vixError = VixDiskLib_ConnectEx(&cnxParams, TRUE, "snapshot-47", NULL, &connection);

When a program calls VixDiskLib_ConnectEx() with NULL parameter to accept default transport
mode, SAN is selected as the preferred mode, if SAN storage is available from the ESXi host.
Then if the program opens a virtual disk on local storage, subsequent writes will fail. In this case,
the program should explicitly pass nbdssl as the preferred transport mode.

The port is where vCenter Server listens for API queries. Specifying null allows the library to
select the port, usually 443 (HTTPS). By default VADP uses the same port for virtual machine
operations as other SOAP-based Web Services. By default VDDK uses port 902 (VIX automation)
for NBDSSL data transport.

Connect to ESXi hosts

In the connection parameters cnxParams, the vmxSpec managed object reference would be
different on an ESXi host than on the vCenter Server, as shown below. ESXi hosts offer no
prepare-for and end access protection. Otherwise ESXi host connections are similar to vCenter
Server connections.

vmxSpec = "moid=23498";

vmxSpec = "moid=898273";

Virtual Disk Development Kit Programming Guide

VMware, Inc. 54

Reuse a vCenter Server Session

As of vSphere 6.5, you can recycle a vCenter Server session to avoid connection overflow. Set
the credential type to VIXDISKLIB_CRED_SESSIONID and supply the value of
vmware_soap_session from a still-live vCenter Server session. For NBD(SSL) and HotAdd
transport, the sessionId.key password can be any non-empty string. For SAN transport, you must
specify the actual password.

if (appGlobals.isRemote) {

 cnxParams.vmName = vmxSpec;

 cnxParams.serverName = hostName;

 cnxParams.credType = VIXDISKLIB_CRED_SESSIONID;

 cnxParams.creds.sessionId.cookie = cookie;

 cnxParams.creds.sessionId.userName = userName;

 cnxParams.creds.sessionId.key = "reuse"; /* password */

 cnxParams.port = port;

}

Get Selected Transport Method

The VixDiskLib_GetTransportMode() function returns the transport method selected for
diskHandle.

printf("Selected transport method: %s\n", VixDiskLib_GetTransportMode(diskHandle));

Prepare For Access and End Access

The VixDiskLib_PrepareForAccess() function notifies a vCenter-managed host that a virtual
machine’s disks are being opened, probably for backup, so the host should postpone virtual
machine operations that might interfere with virtual disk access. Call this function before creating
a snapshot on a virtual machine. Internally, this function disables the vSphere API method
RelocateVM_Task.

vixError = VixDiskLib_PrepareForAccess(&cnxParams, "vmName");

The connection parameters must indicate one virtual machine only. When opening a managed
disk, provide valid credentials for the vCenter Server that manages the ESXi host with the disk.
The second parameter is currently just for identity tracking purposes, and is limited to 50
characters. It could be the virtual machine name or the name of your application. If you run
VixDiskLib_PrepareForAccess() directly on an ESXi host, the system throws an error saying
“VDDK: HostAgent is not a vCenter, cannot disable svmotion.”

Every VixDiskLib_PrepareForAccess() call should have a matching VixDiskLib_EndAccess()
call.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 55

The VixDiskLib_EndAccess() function notifies the host that a virtual machine’s disks have been
closed, so operations that rely on the virtual disks to be closed, such as vMotion, can now be
allowed. Call this function after closing all the virtual disks, and after deleting the virtual machine
snapshot. Normally this function is called after previously calling VixDiskLib_PrepareForAccess,
but you can call it to clean up after a crash. Internally, this function re-enables the vSphere API
method RelocateVM_Task.

vixError = VixDiskLib_EndAccess(&cnxParams, "vmName");

Here is a code snippet showing use of PrepareForAccess in a backup program that waits up to 10
minutes for Storage vMotion to finish. Regular vMotion would finish much faster than that.

/* New sample code accounts for VMODL_TYPE_VIM_FAULT_METHOD_ALREADY_DISABLED_FAULT */

if (appGlobals.vmxSpec != NULL) {

 for (int i = 0; i < 10; i++) {

 vixError = VixDiskLib_PrepareForAccess(&cnxParams, "Sample");

 if (vixError == VIX_OK) {

 break;

 } else {

 Sleep(60000);

 }

 }

}

SAN Mode on Linux Uses Direct Mode

With SAN transport on Linux, read and write operations are performed in “direct” mode
(O_DIRECT), meaning that no read or write buffering is done. Direct mode prevents other
processes from accessing the latest data, and avoids loss of information if the process dies
before committing its write buffers. In direct mode, the most time efficient performance can be
achieved if applications follow these guidelines when performing reads and writes. These
guidelines are applicable to Windows also.

n The buffer used for data transfer should be aligned on a page boundary.

n The transfer length should be an even multiple of the page size.

Clean Up After Disconnect

If virtual machine state was not cleaned up correctly after connection shut down,
VixDiskLib_Cleanup() removes extra state for each virtual machine. Its three parameters specify
connection, and pass back the number of virtual machines cleaned up, and the number remaining
to be cleaned up.

int numCleanedUp, numRemaining;

VixError vixError = VixDiskLib_Cleanup(&cnxParams, &numCleanedUp, &numRemaining);

Virtual Disk Development Kit Programming Guide

VMware, Inc. 56

Ordering of Function Calls in Sequence

The code block below shows the suggested ordering of VixDiskLib function calls in sequence,
including older function calls in combination with newer ones (Ex and Access).

For backup, the open, read, and close calls are made on virtual machine snapshots.

VixDiskLib_InitEx()

VixDiskLib_PrepareForAccess()

VixDiskLib_ConnectEx()

VixDiskLib_Open()

VixDiskLib_Read()

VixDiskLib_Close()

VixDiskLib_Disconnect()

VixDiskLib_EndAccess()

VixDiskLib_CleanUp()

VixDiskLib_Exit()

Updating Applications for Advanced Transport

To update your applications for advanced transport with managed disk, follow these steps:

Procedure

1 Find all instances of VixDiskLib_Connect() and change them to VixDiskLib_ConnectEx().

The vixDiskLib sample program was extended to use VixDiskLib_ConnectEx() with the -mod
option.

2 Likewise, change VixDiskLib_Init() to VixDiskLib_InitEx() and be sure to call it only
once.

3 Disable virtual machine relocation with the VixDiskLib_PrepareForAccess() call.

4 Add parameters in the middle:

n TRUE for high performance read-only access, FALSE for read/write access.

n Snapshot moRef, if applicable.

n NULL to accept transport method defaults (recommended).

5 Re-enable virtual machine relocation with the VixDiskLib_EndAccess() call.

6 Find VixDiskLib_Disconnect() near the end of program, and for safety add a
VixDiskLib_Cleanup() call immediately afterwards.

7 Compile with the new flexible-transport-enabled version of VixDiskLib.

The advanced transport functions are useful for backing up or restoring data on virtual disks
managed by VMware vSphere. Backup is based on the snapshot mechanism, which provides
a data view at a certain point in time, and allows access to quiescent data on the parent disk
while the child disk continues changing.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 57

Algorithm for vSphere Backup

A typical backup application follows this algorithm:

n Preferably through vCenter Server, contact the ESXi host and discover the target virtual
machine.

n Ask the ESXi host to take a snapshot of the target virtual machine.

n Using the vSphere API (PropertyCollector), capture configuration
(VirtualMachineConfigInfo) and changed block information (with queryChangedDiskAreas).
Save these for later.

n Using advanced transport functions and VixDiskLib, access the snapshot and save the data in
it.
If Changed Block Tracking is enabled, the snapshot contains only incremental backup data.

n Ask the ESXi host to delete the backup snapshot.

A typical back-in-time disaster recovery or file-based restore follows this algorithm:

n Preferably through VMware vCenter, contact the ESXi host containing the target virtual
machine.

n Ask the ESXi host to halt and power off the target virtual machine.

n Using advanced transport functions, restore a snapshot from saved backup data.

n For disaster recovery to a previous point in time, have the virtual machine revert to the
restored snapshot. For file-based restore, mount the snapshot and restore requested files.

Chapter 7 Backing Up Virtual Disks in vSphere presents these algorithms in more detail and
includes code samples. For best practices in backup and restore, see Tips and Best Practices.

Backup and Recovery Example

The VMware vSphere API method queryChangedDiskArea returns a list of disk sectors that
changed between an existing snapshot, and some previous time identified by a change ID.

The queryChangedDiskAreas method takes four arguments, including a snapshot reference and a
change ID. It returns a list of disk sectors that changed between the time indicated by the change
ID and the time of the snapshot. This is useful for incremental backup. Before a full backup, you
can call VixDiskLib_QueryAllocatedBlocks to get a list of in-use disk sectors so your backup
can skip unallocated sectors.

Suppose that you create an initial backup at time T1. Later at time T2 you take an incremental
backup, and another incremental backup at time T3. (You could use differential backups instead
of incremental backups, which would trade off greater backup time and bandwidth for shorter
restore time.)

For the full backup at time T1:

1 Keep a record of the virtual machine configuration, VirtualMachineConfigInfo.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 58

2 Create a snapshot of the virtual machine, naming it snapshot_T1.

3 Obtain the change ID for each virtual disk in the snapshot, changeId_T1 (per VMDK).

4 Back up the sectors returned by VixDiskLib_QueryAllocatedBlocks, avoiding unallocated
disk.

5 Delete snapshot_T1, keeping a record of changeId_T1 along with lots of backed-up data.

For the incremental backup at time T2:

1 Create a snapshot of the virtual machine, naming it snapshot_T2.

2 Obtain the change ID for each virtual disk in the snapshot, changeId_T2 (per VMDK).

3 Back up the sectors returned by queryChangedDiskAreas(snapshot_T2,... changeId_T1).

4 Delete snapshot_T2, keeping a record of changeId_T2 along with backed-up data.

For the incremental backup at time T3:

1 Create a snapshot of the virtual machine, naming it snapshot_T3.

At time T3 you can no longer obtain a list of changes between T1 and T2.

2 Obtain the change ID for each virtual disk in the snapshot, changeId_T3 (per VMDK).

3 Back up the sectors returned by queryChangedDiskAreas(snapshot_T3,... changeId_T2).

A differential backup could be done with queryChangedDiskAreas(snapshot_T3,...
changeId_T1).

4 Delete snapshot_T3, keeping a record of changeId_T3 along with backed-up data.

For a disaster recovery at time T4:

1 Create a new virtual machine with no guest operating system installed, using configuration
parameters you previously saved from VirtualMachineConfigInfo. You do not need to
format the virtual disks, because restored data includes formatting information.

2 Restore data from the backup at time T3. Keep track of which disk sectors you restore.

3 Restore data from the incremental backup at time T2, skipping any sectors already
recovered.

With differential backup, you can skip copying the T2 backup.

4 Restore data from the full backup at time T1, skipping any sectors already recovered. The
reason for working backwards is to get the newest data while avoiding unnecessary data
copying.

5 Power on the recovered virtual machine.

When programs open remote disk with SAN transport mode, they can write to the base disk, but
they cannot write to a snapshot (redo log). Opening and writing snapshots is supported only for
hosted disk.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 59

Multithreading Considerations

In multithreaded programs, disk requests should be serialized by the client program. Disk handles
are not bound to a thread and may be used across threads. You can open a disk in one thread
and use its handle in another thread, provided you serialize disk access. Alternatively you can use
a designated open-close thread, as shown in the workaround below.

Multiple Threads and VixDiskLib

VDDK supports concurrent I/O to multiple virtual disks, with certain limitations:

n VixDiskLib_InitEx() or VixDiskLib_Init() should be called once per process, from the
main thread.

n In the VixDiskLib_InitEx() or VixDiskLib_Init() function call, do not specify logging
callbacks as NULL. This causes VixDiskLib to provide its default logging functions, which are
not thread safe. If you are using VDDK in a multithreaded environment, you must provide
your own thread-safe log functions.

n When you call VixDiskLib_Open() and VixDiskLib_Close(), VDDK initializes and uninitializes
a number of libraries, some of which do not work if called from multiple threads. For example,
this fails:

Thread 1: VixDiskLib_Open VixDiskLib_Close

Thread 2: VixDiskLib_Open VixDiskLib_Close

The workaround is to use one designated thread to do all opens and closes, and to have
other worker threads doing reads and writes. This diagram shows concurrent reads on two
separate disk handles. Concurrent reads on the same disk handles are not allowed.

Open/Close Thread:

VixDiskLib_Open VixDiskLib_Open VixDiskLib_Close VixDiskLib_Close

(handle1) (handle2) (handle1) (handle2)

I/O Thread 1:

(owns handle1) VixDiskLib_Read ... VixDiskLib_Read ...

I/O Thread 2:

(owns handle2) VixDiskLib_Read ... VixDiskLib_Read ...

Capabilities of Library Calls

This section describes limitations, if any.

Support for Managed Disk

Some operations are not supported:

n For VixDiskLib_Connect() to open a managed disk connection, you must provide valid
vSphere access credentials. On ESXi hosts, VixDiskLib_Open() cannot open a single link in a
disk chain.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 60

n For VixDiskLib_Create() to create a managed disk on an ESXi host, first create a hosted
type disk, then use VixDiskLib_Clone() to convert the hosted virtual disk to managed virtual
disk.

n VixDiskLib_Defragment() can defragment hosted disks only.

n VixDiskLib_Grow() can grow hosted disks only.

n VixDiskLib_Unlink() can delete hosted disks only.

n Until ESXi 5.1, the HotAdd transport was available only with vSphere Enterprise Edition and
higher.

Support for Hosted Disk

Most everything (except advanced transport) is supported, except:

n The VixDiskLib_ConnectEx() extended connect function.

n SAN and HotAdd advanced transports.

n VixDiskLib_PrepareForAccess() and VixDiskLib_EndAccess() to delay Storage VMotion.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 61

Virtual Disk API Sample Code 5
This chapter discusses the VDDK sample program, in the following sections:

This chapter includes the following topics:

n Compiling the Sample Program

n Usage Message

n Walk-Through of Sample Program

Compiling the Sample Program

The sample program is written in C++, although the Virtual Disk API also supports C. For
compilation to succeed, the correct DLLs or shared objects must be loaded. You can ensure the
success of dynamic loading in a variety of ways.

n Set the path inside the VDDK program.

n Set the path for the shell being used in Linux or in Visual Studio for Windows.

For a default installation, the Linux path is /usr/share/doc/vmware-vix-disklib/sample.

n In Windows, set the Path element in the System Variables.

To do this in Windows XP, right-click Computer > Properties > Advanced > Environment
Variables, select Path in the System Variables lower list, click Edit, and add the path of the
VDDK bin directory.

In Windows 7, right-click Computer > Properties > Advanced System Settings >
Environment Variables, select Path in the System Variables list, click Edit, and add the path
of the VDDK bin directory.

C:\Program Files\VMware\VMware Virtual Disk Development Kit\doc\sample\ is the
default path.

Note that VDDK loads DLLs by relative path rather than absolute path, so conflicting versions of
the DLLs could cause problems.

Visual C++ on Windows

To compile the program, find the sample source vixDiskLibSample.cpp at this location:

VMware, Inc. 62

C:\Program Files\VMware\VMware Virtual Disk Development Kit\doc\sample\

For VDDK 5.5 and later, make sure that you have the 64-bit debugging tools installed along with
Visual Studio. Double-click the vcproj file, possibly convert format to a newer version, and
choose Build > Build Solution.

To execute the compiled program, choose Debug > Start Without Debugging, or type this in a
command prompt after changing to the doc\sample location given above:

Debug\vixdisklibsample.exe

SLN and VCPROJ Files

The Visual Studio solution file vixDiskLibSample.sln and project file vixDiskLibSample.vcproj
are included in the sample directory.

C++ on Linux Systems

Find the sample source in this directory:

/usr/share/doc/vmware-vix-disklib/samples/diskLib

You can copy vixDiskLibSample.cpp and its Makefile to a directory where you have write
permission, or switch user to root. On some Linux systems you need to add #include statements
for <stdio.h> and <string.h> after the #else clause on line 15. Type the make command to
compile. Run the application:

make

./vix-disklib-sample

Note If this fails, edit /etc/ld.so.conf and run ldconfig as root or change your
LD_LIBRARY_PATH environment to include the library installation path, /usr/lib/vmware-vix-
disklib/lib64.

Makefile

The Makefile fetches any packages that are required for compilation but are not installed.

Library Files Required

The virtual disk library comes with dynamic libraries, or shared objects on Linux, to simplify the
delivery of third-party and open source components.

Windows requires the lib/vixDiskLib.lib file for linking, and the bin/*.dll files at runtime.

Linux uses .so files for both linking and running.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 63

Usage Message

Running the sample application without arguments produces the following usage message:

Usage: vixdisklibsample command [options] diskPath

commands:

 -create : creates a sparse virtual disk with capacity specified by -cap

 -redo parentPath : creates a redo log 'diskPath' for base disk 'parentPath'

 -info : displays information for specified virtual disk

 -dump : dumps the contents of specified range of sectors in hexadecimal

 -fill : fills specified range of sectors with byte value specified by -val

 -wmeta key value : writes (key,value) entry into disk's metadata table

 -rmeta key : displays the value of the specified metada entry

 -meta : dumps all entries of the disk's metadata

 -clone sourcePath : clone source vmdk possibly to a remote site

 -readbench blocksize: do read benchmark on a disk using the specified I/O block size in sectors

 -writebench blocksize: do write benchmark on disk using the specified I/O block size in sectors

options:

 -adapter [ide|scsi] : bus adapter type for 'create' option (default='scsi')

 -start n : start sector for 'dump/fill' options (default=0)

 -count n : number of sectors for 'dump/fill' options (default=1)

 -val byte : byte value to fill with for 'write' option (default=255)

 -cap megabytes : capacity in MB for -create option (default=100)

 -single : open file as single disk link (default=open entire chain)

 -multithread n: start n threads and copy the file to n new files

 -host hostname : hostname / IP addresss (ESXi or vCenter)

 -user userid : user name on host (default = root)

 -password password : password on host

 -port port : port to use to connect to host (default = 443)

 -vm vmPath=/path/to/vm : inventory path to vm that owns the virtual disk

 -libdir dir : Directory containing vixDiskLibPlugin library

 -initex configfile : Use VixDiskLib_InitEx

 -ssmoref moref : Managed object reference of VM snapshot

 -mode mode : Mode string to pass into VixDiskLib_ConnectEx

 -thumb string : Provides a SSL thumbprint string for validation

The -thumb option is a new security-related feature in the VDDK 5.1 release. See SSL Certificate
Thumbprint.

The sample program’s -single option, which opens a single link instead of the entire disk chain,
is supported for (local) hosted disk, but not for (remote) managed disk.

To connect to an ESXi host with the sample program, you must specify the options -host, -user,
-password, and provide a diskPath on the ESXi host’s datastore. For example:

vix-diskLib-sample -info -host esx5 -user root -password secret "[datastore1] <VM>/<VM>.vmdk"

Virtual Disk Development Kit Programming Guide

VMware, Inc. 64

To connect to vCenter Server, you must also specify the options -libdir and -vm. Programs
need libdir so the DiskLibPlugin can connect with vCenter Server, which must locate the VM.
For example:

vix-diskLib-sample -info -host vc5 -user Administrator -password secret

 -libdir <pluginDir> -vm vmPath=<path/to/VM> "[<partition>] <VM>/<VM>.vmdk"

The vmPath is formulated in vSphere Client by starting at vCenter and inserting /vm/ before the
VM name. The diskPath is ascertained by clicking Edit Settings > Hard Disk and copying the
Disk File name.

vix-disklib-sample -info -host vc5 -user Administrator -password secret

 -libdir /usr/lib/vmware-vix-disklib/lib64 -vm vmPath=Datacenter/vm/RHEL5

 "[datastore1] RHEL5/RHEL5.vmdk"

To connect using an advanced transport, for example to virtual machine disk on SAN storage,
you must also specify the options -mode and -ssmoref. The transport mode and managed object
reference (of a snapshot) are required for VixDiskLib_ConnectEx(). To find the ssmoref, log in
to the managed object browser for the vCenter Server, and click content > rootFolder >
Datacenter > datastore > vm > snapshot. A snapshot must exist, because it is a bad idea to open
the base disk of a powered-on VM.

vix-disklib-sample -info -host vc5 -user Administrator -password secret -mode san

 -libdir /usr/lib/vmware-vix-disklib/lib64 -vm vmPath=Datacenter/vm/RHEL5

 -ssmoref snapshot-72 "[datastore1] RHEL5/RHEL5.vmdk"

On Windows, the VDDK package installs diskLibPlugin.dll in the \bin folder, not the \lib
folder, so change <pluginDir> accordingly.

Walk-Through of Sample Program

The sample program is the same for Windows as for Linux, with #ifdef blocks for Win32.

Include Files

Windows dynamic link library (DLL) declarations are in process.h, while Linux shared object (.so)
declarations are in dlfcn.h. Windows offers the tchar.h extension for Unicode generic text
mappings, not readily available in Linux.

Definitions and Structures

The sample program uses twelve bitwise shift operations (1 << 11) to track its available commands
and the multithread option. The Virtual Disk API has about 30 library functions, some for
initialization and cleanup. The following library functions are not demonstrated in the sample
program:

n VixDiskLib_Rename()

n VixDiskLib_Defragment()

Virtual Disk Development Kit Programming Guide

VMware, Inc. 65

n VixDiskLib_Grow()

n VixDiskLib_Shrink()

n VixDiskLib_Unlink()

n VixDiskLib_Attach()

The sample program transmits state in the appGlobals structure.

Dynamic Loading

The #ifdef DYNAMIC_LOADING block is long, starting on line 97 and ending at line 339. This block
contains function definitions for dynamic loading. It also contains the LoadOneFunc() procedure
to obtain any requested function from the dynamic library and the DynLoadDiskLib() procedure
to bind it. This demonstration feature could also be called “runtime loading” to distinguish it from
dynamic linking.

To try the program with runtime loading enabled on Linux, add -DDYNAMIC_LOADING after g++ in
the Makefile and recompile. On Windows, define DYNAMIC_LOADING in the project.

Wrapper Classes

Below the dynamic loading block are two wrapper classes, one for error codes and descriptive
text, and the other for the connection handle to disk.

The error wrapper appears in catch and throw statements to simplify error handling across
functions.

Wrapper class VixDisk is a clean way to open and close connections to disk. The only time that
library functions VixDiskLib_Open() and VixDiskLib_Close() appear elsewhere, aside from
dynamic loading, is in the CopyThread() function near the end of the sample program.

Command Functions

The print-usage message appears next, with output partially shown in Usage Message.

Next comes the main() function, which sets defaults and parses command-line arguments to
determine the operation and possibly set options to change defaults. Dynamic loading occurs, if
defined. Notice the all-zero initialization of the VixDiskLibConnectParams declared structure:

VixDiskLibConnectParams cnxParams = {0};

For connections to an ESXi host, credentials including user name and password must be correctly
supplied in the -user and -password command-line arguments. Both the -host name of the ESXi
host and its -vm inventory path (vmxSpec) must be supplied. When set, these values populate the
cnxParams structure. Initialize all parameters, especially vmxSpec, or else the connection might
behave unexpectedly.

A call to VixDiskLib_Init() initializes the library. In a production application, you can supply
appropriate log, warn, and panic functions as parameters, in place of NULL.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 66

A call to VixDiskLib_Connect() creates a connection to disk. If host cnxParams.serverName is
null, as it is without the -host argument, a connection is made to hosted disk on the local host.
Otherwise a connection is made to managed disk on the remote host. With -ssmoref argument,
advanced transport is used.

Next, an appropriate function is called for the requested operation, followed by error information
if applicable. Finally, the main() function closes the library connection to disk and exits.

DoInfo()

This procedure calls VixDiskLib_GetInfo() for information about the virtual disk, displays
results, and calls VixDiskLib_FreeInfo() to reclaim memory. The parameter disk.Handle()
comes from the VixDisk wrapper class discussed in Wrapper Classes.

In this example, the sample program connects to an ESXi host named esx5 and displays virtual
disk information for a Red Hat Enterprise Linux client. For an ESXi host, path to disk is often
something like [datastore1] followed by the virtual machine name and the VMDK filename.

vix-diskLib-sample -info -host esx5 -user root -password secret "[datastore1] RHEL6/
RHEL6.vmdk"

vix-diskLib-sample -info -host esx5 -user root -password secret "[datastore1] RHEL6/RHEL6.vmdk"

Disk "[datastore1] RHEL6/RHEL6.vmdk" is open using transport mode "nbdssl".

capacity = 4194304 sectors

number of links = 1

adapter type = LsiLogic SCSI

BIOS geometry = 0/0/0

physical geometry = 261/255/63

Transport modes supported by vixDiskLib: file:nbdssl

If you multiply physical geometry numbers (261 cylinders * 255 heads per cylinder * 63 sectors
per head) the result is a capacity of 4192965 sectors, although the first line says 4194304. A small
discrepancy is possible due to rounding. In general, you get at least the capacity that you
requested. The number of links specifies the separation of a child from its original parent in the
disk chain (redo logs), starting at one. The parent has one link, its child has two links, the
grandchild has three links, and so forth.

DoCreate()

This procedure calls VixDiskLib_Create() to allocate virtual disk. Adapter type is SCSI unless
specified as IDE on the command line. Size is 100MB, unless set by -cap on the command line.
Because the sector size is 512 bytes, the code multiplies appGlobals.mbsize by 2048 instead of
1024. Type is always monolithic sparse and Workstation 5. In a production application,
progressFunc and callback data can be defined rather than NULL. Type these commands to
create a sample VMDK file (the first line is for Linux only):

export LD_LIBRARY_PATH=/usr/lib/vmware-vix-disklib/lib64

vix-disklib-sample -create sample.vmdk

Virtual Disk Development Kit Programming Guide

VMware, Inc. 67

As a VMDK file, monolithic sparse (growable in a single file) virtual disk is initially 65536 bytes (2 ^
16) in size, including overhead. The first time you write to this type of virtual disk, as with
DoFill() below, the VMDK expands to 131075 bytes (2 ^ 17), where it remains until more space is
needed. You can verify file contents with the -dump option.

DoRedo()

This procedure calls VixDiskLib_CreateChild() to establish a redo log. A child disk records disk
sectors that changed since the parent disk or previous child. Children can be chained as a set of
redo logs.

The sample program does not demonstrate use of VixDiskLib_Attach(), which you can use to
access a link in the disk chain. VixDiskLib_CreateChild() establishes a redo log, with the child
replacing the parent for read/write access. Given a pre-existing disk chain, VixDiskLib_Attach()
creates a related child, or a cousin you might say, that is linked into some generation of the disk
chain.

For a diagram of the attach operation, see Attach Child to Parent Disk.

Write by DoFill()

This procedure calls VixDiskLib_Write() to fill a disk sector with ones (byte value FF) unless
otherwise specified by -val on the command line. The default is to fill only the first sector, but
this can be changed with options -start and -count on the command line.

DoReadMetadata()

This procedure calls VixDiskLib_ReadMetadata() to serve the -rmeta command-line option. For
example, type this command to obtain the universally unique identifier:

vix-disklib-sample -rmeta uuid sample.vmdk

DoWriteMetadata()

This procedure calls VixDiskLib_WriteMetadata() to serve the -wmeta command-line option. For
example, you can change the tools version from 1 to 2 as follows:

vix-disklib-sample -wmeta toolsVersion 2 sample.vmdk

DoDumpMetadata()

This procedure calls VixDiskLib_GetMetadataKeys() then VixDiskLib_ReadMetadata() to serve
the -meta command-line option. Two read-metadata calls are needed for each key: one to
determine length of the value string and another to fill in the value. See Get Metadata Table from
Disk.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 68

In the following example, the sample program connects to an ESXi host named esx3 and displays
the metadata of the Red Hat Enterprise Linux client’s virtual disk. For an ESXi host, path to disk
might be [storage1] followed by the virtual machine name and the VMDK filename.

vix-diskLib-sample -meta -host esx3 -user admin -password secret “[storage1]RHEL5/RHEL5.vmdk"

geometry.sectors = 63

geometry.heads = 255

geometry.cylinders = 522

adapterType = buslogic

toolsVersion = 1

virtualHWVersion = 7

Tools version and virtual hardware version appear in the metadata, but not in the disk
information retrieved by DoInfo(). Geometry information and adapter type are repeated, but in a
different format. Other metadata items not listed above might exist.

DoDump()

This procedure calls VixDiskLib_Read() to retrieve sectors and displays sector contents on the
output in hexadecimal. The default is to dump only the first sector numbered zero, but you can
change this with the -start and -count options. Here is a sequence of commands to
demonstrate:

vix-disklib-sample -create sample.vmdk

vix-disklib-sample -fill -val 1 sample.vmdk

vix-disklib-sample -fill -val 2 -start 1 -count 1 sample.vmdk

vix-disklib-sample -dump -start 0 -count 2 sample.vmdk

od -c sample.vmdk

On Linux (or Cygwin) you can run the od command to show overhead and metadata at the
beginning of file, and the repeated ones and twos in the first two sectors. The -dump option of
the sample program shows only data, not overhead.

DoTestMultiThread()

This procedure employs the Windows thread library to make multiple copies of a virtual disk file.
Specify the number of copies with the -multithread command-line option. For each copy, the
sample program calls the CopyThread() procedure, which in turn calls a sequence of six Virtual
Disk API routines.

On Linux the multithread option is unimplemented.

DoClone()

This procedure calls VixDiskLib_Clone() to make a copy of the data on virtual disk. A callback
function, supplied as the sixth parameter, displays the percent of cloning completed. For local
hosted disk, the adapter type is SCSI unless specified as IDE on the command line, size is 200MB,
unless set by -cap option, and type is monolithic sparse, for Workstation. For an ESXi host,
adapter type is taken from managed disk itself, using the connection parameters established by
VixDiskLib_Connect().

Virtual Disk Development Kit Programming Guide

VMware, Inc. 69

If createParams.diskType is VIXDISKLIB_DISK_VMFS_THIN, clone converts the destination VMDK
to thin. This is an exception to ignoring createParams for the remote case.

The final parameter TRUE means to overwrite if the destination VMDK exists.

The clone option is a good backup method. Sometimes a cloned virtual disk is smaller, because it
can be organized more efficiently. Moreover, a fully allocated flat file can be converted to sparse
or thin representation.

SSL Certificate Thumbprint

The sample program in the VDDK 5.1 release added the -thumb option to allow an SSL certificate
thumbprint to be provided and used. The thumbprint is used for authentication through vCenter
Server.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 70

Practical Programming Tasks 6
This chapter presents some practical programming challenges not covered in the sample
program, including:

This chapter includes the following topics:

n Scan VMDK for Virus Signatures

n Creating Virtual Disks

n VMDK File Versions

n Working with Virtual Disk Data

n Managing Child Disks

n RDM Disks and Virtual BIOS

n Interfacing With VMware vSphere

Scan VMDK for Virus Signatures

One of the Use Cases for the Virtual Disk Library is to scan a VMDK for virus signatures. Using
our sample program framework, this example function implements the -virus command-line
option, using hypothetical library routine SecureVirusScan(), supplied by an antivirus software
vendor. The library routine scans a buffer against the vendor’s latest pattern library, returning
TRUE if it identifies a virus.

extern int SecureVirusScan(const uint8 *buf, size_t n);

/*

* DoVirusScan - Scan the content of a virtual disk for virus signatures.

*/

static void DoVirusScan(void)

{

 VixDisk disk(appGlobals.connection, appGlobals.diskPath, appGlobals.openFlags);

 VixDiskLibDiskInfo info;

 uint8 buf[VIXDISKLIB_SECTOR_SIZE];

 VixDiskLibSectorType sector;

 VixError vixError = VixDiskLib_GetInfo(disk.Handle(), &info);

 CHECK_AND_THROW(vixError);

 cout << "capacity = " << info.capacity << " sectors" << endl;

 // read all sectors even if not yet populated

VMware, Inc. 71

 for (sector = 0; sector < info.capacity; sector++) {

 vixError = VixDiskLib_Read(disk.Handle(), sector, 1, buf);

 CHECK_AND_THROW(vixError);

 if (SecureVirusScan(buf, sizeof buf)) {

 printf("Virus detected in sector %d\n", sector);

 }

 }

 cout << info.capacity << " sectors scanned" << endl;

}

This function calls VixDiskLib_GetInfo() to determine the number of sectors allocated in the
virtual disk. The number of sectors is available in the VixDiskLibDiskInfo structure, but normally
not in the metadata. With SPARSE type layout, data can occur in any sector, so this function reads
all sectors, whether filled or not. VixDiskLib_Read() continues without error when it encounters
an empty sector full of zeroes.

The following difference list shows the remaining code changes necessary for adding the -virus
option to the vixDiskLibSample.cpp sample program:

43a44

> #define COMMAND_VIRUS_SCAN (1 << 10)

72a74

> static void DoVirusScan(void);

425a429

> printf(" -virus: scan source vmdk for virus signature \n");

519a524,525

> } else if (appGlobals.command & COMMAND_VIRUS_SCAN) {

> DoVirusScan();

564a571,572

> } else if (!strcmp(argv[i], "-virus")) {

> appGlobals.command |= COMMAND_VIRUS_SCAN;

Creating Virtual Disks

This section discusses the types of local VMDK files and how to create virtual disk for a remote
ESXi host.

Create Local Disk

The sample program presented in Chapter 5 Virtual Disk API Sample Code creates virtual disk of
type MONOLITHIC_SPARSE, in other words one big file, not pre-allocated. This is the default
because modern file systems, in particular NTFS, support files larger than 2GB, and can hold
more than 2GB of total data. This is not true of legacy file systems, such as FAT16 on MS-DOS
and early Windows, or the ISO9660 file system for writing files on CD, or NFS version 2, or Linux
kernel 2.4. All are limited to 2GB per volume. FAT and FAT32 were extended to 4GB in NT 3.51.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 72

However, a SPLIT virtual disk might be safer than the MONOLITHIC variety, because if something
goes wrong with the underlying host file system, some data might be recoverable from
uncorrupted 2GB extents. VMware products do their best to repair a damaged VMDK, but having
a split VMDK increases the chance of salvaging files during repair. On the downside, SPLIT virtual
disk involves higher overhead (more file descriptors) and increases administrative complexity.

When required for a FAT16 or early Linux file system, you can create SPLIT_SPARSE virtual disk.
The change is simple: the line highlighted in boldface. The sample program could be extended to
have an option for this.

static void DoCreate(void)

{

 VixDiskLibAdapterType adapter = strcmp(appGlobals.adapterType, "scsi") == 0 ?

 VIXDISKLIB_ADAPTER_SCSI_BUSLOGIC : VIXDISKLIB_ADAPTER_IDE;

 VixDiskLibCreateParams createParams;

 VixError vixError;

 createParams.adapterType = adapter;

 createParams.capacity = appGlobals.mbSize * 2048;

 createParams.diskType = VIXDISKLIB_DISK_SPLIT_SPARSE;

 vixError = VixDiskLib_Create(appGlobals.connection, appGlobals.diskPath, &createParams,

NULL, NULL);

 CHECK_AND_THROW(vixError);

}

Note You can split VMDK files into smaller than 2GB extents, but created filenames still follow
the patterns shown in Table 3-1. VMDK Virtual Disk Files.

This one-line change to DoCreate() causes creation of 200MB split VMDK files (200MB being the
capacity set on the previous line) unless the -cap command-line argument specifies otherwise.

Create Remote Disk

As stated in Support for Managed Disk, VixDiskLib_Create() does not support managed disk.
To create a managed disk on the remote ESXi host, first create a hosted disk on the local
Workstation, then convert the hosted disk into managed disk with VixDiskLib_Clone() over the
network.

To create remote managed disk using the sample program, type the following commands:

./vix-disklib-sample -create -cap 1000000 virtdisk.vmdk

./vix-disklib-sample -clone virtdisk.vmdk -host esx3i -user root -password secret

vmfsdisk.vmdk

You could write a virtual-machine provisioning application to perform the following steps:

Procedure

1 Create a hosted disk VMDK with 2GB capacity, using VixDiskLib_Create().

Virtual Disk Development Kit Programming Guide

VMware, Inc. 73

2 Write image of the guest OS and application software into the VMDK, using
VixDiskLib_Write().

3 Clone the hosted disk VMDK onto the VMFS file system of the ESXi host.

vixError = VixDiskLib_Clone(appGlobals.connection, appGlobals.diskPath,

 srcConnection, appGlobals.srcPath,

 &createParams, CloneProgressFunc, NULL, TRUE);

In this call, appGlobals.connection and appGolbals.diskPath represent the remote VMDK
on the ESXi host, while srcConnection and appGlobals.srcPath represent the local hosted
VMDK.

4 Power on the new guest OS to get a new virtual machine.

On Workstation, the VixVMPowerOn() function in the VIX API does this. For ESXi hosts, you
must use the PowerOnVM_Task method. As easy way to use this method is in the VMware
vSphere Perl Toolkit, which has the PowerOnVM_Task() call (non-blocking), and the
PowerOnVM() call (synchronous).

5 Provision and deploy the new virtual machine on the ESXi host.

Special Consideration for ESXi Hosts

No matter what virtual file type you create in Step 1, it becomes type
VIXDISKLIB_DISK_VMFS_FLAT in Step 3.

VMDK File Versions

Virtual disk programs must be able to cope with VMDK files up to version three (3).

Version 1 was the initial version of VMDK. All released builds of vixDiskLib can read and write
this version.

Version 2 added disk encryption for hosted products (Workstation and Fusion), although
encrypted disks were never implemented on ESXi. Version 2 VMDK files can be transferred to
and appear on ESXi, where they are treated like version 1 VMDK files.

Version 3 added support for persistent changed block tracking (CBT), and is set when CBT is
enabled for a virtual disk. CBT is supported on VMFS datastores. This version 3 first appeared in
ESXi 4.0 and continues unchanged in recent vSphere releases. When CBT is enabled, the version
number is incremented, and decremented when CBT is disabled.

If you look at the .vmdk descriptor file for a version 3 virtual disk, you can see a pointer to its *-
ctk.vmdk ancillary file. For example:

version=3

...

Change Tracking File

changeTrackPath="Windows-2008R2x64-2-ctk.vmdk"

Virtual Disk Development Kit Programming Guide

VMware, Inc. 74

The changeTrackPath setting references a file that describes changed areas on the virtual disk.

If you want to back up the changed area information, then your software should copy the *-
ctk.vmdk file and preserve the “Change Tracking File” line in the .vmdk descriptor file. If you do
not want to back up the changed area information, then you can discard the ancillary file, remove
the “Change Tracking File” line, read the VMDK file data as if it were version 1, and roll back the
version number on restore.

Working with Virtual Disk Data

The virtual disk library reads and writes sectors of data. It has no interface for character or byte-
oriented I/O.

Reading and Writing Local Disk

Demonstrating random I/O, this function reads a sector at a time backwards through a VMDK. If it
sees the string “VmWare” it substitutes the string “VMware” in its place and writes the sector
back to VMDK.

#include <string>

static void DoEdit(void)/

{

 VixDisk disk(appGlobals.connection, appGlobals.diskPath, appGlobals.openFlags);

 uint8 buf[VIXDISKLIB_SECTOR_SIZE];

 VixDiskLibSectorType i;

 string str;

 for (i = appGlobals.numSectors; i >= 0; i--) {

 VixError vixError;

 vixError = VixDiskLib_Read(disk.Handle(), appGlobals.startSector + i, 1, buf);

 CHECK_AND_THROW(vixError);

 str = buf;

 if (pos = str.find("VmWare", 0)) {

 str.replace(pos, 5, "VMware");

 buf = str;

 vixError = VixDiskLib_Write(disk.Handle(), appGlobals.startSector + i, 1, buf);

 CHECK_AND_THROW(vixError);

 }

 }

}

Reading and Writing Remote Disk

The DoEdit() function is similar for remote managed virtual disk on ESXi hosts, but beforehand
you must call VixDiskLib_Connect() with authentication credentials instead of passing NULL
parameters.

 if (appGlobals.isRemote) {

 cnxParams.vmxSpec = NULL;

 cnxParams.serverName = appGlobals.host;

 cnxParams.credType = VIXDISKLIB_CRED_UID;

 cnxParams.creds.uid.userName = appGlobals.userName;

Virtual Disk Development Kit Programming Guide

VMware, Inc. 75

 cnxParams.creds.uid.password = appGlobals.password;

 cnxParams.port = appGlobals.port;

 }

 VixError vixError = VixDiskLib_Init(1, 0, NULL, NULL, NULL, NULL);

 CHECK_AND_THROW(vixError);

 vixError = VixDiskLib_Connect(&cnxParams, &appGlobals.connection);

Deleting a Disk (Unlink)

The function to delete virtual disk files is VixDiskLib_Unlink(). It takes two arguments: a
connection and a VMDK filename.

vixError = VixDiskLib_Unlink(appGlobals.connection, appGlobals.diskPath);

Effects of Deleting a Virtual Disk

When you delete a VMDK, you lose all the information it contained. In most cases, the host
operating system prevents you from doing this when a virtual machine is running. However, if
you delete a VMDK with its virtual machine powered off, that guest OS becomes unbootable.

Renaming a Disk

The function to rename virtual disk files is VixDiskLib_Rename(). It takes two arguments: the old
and the new VMDK filenames.

vixError = VixDiskLib_Rename(oldGlobals.diskpath, newGlobals.diskpath);

Effects of Renaming a Virtual Disk

The server expects VMDK files of its guest OS virtual machines to be in a predictable location.
Any file accesses that occur during renaming might cause I/O failure and possibly cause a guest
OS to fail.

Managing Child Disks

In the Virtual Disk API, redo logs are managed as a parent-child disk chain, each child being the
redo log of disk changes made since its inception. Trying to write on the parent after creating a
child results in an error. The library expects you to write on the child instead. See Attach Child to
Parent Disk for a diagram.

Create Redo Logs

A redo log is created by taking a virtual machine snapshot, which contains both disk data and
virtual machine state. On hosted disk only, VixDiskLib_CreateChild() creates a redo log
without virtual machine state.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 76

You could write a simple application to create redo logs, or snapshots on managed disk, at 3:00
AM nightly. (although multiple snapshots have a performance impact). When you create a redo
log while the virtual machine is running, the VMware host re-arranges file pointers so the primary
VMDK, <vmname>.vmdk for example, keeps track of redo logs in the disk chain. Use the disk chain
to re-create data for any given day.

To re-create data for any given day

Procedure

1 Locate the <vmname>-<NNN>.vmdk redo log for the day in question.

<NNN> is a sequence number. You can identify this redo log or snapshot by its timestamp.

2 Initialize the virtual disk library and open the redo log to obtain its parent handle.

3 Create a child disk with the VixDiskLib_Create() function, and attach it to the parent:

vixError = VixDiskLib_Attach(parent.Handle(), child.Handle());

4 Read and write the virtual disk of the attached child.

This is just an example. On managed disk, multiple snapshots are not recommended for
performance reasons. Backup software on vSphere usually takes a snapshot, saves data to
backup media, then deletes the snapshot.

Virtual Disk in Snapshots

The Virtual Disk API provides the following features to deal with the disk component of
snapshots:

n Attaching an arbitrary child in a disk chain

n Opening read-only virtual disks

n Ability to open snapshot disk on ESXi hosts through VMware vCenter

RDM Disks and Virtual BIOS

This section outlines low-level procedures for restoring raw device mapping (RDM) disks and
NVRAM.

Restore RDM Disks

Backing up and restoring RDM disks presents unusual challenges. The original backed-up RDM
configuration might not apply, and is probably not appropriate, if users restore:

n A virtual machine to a different host or datastore.

n A virtual machine that was deleted, when its originally mapped RDM was also deleted, or the
containing LUN was repurposed and rewritten.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 77

n The RDM to a different virtual machine, even if that virtual machine is on the same host and
datastore. Users might do this to access files on the disk, or to test a restore.

When performing a proxy backup of an RDM disk, you must present the same LUN ID to both the
ESXi host and the proxy server. (This restriction does not apply to VMFS disk because the virtual
disk library reads the VMFS header and matching UUID. But for RDM the host and proxy require
the same LUN ID.)

Restoring RDM disks is appropriate if the original virtual machine’s VMX file and disk mapping is
no longer available, but the LUN containing the RDM is still available. In this case, the RDM image
on the LUN might still be valid, so it does not need to be restored. If this is true, do not make
changes to the RDM configuration during your restore operations. Instead, complete the restore
process in two phases:

n Restore the virtual machine configuration (VMX) and system disk. This restores the virtual
machine, but does not restore the RDM.

n Add the RDM disk to the virtual machine. After doing so, you can complete normal restore
operations on the RDM disk.

Alternatively, it is possible to create a virtual machine that can host the RDM disk and access its
contents. After you create the virtual machine, restore its virtual machine configuration (VMX)
from backup, and then restore any selected disks.

Restore the Virtual BIOS or UEFI

The .nvram file stores the BIOS or UEFI customizations of a virtual machine. Usually the only
important items in this file are the boot drive setting and the boot order (in the case of multiple
virtual disks).

Newer releases of vSphere can change the boot order using extended attribute settings, so boot
order no longer must be stored in the .nvram file. However some users want to preserve a virtual
machine’s serial port settings in the .nvram file, and possibly other items, so applications should
back up and restore this information.

To back up and restore NVRAM:

Procedure

1 For each virtual machine, make a separate copy of the .nvram file.

2 Back up each virtual machine using standard methods.

3 If necessary, restore the virtual machine using standard methods.

4 Overwrite the virtual machine’s .nvram file with the saved copy of the original .nvram file.

Important VMware now recommends saving the .nvram file as part of virtual machine
backup, a change in recommendation since vSphere 4.1.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 78

Interfacing With VMware vSphere

This section provides pointers to other vSphere programming interfaces.

The VIX API

The VIX API was a popular developer interface for VMware Workstation and other hosted
products. It has been deprecated for vSphere. See the VMware developer documentation for
information about the VIX API:

http://www.vmware.com/support/developer/vix-api

The VIX API Reference guide includes function reference pages for C++, Perl, and COM
(component object model) for Microsoft C#, VBScript, and Visual Basic. Most reference pages
include helpful code examples. Additionally, the vix-api Web guide includes examples for power
on and off, suspending a virtual machine, taking a snapshot, guest operations, virtual machine
discovery, and asynchronous callbacks.

Virus Scan all Hosted Disk

Suppose you want to run the antivirus software presented in Scan VMDK for Virus Signatures for
all virtual machines hosted on a VMware Workstation. Here is the high-level algorithm for an VIX-
based application that would scan hosted disk on all virtual machines.

To virus scan hosted virtual disk:

Procedure

1 Write an application including both the Virtual Disk API and the VIX API.

2 Initialize the virtual disk library with VixDiskLib_Init().

3 Connect VIX to the Workstation host with VixHost_Connect().

4 Call VixHost_FindItems() with item-type (second argument) VIX_FIND_RUNNING_VMS.

This provides to a callback routine (fifth argument) the name of each virtual machine, one at a
time. To derive the name of each virtual machine’s disk, append “.vmdk” to the virtual
machine name.

5 Write a callback function to open the virtual machine’s VMDK.

Your callback function must be similar to the VixDiscoveryProc() callback function shown as
an example on the VixHost_FindItems() page in the VIX API Reference Guide.

6 Instead of printing “Found virtual machine” in the callback function, call the DoVirusScan()
function shown in Scan VMDK for Virus Signatures.

7 Decontaminate any infected sectors that the virus scanner located.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 79

http://www.vmware.com/support/developer/vix-api
http://www.vmware.com/support/developer/vix-api

The vSphere Web Services API

The VMware vSphere Web Services (WS) API is a developer interface for ESXi hosts and vCenter
Server. See the VMware developer documentation for information about the vSphere WS API:

http://www.vmware.com/support/developer/vc-sdk

The Developer’s Setup Guide for the VMware vSphere WS SDK has a chapter describing how to
set up your programming environment for Microsoft C# or Java. Some of the information applies
to C++ also.

The Programming Guide for the vSphere SDK contains some sample code written in Microsoft C#
but most examples are written in Java, and based on the JAX-WS development framework.

ESXi hosts and the VMware vSphere WS API use a programming model based on Web services,
in which clients generate Web services description language (WSDL) requests that pass over the
network as XML messages encapsulated in simple object access protocol (SOAP). On ESXi hosts
or vCenter Server, the vSphere layer answers client requests, usually passing back SOAP
responses. This is a different programming model than the object-oriented function-call interface
of C++ and the VIX API.

Virus Scan All Managed Disk

Suppose you want to run the antivirus software presented in Scan VMDK for Virus Signatures for
all virtual machines hosted on an ESXi host. Here is the high-level algorithm for a VMware
vSphere solution that can scan managed disk on all virtual machines.

To virus scan managed virtual disk:

Procedure

1 Using the VMware vSphere Perl Toolkit, write a Perl script that connects to a given ESXi host.

2 Call Vim::find_entity_views() to find the inventory of every VirtualMachine.

3 Call Vim::get_inventory_path() to get the virtual disk name in its appropriate resource.

The VMDK filename is available as diskPath in the GuestDiskInfo data object.

4 Using Perl’s system(@cmd) call, run the extended vixDiskLibSample.exe program with -virus
option.

For ESXi hosts you must specify -host, -user, and -password options.

5 Decontaminate any infected sectors that the virus scanner located.

Read and Write VMDK Using vSphere API

The VMware vSphere Web Services API (version 2 and later) offers some methods to manage
VMDK files. The VirtualDiskManager managed object defines more than a dozen methods
similar to those in the Virtual Disk API documented here.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 80

http://www.vmware.com/support/developer/vc-sdk

For more information, navigate to the latest VMware vSphere documentation center on the Web,
search for VirtualDiskManager, and follow the specific link. At top of page you can click Local
Methods to see a list of all methods defined by the VirtualDiskManager managed object.

VirtualDiskManager methods were not heavily used, and have not been updated to support
object oriented file systems such as vSAN and VVol, or storage profile based management
(SPBM).

First Class Disk (FCD) Backup

First Class Disk (FCD), also known as Improved Virtual Disk, provides storage lifecycle
management on virtual disks, independent of virtual machines. An FCD may be created natively
using the FCD interfaces or an existing virtual disk may be promoted to an FCD.

First Class Disk is a named virtual disk not associated with a VM. The vSphere API for handling
FCD is called VSLM, virtual storage lifecycle management.

In vSphere 6.5, VDDK supported the backup of FCD in attached mode, but not in detached
mode. To back up FCD, programs had to attach the FCD to a dummy VM (such as one without a
guest OS) and then back up the VM.

In vSphere 6.7, VDDK supports the backup of detached FCD, in any transport mode. Detached
FCD is neither related to nor attached to a VM. It is identified by a combination of its UUID and
the datastore ID where it resides. An FCD must be attached to a VM for regular I/O, but not for
snapshot based backup.

First Class Disks are identified by UUID. This UUID is globally unique and the primary identifier for
the FCD. The UUID remains valid even if its FCD is relocated or snapshotted. FCD operations are
performed using the VStorageObjectManagerBase managed object, extended for either ESXi hosts
or vCenter Server. See the vSphere API Reference for details.

FCD Workflows and Operations

Create and Delete: FCDs can be created using the createDisk_Task method. An existing VMDK
can be promoted to FCD using the registerDisk method. Once a disk has been registered as an
FCD it cannot be unregistered, however registering a disk as an FCD has no impact other than
enabling the VSLM APIs to manage them.

Snapshot: FCD snapshots use the same underlying mechanisms as regular snapshots and have
the same restrictions as regular snapshots. FCD snapshots are independent of VM snapshots.
Each FCD snapshot receives a separate snapshot ID. Snapshots are managed using the
VStorageObjectManager specific createSnapshot_Task and deleteSnapshot_Task methods. You can
revert an FCD to a given snapshot using the RevertVStorageObject_Task method. Reverting an
FCD removes all snapshots after the selected snapshot. To access data at the time of the
snapshot without discarding subsequent snapshots, you can use the
VStorageObjectManagerCreateDiskFromSnapshot method or VADP restore.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 81

Backup and Restore: FCDs that are not attached to VMs can be backed up using the VADP
interfaces. For backup applications, the best practice is to back up VMDKs and FCDs attached to
the VMs, and also back up FCDs that are not attached to a VM.

Discovering FCDs for Backup

FCDs can be listed on a per-datastore basis. The recommended practice is to iterate across the
list of datastores from vCenter, get the FCDs for each datastore, then perform a backup of each
FCD. VADP can back up both attached and detached FCDs.

Use the Datacenter managed object's datastore property to list all datastores in a datacenter. For
each datastore, use the listVStorageObject method to list the FCDs. For each FCD, use the
VStorageObject.getConfig.getId API to retrieve the FCD's ID. The FCD ID is used in connParams-
>vStorageObjSpec.id below. The FCD snapshot ID is used in the connParams->vStorageObjSpec.ssid
to specify the snapshot to back up from.

New Connect Parameters and Functions

VDDK 6.7 has a new union in the VixDiskLibConnectParams structure, and new function calls to
allocate and free the structure, VixDiskLib_AllocateConnectParams() and
VixDiskLib_FreeConnectParams(). The new typedef is a union of:

n vmxSpec, the traditional specification string for a VM.

n VixDiskLibVStorageObjectSpec specifying the FCD's UUID, datastore MoRef, and snapshot UUID.

VixDiskLib_AllocateConnectParams() is the recommended way to allocate an instance of
VixDiskLibConnectParams. Programs can allocate VixDiskLibConnectParams as before, although then
they cannot use new features in 6.7 such as detached FCD.

Except for connection parameters, VDDK code remains the same. All transport modes may be
used. Here is sample C++ code to allocate and initialize the connect parameters structure:

auto connParams = VixDiskLib_AllocateConnectParams();

connParams->specType = VIXDISKLIB_SPEC_VSTORAGE_OBJECT;

connParams->vStorageObjSpec.id = "XXXXXX" // FCD UUID

connParams->vStorageObjSpec.datastoreMoRef = "datastore-N" // datastore

connParams->vStorageObjSpec.ssid = "XXXXXX" // FCD snapshot UUID

...

VixDiskLib_FreeConnectParams(connParams); // free connect params near end

For a vmxSpec, here is a sample of legacy C++ code, and a revision:

// old:

VixDiskLibConnectParams connParams;

connParams.vmxSpec = "moref=vm-XX"; // vm moref

// new:

auto connParams = VixDiskLib_AllocateConnectParams;

connParams->specType = VIXDISKLIB_SPEC_VMX;

connParams->vmxSpec = "moref=vm-XX"; // vm moref

...

VixDiskLib_FreeConnectParams(connParams); // free connect params near end

Virtual Disk Development Kit Programming Guide

VMware, Inc. 82

Subsequently, VixDiskLib_Open ignores its disk path parameter because path location is
determined by VixDiskLibVStorageObjectSpec. The snapshot UUID is specified in
VixDiskLibVStorageObjectSpec, so the disk path is invisible to the customer anyway. Consequently
programs can pass NULL as the disk path parameter to VixDiskLib_Open. Programs can also pass
an FCD's UUID as the path parameter:

VixError

VixDiskLib_Open(const VixDiskLibConnection connection,

 const char *path,

 uint32 flags,

 VixDiskLibHandle *diskHandle);

However for the VixMntapi open disks call, passing a null diskNames parameter may cause a crash.
Programs should pass the FCD's UUID only, and specify numberOfDisks = 1.

VixError

VixMntapi_OpenDisks(VixDiskLibConnection connection,

 const char *diskNames[],

 size_t numberOfDisks,

 uint32 openFlags,

 VixDiskSetHandle *handle);

FCD Managed Objects and Tasks

The following managed objects and tasks are available in vSphere for manipulating FCD storage.
For details, see the vSphere Web Services API Reference on https://code.vmware.com under the
vSphere Management SDK.

n HostVStorageObjectManager manages FCD when connected to an ESXi host.

n VcenterVStorageObjectManager manages FCD when connected to a vCenter Server.

n VirtualMachine.AttachDisk_Task() attaches FCD to a VM.

n VirtualMachine.DetachDisk_Task() detaches FCD from the VM.

Behavior of FCD With Changed Block Tracking

The behavior of FCD with changed block tracking (CBT) differs from that of a regular VMDK disk.

1 Attaching an FCD with CBT disabled (the default) to a VM with CBT enabled causes CBT on
the FCD to become enabled. However, detaching that FCD from the VM does not disable
CBT.

2 Attaching an FCD with CBT enabled to a VM with CBT disabled throws an error, unless the
FCD is attached as "independent nonpersistent" disk.

Use ReconfigVM_Task and connect the disk with the diskMode set to independent_nonpersistent
in the backing info. (VirtualDiskSeSparseBackingInfo, VirtualDiskFlatVer2BackingInfo,
VirtualDiskRawDiskMappingVer1BackingInfo and VirtualDiskSparseVer2BackingInfo support this
mode.)

Virtual Disk Development Kit Programming Guide

VMware, Inc. 83

https://code.vmware.com

Behavior of FCD with vMotion

An FCD can be attached to more than one VM.

When your program calls VixDiskLib_PrepareForAccess, VDDK disables the vSphere API method
RelocateVM_Task for all attached VMs, one after another. If an error occurs while disabling, VMs
whose relocate method was disabled remain disabled, whereas subsequent VMs can still be
relocated. Programs should call VixDiskLib_EndAccess to re-enable the relocate method,
regardless of VixDiskLib_PrepareForAccess return status. Otherwise vMotion or Storage vMotion
could fail for the remaining disabled VMs.

Code Sample for Connect Parameters

In the development kit, see lines in the vixDiskLibSample.cpp program where connection
parameters are allocated with the VixDiskLib_AllocateConnectParams() call.

In vSphere 6.7 and later, the Web Services SDK contains FCD code samples in Java for creating,
attaching, detaching, and deleting FCD.

In the vSphere 6.7 U2 release, Container Native Storage (CNS) supports FCD, and support for
more solutions will be added in the future.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 84

Backing Up Virtual Disks in
vSphere 7
This chapter documents how to write backup and restore software for virtual machines running in
vSphere, and contains the following sections about the vSphere Storage APIs – Data Protection
(VADP):

For an overview of backup, and help designing your top-level program structure, read the first
section below. For details about implementing low-level backup code, read the remaining
sections. You should be familiar with virtual machines, snapshots, ESXi, vCenter, and Java.

This chapter includes the following topics:

n Design and Implementation Overview

n Low Level Backup Procedures

n Low Level Restore Procedures

n Tips and Best Practices

n Windows Backup Implementations

n Linux Backup Implementation

Design and Implementation Overview

On vSphere, backups are usually done by taking a snapshot, to efficiency obtain a static image of
the virtual machine. Snapshots are a view of a virtual machine at a certain point in time, and
enable quick and clean backup operation. Snapshots also provide an incremental backup
mechanism called changed block tracking.

To back up virtual machines on vSphere, VMware recommends a two-language solution. First use
Java to code the backup program that contacts the host, takes a temporary snapshot, records
virtual machine configuration, and (later) deletes the snapshot. Then use C++ or C to code the
VDDK program that transfers virtual disk data from the snapshot to backup media.

For restore, VMware recommends a two-language solution. First use Java to code the program
that instructs the virtual machine to halt, or re-creates the target virtual machine from recorded
configuration. Then use C or C++ to code the VDDK program that transfers saved data from
backup media to virtual disk.

VMware, Inc. 85

The Backup Process

These are the high-level steps to back up a virtual machine running in vSphere:

Procedure

1 Connect to the ESXi host containing the virtual machine targeted for backup.
A side-effect of this step is determining the arrangement and description of virtual machines
on the host.

2 Tell the host to take a snapshot of the target virtual machine, using the vSphere API. Use the
quiesce flag, but not the memory flag, which is incompatible with quiesce. The virtual machine
continues to run, while the snapshot provides a static (quiesced) view.

3 Capture the virtual disk data and virtual machine configuration information
(vim.vm.ConfigInfo).

4 On the ESXi host, use the VDDK (programming in C or C++) to open and read the virtual disk
and snapshot files. Copy them to backup media, along with configuration information.

5 Tell the host to delete the backup snapshot, using the vSphere API.

Communicating With the Server

In a typical vSphere deployment with many ESXi hosts, an instance of vCenter Server manages
the ESXi hosts, and can move virtual machines from host to host (vMotion) to balance load and
possibly save electricity by powering off an ESXi host. VMware therefore recommends that
backup applications communicate with the vCenter Server instead of with individual ESXi hosts.

The vCenter Server provides location transparency for vSphere Web Services developers. The
vCenter Server tracks virtual machines as they move (through vMotion) from one ESXi host to
another, and vCenter Server directs SDK operations to the ESXi host that currently runs a virtual
machine. Using the vSphere Web Services API, it is possible to back up all the virtual disks
associated with a virtual machine.

The handling of the vCenter or an individual ESXi host is essentially equivalent when using the
vSphere SDK. With vCenter management, there is no need to contact individual ESXi hosts
directly. The remainder of this chapter uses the term vSphere to indicate either a vCenter Server
or an ESXi host.

To reduce the resources used by vSphere, VMware recommends that the number of connections
(or Sessions) be minimized. It is in the best interests of any program that communicates with
vSphere to create one Session and share it with all elements of the program that need to
exchange information with vSphere. This means that if your program supports multiple threads,
your program should multiplex the use of connection objects by use of access control locks
(mutex and the like).

It is also important that all vSphere SDK operations proceed from one instance of the “Session”
object that your application requests after logging into vSphere. Using the vSphere API your
application can create objects that are “Session specific” and therefore would not be known to
other portions of your application that might use a different Session.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 86

Information Containers as Managed Objects

VMware documentation introduces you to the concept of the managed object and its handle,
called a managed object reference (moRef). You might be tempted to get configuration and
status information of managed objects using a piecemeal approach. This has the severe
disadvantage of creating a lot of chatter over the server connection, so it is very slow. A
mechanism has been created to provide status information efficiently: the PropertyCollector,
discussed in PropertyCollector Data.

More About Managed Objects

The documentation for the vSphere API and object model introduces a large number of managed
objects. There are five basic types of managed objects that describe the organization of a server.
Other managed objects can be considered as details expanding on these five basic types:

n Folder

n Datacenter

n ComputeResource

n ResourcePool

n VirtualMachine

It is a characteristic of all managed objects that they have a moRef to the managed object that
serves as the parent to the managed object. This parent moRef allows you to reconstruct the
object hierarchy exposed by the vSphere SDK. In general the hierarchy is a tree-like structure
along the lines of:

Root Folder > Datacenter > ComputeResource > ResourcePool > VirtualMachine

There are variations on this theme, depending on whether you connect to vCenter or directly to
an ESXi host, but the overall organization is like the structure above. Each managed object also
has a Name property.

The virtual machine that you want to back up, and the snapshot you take of it (the extensible
managed object VirtualMachineSnapshot) are both designated by their moRef.

Managed Object References

A managed object reference (moRef) is actually a handle and not the managed object itself. While
it is certain that a moRef always contains a unique value, the unique value is only relative to the
instance of vSphere to which you are connected. For example, if vCenter Server manages a
cluster of ESXi hosts, each ESXi host maintains its own managed object reference namespace
and the vCenter must maintain a managed object reference namespace representing all of its
servers. So when an ESXi host is represented by a vCenter, the vCenter must ensure that the
managed object references are unique. The vCenter accomplishes this by creating unique
managed object reference names inside its own namespace, which differ from the names that
ESXi uses for the same managed objects.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 87

A vSphere instance (vCenter or ESXi) tries to keep the moRef for a virtual machine consistent
across sessions, however consistency is not guaranteed. For example, unregistering and
reregistering a virtual machine could result in a change to the moRef for the virtual machine. Thus,
it is a bad idea to store a moRef and expect it to work correctly in future sessions, or with a
different vCenter Server.

Unique ID for a Different vCenter

On one vCenter Server, the moRef uniquely identifies a virtual machine. If you need to track and
inventory virtual machine backups across multiple vCenter Servers, you can use moRef together
with instanceUuid. You can see the instanceUuid at the following browser path:

https://<vcserver>/mob/?moid=ServiceInstance&doPath=content.about

For direct connections to ESXi, the host address and moRef uniquely identify a virtual machine.
However this moRef could be different from the one that vCenter Server returns, hence the
fallback to instanceUuid. The instanceUuid was new in VMware vSphere 4.0. In previous
releases, the fallback was to Uuid.

Gathering Status and Configuration Information

To save configuration of a virtual machine so you can restore it later, you can use the
PropertyCollector to get the virtual machine configuration.

The PropertyCollector is the most efficient mechanism to specify, at the top level, all of the
managed objects that are of interest to your application. It has methods for providing updates
that indicate only changes to the previous state of these objects. There are two mechanisms for
acquiring these updates:

n Polling – Check for changes. The result is either “no change” or an object containing the
changes. One advantage of this mechanism is that it involves no network traffic except for a
poll request and reporting.

n Wait for updates – “Wait for updates” is basically a blocking call to the PropertyCollector.
This is only useful if you dedicate a program thread waiting for the call to unblock. The
advantage of this mechanism is that there is no traffic on the communications thread unless
something must be reported.

The PropertyCollector is powerful but requires great attention to detail. Backup-related
features of the PropertyCollector are covered in Low Level Backup Procedures of this
document. The next section provides some background about PropertyCollector.

PropertyCollector Data

This document assumes that you want to keep up with changes in the configuration of the
vCenter Server, and therefore plan to use the update tracking capability of the
PropertyCollector.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 88

The PropertyCollector requires two fairly complex arguments: the PropertySpec and the
ObjectSpec. The ObjectSpec contains instructions to the PropertyCollector describing where to
look for the desired data. Because configuration information in vSphere is organized like a
directory tree, the ObjectSpec must describe how to traverse the tree to obtain the desired
information. The net result is a complex, nested, and recursive list of instructions. Fortunately,
once you have determined the location of all the desired information, the ObjectSpec needed to
determine the layout of a vSphere object hierarchy can be a static unvarying object. See the
code example in section Understanding an ObjectSpec.

The PropertySpec is a list of desired property information. Formulating a list that includes all of
the desired information can take some effort to compile, but once determined, this can be a
static object also.

The data returned from the PropertyCollector is a container class called
PropertyFilterUpdate, which contains an objectSet with an item-by-item list of changes to
object properties. Every item in this container is identified with one of the following keys: enter
(add), leave (delete), and modify. On the first data request, every data item is included, and
“enter” is marked for every data item.

The PropertyCollector presents its results in what amounts to random order. Since all managed
objects have a “parent” property, you can reconstruct the configuration hierarchy by building a
tree in memory, using the parent identification to organize. The root folder is identified as the
only folder without a parent.

Useful Property Information

In the data returned from PropertyCollector, you can find most of the information that is useful
for backup in the Virtual Machine managed object, including the following:

n Virtual Disks – names, types, and capacities.

n Virtual Machine Type and Configuration – Whatever would be useful in (re)creating a virtual
machine. This list might include such information as memory size and number of CPUs.

n Display Names – These names appear in VMware products such as the vSphere Client. You
should keep track of these names and correlate them for consistency between your product
and VMware products.

VMware supports many virtual disk implementations. The disk implementation type is important
because:

n On restore, you should re-create virtual disk with the same disk type as the original virtual
machine used.

n A disk backed by a pass-through raw device mapping (RDM) mostly bypasses the ESXi
storage stack. You cannot make a snapshot of this virtual disk type. Therefore, you cannot
back up pass-through RDM disk using the snapshot method described in this document.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 89

For more information about the Java APIs, read the first several chapters of the VMware vSphere
Web Services SDK Programming Guide, and related pages of the Web-based VMware vSphere
API Reference Documentation. Both are available at http://www.vmware.com/support/
developer/vc-sdk. Examples in this chapter assume that you have set up the vSphere SDK as
described in documentation.

Doing a Backup Operation

After your program obtains information about what is available to back up, it can perform a
backup. The three steps to the backup process are:

n Create a Temporary Snapshot on the Target Virtual Machine

n Extract Backup Data from the Target Virtual Machine, and save configuration information.

n Delete the Temporary Snapshot

Prerequisites for Backup

To complete a backup, the calling program requires the permissions shown in Table 7-1. Required
Permissions to Complete a Backup.

Table 7-1. Required Permissions to Complete a Backup

Privilege Category
Privilege
Subcategory Privilege

Virtual Machine Provisioning Allow Virtual Machine Download

State Create Snapshot

Remove Snapshot

Configuration Disk Lease

Create a Temporary Snapshot on the Target Virtual Machine

The low-level procedure for creating a snapshot of a virtual machine is documented in the
section Creating a Snapshot. Set the quiesce flag True to make the file system quiescent,
otherwise the snapshot might represent a transitional system state, with inconsistent data.
Restoring such data might be destructive.

Another flag named memory allows you to include in the snapshot a dump of the powered on
virtual machine's in-memory state. This is not needed for backup, so set this flag to False.

Changed Block Tracking

Virtual Disk Development Kit Programming Guide

VMware, Inc. 90

http://www.vmware.com/support/developer/vc-sdk
http://www.vmware.com/support/developer/vc-sdk

This feature, first available in vSphere 4, provides the foundation for incremental (or differential)
backup of virtual disks. Your application can back up only changed data as indicated by the
QueryChangedDiskAreas method. Virtual machines with virtual hardware version 7 and later
support changed block tracking. These virtual machines contain changeTrackingSupported in the
capability field of the VirtualMachine managed object. See Changed Block Tracking on Virtual
Disks for details.

Extract Backup Data from the Target Virtual Machine

Associated with the snapshot you just created are “versions” of the virtual disks. To identify
these disks, you obtain a moRef to the snapshot you just created. From this snapshot moRef, you
can extract the disk names and paths. How to do this is demonstrated in section Backing Up a
Virtual Disk.

To read the data in a virtual disk, it is necessary to use the VixDiskLib. This library isolates the
programmer from the details of extracting data from a virtual disk and its redo logs. For example,
when doing backup you call functions VixDiskLib_Open() and VixDiskLib_Read(), among
others. VixDiskLib allows access to disk data on sector boundaries only; the transfer size is
some multiple of the disk sector size.

When accessing disks on ESXi hosts, VixDiskLib release 1.0 transferred virtual disk data over the
network. Later VixDiskLib releases contain API enhancements so you can request more efficient
data paths, such as direct SAN access or HotAdding disks to a virtual backup appliance. These
efficient data paths requires minor code changes, such as calling VixDiskLib_ConnectEx()
instead of plain connect.

Part of virtual disk information is metadata: a number of key/value pairs describing configuration
of the virtual disk. Metadata information can be extracted from a virtual disk using the
VixDiskLib functions VixDiskLib_GetMetadataKeys() and VixDiskLib_ReadMetadata(). You
should save metadata keys along with the backup, in case you need to re-create the virtual disk.

The VixDiskLib API allows a backup application to perform a full backup of a virtual machine.
The newer VixMntapi library can extract information about a guest operating system from its
virtual disks, so your backup application can determine the type of operating system that is
involved. This allows mounting the volumes to device nodes, so your application can perform file-
oriented backups and restores.

Delete the Temporary Snapshot

As the last part of the backup process, you should delete the temporary snapshot. It is no longer
needed, worsens virtual machine performance, and takes up storage space that could be put to
better use.

Restore a Virtual Machine

Your software can follow one of two restore scenarios: either revert to a saved state, or disaster
recovery:

Virtual Disk Development Kit Programming Guide

VMware, Inc. 91

To bring an existing virtual machine to a previous state

1 Connect to the server and command it to halt and power off the target virtual machine.

2 Use the server to gain access to the virtual disks. With SAN transport (but not HotAdd or
NBDSSL) you must create a snapshot before restoring data.

3 Transfer the disk images from backup using VixDiskLib. Revert-to and delete the snapshot, if
created.

To completely re-create a virtual machine (disaster recovery)

1 Connect to the server.

2 Command the server to create a new virtual machine and its virtual disks using the
configuration information saved from vim.vm.ConfigInfo during backup.

3 Transfer virtual disk data to the newly created virtual disks using VixDiskLib. Virtual disk
data includes disk formatting information, so you do not need to build any kind of file system
on the virtual disks.

Doing a Restore Operation

The two scenarios of restore operation are described below.

n Restore an Existing Virtual Machine to a Previous State

n Create a New Virtual Machine

Prerequisites for Restore

To complete a restore, the calling process requires the permissions in Table 7-2. Required
permissions to complete a restore.

Table 7-2. Required permissions to complete a restore

Privilege Category
Privilege
Subcategory Privilege

Virtual Machine Inventory Create

Remove

Configuration Settings

Change Resource

Resource Assign Virtual Machine to Resource
Pool

For security reasons, programs are not granted write access to the disks of a running virtual
machine. Before you shut it down, you should determine the run-state of the virtual machine.

Run-state information is available from the PropertyCollector, and if you keep this information
up-to-date, your application already knows the run-state of the virtual machine. To change the
run-state you must have the moRef of the virtual machine. Use this moRef in a PowerOnVM_Task call
through the server connection. For virtual machine shutdown, call the PowerOffVM_Task method.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 92

Restore an Existing Virtual Machine to a Previous State

The following steps restore a virtual machine to a certain saved state:

Procedure

1 Shut down the virtual machine (if it is not already shut down).

2 For SAN transport mode, a snapshot is required for restoring virtual disk data, and writes
must go to the base disk only. The restore snapshot is optional (not necessary) for NBD(SSL)
and HotAdd transport modes. On VVol datastores, if a snapshot was taken, writes must go to
the leaf disk because the snapshot volume is read-only.

3 Restore contents of the virtual disk(s). If there were no pre-existing snapshots at backup time,
just the snapshot just created, restore only the base disks.

Restoring disk data requires that you obtain the current names of virtual disks. This process is
similar to the one described in Extract Backup Data from the Target Virtual Machine, except
in this case you obtain this information directly from the virtual machine and not from a
snapshot. The target for the saved disk data must be the actual disk name (including any
sequence number) because the current incarnation of a virtual machine may be derived from
one or more snapshots.

Restoring disk data requires use of VixDiskLib. The VixDiskLib_Write() function opens the
virtual disks so your program can write data. VixDiskLib functions transfer data to even-
sector boundaries only, and transfer length must be an even multiple of the sector size.

The virtual disk already exists, so it is not necessary to restore the disk configuration
information mentioned in Extract Backup Data from the Target Virtual Machine.

4 With SAN transport mode, revert-to and delete the snapshot that you created in step 2.
Failing to perform this step with SAN mode could yield a virtual machine that cannot be
powered on.

Create a New Virtual Machine

The process of building a virtual machine from backup data involves the following steps:

Procedure

1 Create the virtual machine.

To create a new virtual machine, you use the information about virtual machine configuration
that you derived and saved during the backup process. You might allow users of restore
software an opportunity to rename the virtual machine during recovery in case they want to
clone or move the virtual machine. Also you might consider offering them an opportunity to
change virtual machine layout (for instance, storing virtual disks on a different datastore).
Creating the virtual disks is also done at the time when you create the virtual machine. This
process is fairly complicated. See the section Low Level Backup Procedures for details.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 93

2 Restore the virtual disk data.

This process is similar to restoring the contents of virtual disks (step 3 under Restore an
Existing Virtual Machine to a Previous State) with the following exception: you must call the
VixDiskLib_WriteMetadata() function to write all the disk configuration key/value data into
the virtual disk before restoring any backed-up data to the virtual disk. Then call
VixDiskLib_Write() to restore the virtual disk data, as described in step 3.

3 Power on the virtual machine.

Access Files on Virtual Disks

It might be necessary for a backup application to access individual files or groups of files on the
virtual disks. For example, data protection applications might need to restore individual files on
demand.

You can find the interfaces to accomplish this in the VixMntapi library associated with
VixDiskLib. The VixMntapi library allows disks or volumes of a virtual machine to be mounted
and examined as needed. VixMntapi provides access at the file system level, whereas
VixDiskLib provides access at the sector level.

To mount a virtual disk

Procedure

1 Locate the path names of all the virtual disks associated with a snapshot.

2 Call VixDiskLib_Open() to open all of these virtual disks. This gives you a number of
VixDiskLib handles, which you should store in an array.

3 Call VixMntapi_OpenDiskSet() to create a VixDiskSetHandle, passing in the array of
VixDiskLib handles that you created in step 2.

4 Pass VixDiskSetHandle as a parameter to VixMntapi_GetVolumeHandles() to obtain an array
of VixVolumeHandle pointers to all volumes in the disk set.

5 Call VixMntapi_GetOsInfo() to determine what kind of operating system is involved, and
decide where important pieces of information are to be found.

6 For important volumes, call VixMntapi_MountVolume() then VixMntapi_GetVolumeInfo(),
which reveals how the volume is set up. (Unimportant volumes include swap partitions.)

7 If you need information about how the guest operating system sees the data on this volume,
you can look in the data structure VixVolumeInfo returned by VixMntapi_GetVolumeInfo().
For example, VixVolumeInfo::symbolicLink, obtained using VixMntapi_GetVolumeInfo(), is
the path on the proxy where you can access the virtual disk’s file system using ordinary open,
read, and write calls.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 94

Results

Once you are done accessing files in a mounted volume, there are VixMntapi procedures for
taking down the abstraction that you created. These calls are:

n VixMntapi_DismountVolume() for each volume handle

n VixMntapi_FreeOsInfo() and VixMntapi_FreeVolumeInfo()

n VixMntapi_CloseDiskSet()

This leaves the VixDiskLib handles that you obtained in the beginning; you must dispose of
them properly.

More VADP Details

The preceding sections explained how to contact vSphere and extract information from it, and
how to back up or restore virtual disks. The following sections cover the same information at a
lower level.

Low Level Backup Procedures

This section describes low level details that may be helpful in coding a backup application. It is
not the intent of this material to impose a design, but only to serve as a guideline with examples
and exposition. The code samples provided below are not complete. They generally lack error
handling and ignore critical details.

Communicate with the Server

Connections to the server machine require credentials: user name, password, and host name (or
IP address). The following code connects to the server and extracts information useful for
manipulating a service:

Procedure

1 Create the service instance moRef:

ManagedObjectReference svcRef = new ManagedObjectReference();

svcRef.setType("ServiceInstance");

svcRef.setValue("ServiceInstance");

2 Locate the service:

VimServiceLocator locator = new VimServiceLocator();

locator.setMaintainSession(true);

VimPortType serviceConnection = locator.getVimPort("https://your_server/sdk");

Virtual Disk Development Kit Programming Guide

VMware, Inc. 95

3 Log in to the session manager:

ServiceInstanceContent serviceContent = serviceConnection.retrieveContent(svcRef);

ManagedObjectReference sessionManager = serviceInstance.getSessionManager();

UserSession us = serviceConnection.login(sessionManager, username, password, null);

The PropertyCollector

The PropertyCollector is used in this section to apply the above details to the backup task.

PropertyCollector Arguments

The PropertyCollector uses two relatively complicated argument structures. As was mentioned
in PropertyCollector Data, these arguments are PropertySpec and ObjectSpec. PropertySpec is a
list of the information desired, and ObjectSpec is a list of instructions indicating where to find the
information. In theory, you could directly address an object using its moRef. In that case an
ObjectSpec can be very simple. However, getting the initial moRef can be a challenge when a
complicated ObjectSpec is required. To formulate a complex ObjectSpec, you need to
understand the structure of the available data. This is complicated by the fact that an ObjectSpec
can contain recursive elements.

Understanding an ObjectSpec

An ObjectSpec is a list of ObjectSpec elements, each specifying an object type, and giving a
“selection spec” for the object. More About Managed Objects describes five types of managed
objects: Folder, Datacenter, ComputeResource, ResourcePool, and VirtualMachine. VirtualApp
(vApp) is a sixth type. You can “traverse” objects, because one managed object leads to another.

n Folder – One of the items contained in the Folder is called childEntity, which is a list of
moRefs that can contain one of the five managed object types. A Folder can be parent to any
of these managed objects.

n Datacenter – This managed object has two items that lead to other managed objects:

n hostFolder – A moRef to a Folder containing a list of ComputeResources comprising a
Datacenter.

n vmFolder – A moRef to a Folder containing the VirtualMachines that are part of the
Datacenter. If it is your objective to duplicate the display seen in a vSphere Client GUI,
then this Folder is of limited use because it does not describe the ResourcePool that is the
parent of a virtual machine.

n ComputeResource – A ComputeResource is basically hardware. A ComputeResource can
comprise multiple systems. The hardware represents resources that can be used to
implement a VirtualMachine object. VirtualMachine is a child of ResourcePool, which controls
the sharing of a physical machine's resources among VirtualMachine objects. A
ComputeResource contains an item named resourcePool, which is a moRef to a
ResourcePool.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 96

n VirtualApp – A VirtualApp (vApp) is a collection of VirtualMachines that make up a single
application. This is a special form of ResourcePool (defined below). A VirtualApp may have
three types of children:

n VirtualMachine – A folder named vm contains a list of moRefs to child VirtualMachines.

n resourcePool – A folder containing a list of moRefs pointing to child ResourcePools or
VirtualApps.

n VirtualApp – A VirtualApp can be composed of other VirtualApps.

n ResourcePool – You can segment the resources of a VirtualApp using a
ResourcePool.

n ResourcePool – This managed object contains two child items:

n resourcePool – A folder containing a list of moRefs pointing to child ResourcePools or
VirtualApps.

n vm – A list of moRefs to child VirtualMachines that employ the resources of the parent
ResourcPool. A VirtualMachine always lists a ResourcePool as its parent.

n VirtualMachine – The VirtualMachine is often considered an “end object” – so you do not
need to describe any traversal for this object.

The ObjectSpec does not have to lead you any farther than the moRef of a target object. You can
gather information about the managed object itself using the moRef and the PropertySpec. This is
described in detail in the section Understanding a PropertySpec.

A TraversalSpec extends SelectionSpec, a property of ObjectSpec, and contains the following
elements:

n Path – The element contained in the object that is used to steer traversal.

n SelectSet – An array containing either SelectionSpec or TraversalSpec elements.

n Skip – Whether or not to filter the object in the Path element.

n Type – The type of object being referenced.

n Name – Optional name you can use to reference the TraversalSpec, inherited from
SelectionSpec.

SelectionSpec is a direct target for traversal, as is TraversalSpec (a class extending
SelectionSpec). It is in the SelectSet that recursion can occur.

If you wish to traverse the entire configuration tree for a server, then you need only the “root
node” moRef, which is always a Folder. This root folder moRef is available in the property
rootFolder of the ObjectSpec service instance content. All of the above goes into this Java code
sample.

// Traversal objects can use a symbolic name.

// First we define the TraversalSpec objects used to fill in the ObjectSpec.

//

// This TraversalSpec traverses Datacenter to vmFolder

Virtual Disk Development Kit Programming Guide

VMware, Inc. 97

TraversalSpec dc2vmFolder = new TraversalSpec();

dc2vmFolder.setType("Datacenter"); // Type of object for this spec

dc2vmFolder.setPath("vmFolder"); // Property name defining the next object

dc2vmFolder.setSelectSet(new SelectionSpec[] {"folderTSpec"});

//

// This TraversalSpec traverses Datacenter to hostFolder

TraversalSpec dc2hostFolder = new TraversalSpec();

dc2hostFolder.setType("Datacenter");

dc2hostFolder.setPath("hostFolder");

//

// We use the symbolic name "folderTSpec" which will be defined when we create the folderTSpec.

dc2vmFolder.setSelectSet(new SelectionSpec[] {"folderTSpec"});

//

// This TraversalSpec traverses ComputeResource to resourcePool

TraversalSpec cr2resourcePool = new TraversalSpec();

cr2resourcePool.setType("ComputeResource");

cr2resourcePool.setPath("resourcePool");

//

// This TraversalSpec traverses ComputeResource to host

TraversalSpec cr2host = new TraversalSpec();

cr2host.setType("ComputeResource");

cr2host.setPath("host");

//

// This TraversalSpec traverses ResourcePool to resourcePool

TraversalSpec rp2rp = new TraversalSpec();

rp2rp.setType("ResourcePool");

rp2rp.setPath("resourcePool");

//

// Finally, we tie it all together with the Folder TraversalSpec

TraversalSpec folderTS = new TraversalSpec();

folderTS.setName{"folderTSpec"); // Used for symbolic reference

folderTS.setType("Folder");

folderTS.setPath("childEntity");

folderTS.setSelectSet(new SelectionSpec[]{ "folderTSpec",

 dc2vmFolder, dc2hostFolder, cr2resourcePool, rp2rp});

ObjectSpec ospec = new ObjectSpec();

ospec.setObj(startingPoint); // This is where you supply the starting moRef (usually root folder)

ospec.setSkip(Boolean.FALSE);

ospec.setSelectSet(folderTS); // Attach the TraversalSpec we designed above

Understanding a PropertySpec

A PropertySpec is a list of individual properties that can be found at places identified by the
ObjectSpec and its TraversalSpec. Once the PropertyCollector has a moRef, it can then return
the properties associated with that moRef. This can include “nested” properties. Nested
properties are properties that can be found inside of properties identified at the top level of the
managed object. Nested properties are identified by a “dot” notation.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 98

An example of nested properties can be drawn from the VirtualMachine managed object.A
VirtualMachine has the property identified as summary, which identifies a VirtualMachineSummary
data object. The VirtualMachineSummary contains property config, which identifies a
VirtualMachineConfigSummary data object. The VirtualMachineConfigSummary has a property
called name, which is a string containing the display name of the VirtualMachine. You can access
this name property using the summary.config.name string value. To address all the properties of
the VirtualMachineConfigSummary object, you would use the summary.config string value.

The PropertyCollector requires an array of PropertySpec elements. Each element includes:

n Type – The type of object that contains the enclosed list of properties.

n PathSet – An array of strings containing names of properties to be returned, including nested
properties.

It is necessary to add an element for each type of object that you wish to query for properties.
The following is a code sample of a PropertySpec:

// This code demonstrates how to specify a PropertySpec for several types of target objects:

PropertySpec folderSp = new PropertySpec();

folderSp.setType("Folder");

folderSp.setAll(Boolean.FALSE);

folderSp.setPathSet(new String [] {"parent", "name"});

PropertySpec dcSp = new PropertySpec();

dcSp.setType("Datacenter");

dcSp.setAll(Boolean.FALSE);

dcSp.setPathSet(new String [] {"parent","name"});

PropertySpec rpSp = new PropertySpec();

rpSp.setType("ResourcePool");

rpSp.setAll(Boolean.FALSE);

rpSp.setPathSet(new String [] {"parent","name","vm"});

PropertySpec crSp = new PropertySpec();

crSp.setType("ComputeResource");

crSp.setAll(Boolean.FALSE);

crSp.set:PathSet(new String [] {"parent","name"});

PropertySpec vmSp = new PropertySpec();

vmSp.setType("VirtualMachine");

vmSp.setAll(Boolean.FALSE);

vmSp.setPathSet(new String [] {"parent",

 "name", "summary.config", "snapshot", "config.hardware.device"});

// Tie it all together

PropertySpec [] pspec = new PropertySpec [] {folderSp, dcSp, rpSp, crSp, vmSp};

Getting the Data from the PropertyCollector

Now that we have defined ObjectSpec and PropertySpec (the where and what), we need to put
them into a FilterSpec that combines the two. An array of FilterSpec elements is passed to the

Virtual Disk Development Kit Programming Guide

VMware, Inc. 99

PropertyCollector (the minimum number of elements is one). Two mechanisms can retrieve
data from PropertyCollector:

n RetrieveProperties – A one-time request for all of the desired properties. This can involve a
lot of data, and has no refresh option. RetrievePropertiesEx has an additional options
parameter.

n Update requests – PropertyCollector update requests take two forms: polling and waiting
(see below).

Requesting Updates

The update method is the way to keep properties up to date. In either Polling or Waiting, it is first
necessary to register your FilterSpec array object with the PropertyCollector. You do this
using the CreateFilter method, which sends a copy of your FilterSpec to the server. Unlike the
RetrieveProperties method, FilterSpec is retained after CreateFilter operation. The
following code shows how to set FilterSpec:

// We already showed examples of creating pspec and ospec in the examples above.

// The PropertyCollector wants an array of FilterSpec objects, so:

PropertyFilterSpec fs = new PropertyFilterSpec();

fs.setPropSet(pspec);

fs.setObjectSet(ospec);

PropertyFilterSpec [] fsa = new PropertyFilterSpec [] {fs};

ManagedObjectReference pcRef = serviceContent.getPropertyCollector();

// This next statement sends the filter to the server for reference by the PropertyCollector

ManagedObjectReference pFilter = serviceConnection.CreateFilter(pcRef, fsa, Boolean.FALSE);

If you wish to begin polling, you may then call the function CheckForUpdates, which on the first
try (when it must contain an empty string for the version number) returns a complete dump of all
the requested properties from all the eligible objects, along with a version number. Subsequent
calls to CheckForUpdates must contain this version number to indicate to the PropertyCollector
that you seek any changes that deviate from this version. The result is either a partial list
containing only the changes from the previous version (including a new version number), or a
return code indicating no data has changed. The following code sample shows how to check for
updates:

String updateVersion = ""; // Start with no version

UpdateSet changeData = serviceConnection.CheckForUpdates(pcRef, updateVersion);

if (changeData != nil) {

 updateVersion = changeData.getVersion(); // Extract the version of the data set

}

// ...

// Get changes since the last version was sent.

UpdateSet latestData = serviceConnection.CheckForUpdates(pcRef, updateVersion);

Virtual Disk Development Kit Programming Guide

VMware, Inc. 100

If instead you wish to wait for updates to occur, you must create a task thread that blocks on the
call WaitForUpdates. This task thread would return changes only as they occur and not at any
other time. However if the request times out, you must renew it.

Note The order of property retrieval is not guaranteed. Multiple update requests may be
needed.

Extracting Information from the Change Data

The data returned from CheckForUpdates (or WaitForUpdates) is an array of
PropertyFilterUpdate entries. Since a PropertyFilterUpdate entry is very generic, here is some
code showing how to extract information from the PropertyFilterUpdate.

// Extract the PropertyFilterUpdate set from the changeData

PropertyFilterUpdate [] updateSet = changeData.getFilterSet();

// There is one entry in the updateSet for each filter you registered with the PropertyCollector.

// Since we currently have only one filter, the array length should be one.

PropertyFilterUpdate myUpdate = updateSet[0];

ObjectUpdate [] changes = myUpdate.getObjectSet();

for (a = 0; a < changes.length; a++) {

 ObjectUpdate theObject = changes[a];

 String objName = theObject.getObj().getMoType().getName();

 // Must decide how to handle the value based on the name returned.

 // The only names returned are names found in the PropertySpec lists.

 // Get propertyName and value ...

}

Getting Specific Data

From time to time, you might need to get data that is relevant to a single item. In that case you
can create a simple ObjectSpec including the moRef for the item of interest. The PropertySpec
can then be set to obtain the properties you want, and you can use RetrieveProperties to get
the data. Hopefully you can deduce moRef from a general examination of the properties, by
searching for information from the rootFolder.

Identifying Virtual Disks for Backup and Restore

To back up a virtual machine, you first need to create a snapshot. Once the snapshot is created,
you then need to identify the virtual disks associated with this snapshot. A virtual machine might
have multiple snapshots associated with it. Each snapshot has a virtual “copy” of the virtual disks
for the virtual machine. These copies are named with the base name of the disk, and a unique
decimal number appended to the name. The format of the number is a hyphen character
followed by a 6-digit zero-filled number. An example a disk copy name might be mydisk-
NNNNNN.vmdk where NNNNNN would be some number like: 000032.

The vSphere API identifies virtual disk files by prefixing the datastore name onto the file system
pathname and the filename: [storageN] myvmname/mydisk-NNNNNN.vmdk. The name in square
brackets corresponds to the short name of the datastore that contains this virtual disk, while the
remainder of the path string represents the location relative to the root of this datastore.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 101

To get the name and characteristics of a virtual disk file, you use the PropertyCollector to
select the property: config.hardware.device from a VirtualMachine managed object. This
returns an array of virtual devices associated with a VirtualMachine or Snapshot. You must scan
this list of devices to extract the list of virtual disks. All that is necessary is to see if each
VirtualDevice entry extends to VirtualDisk. When you find such an entry, examine the
BackingInfo property. You must extend the type of the backing property to one of the following,
or a VirtualMachineSnapshot managed object:

n VirtualDiskFlatVer1BackingInfo

n VirtualDiskFlatVer2BackingInfo

n VirtualDiskRawDiskMappingVer1BackingInfo

n VirtualDiskSparseVer1BackingInfo

n VirtualDiskSparseVer2BackingInfo

It is important to know which backing type is in use in order to be able to re-create the Virtual
Disk.It is also important to know that you cannot snapshot a disk of type
VirtualDiskRawDiskMappingVer1BackingInfo, and therefore you cannot back up this type of
Virtual Disk.

The properties of interest are the backing fileName and the VirtualDisk capacityInKB.
Additionally, when change tracking is in place, you should also save the changeID.

Creating a Snapshot

Before performing a backup operation, you must create a snapshot of the target virtual machine.
Both full and incremental backup rely on the snapshot in vSphere.

With SAN transport on VMFS volumes, the virtual machine should not have any pre-existing
snapshots, so that reporting of in-use disk sectors will work. For details see About Changed Block
Tracking.

As a best practice, you should search for and delete any pre-existing snapshots with the same
name that you selected for the temporary snapshot. These snapshots are possibly remnants
from failed backup attempts.

Within a specific snapshot, the names of virtual disk files (with extension .vmdk) can be modified
with a zero-filled 6-digit decimal sequence number to ensure that the .vmdk files are uniquely
named. Depending on whether or not the current virtual machine had a pre-existing snapshot,
the disk name for a snapshot could have this format: <diskname>-<NNNNNN>.vmdk. This unique
name is no longer valid after the snapshot is destroyed, so any data for a snapshot disk should
be stored in the backup program under its base disk name.

The following code sample shows how to create a snapshot on a specific virtual machine:

// At this point we assume the virtual machine is identified as ManagedObjectReference vmMoRef.

String SnapshotName = "Backup";

String SnapshotDescription = "Temporary Snapshot for Backup";

boolean memory_files = false;

Virtual Disk Development Kit Programming Guide

VMware, Inc. 102

boolean quiesce_filesystem = true;

ManagedObjectReference taskRef = serviceConnection.getservice().CreateSnapshot_Task(vmMoRef,

 SnapshotName, SnapshotDescription, memory_files, quiesce_filesystem);

You can use the taskRef return value as a moRef to track progress of the snapshot operation.
After successful completion, taskRef.info.result contains the moRef of the snapshot.

Backing Up a Virtual Disk

This section describes how to get data from the Virtual Disk after you have identified it. In order
to access a virtual disk, you must use the VixDiskLib. The following code shows how to initialize
the VixDiskLib and use it for accessing a virtual disk. All operations require a VixDiskLib
connection to access virtual disk data. At the present time VixDiskLib is not implemented for the
Java language, so this code is C++ language:

VixDiskLibConnectParams connectParams;

VixDiskLibConnection srcConnection;

connectParams.serverName = strdup("TargetServer");

connectParams.creds.uid.userName = strdup("root");

connectParams.creds.uid.password = strdup("yourPasswd");

connectParams.port = 902;

VixError vixError = VixDiskLib_Init(1, 0, &logFunc, &warnFunc, &panicFunc, libDir);

vixError = VixDiskLib_Connect(&connectParams, &srcConnection);

This next section of code shows how to open and read a specific virtual disk:

VixDiskLibHandle diskHandle;

vixError = VixDiskLib_Open(srcConnection, diskPath, flags, &diskHandle);

uint8 mybuffer[some_multiple_of_512];

vixError = VixDiskLib_Read(diskHandle, startSector, numSectors, &mybuffer);

// Also getting the disk metadata:

size_t requiredLength = 1;

char *buf = new char [1];

// This next operation fails, but updates "requiredLength" with the proper buffer size

vixError = VixDiskLib_GetMetadataKeys(diskHandle, buf, requiredLength, &requiredLength);

delete [] buf;

buf = new char[requiredLength]; // Create a large enough buffer

vixError = VixDiskLib_GetMetadataKeys(diskHandle, buf, requiredLength, NULL);

// And finally, close the diskHandle:

vixError = VixDiskLib_Close(diskHandle);

// And if you are completely done with the VixDiskLib

VixDiskLib_Disconnect(srcConnection);

VixDiskLib_Exit();

Virtual Disk Development Kit Programming Guide

VMware, Inc. 103

Deleting a Snapshot

When you are done performing a backup, you need to delete the temporary snapshot. You can
get the moRef for the snapshot from taskRef.info.result as describe above for the create snapshot
operation. The following Java code demonstrates how to delete the snapshot:

ManagedObjectReference removeSnapshotTask;

ManagedObjectReference snapshot; // Already initialized.

removeSnapshotTask = serviceConnection.getservice().removeSnapshot_Task(snapshot, Boolean FALSE);

New Query Allocated Blocks Function

As of vSphere 6.7, developers can call VixDiskLib_QueryAllocatedBlocks to accelerate the backup
process, especially with large virtual disks. By knowing which blocks are allocated, an application
can avoid reading irrelevant sectors and thus reduce data transfer during backup.

Function Signatures

The VixDiskLib_QueryAllocatedBlocks function synchronously retrieves a list of allocated blocks.
On an open VMDK, it queries for allocated blocks by chunks. A chunk is a defined as a block of
consecutive sectors. The calling program can specify chunk size to control granularity, along with
starting sector and extent.

VixError

VixDiskLib_QueryAllocatedBlocks(VixDiskLibHandle diskHandle,

 VixDiskLibSectorType startSector,

 VixDiskLibSectorType numSectors,

 VixDiskLibSectorType chunkSize,

 VixDiskLibBlockList **blockList)

Parameters

n diskHandle [in] Handle to an open virtual disk.

n startSector [in] Absolute offset, possibly zero (0).

n numSectors [in] Number of sectors to query.

n chunkSize [in] Minimum number of sectors covered by a chunk containing data.

n blockList [out] Buffer containing a VixDiskLibBlockList.

Return: VIX_OK on success, otherwise a suitable VIX error code.

Backup programs must call the VixDiskLib_FreeBlockList function to deallocate the returned
blockList when done with it.

VixError

VixDiskLib_FreeBlockList(VixDiskLibBlockList *blockList)

Parameters

n blockList [out] Buffer with above returned VixDiskLibBlockList.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 104

Return: VIX_OK on success, otherwise a suitable VIX error code.

About Query Allocated Blocks

This function supplements the QueryChangedDiskAreas function, which is the vSphere API for
changed block tracking (CBT). Backup software can start by calling
VixDiskLib_QueryAllocatedBlocks to get a list of allocated blocks, instead of calling
QueryChangedDiskAreas with special change ID ("*") to return only active portions of a virtual disk.
Calling QueryAllocatedBlocks is easier, and its implementation is simpler. Consequently the special
change ID ("*") is deprecated in this release. It had issues with pre-existing snapshots, and was
slow when used with extremely large disks.

Query allocated blocks does not depend on CBT. You can enable CBT either before or after the
call. Although new in vSphere 6.7, QueryAllocatedBlocks works against vSphere 6.5 and 6.0 as
well.

VixDiskLib_QueryAllocatedBlocks can be used on object-oriented datastores such as vSAN and
VVols (virtual volumes). It is especially helpful for backing up thin-provisioned disks. To skip
copying non-allocated regions, programs call QueryAllocatedBlocks to get the list of allocated
blocks returned in the final parameter. This works for large sparsely allocated virtual disks even
when CBT is not enabled.

Query allocated blocks should be called in the same thread as open and close disk, not from read
and write worker threads.

One limitation is that VixDiskLib_QueryAllocatedBlocks returns the whole VMDK for NFS, rather
than just the allocated blocks as for VMFS, vSAN, and VVol datastores.

In file transport mode, VixDiskLib_QueryAllocatedBlocks depends on the disk library to support
local VMDK files. In NBD(SSL) transport mode, an NFC message queries the bitmap of allocated
sectors. In SAN and HotAdd transport modes, raw disk in the guest OS does not contain
allocated sector information, so the function depends on the aforementioned NFC message to
get a bitmap of allocated sectors.

Use Cases for Query Allocated Blocks

To accelerate the initial full backup of allocated disk:

1 Open the VMDK file.

2 Query allocated blocks. If you have separate threads for open and read, call it in the open-
close thread.

3 Read and save the allocated blocks.

4 Close the VMDK file. Repeat steps for subsequent VMDK files.

For an incremental or differential backup:

1 Call QueryChangedDiskAreas with changeId of the epoch (point in time of last backup) to find all
areas that have changed since the last backup. This is A1.

2 Use VixDiskLib_QueryAllocatedBlocks to find all valid data sectors. This is A2.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 105

3 The intersection of the two sets (A1 ∩ A2) yields the regions that have changed and are
allocated. The backup application should save the data in these regions (the intersection).

4 The area A1 minus the intersection (A1 – (A1 ∩ A2)) yields the regions that were changed but
unmapped. The backup application can record those regions as zeroed without reading them.

This is highly useful when backing up an AUTO-UNMAP enabled VMDK. Since unmapped blocks can
be recorded as "changed block" by CBT, without the QueryAllocatedBlocks call, those unmapped
blocks get backed up unnecessarily. With the features together, as described in above, the real
changed blocks (namely excluding unmapped) can be calculated.

Code Sample for Query Allocated Blocks

In the development kit, see the vixDiskLibSample.cpp program for its sample code related to
chunkSize . The DoGetAllocatedBlocks routine calls the query allocated blocks function, after being
requested by the -getallocatedblocks command line argument.

Changed Block Tracking on Virtual Disks

On ESXi hosts release 4.0 and later, virtual machines can keep track of disk sectors that have
changed. This is called changed block tracking. Its method in the VMware vSphere API is
QueryChangedDiskAreas, which takes the following parameters:

n _this – Managed object reference to the virtual machine.

n snapshot – Managed object reference to a Snapshot of the virtual machine.

n deviceKey – Virtual disk for which to compute the changes.

n startOffset – Byte offset where to start computing changes to virtual disk. The length of
virtual disk sector(s) examined is returned in DiskChangeInfo.

n changeId – An identifier for the state of a virtual disk at a specific point in time. A new
ChangeId results every time someone creates a snapshot. You should retain this value with
the version of change data that you extract (using QueryChangedDiskAreas) from the
snapshot’s virtual disk.

When you back up a snapshot for the first time, ChangeId should be unset, or unsaved, indicating
that a baseline (full) backup is required. If you have a saved ChangeId, it identifies the last time a
backup was taken, and tells the changed block tracking logic to identify changes that have
occurred since the time indicated by the saved ChangeId.

There are two ways to get this baseline backup:

n Directly save the entire contents of the virtual disk.

n Call the VixDiskLib_QueryAllocatedBlocks function, which returns the allocated portions of
a virtual disk. Usually this substantially reduces the amount of data to save, especially for thin
provisioned and sparse virtual disks.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 106

To summarize, changeID is an identifier for a time in the past. It should be a changeId string saved
at the time when a pre-backup snapshot was taken. If a previous ChangeId does exist, then
QueryChangedDiskAreas returns the disk sectors that changed since the new ChangeId was
collected. Table 7-3. Use of Change ID for Changed Block Tracking shows the algorithm.

Table 7-3. Use of Change ID for Changed Block Tracking

New Change ID Old Change ID Used for Query Result

change 0 none null All sectors, use Query Allocated Sectors instead.

change 1 change 0 change 0 All sectors altered since change 0.

Enable Changed Block Tracking

This feature is disabled by default, because it reduces performance by a small but measurable
amount. If you query the virtual machine configuration, you can determine if it is capable of
changed block tracking. Use the property collector to retrieve the capability field from the
VirtualMachineManagedObject. If the capability field contains the flag changeTrackingSupported,
then you can proceed. The virtual machine version must be 7 or higher to support this. If the
virtual machine version is lower than 7, upgrade the virtual hardware.

If supported, you enable changed block tracking using an abbreviated form of
VirtualMachineConfigSpec, then use the ReconfigVM_Task method to reconfigure the virtual
machine with changed block tracking:

VirtualMachineConfigSpec configSpec = new VirtualMachineConfigSpec();

configSpec.changeTrackingEnabled = new Boolean(true);

ManagedObjectReference taskMoRef =

 serviceConnection.getService().ReconfigVm_Task(targetVM_MoRef, configSpec);

Powered-on virtual machines must go through a stun-unstun cycle (triggered either by power on,
migrate, resume after suspend, or snapshot create/delete/revert) before the virtual machine
reconfiguration takes effect.

To enable changed block tracking with the vSphere Client:

1 Select the virtual machine and ensure that Summary > VM Version says “7” or higher
compatibility.

2 In the Summary tab, click Edit Settings > Options > Advanced > General.

3 In the right side of the dialog box, click Configuration Parameters...

4 In the new dialog box, locate or create a row with name ctkEnabled, and set its value to true
not false. See above concerning the stun-unstun cycle.

To enable changed block tracking and back up with the VMware vSphere API:

1 Query change tracking status of the virtual machine. If false, activate changed block tracking.

configSpec.changeTrackingEnabled = new Boolean(true);

Virtual Disk Development Kit Programming Guide

VMware, Inc. 107

2 Create a snapshot of the virtual machine. The snapshot operation causes a stun-unstun cycle.

CreateSnapshot_Task(VMmoRef, SnapshotName, Description, memory_files, quiesce_filesystem);

3 Starting from the snapshot’s ConfigInfo, work your way to the BackingInfo of all virtual
disks in the snapshot. This gives you the change IDs for all the disks of the virtual machine.

4 Hold onto the change IDs and do a full backup of the snapshot, since this is the first time for
backup.

VixDiskLib_Read(snapshotDiskHandle, startSector, numSectors, &buffer); /* C not Java */

5 Delete the snapshot when your backup has completed.

removeSnapshot_Task(SnapshotName, Boolean FALSE);

6 Next time you back up this virtual machine, create a snapshot and use
QueryChangedDiskAreas with the change IDs from your previous backup to take advantage
of changed block tracking.

changes = theVM.queryChangedDiskAreas(SnapshotMoRef, diskDeviceKey, startPosition, changeId);

Gathering Changed Block Information

Associated with changed block tracking is changeId, an identifier for versions of changed block
data. Whenever a virtual machine snapshot is created, associated with that snapshot is a
changeId that functions as a landmark to identify changes in virtual disk data. So it follows that
when a snapshot is created for the purpose of creating an initial virtual disk backup, the changeId
associated with that snapshot can be used to retrieve changes that have occurred since
snapshot creation.

To obtain the changeId associated with any disk in a snapshot, you examine the “hardware”
array from the snapshot. Any item in the devices table that is of type
vim.vm.device.VirtualDevice.VirtualDisk encloses a class describing the “backing storage”
(obtained using getBacking) that implements virtual disk. If backing storage is one of the
following disk types, you can use the changeId property of the BackingInfo data object to
obtain the changeId:

vim.vm.device.VirtualDevice.VirtualDiskFlatVer2BackingInfo

vim.vm.device.VirtualDevice.VirtualDiskSparseVer2BackingInfo

vim.vm.device.VirtualDevice.VirtualDiskRawDiskMappingVer1BackingInfo

vim.vm.device.VirtualDevice.VirtualDiskRawDiskVer2BackingInfo

Information returned by the QueryChangedDiskAreas method is a DiskChangeInfo data object
containing an array of DiskChangeInfo.DiskChangeExtent items that enumerate the start offset
and length of various disk areas that changed, and the length and start offset of the entire disk
area covered by DiskChangeInfo.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 108

When using QueryChangedDiskAreas to gather information about snapshots, enable change
tracking before taking a snapshot. Attempts to collect information about changes that occurred
before change tracking was enabled result in a FileFault error. Enabling change tracking provides
the additional benefit of saving space because it enables backup of only information that has
changed. If change tracking is not enabled, the entire virtual machine must be backed up each
time, rather than incrementally.

Changed block tracking is supported whenever the I/O operations are processed by the ESXi
storage stack:

n For a virtual disk stored on VMFS, no matter what backs the VMFS volume (SAN or local
disk).

n For a virtual disk stored on NFS (though thick vs thin might be an issue).

n For an RDM in virtual compatibility mode.

When I/O operations are not processed by the ESXi storage stack, changed block tracking is not
usable:

n For an RDM in physical compatibility mode.

n A disk that is accessed directly from inside a VM. For example if you are running an iSCSI
initiator within the virtual machine to access an iSCSI LUN from inside the VM, vSphere cannot
track it.

If the guest actually wrote to each block of a virtual disk (long format or secure erase), or if the
virtual disk is thick and eager zeroed, or cloned thick disk, then the query may report the entire
disk as being in use.

To find change information, you can use the managed object browser at http://<ESXhost>/mob
to follow path content > rootFolder > datacenter > datastore > vm > snapshot > config >
hardware > virtualDisk > backing. Changed block tracking information (changeId) appears in the
BackingInfo.

The following C++ code sample assumes that, in the past, you obtained a complete copy of the
virtual disk, and at the time when the changeId associated with the snapshot was collected, you
stored it for use at a later time, which is now. A new snapshot has been created, and the
appropriate moRef is available:

String changeId; // Already initialized: changeId, snapshotMoRef, theVM

ManagedObjectReference snapshotMoRef;

ManagedObjectReference theVM;

int diskDeviceKey; // Identifies the virtual disk.

VirtualMachine.DiskChangeInfo changes;

long startPosition = 0;

do {

 changes = theVM.queryChangedDiskAreas(snapshotMoRef, diskDeviceKey, startPosition, changeId);

 for (int i = 0; i < changes.changedArea.length; i++) {

 long length = changes.changedArea[i].length;

 long offset = changes.changedArea[i].startOffset;

 //

 // Go get and save disk data here

Virtual Disk Development Kit Programming Guide

VMware, Inc. 109

 }

 startPosition = changes.startOffset + changes.length;

} while (startPosition < diskCapacity);

In the above code, QueryChangedDiskAreas is called repeatedly, as position moves through the
virtual disk. This is because the number of entries in the ChangedDiskArea array could occupy a
large amount of memory for describing changes to a large virtual disk. Some disk areas may have
no changes for a given changeId.

The changeId (changed block ID) contains a sequence number in the form <UUID>/<nnn>. If
<UUID> changes, it indicates that tracking information has become invalid, necessitating a full
backup. Otherwise incremental backups can continue in the usual pattern.

CBT Enhancements in vSphere 7.0

Changed block tracking (CBT) received several important enhancements in vSphere 7.0.

For VMs of recent virtual hardware versions, CBT version 2 uses a smaller and adaptable block
size. Although not user visible, this improves the resolution of tracking changes, decreases the
amount of backup data, and improves perspectives for block-based recovery. As of vSphere 7.0,
this feature is applied automatically when a VM is created or upgraded to hardware version 17 or
higher, after CBT set or reset.

If backup customers want to have more than 1024 CBT-enabled disks open simultaneously, they
can increase the CBT memory limit. CBT memory configuration is in the vSphere Client under
Advanced System Settings, key MemCBTBitmapMaxAlloc. The allowed range is 128MB to 2048MB.
The higher limit might allow as many open CBT disks as the ESXi open disk limit, currently 2048.

The vixDiskCheck utility is provided to verify the data consistency of CBT enabled incremental
backups of a VMDK. In addition to authorization options, similar to options of the VixDiskLib
sample program, the -cbtdir option specifies a temporary directory that should be as large as
the VMDK being checked.

bin64/vixDiskCheck cbtCheck [auth-options] -cbtdir directory -disk disk.vmdk

Troubleshooting

If you reconfigure a virtual machine to set changeTrackingEnabled, but the property remains
false, check that you have queried the virtual machine status with VirtualMachine->config()
after reconfiguration with VirtualMachine->reconfigure() and not before. Also make sure that
virtual machine compatibility is hardware version 7 or higher, and that it has undergone a stun-
unstun cycle since reconfiguration.

Limitations on Changed Block Tracking

Changed block tracking does not work if the virtual hardware version is 6 or earlier, in physical
compatibility RDM mode, or when the virtual disk is attached to a shared virtual SCSI bus. ESXi
3.5 supported only up to virtual hardware version 4.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 110

Changed block tracking can be enabled on virtual machines that have disks like these, but when
queried for their change ID, these disks always return an empty string. So if you have a virtual
machine with a regular system disk and a pass-through RDM as a data disk, you can track
changes only on the system disk.

Low Level Restore Procedures

The following sections describe how to recover virtual machines and restore virtual disk data.

n Restoring a Virtual Machine and Disk

n Restore Incremental Backup Data

Restoring a Virtual Machine and Disk

You cannot get write access to a virtual disk that is in active use. For a full restore, you first must
ensure that the virtual disk is not in use by halting the parent virtual machine, then performing the
“power off” sequence. The following code sample demonstrates how to “power off” a Virtual
Machine:

// At this point we assume that you have a ManagedObjectReference to the VM - vmMoRef.

// Power on would need a ManagedObjectReference to the host running the VM - hostMoRef.

ManagedObjectReference taskRef = serviceConnection.powerOffVm(vmMoRef);

With SAN transport mode, you must create a snapshot of the virtual machine before virtual disk
restore. See Creating a Snapshot. If at restore time the virtual machine had a pre-existing
snapshot, you must delete it, otherwise SAN mode restore will fail. For other transport modes,
the restore snapshot is optional.

With a VVol datastore, the restore snapshot is forbidden when restoring to the parent (backing
disk). A null MoRef is allowed as of vSphere 6.0 to minimize code changes when applications
restore to a VVol datastore. To get the unique ID of a VVol object in the MOB (managed object
browser) click VirtualMachine > Config > Hardware > Device (VirtualDisk) > Backing.

Table 7-4. Summary of restore snapshot requirements summarizes the snapshot requirements.

Table 7-4. Summary of restore snapshot requirements

NBDSSL HotAdd SAN

Non-VVol datastore A snapshot is optional. If a snapshot is
used, writing to either the leaf disk or the
parent disk is supported. If writing to the
parent disk, the snapshot must be
reverted and then deleted.

A snapshot is required. Writing to the leaf
disk is not supported, and writes must only
go to the base disk. The snapshot must be
reverted and then deleted.

VVol datastore A snapshot is optional. If a snapshot is
used, writing must be to the leaf disk only.

Not applicable, because SAN transport is
not supported on VVol datastores.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 111

In this phase you use VixDiskLib to reload contents of the Virtual Disk, so the following code is C+
+ not Java:

// At this point we assume that you already have a VixDiskLib connection to the server machine.

uint8 mybuffer[some_multiple_of_512];

int mylocalfile = open("localfile", openflags); // Contains backup copy of virtual disk.

read(mylocalfile, mybuffer, sizeof mybuffer);

vixError = VixDiskLib_Open(srcConnection, path, flags, &diskHandle);

VixDiskLib_Write(diskHandle, startsector, (sizeof mybuffer) / 512, mybuffer);

With SAN transport mode, you must revert-to and delete the snapshot. If you forget the
snapshot revert, snapshot delete will fail due to CID mismatch, so the virtual machine cannot be
powered on. If you forget the snapshot delete, the extraneous snapshot will cause restore
problems for subsequent backups.

Creating a Virtual Machine

This section shows how to create a VirtualMachine object, which is complicated but necessary so
you can restore data into it. Before creating this object, you must create a
VirtualMachineConfigSpec describing the virtual machine and all of its supporting virtual
devices. Almost all the required information is available from the virtual machine property
config.hardware.device, which is a table containing the device configuration information. The
relationships between devices are described by the value key, which is a unique identifier for the
device. In turn, each device has a controllerKey, which is the key identifier of the controller
where the device is connected. Use negative integers as temporary key values in the
VirtualMachineConfigSpec to guarantee that temporary key numbers do not conflict with real
key numbers when they are assigned by the server. When associating virtual devices with default
devices, the controllerKey property should be reset with the key property of the controller.
Below are the settings for a sample VirtualMachineConfigSpec used to create a virtual machine.

// beginning of VirtualMachineConfigSpec, ends several pages later

{

 dynamicType = <unset>,

 changeVersion = <unset>,

//This is the display name of the VM

 name = “My New VM“,

 version = "vmx-04",

 uuid = <unset>,

 instanceUuid = <unset>,

 npivWorldWideNameType = <unset>,

 npivDesiredNodeWwns = <unset>,

 npivDesiredPortWwns = <unset>,

 npivTemporaryDisabled = <unset>,

 npivOnNonRdmDisks = <unset>,

 npivWorldWideNameOp = <unset>,

 locationId = <unset>,

// This is advisory, the disk determines the O/S

guestId = "winNetStandardGuest",

 alternateGuestName = "Microsoft Windows Server 2008, Enterprise Edition",

 annotation = <unset>,

 files = (vim.vm.FileInfo) {

Virtual Disk Development Kit Programming Guide

VMware, Inc. 112

 dynamicType = <unset>,

 vmPathName = "[plat004-local]",

 snapshotDirectory = "[plat004-local]",

 suspendDirectory = <unset>,

 logDirectory = <unset>,

 },

 tools = (vim.vm.ToolsConfigInfo) {

 dynamicType = <unset>,

 toolsVersion = <unset>,

 afterPowerOn = true,

 afterResume = true,

 beforeGuestStandby = true,

 beforeGuestShutdown = true,

 beforeGuestReboot = true,

 toolsUpgradePolicy = <unset>,

 pendingCustomization = <unset>,

 syncTimeWithHost = <unset>,

 },

 flags = (vim.vm.FlagInfo) {

 dynamicType = <unset>,

 disableAcceleration = <unset>,

 enableLogging = <unset>,

 useToe = <unset>,

 runWithDebugInfo = <unset>,

 monitorType = <unset>,

 htSharing = <unset>,

 snapshotDisabled = <unset>,

 snapshotLocked = <unset>,

 diskUuidEnabled = <unset>,

 virtualMmuUsage = <unset>,

 snapshotPowerOffBehavior = "powerOff",

 recordReplayEnabled = <unset>,

 },

 consolePreferences = (vim.vm.ConsolePreferences) null,

 powerOpInfo = (vim.vm.DefaultPowerOpInfo) {

 dynamicType = <unset>,

 powerOffType = "preset",

 suspendType = "preset",

 resetType = "preset",

 defaultPowerOffType = <unset>,

 defaultSuspendType = <unset>,

 defaultResetType = <unset>,

 standbyAction = "powerOnSuspend",

 },

 // the number of CPUs

 numCPUs = 1,

 // the number of memory megabytes

 memoryMB = 256,

 memoryHotAddEnabled = <unset>,

 cpuHotAddEnabled = <unset>,

 cpuHotRemoveEnabled = <unset>,

 deviceChange = (vim.vm.device.VirtualDeviceSpec) [

 (vim.vm.device.VirtualDeviceSpec) {

 dynamicType = <unset>,

 operation = "add",

Virtual Disk Development Kit Programming Guide

VMware, Inc. 113

 fileOperation = <unset>,

 // CDROM

 device = (vim.vm.device.VirtualCdrom) {

 dynamicType = <unset>,

 // key number of CDROM

 key = -42,

 deviceInfo = (vim.Description) null,

 backing = (vim.vm.device.VirtualCdrom.RemotePassthroughBackingInfo) {

 dynamicType = <unset>,

 deviceName = "",

 useAutoDetect = <unset>,

 exclusive = false,

 },

 connectable = (vim.vm.device.VirtualDevice.ConnectInfo) {

 dynamicType = <unset>,

 startConnected = false,

 allowGuestControl = true,

 connected = false,

 },

 // connects to this controller

 controllerKey = 200,

 unitNumber = 0,

 },

 },

 (vim.vm.device.VirtualDeviceSpec) {

 dynamicType = <unset>,

 operation = "add",

 fileOperation = <unset>,

 // SCSI controller

 device = (vim.vm.device.VirtualLsiLogicController) {

 dynamicType = <unset>,

// key number of SCSI controller

 key = -44,

 deviceInfo = (vim.Description) null,

 backing = (vim.vm.device.VirtualDevice.BackingInfo) null,

 connectable = (vim.vm.device.VirtualDevice.ConnectInfo) null,

 controllerKey = <unset>,

 unitNumber = <unset>,

 busNumber = 0,

 hotAddRemove = <unset>,

 sharedBus = "noSharing",

 scsiCtlrUnitNumber = <unset>,

 },

 },

 (vim.vm.device.VirtualDeviceSpec) {

 dynamicType = <unset>,

 operation = "add",

 fileOperation = <unset>,

 // Network controller

 device = (vim.vm.device.VirtualPCNet32) {

 dynamicType = <unset>,

 // key number of Network controller

 key = -48,

 deviceInfo = (vim.Description) null,

 backing = (vim.vm.device.VirtualEthernetCard.NetworkBackingInfo) {

Virtual Disk Development Kit Programming Guide

VMware, Inc. 114

 dynamicType = <unset>,

 deviceName = "Virtual Machine Network",

 useAutoDetect = <unset>,

 network = <unset>,

 inPassthroughMode = <unset>,

 },

 connectable = (vim.vm.device.VirtualDevice.ConnectInfo) {

 dynamicType = <unset>,

 startConnected = true,

 allowGuestControl = true,

 connected = true,

 },

 controllerKey = <unset>,

 unitNumber = <unset>,

 addressType = "generated",

 macAddress = <unset>,

 wakeOnLanEnabled = true,

 },

 },

 (vim.vm.device.VirtualDeviceSpec) {

 dynamicType = <unset>,

 operation = "add",

 fileOperation = "create",

 // SCSI disk one

 device = (vim.vm.device.VirtualDisk) {

 dynamicType = <unset>,

 // key number for SCSI disk one

 key = -1000000,

 deviceInfo = (vim.Description) null,

 backing = (vim.vm.device.VirtualDisk.FlatVer2BackingInfo) {

 dynamicType = <unset>,

 fileName = "",

 datastore = <unset>,

 diskMode = "persistent",

 split = false,

 writeThrough = false,

 thinProvisioned = <unset>,

 eagerlyScrub = <unset>,

 uuid = <unset>,

 contentId = <unset>,

 changeId = <unset>,

 parent = (vim.vm.device.VirtualDisk.FlatVer2BackingInfo) null,

 },

 connectable = (vim.vm.device.VirtualDevice.ConnectInfo) {

 dynamicType = <unset>,

 startConnected = true,

 allowGuestControl = false,

 connected = true,

 },

 // controller for SCSI disk one

 controllerKey = -44,

 unitNumber = 0,

 // size in MB SCSI disk one

 capacityInKB = 524288,

 committedSpace = <unset>,

Virtual Disk Development Kit Programming Guide

VMware, Inc. 115

 shares = (vim.SharesInfo) null,

 },

 },

 (vim.vm.device.VirtualDeviceSpec) {

 dynamicType = <unset>,

 operation = "add",

 fileOperation = "create",

 // SCSI disk two

 device = (vim.vm.device.VirtualDisk) {

 dynamicType = <unset>,

// key number of SCSI disk two

 key = -100,

 deviceInfo = (vim.Description) null,

 backing = (vim.vm.device.VirtualDisk.FlatVer2BackingInfo) {

 dynamicType = <unset>,

 fileName = "",

 datastore = <unset>,

 diskMode = "persistent",

 split = false,

 writeThrough = false,

 thinProvisioned = <unset>,

 eagerlyScrub = <unset>,

 uuid = <unset>,

 contentId = <unset>,

 changeId = <unset>,

 parent = (vim.vm.device.VirtualDisk.FlatVer2BackingInfo) null,

 },

 connectable = (vim.vm.device.VirtualDevice.ConnectInfo) {

 dynamicType = <unset>,

 startConnected = true,

 allowGuestControl = false,

 connected = true,

 },

 // controller for SCSI disk two

 controllerKey = -44,

 unitNumber = 1,

 // size in MB SCSI disk two

 capacityInKB = 131072,

 committedSpace = <unset>,

 shares = (vim.SharesInfo) null,

 },

 }

 },

 cpuAllocation = (vim.ResourceAllocationInfo) {

 dynamicType = <unset>,

 reservation = 0,

 expandableReservation = <unset>,

 limit = <unset>,

 shares = (vim.SharesInfo) {

 dynamicType = <unset>,

 shares = 100,

 level = "normal",

 },

 overheadLimit = <unset>,

 },

Virtual Disk Development Kit Programming Guide

VMware, Inc. 116

 memoryAllocation = (vim.ResourceAllocationInfo) {

 dynamicType = <unset>,

 reservation = 0,

 expandableReservation = <unset>,

 limit = <unset>,

 shares = (vim.SharesInfo) {

 dynamicType = <unset>,

 shares = 100,

 level = "normal",

 },

 overheadLimit = <unset>,

 },

 cpuAffinity = (vim.vm.AffinityInfo) null,

 memoryAffinity = (vim.vm.AffinityInfo) null,

 networkShaper = (vim.vm.NetworkShaperInfo) null,

 swapPlacement = <unset>,

 swapDirectory = <unset>,

 preserveSwapOnPowerOff = <unset>,

 bootOptions = (vim.vm.BootOptions) null,

 appliance = (vim.vService.ConfigSpec) null,

 ftInfo = (vim.vm.FaultToleranceConfigInfo) null,

 applianceConfigRemoved = <unset>,

 vAssertsEnabled = <unset>,

 changeTrackingEnabled = <unset>,

}

// end of VirtualMachineConfigSpec

The information above is quite complex, but much of the input consists of defaulted values that
are assigned by the system. The remainder of the supplied information can be extracted from the
output of the config.hardware.device table returned from PropertyCollector. Borrowing
heavily from an SDK code example, the following code sets up the configuration specification:

// Duplicate virtual machine configuration

VirtualMachineConfigSpec configSpec = new VirtualMachineConfigSpec();

// Set the VM values

configSpec.setName("My New VM");

configSpec.setVersion("vmx-04");

configSpec.setGuestId("winNetStandardGuest");

configSpec.setNumCPUs(1);

configSpec.setMemoryMB(256);

// Set up file storage info

VirtualMachineFileInfo vmfi = new VirtualMachineFileInfo();

vmfi.setVmPathName("[plat004-local]");

configSpec.setFiles(vmfi);

vmfi.setSnapshotDirectory("[plat004-local]");

// Set up tools config info

ToolsConfigInfo tools = new ToolsConfigInfo();

configSpec.setTools(tools);

tools.setAfterPowerOn(new Boolean(true));

tools.setAfterResume(new Boolean(true));

tools.setBeforeGuestStandby(new Boolean(true));

tools.setBeforeGuestShutdown(new Boolean(true));

tools.setBeforeGuestReboot(new Boolean(true));

// Set flags

Virtual Disk Development Kit Programming Guide

VMware, Inc. 117

VirtualMachineFlagInfo flags = new VirtualMachineFlagInfo();

configSpec.setFlags(flags);

flags.setSnapshotPowerOffBehavior("powerOff");

// Set power op info

VirtualMachineDefaultPowerOpInfo powerInfo = new VirtualMachineDefaultPowerOpInfo();

configSpec.setPowerOpInfo(powerInfo);

powerInfo.setPowerOffType("preset");

powerInfo.setSuspendType("preset");

powerInfo.setResetType("preset");

powerInfo.setStandbyAction("powerOnSuspend");

// Now add in the devices

VirtualDeviceConfigSpec[] deviceConfigSpec = new VirtualDeviceConfigSpec [5];

configSpec.setDeviceChange(deviceConfigSpec);

// Formulate the CDROM

deviceConfigSpec[0].setOperation(VirtualDeviceConfigSpecOperation.add);

VirtualCdrom cdrom = new VirtualCdrom();

VirtualCdromIsoBackingInfo cdDeviceBacking = new VirtualCdromRemotePassthroughBackingInfo();

cdDeviceBacking.setDatastore(datastoreRef);

cdrom.setBacking(cdDeviceBacking);

cdrom.setKey(-42);

cdrom.setControllerKey(new Integer(-200)); // Older Java required type for optional properties

cdrom.setUnitNumber(new Integer(0));

deviceConfigSpec[0].setDevice(cdrom);

// Formulate the SCSI controller

deviceConfigSpec[1].setOperation(VirtualDeviceConfigSpecOperation.add);

VirtualLsiLogicController scsiCtrl = new VirtualLsiLogicController();

scsiCtrl.setBusNumber(0);

deviceConfigSpec[1].setDevice(scsiCtrl);

scsiCtrl.setKey(-44);

scsiCtrl.setSharedBus(VirtualSCSISharing.noSharing);

// Formulate SCSI disk one

deviceConfigSpec[2].setFileOperation(VirtualDeviceConfigSpecFileOperation.create);

deviceConfigSpec[2].setOperation(VirtualDeviceConfigSpecOperation.add);

VirtualDisk disk = new VirtualDisk();

VirtualDiskFlatVer2BackingInfo diskfileBacking = new VirtualDiskFlatVer2BackingInfo();

diskfileBacking.setDatastore(datastoreRef);

diskfileBacking.setFileName(volumeName);

diskfileBacking.setDiskMode("persistent");

diskfileBacking.setSplit(new Boolean(false));

diskfileBacking.setWriteThrough(new Boolean(false));

disk.setKey(-1000000);

disk.setControllerKey(new Integer(-44));

disk.setUnitNumber(new Integer(0));

disk.setBacking(diskfileBacking);

disk.setCapacityInKB(524288);

deviceConfigSpec[2].setDevice(disk);

// Formulate SCSI disk two

deviceConfigSpec[3].setFileOperation(VirtualDeviceConfigSpecFileOperation.create);

deviceConfigSpec[3].setOperation(VirtualDeviceConfigSpecOperation.add);

VirtualDisk disk2 = new VirtualDisk();

VirtualDiskFlatVer2BackingInfo diskfileBacking2 = new VirtualDiskFlatVer2BackingInfo();

diskfileBacking2.setDatastore(datastoreRef);

diskfileBacking2.setFileName(volumeName);

diskfileBacking2.setDiskMode("persistent");

diskfileBacking2.setSplit(new Boolean(false));

Virtual Disk Development Kit Programming Guide

VMware, Inc. 118

diskfileBacking2.setWriteThrough(new Boolean(false));

disk2.setKey(-100);

disk2.setControllerKey(new Integer(-44));

disk2.setUnitNumber(new Integer(1));

disk2.setBacking(diskfileBacking2);

disk2.setCapacityInKB(131072);

deviceConfigSpec[3].setDevice(disk2);

// Finally, formulate the NIC

deviceConfigSpec[4].setOperation(VirtualDeviceConfigSpecOperation.add);

com.VMware.vim.VirtualEthernetCard nic = new VirtualPCNet32();

VirtualEthernetCardNetworkBackingInfo nicBacking = new VirtualEthernetCardNetworkBackingInfo();

nicBacking.setNetwork(networkRef);

nicBacking.setDeviceName(networkName);

nic.setAddressType("generated");

nic.setBacking(nicBacking);

nic.setKey(-48);

deviceConfigSpec[4].setDevice(nic);

// Now that it is all put together, create the virtual machine.

// Note that folderMo, resourcePool, and hostMo, are moRefs to

// the Folder, ResourcePool, and Host where the VM is to be created.

ManagedObjectReference taskMoRef =

 serviceConnection.getService().createVM_Task(folderMo, configSpec, resourcePool, hostMo);

Using the VirtualMachineConfigInfo

A backup application can also use information contained in a VirtualMachineConfigInfo. If at
backup time you preserve all the VirtualMachineConfigInfo details that describe the virtual
machine, you can transfer much of this information into a VirtualMachineConfigSpec to create a
virtual machine at restore time. However, some of the information in VirtualMachineConfigInfo
is not needed, and if used in the Spec, virtual machine creation can fail. For example, a
VirtualMachineConfigSpec that contains information about so called “Default Devices” usually
fails. The list of default devices includes:

vim.vm.device.VirtualIDEController

vim.vm.device.VirtualPS2Controller

vim.vm.device.VirtualPCIController

vim.vm.device.VirtualSIOController

vim.vm.device.VirtualKeyboard

vim.vm.device.VirtualVMCIDevice

vim.vm.device.VirtualPointingDevice

However, other controllers and devices must be explicitly included in the
VirtualMachineConfigSpec.

Some information about devices is unneeded and can cause problems if supplied. Each controller
device has its vim.vm.device.VirtualController.device field, which is an array of devices that
report to the controller. The server rebuilds this list when a virtual machine is created, using the
(negative) device key numbers supplied as a guide. The relationship between controller and
device must be preserved using negative key numbers in the same relationship as in the
hardware array of VirtualMachineConfigInfo.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 119

The parent property for virtual disk backing information must be set to null. In the sample code
for creating a virtual machine, find vim.vm.device.VirtualDisk.FlatVer2BackingInfo under
SCSI disk one and SCSI disk two. The null setting is required because the pre-backup snapshot
causes the parent property to be populated with a reference to the base disk.

One other configuration needs substitution. VirtualMachineConfigInfo contains the
cpuFeatureMask, field, which is an array of HostCpuIdInfo. The array entries must be converted
to ArrayUpdateSpec entries containing the VirtualMachineCpuIdInfoSpec along with the
“operation” field, which must contain the value ArrayUpdateOperation::add. The
VirtualMachineCpuIdInfoSpec also contains a HostCpuIdInfo array that you can copy from the
cpuFeatureMask array in VirtualMachineConfigInfo. These items are not reflected in the sample
code. Everything else can be copied intact from VirtualMachineConfigInfo data.

To summarize: when creating a virtual machine in which to restore virtual disk:

n Exclude default devices, and VirtualController.device, from the
VirtualMachineConfigSpec.

n Set the parent virtual disk backing information (VirtualDisk.FlatVer2BackingInfo) to null.

n Convert HostCpuIdInfo array entries to ArrayUpdateSpec, insert
ArrayUpdateOperation::add, and copy the HostCpuIdInfo array from cpuFeatureMask into
VirtualMachineConfigInfo.

Editing or Deleting a Device

If backup clients want to edit or delete a device, they must use the server-provided key when
referring to an existing device. For the definition of key, see Creating a Virtual Machine. For
example, see the key and controllerKey below comments in the source code under CDROM.
The key uniquely identifies a device, while the controllerKey uniquely identifies the controller
where it is connected.

Restoring Virtual Disk Data

As in the section Low Level Restore Procedures, VixDiskLib functions provide interfaces for
writing the data to virtual disk, either locally or remotely.

Raw Device Mapping (RDM) Disks

To create an RDM disk using CreateVM_Task, use a LUN that is not occupied and thus is still
available. Developers sometimes use the same LUN uuid that is available in the configInfo
object, which can cause errors because the LUN uuid is datastore specific.

Call QueryConfigTarget to fetch the ConfigTarget.ScsiDisk.Disk.CanonicalName property, set
in VirtualDiskRawDiskMappingVer1BackInfo.deviceName. Also call QueryConfigTarget to fetch
ConfigTarget.ScsiDisk.Disk.uuid, set in VirtualDiskRawDiskMappingVer1BackInfo.lunUuid.
When creating the virtual machine, avoid host-specific properties of configInfo, which should be
set according to host configuration where the virtual machine is restored.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 120

Restore Incremental Backup Data

At some point you might need to restore a virtual disk from the backup data that you gathered
as described in Changed Block Tracking on Virtual Disks. The essential procedure is as follows:

Procedure

1 Power off the virtual machine, if powered on.

2 Using VirtualMachineConfigInfo that corresponds to the last known good state of the
guest operating system, re-create the virtual machine as described in Using the
VirtualMachineConfigInfo.

3 Completely reload the base virtual disk using the full backup that started the most recent
series of incremental backups.

4 Create a snapshot. This is mandatory for SAN mode restore.

A restore snapshot is forbidden when restoring to the parent (backing) disk on a VVol
datastore.

5 For SAN mode restore, disable changed block tracking. SAN writes are not possible with it
enabled

6 Sequentially restore the incremental backup data. You can do this either forwards or
backwards. If you work forwards, the restore might write some sectors more than once. If
you work backwards, you must keep track of which sectors were restored so as to avoid
restoring them again from older data.

a From your backup records, get the change ID of the incremental backup to be restored.
Your software must also store the changed-block information, so it knows which sectors
of virtual disk to restore. Once you start restoring virtual disk, the change tracking
mechanism will misreport.

b Restore only changed areas to the virtual disks referred to by the snapshot. This ensures
that you do not write the data to the redo log created by the snapshot. When restoring a
thin provisioned (sparse) disk, avoid writing zeroes to the unallocated blocks.

c Repeat steps a and b as necessary by applying incremental backup data sets in order.

7 If applicable (SAN mode) revert to the base virtual disk, thus eliminating the snapshot.

Restore with Direct Connection to ESXi Host

Sometimes you must restore a virtual machine directly to an ESXi host, for example in disaster
recovery when vCenter Server runs on ESXi as a virtual machine. A new vSphere 5 feature tries
to prevent this if the ESXi host is managed by vCenter. To circumvent this and restore the virtual
machine, you must first disassociate the host from vCenter. In earlier releases, vCenter
management had less state but was revocable only from vCenter.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 121

Procedure

1 Using the vSphere Client, connect directly to the ESXi 5.0 or later host.

2 In the Inventory left-hand panel, select the host. In the right-hand panel, click Summary.

3 In the box titled Host Management, click Disassociate host from vCenter Server. You do not
need to put the host in Maintenance Mode.

4 After the vCenter Server has been restored and is back in service, use it to reacquire the
host.

Currently there is no API to disassociate a host from vCenter Server.

Tips and Best Practices

This section discusses the various advanced transport mechanisms, and other backup issues.

VDDK 5.0 contained two new VixDiskLib calls (PrepareForAccess and EndAccess) to disable and
enable Storage vMotion during backup. This prevents stale disk images from being left behind if a
virtual machine has its storage moved while a backup is taking place. VMware strongly
recommends use of these calls.

When an ESXi host is managed by vCenter Server, vSphere API calls cannot contact the host
directly: they must go through vCenter. If necessary, especially during disaster recovery, the
administrator must disassociate the ESXi host from vCenter Server before the host can be
contacted directly.

Advanced transports allow programs to transfer data in the most efficient manner. SAN transport
is available only when the physical-machine host has SAN access. HotAdd works for the
appliance model, where backup is done from inside virtual machines. HotAdd requires the virtual
machine datastore to be accessible from the backup appliance. NBDSSL is a secure fallback
when over-the-network backup is your only choice.

SAN transport is supported only on physical machines, and HotAdd transport is supported only
on virtual machines. SAN requires a physical proxy to share a LUN with the ESXi host where a
datastore resides, enabling direct access to raw data, and bypassing the host altogether for I/O
operations. HotAdd involves attaching a virtual disk to the backup proxy just like attaching the
disk to a virtual machine.

Best Practices for SAN Transport

For array-based storage, SAN transport is often the best performing choice for backups when
running on a physical proxy. It is disabled inside virtual machines, so use SCSI HotAdd instead on
a virtual proxy.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 122

SAN transport is not always the best choice for restores. It offers the best performance on thick
disks, but the worst performance on thin disks, because of round trips through two disk manager
APIs, AllocateBlock and ClearLazyZero. For thin disk restore, NBDSSL is usually faster. Changed
Block Tracking (CBT) must be disabled for SAN restores. SAN transport does not support writing
to redo logs (child disks including linked clones and snapshots), only to base disks. SAN transport
is not supported on VVol datastores.

Before vSphere 5.5, when writing to SAN during restore, disk size had to be a multiple of the
underlying VMFS block size, otherwise the write to the last fraction of a disk would fail. This was
fixed in the ESXi 5.5 release.

Programs that open a local virtual disk in SAN mode might be able to read (if the disk is empty)
but writing will throw an error. Even if programs call VixDiskLib_ConnextEx() with NULL
parameter to accept the default transport mode, SAN is selected as the preferred mode if SAN
storage is connected to the ESXi host. VixDiskLib should, but does not, check SAN accessibility
on open. With local disk, programs must explicitly request NBDSSL mode.

For a Windows Server 2008 and later proxy, set SAN policy to onlineAll. Set SAN disk to read-
only except for restore. You can use the diskpart utility to clear the read-only flag. SAN policy
varies by Windows Server 2008 edition. For Enterprise and Datacenter editions, the default
Windows SAN policy is offline, which is unnecessary when vSphere mediates SAN storage.

For SAN transport, one major factor impacting performance is that the read buffer should be
aligned with the sector size, currently 512. You can specify three parameters for
VixDiskLib_Read: start sector, number of sectors to read, and the buffer to hold data. The
proper read buffer size can be allocated using, for example, _aligned_malloc on Windows or
posix_memalign on Linux. SAN mode performs best with about six concurrent streams per ESXi
host; more than six streams usually results in slower total throughput.

Best Practices for HotAdd Transport

In HotAdd transport, virtual disks on backed-up VMs are HotAdded to the backup proxy so they
can be easily saved to backup media.

Deploy the proxy on VMFS-6 or VMFS-5 volumes, so that the proxy can back up very large
virtual disks. HotAdd is a SCSI feature and does not work for IDE disks. The paravirtual SCSI
controller (PVSCSI) is the recommended default for HotAdd, but other controller types work too.

A redo log is created for HotAdded disks, on the same datastore as the base disks. Do not
remove the target virtual machine (the one being backed up) while HotAdded disk is still
attached. If removed, HotAdd fails to properly clean up redo logs so virtual disks must be
removed manually from the backup appliance. Also, do not remove the snapshot until after
cleanup. Removing it could result in an unconsolidated redo log.

Removing all disks on a controller with the vSphere Client also removes the controller. You might
want to include some checks in your code to detect this in your HotAdd appliance, and
reconfigure to add controllers back in.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 123

HotAdded disks should be released with VixDiskLib_Cleanup() before snapshot delete. Cleanup
might cause improper removal of the change tracking (ctk) file. You can fix it by power cycling
the virtual machine.

Virtual disk created on Windows by HotAdd backup or restore may have a different disk
signature than the original virtual disk. The workaround is to reread or rewrite the first disk sector
in NBDSSL mode. Customers running a Windows Server 2008 or later proxy should make sure
Windows automount is disabled.

The HotAdd implementation assumes that proxy and target VMs are on the same datastore and
accessible from the same connection, that is, the same vCenter Server. This is so VADP can
obtain a list of all disks on the target VM from a connection. In vCloud environments where two
vCenter Servers share a single datastore, causing VADP to make two connections, there is no
mechanism for informing one connection of the disks available on the other connection. VMware
needs to redesign HotAdd to support multiple connections.

For unbuffered HotAdd restore, VMware recommends that programmers set the VDDK flag
VIXDISKLIB_FLAG_OPEN_UNBUFFERED when opening virtual disks before performing a restore with
HotAdd transport. In vSphere 6.7 releases and later, programs must allocate a data buffer whose
memory address is sector size aligned when setting this flag. Programmers may refer to
posix_memalign on Linux or _aligned_malloc on Windows. Buffer address alignment to sector
size is recommended for older VDDK releases as well.

Best Practices for NBD Transport

NBD (network block device) is the most universal of VDDK transport modes. It does not require
dedicated backup proxy VMs as does HotAdd, and works on all datastore types, not just SAN.
Sections below give tips for improving NFC (network file copy) performance for NBD backups.

Parallel jobs on one NFC server: vSphere hosts have two NFC servers: one in hostd and the other
in vpxa. For connections to vCenter, VDDK as an NFC client connects to the NFC server in vpxa.
For connections to ESXi hosts, VDDK connects to the NFC server in hostd.

If programs connect directly to ESXi hosts, the NFC server memory limit in hostd can be
increased from default 48MB by editing the /etc/vmware/hostd/config.xml file. If programs
connect through vCenter, the NFC memory limit in vpxa is not configurable.

If connecting through vCenter Server, VMware recommends backing up 50 or fewer disks in
parallel on a host. The NFC server cannot handle too many requests at the same time. It will
queue requests in the list until previous requests have completed.

Dedicated backup network: As of vSphere 7.0, ESXi hosts support a dedicated network for NBD
transport. When the tag vSphereBackupNFC is applied to a VMkernel adapter's NIC type, NBD
backup traffic goes through the chosen virtual NIC. Programmers can apply the tag by making
the following vSphere API call:

HostVirtualNicManager->SelectVnicForNicType(nicType,device);

Virtual Disk Development Kit Programming Guide

VMware, Inc. 124

Customers can use an ESXi command like this, which designates interface vmk2 for NBD backup:

esxcli network ip interface tag add -t vSphereBackupNFC -i vmk2

Network I/O Control (NIOC) for NFC backup: When NIOC is enabled in the virtual distributed
switch (VDS or DVS), switch traffic is divided into various predefined network resource pools,
now including one dedicated to vSphere Backup NFC. The API enumeration for this network
resource pool is VADP_NIOConBackupNfc. System administrators can set this up in the vSphere Client
with System Traffic > Configure > Edit, then optionally change resource settings. Thereafter any
VADP NBD traffic is shaped by these VDS settings. NIOC may be used together with the
dedicated backup network feature above, but this is not a requirement.

VDDK 7.0.1 introduced two new error codes, VIX_E_HOST_SERVER_SHUTDOWN and
VIX_E_HOST_SERVER_NOT_AVAILABLE, to indicate entering maintenance mode (EMM) and in
maintenance mode. After VixDiskLib_ConnectEx to vCenter, if the backup application calls
VixDiskLib_Open for a virtual disk on an EMM host, vCenter switches to a different host if possible.
Host switch is non-disruptive; backup continues. If it's too late for host switch, vCenter returns the
SHUTDOWN code, saying the backup application should retry after a short delay, hoping for host
switch. If no other hosts are available and the original host is in maintenance mode, vCenter
returns NOT_AVAILABLE. The backup application may choose to wait, or fail the backup.

Error Code Retry Comment

VIX_E_HOST_NETWORK_CONN_REFUSED Frequently Usually caused by network error.

VIX_E_HOST_SERVER_SHUTDOWN Soon, 3 times Host will enter maintenance mode (EMM).

VIX_E_HOST_SERVER_NOT_AVAILABLE After waiting? Host is in maintenance mode (post EMM).

Host switch to avoid EMM could fail if encryption keys are not shared among hosts.

NFC compress flags: In vSphere 6.5 and later, NBD performance can be significantly improved
using data compression. Three types are available (zlib, fastlz, and skipz) specified as flags when
opening virtual disks with the VixDiskLib_Open() call. Data layout may impact the performance of
these different algorithms.

n VIXDISKLIB_FLAG_OPEN_COMPRESSION_ZLIB – zlib compression

n VIXDISKLIB_FLAG_OPEN_COMPRESSION_FASTLZ – fastlz compression

n VIXDISKLIB_FLAG_OPEN_COMPRESSION_SKIPZ – skipz compression

Asynchronous I/O: In vSphere 6.7 and later, asynchronous I/O for NBD transport mode is
available. It can greatly improve data transfer speed of NBD transport mode. To implement
asynchronous I/O for NBD, use the new functions VixDiskLib_ReadAsync() and
VixDiskLib_WriteAsync() with callback VixDiskLib_Wait() to wait for all asynchronous operations
to complete. In the development kit, see vixDiskLibSample.cpp for code examples, following the
logic for -readasyncbench and -writeasyncbench options.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 125

Many factors impact write performance. Network latency is not necessarily a significant factor.
Here are test results showing improvements with VDDK 6.7:

n stream read over 10 Gbps network with asynchronous I/O, speed of NBD is ~210 MBps

n stream read over 10 Gbps network with block I/O, speed of NBD is ~160 MBps

n stream write over 10 Gbps network with asynchronous I/O, speed of NBD is ~70 MBps

n stream write over 10 Gbps network with block I/O, speed of NBD is ~60 MBps

I/O buffer improvements: In the vSphere 7.0 release, changed block tracking (CBT) has adaptable
block size and configurable VMkernel memory limits for higher performance. To benefit, no
software changes are required. Adaptable block size is up to four times more space efficient.

In vSphere 6.7 and later, VDDK splits read and write buffers into 64KB chunks. Changing the
buffer size on the VDDK side does not lead to different memory consumption results on the NFC
server side.

In vSphere 6.5 and earlier, the larger the buffer size on the VDDK side, the more memory was
consumed on the NFC server side. With buffer size set to 1MB, VMware recommended backing
up no more than 20 disks in parallel on an ESXi host. For a 2MB I/O buffer, no more than 10 disks,
and so on.

Session limits and vCenter session reuse. In vSphere 6.5 and later, programs can reuse a vCenter
Server session to avoid connection overflow. For details see "Reuse a vCenter Server Session" in
chapter 4.

Network bandwidth considerations: VMware suggests that NBD backups should be done on a
network with bandwidth of 10 Gbps or higher. Operations such as VM cloning or offline migration
will also consume memory in the NFC server. Users must try to arrange their backup window to
avoid conflict.

Log analysis for performance issues: The VDDK sample code can be run to assist with I/O
performance analysis. In the configuration file, set the NFC log level to its highest value
vixDiskLib.nfc.LogLevel=4. There is no need to set log level in the server for NFC asynchronous
I/O. Then run sample code and investigate vddk.log and the vpxa log to assess performance.

General Backup and Restore

With SSL certificate checking in vSphere 5.1 and after, DNS services must be configured in the
backup proxy, otherwise SSL_Verify will fail with the “no host found” error.

For incremental backup of virtual disk, always enable changed block tracking (CBT) before the
first snapshot. When doing full restores of virtual disk, disable CBT for the duration of the restore.
File-based restores affect change tracking, but disabling CBT is optional for partial restore (file
level restore), except with SAN transport. CBT must be disabled for SAN writes because of thin-
provisioning and clear-lazy-zero operations.

Backup software should ignore independent disks (those not capable of snapshots). These virtual
disks are unsuitable for backup. They throw an error if a snapshot is attempted on them.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 126

When using VMware Tools debug logging with quiesced snapshots, do not log vmtoolsd.data to a
local file on the VM, such as C:\Temp\vmtoolsd.log. Instead set vmtoolsd.handler=vmx to use the
tools service.

To back up thick disk, the proxy's datastore must have at least as much free space as the
maximum configured disk size for the backed-up virtual machine. Thick disk takes up all its
allocated size in the datastore. To save space, you can choose thin-provisioned disk, which
consumes only the space actually containing data.

If you do a full backup of lazy-zeroed thick disk with CBT disabled, the software reads all sectors,
converting data in empty (lazy-zero) sectors to actual zeros. Upon restore, this full backup data
will produce eager-zeroed thick disk. This is one reason why VMware recommends enabling CBT
before the first snapshot.

With CBT enabled for backups on an NFS datastore, thin-provisioned virtual disk may be turned
thick upon restore, unless the NFS server supports lseek(...SEEK_DATA),
ioctl(...FS_IOC_FIEMAP), or equivalent function.

Do not make verbatim copies of configuration files, which can change. For example, entries in
the .vmx file point to the snapshot, not the base disk. The .vmx file contains virtual-machine
specific information about current disks, and attempting to restore this information could fail.
Instead use PropertyCollector and keep a record of the ConfigInfo structure.

Backup and Restore of Thin-Provisioned Disk

Thin-provisioned virtual disk is created on first write. So the first-time write to thin-provisioned
disk involves extra overhead compared to thick disk, whether using NBDSSL or HotAdd. This is
due to block allocation overhead, not VDDK advanced transports. However once thin disk has
been created, performance is similar to thick disk, as discussed in the Performance Study of
VMware vStorage Thin Provisioning.

When applications perform random I/O or write to previously unallocated areas of thin-
provisioned disk, subsequent backups can be larger than expected, even with CBT enabled. In
some cases, disk defragmentation might help reduce the size of backups.

About Changed Block Tracking

VixDiskLib_QueryAllocatedBlocks returns the sectors of a virtual disk that are in use.
QueryChangedDiskAreas returns the sectors that changed since the time of a specified changeId.

The current implementation depends on VMFS properties, similar to properties that SAN
transport mode uses to locate data on a SCSI LUN. Both rely on unallocated areas (file holes) in
virtual disk, and the LazyZero designation for VMFS blocks. Thus, changed block tracking yields
best results on VMFS. On other storage types, it could fail, or returns a single extent covering the
entire disk.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 127

You should enable changed block tracking in the order recommended by Enable Changed Block
Tracking. At first call VixDiskLib_QueryAllocatedBlocks to get allocated areas of virtual disk,
and back them up. Subsequently call QueryChangedDiskAreas to get changed areas, and back them
up if they were allocated. If you call QueryChangedDiskAreas after a snapshot but before you
enable changed block tracking, it also returns unallocated areas of virtual disk. With thin-
provisioned virtual disk this could be a large amount of zero data.

The guest operating system has no visibility of changed block tracking. Once a virtual machine
has written to a block on virtual disk, the block is considered in use. The information required for
tracking is computed when changed block tracking is enabled, and the .ctk file is pre-filled with
allocated blocks. The mechanism cannot report changes made to virtual disk before changed
block tracking was enabled.

HotAdd and SCSI Controller IDs

When using HotAdd backup, always add SCSI controllers to virtual machines in numeric order.

Most systems lack an interface to report which SCSI controller is assigned to which bus ID.
HotAdd assumes that the unique ID for a SCSI controller corresponds to its bus ID. This
assumption could be false. For instance, if the first SCSI controller on a VM is assigned to bus ID
0, but you add a SCSI controller and assign it to bus ID 3, HotAdd transport may fail because it
expects unique ID 1. To avoid problems, when adding SCSI controllers to a VM, the bus
assignment for the controller must be the next available bus number in sequence.

Also note that VMware implicitly adds a SCSI controller to a VM if a bus:disk assignment for a
newly created virtual disk refers to a controller that does not yet exist. For instance, if disks 0:0
and 0:1 are already in place, adding disk 1:0 is fine, but adding disk 3:0 breaks the bus ID
sequence, implicitly creating out-of-sequence SCSI controller 3. To avoid HotAdd problems, you
should add virtual disks in numeric sequence.

To deal with more disks than can fit on a single controller, you must add some permanent
dummy disks to the proxy VM, one on each additional controller that might be needed. Adding
only the controller does not cause the controller to remain attached to the proxy VM. A real
VMDK must be added on the controller to keep it attached to the proxy VM.

Encrypted VM Backup and Restore

Starting with vSphere 6.5, customers can take advantage of virtual machine encryption. This
section describes how to design backup and restore to handle VM encryption.

Encryption protects sensitive parts of a VM and some or all of its virtual disks. The vCenter Server
retrieves keys from a key management server and pushes them to ESXi hosts, which use the
keys to encrypt virtual disk data, NVRAM, portions of the VMX file, and so forth. See the vSphere
Security manual for details.

To back up encrypted virtual disks, VDDK obtains the encryption keys and decrypts virtual disk
data before copying to backup media, so virtual disk data on backup media are in the clear (not
encrypted). VMware recommends that backup agents use their own encryption to protect data
on backup media.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 128

Backup of encrypted disks is supported with NBDSSL and HotAdd transport modes, but not
supported with SAN transport. To back up encrypted virtual disks using HotAdd, the backup
proxy VM must have been encrypted as well. Both NBDSSL backup and HotAdd backup require
Cryptographer.Access permission, and HotAdd backup mode requires Cryptographer.AddDisk
also.

Encrypted Virtual Disks

When customers restore virtual disks that were encrypted at backup time, they likely want them
to remain encrypted after restore. If a disk was encrypted when it was backed up, the backup
agent can remember the storage policy and apply it to the restored disk. If that storage policy no
longer exists in the system, the backup agent could ask the administrator what policy to apply for
encrypted disks, or use the sample VM encryption storage policy. Optionally the backup agent
can remember a disk’s key ID and provide it at restore time, which will result in the restored disk
using the same key as the original disk. If not specified, vCenter Server gets a new key from the
key server.

Recommendations for VM Home

When a VM is encrypted, its VMX configuration file contains portions that are encrypted, and the
entire NVRAM file is encrypted. To completely recover a VM from backups, the NVRAM file must
be restored, and two additional properties from the VirtualMachine object's configuration must
be restored: (1) the encryption key identifier, found in the VirtualMachine ConfigInfo.keyId
property, and (2) an encrypted blob containing VM secrets, called the encryption.bundle, found in
the VirtualMachine ConfigInfo.extraConfig list.

VMware recommends against directly copying the entire VMX configuration file, but instead
using the PropertyCollector to keep a record of configuration structures as documented earlier in
this chapter. When a VM is saved, the backup agent should include the ConfigInfo.keyId, the
encryption.bundle from ConfigInfo.extraConfig, and the current storage policy.

Later when the backup is restored, these values should be provided in the new VirtualMachine
ConfigSpec. This will ensure that the recovered VM metadata files are protected with the same
key as the original VM. If a VM is restored to a vCenter Server with key server access, the VM will
boot. However if the vCenter Server lacks key server access, the VM will not power on after
restore, because vCenter Server cannot push encryption keys to its ESXi host.

The NVRAM file can be handled as it was in previous releases, using HTTP download and upload,
but without saving the additional ConfigInfo properties described above, the NVRAM will be
unusable. This is because it is encrypted with the key that is found in the encryption.bundle,
which is in turn sealed with the key identified by ConfigInfo.keyId. The recovered VM must be
created in a vCenter Server that has access to the same key server as the original, or a replicated
key server instance with the same cluster name.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 129

What If Something Fails

If the ConfigInfo.keyId and encryption.bundle were not saved, it will be impossible to encrypt the
recovered VM using its original encryption keys. However the VM may be encrypted with new
keys from the key server. If the NVRAM file was saved, it is unusable without the original
ConfigInfo.keyId and encryption.bundle information. If the NVRAM file was not saved, or
unusable, a generic one can be used instead. After NVRAM is lost and regenerated, UEFI enabled
VMs may require Secure Boot to be reconfigured, or the boot disk to be reconfigured.

If the vCenter Server has lost access to the original keys from the key server, then a restore
operation may remove the encryption.bundle from ConfigInfo.extraConfig and specify only a VM
encryption storage policy for the VM and its disks. Again this will cause any data present in the
NVRAM to be unusable.

Backup and Restore With vTPM

Trusted platform module (TPM) is the standard for a dedicated microchip that can store sensitive
data, perform cryptographic tasks, and ensure platform integrity by establishing a chain of trust
for software loaded onto a machine. It assures integrity by calculating a message digest for each
software component that gets loaded, storing the message digest in platform configuration
register.

Enabling vTPM in a Virtual Machine

Virtual TPM (vTPM) is a software implementation of TPM provided in virtual hardware version 14.
In other words, vSphere 6.7 offers vTPM for newly created or upgraded VMs. Because vTPM is
encrypted, encryption services must be present on the network. Backup and restore of a vTPM
enabled VM is similar to backup and restore of an encrypted VM, with these additional
requirements.

n Each involved vCenter Server must be configured with the same key management server
(KMS).

n Before adding the vTPM device to a VM, the ConfigInfo.firmware type must be set to efi, not
bios. When you add a VM with encryption storage policy, vSphere encrypts the VM Home
including vTPM.

n To preserve vTPM in a restored VM, the ConfigInfo.keyId, encryption.bundle, NVRAM file, and
vTPM device of the source VM must be saved at backup time, for later restore. Saving an
NVRAM file requires use of the HTTP file service.

Backup with vTPM

To back up a vTPM enabled VM, follow these steps, as in the sample code below.

1 Back up the keyId and encryption.bundle of the source VM from configInfo.

2 Back up the vTPM device of the source VM from configInfo.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 130

3 Back up property firmware of the source VM from configInfo.

// get source VM config

VirtualMachineConfigInfo sourceVmConfigInfo = ... ;

// save keyId

CryptoKeyId keyId = sourceVmConfigInfo.getKeyId();

// save encryption.bundle, which is in extraConfig

List<OptionValue> extraCfg = sourceVmConfigInfo .getExtraConfig();

// save firmware

String firmware = sourceVmConfigInfo.getFirmware();

// save vTPM device

VirtualDevice vtpmDevice = null;

for (VirtualDevice virtualDevice : sourceVmConfigInfo.getHardware().getDevice()) {

 if (virtualDevice instanceof VirtualTPM) {

 vtpmDevice = virtualDevice;

 }

 // save other devices

 // ...

}

// save nvram file

byte[] nvramByteAry = vsphereFileServiceClient.download(sourceVmNvramFilePath);

Restoring With vTPM

To restore a vTPM enabled VM, follow these steps, as in the sample code below.

1 Configure a VM with the same keyId and encryption.bundle as source (requires same KMS).

2 Make sure an encryption storage policy exists and is assigned to the VM. See "Create an
Encryption Storage Policy" in the vSphere Web Services SDK Programming Guide.

3 Configure this VM with the same firmware property and vTPM device as the source VM.

4 Restore NVRAM using HTTP service. Again, see section "HTTP Access to vSphere Server
Files" in the vSphere Web Services SDK Programming Guide.

// create configSpec for VM to be created

VirtualMachineConfigSpec configSpec = new VirtualMachineConfigSpec() ;

// set keyId

CryptoSpecEncrypt cryptoSpec = new CryptoSpecEncrypt();

cryptoSpec.setCryptoKeyId(keyId);

configSpec.setCrypto(cryptoSpec);

// set encryption.bundle

configSpec.setExtraConfig(extraCfg);

//

// set PbmProfile for encryption

// For complete code, see Example: Java program to set storage policy for encryption.

// public class CreateVMEncryptionProfile extends ConnectedServiceBase {

// private PbmServiceInstanceContent spbmsc;

// private String profileName;

// ...

// for (PbmCapabilityVendorResourceTypeInfo vendor : vendorInfo)

// for (PbmCapabilityVendorNamespaceInfo vnsi : vendor .getVendorNamespaceInfo())

// if (vnsi.getNamespaceInfo().getNamespace().equals("vmwarevmcrypt")) {

// encryptionCapable = true;

Virtual Disk Development Kit Programming Guide

VMware, Inc. 131

// break;

// }

// ...

// set firmware

configSpec.setFirmware(firmware);

// set vTPM device

VirtualDeviceConfigSpec vtpmDeviceConfig = new VirtualDeviceConfigSpec();

vtpmDeviceConfig.setOperation(VirtualDeviceConfigSpecOperation.ADD);

vtpmDeviceConfig.setFileOperation(null);

vtpmDeviceConfig.setDevice(vtpmDevice);

configSpec.getDeviceChange().add(vtpmDeviceConfig);

// set other properties and then create restore VM

// ...

// upload nvram

vsphereFileServiceClient.upload(restoreVmNvramFilePath, nvramByteAry

Windows Backup Implementations

The following sections discuss issues when backing up Windows virtual machines.

Disable Automount in Windows Proxy

When using HotAdd transport from a Windows proxy, it can make unwanted changes to
HotAdded volumes. To prevent this, backup vendors and customers should disable Windows
automount on the backup proxy.

To disable Windows automount

Procedure

1 Start DiskPart.

C:\> diskpart

2 Disable automounting.

DISKPART> automount disable

3 Prevent any previously mounted volumes from being re-mounted the next time.

DISKPART> automount scrub

4 Exit DiskPart.

DISKPART> exit

Security and Remote Desktop

For security reasons, remote desktop protocol (RDP) should be disabled on a Windows proxy.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 132

Working with Microsoft Shadow Copy

Microsoft Shadow Copy, also called Volume Snapshot Service (VSS), is a Windows Server data
backup feature for creating consistent point-in-time copies of data (called shadow copies).

The type of quiescing used varies depending on the operating system of the backed-up virtual
machine, as shown in Table 7-5. Driver Type and Quiescing Mechanisms Used According to
Guest Operating Systems. ESXi 4.1 added support for Windows 2008 guests using application
level quiescing.

Table 7-5. Driver Type and Quiescing Mechanisms Used According to Guest Operating Systems

Guest Operating System Driver Type Used Quiescing Type Used

Windows XP 32-bit

Windows 2000 32-bit

Sync Driver File-system consistent quiescing.

Windows Vista 32- or 64-bit

Windows 7 32- or 64-bit

VMware VSS
component

File-system consistent quiescing.

Windows 2003 32- or 64-bit VMware VSS
component

Application-consistent quiescing.

Windows 2008 32- or 64-bit

Windows Server 2008 R2

VMware VSS
component

Application-consistent quiescing. For this to be available, several
conditions must be met:

n Virtual machine must be running on ESXi 4.1 or later.

n The UUID attribute must be enabled. It is enabled by default for
virtual machines created on 4.1 or later. For details see Enable
Virtual Machine Application Consistent Quiescing.

n The virtual machine must use SCSI disks only and have as many
free SCSI slots as the number of disks. Application-consistent
quiescing is not supported for virtual machines with IDE disks.

n The Windows VM must not use dynamic disks. If the VM has
dynamic disks, the snapshot will be file-system consistent.

Windows Server 2012 VMware VSS
component

Same as for Windows 2008.

Windows Server 2016 VMware VSS
component

Same as for Windows 2008.

VMware Tools10.1.0 or later is required for quiescing support.

Application quiesced snapshots are not supported for virtual disks
managed by Storage Spaces. Use file-system quiescing as a
workaround.

Other guest operating system Not applicable Crash-consistent quiescing.

File-system consistent quiescing prevents file systems from becoming corrupted, for example,
journaled file systems are allowed to write out pending transactions. Crash-consistent quiescing
is the ability to restore an application as if it suddenly crashed and lost all stateful information.
This involves minimal effort because only data already written to disk is guaranteed safe.
Application-consistent quiescing is the ability to restore stateful information as well.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 133

Restore must be done using the backup application’s guest agent. The vSphere APIs for Data
Protection provide no host agent support for this. Applications authenticating with SSPI might not
work right because HTTP access will demand a user name and password, unless the session was
recently authenticated.

When performing VSS quiescing while creating the snapshot of a Windows virtual machine,
VMware Tools generate a vss-manifest.zip file containing the backup components document
(BCD) and writer manifests. The host agent stores this manifest file in the snapshotDir of the
virtual machine. Backup applications should get the vss-manifest.zip file so they can save it to
backup media. There are several ways to get this file:

n Using the datastore access HTTPS protocol, for example by browsing to https://<server-or-
host>/folder/ and continuing downward to the snapshot directory until you find the vss-
manifest.zip file.

n By calling the CopyDatastoreFile_Task method in the vSphere API. This method accepts the
URL formulated above for HTTPS, or a datastore path. (CopyVirtualDisk_Task is for VMDK
files).

n With the vifs command in the vMA or vCLI.

n With the Copy-DatastoreItem cmdlet in the PowerCLI (requires PowerShell and VMware
snap-in).

Windows 2008 application level quiescing is performed using a hardware snapshot provider.
After quiescing the virtual machine, the hardware snapshot provider creates two redo logs per
disk: one for the live virtual machine writes and another for the VSS and writers in the guest to
modify the disks after the snapshot operation as part of the quiescing operations.

The snapshot configuration information reports this second redo log as part of the snapshot. This
redo log represented the quiesced state of all the applications in the guest. This redo log must be
opened for backup with VDDK 1.2 or later. The older VDDK 1.1 software cannot open the second
redo log for backup.

Application consistent quiescing of Windows 2008 virtual machines is only available when those
virtual machines are created in vSphere 4.1 or later. Virtual machines created in vSphere 4.0 can
be updated to enable application consistent quiescing by modifying a virtual machine’s
enableUUID attribute.

For information about VSS, see the Microsoft TechNet article, How Volume Shadow Copy Service
Works. For information about Security Support Provider Interface (SSPI), see the MSDN Web site.

Enable Virtual Machine Application Consistent Quiescing

To enable virtual machine application consistent quiescing on Windows 2008 or later:

Procedure

1 Start the vSphere Client, and log in to a vCenter Server.

2 Select Virtual Machines and Templates and click the Virtual Machines tab.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 134

3 Right-click the Windows 2008 virtual machine for which you are enabling the disk UUID
attribute, and select Power > Power Off. Wait for the virtual machine to power off.

4 Right-click the virtual machine, and click Edit Settings.

5 Click the Options tab, and select the General entry in the settings column.

6 Click Configuration Parameters... The Configuration Parameters window appears.

7 Click Add Row.

8 In the Name column, enter disk.EnableUUID. In the Value column, enter TRUE.

9 Click OK and click Save.

10 Power on the virtual machine.

Application consistent quiescing is available for this virtual machine after the UUID property is
enabled.

Application-Consistent Backup and Restore

Here is the approximate procedure for software to performs application-consistent backup and
restore:

Procedure

1 Call CreateSnapshot_task with the quiescent flag set true.

2 Open the leaf node of the disk with VDDK and read both the base VMDK and the snapshot at
once.

3 Delete the snapshots created in the first step.

4 During restore, create a new virtual machine.

5 Write the VMDK to disk with VDDK. It should have both base and quiesced information.

During backup, if the snapshot was created with quiesce flag set to true, and all the quiescing
conditions are met, so the snapshot is created involving VSS and the snapshot disks
represent application consistent state of the guest OS. You should be able to confirm this by
downloading the VSS manifest zip file, unzipping it to check if it has just the backup
component document (in which case file system quiescing was performed) or also writer
manifests (in which case application quiescing was performed).

Quiescing involves the VSS mechanism designed by Microsoft. So, regarding VSS backup-
restore verification, refer to the VSS documentation provided by Microsoft. VMware helps by
providing a vss-manifest.zip file that contains Backup/Writers Components details. This is
generated by the VSS mechanism after backup. By cross verifying these backup/writers
components details according to Microsoft VSS documentation, you can verify if a particular
application-consistent quiescing was completed successfully or not.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 135

VMware Tools is responsible for initiating the VSS snapshot process as the VSS requester.
Users send a request to hostd for a quiesced snapshot of the virtual machine. The request
goes from hostd to the VMware Tools for a VSS snapshot. Once the VSS snapshot is
completed (with success or error) it communicates back to the hostd process. The VSS
snapshot is created with the vss-manifest file, or without this file in the error case.

The VSS requester sets up the overall configuration for the backup operation, including
whether the snapshot should be performed in component mode or not, whether to take a
snapshot with a bootable system state, and whether the snapshot should be for a full copy or
differential backup. If application-consistent quiescing is performed, then all writers and all
components are involved.

VMware Tools initiates VSS quiescing using VSS_CTX_BACKUP context for application quiescing
capable guests with backup state set to select components, backup bootable system state
with backup type VSS_BT_COPY and no partial file support and VSS_CTX_FILE_SHARE_BACKUP
for file system quiescing capable guests. Currently there is no way to control any of these
parameters.

New VSS Support Added in vSphere 6.5

The vSphere 6.5 release includes additional volume shadow-copy service (VSS) configurations
and features. To support these new configuration and for more granular control over Windows
guest OS quiescing, the function CreateSnapshotEx_Task was added to the 6.5 vSphere API,
superseding CreateSnapshot_Task. CreateSnapshotEx_Task takes a quiesceSpec parameter, of
type VirtualMachineGuestQuiesceSpec or VirtualMachineWindowsQuiesceSpec. The latter type
can specify several important fields such as:

n vssBackupType – VSS_BT_COPY was previously used as the default for CreateSnapshot_Task
but now VSS_BT_FULL, VSS_BT_INCREMENTAL, VSS_BT_DIFFERENTIAL, and VSS_BT_LOG are
available also. Log truncation may be triggered according to application settings.

n vssBackupContext – this was introduced to enforce application (context VSS_CTX_BACKUP)
quiescing or file system (context VSS_CTX_FILE_SHARE_BACKUP) quiescing.

n The timeout (default 15 minutes) for quiescing virtual machines can now be configured
anywhere from five minutes to four hours.

CreateSnapshotEx_Task requires VMware Tools 10.1.0 or higher installed on the backed-up virtual
machine.

The VMware VSS Implementation

As of Windows Server 2008, disk UUIDs must be enabled for VSS quiesced snapshots. Disk
UUIDs might not be enabled if a virtual machine was upgraded from virtual hardware version 4.

VMware VSS does not support virtual machines with IDE disks, nor does it support virtual
machines with an insufficient number of free SCSI slots.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 136

Before vSphere 5.1, reverting to a writable snapshot sometimes left orphaned virtual disks that
the system never removed. In the vSphere 5.1 release, writable snapshots are correctly
accounted for as sibling snapshots. This permits cleaner management, because the disk chain
matches the snapshot hierarchy, and it avoids orphaned disks. Linux backup software takes a
read-only snapshot so is not affected. On Windows, VSS backup software may create two
snapshots, one made writable by calling CreateSnapshot_task with the quiesce flag set true.

To add support for granular application control, specify:

n whether pre-freeze and post-thaw scripts get invoked

n whether quiescing gets invoked

n VSS snapshot context (application, file system quiescing, and so forth)

n VSS backup context (full, differential, incremental)

n writers/components to be involved during quiescing

n whether to fail quiescing or continue if one of the writers fails to quiesce

n retry count

A VSS quiesced snapshot reports as VSS_BT_COPY to VSS, hence no log truncation. The VSS
manifest can be downloaded with HTTP. By default, all VSS writers are involved, but a
mechanism for excluding writers exists; see the VMware KB article 1031200. For help
troubleshooting, see KB article 1007696.

Linux Backup Implementation

On Linux virtual machines, VMware supports only crash-consistent backups, however application-
consistent backups are possible through the use of customer pre-freeze and post-thaw scripts.

Two methods are attempted sequentially when a quiesced snapshot is requested of a Linux
virtual machine:

Procedure

1 Using the ioctl(2) mechanisms FIFREEZE and FITHAW built into the Linux kernel.

This option is available in only with kernel versions newer than 2.6.32 on Linux virtual
machines running VMware Tools 5.x or higher (vSphere 5.0 and later).

Virtual Disk Development Kit Programming Guide

VMware, Inc. 137

2 Using the sync(2) system call.

The first method allows you define custom scripts that get called by VMware Tools before
and after quiesce. Here are two commands that can be called from pre-freeze and post-
freeze scripts:

-f means freeze

 fsfreeze -f /

-u means unfreeze

 fsfreeze -u /

The mount point used in the scripts (root in the examples above) must be mounted with the
noatime option, meaning do not update inode access times on the file system, for freeze and
unfreeze to work.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 138

Backing Up vApps in vCloud
Director 8
This chapter introduces developers to the concepts and procedures for creating backup and
restore solutions for vCloud Director. This chapter is divided into the following main sections:

This chapter includes the following topics:

n Introduction to Tenant vApps

n Conceptual Overview

n Use Cases Overview

n vCloud API Operations

n Conclusion

Introduction to Tenant vApps

The vApp is a management construct that encapsulates one or more virtual machines running in
the vSphere environment. The tenant vApp is a higher-level construct that allows vCloud Director
to manage vApps and virtual machines running in a multi-tenant datacenter, or in a multi-tenant
cloud, based on vSphere.

Figure 8-1. vCloud API Object Taxonomy shows the objects within a single organization that you
can access with the vCloud API.

VMware, Inc. 139

Figure 8-1. vCloud API Object Taxonomy

Multi-tenant and self-service capabilities of vCloud Director provide multiple levels of protection
for a vApp. A service provider can offer vApp protection at the system level, the tenant level, or
the end-user level, managed by the system administrator, Organization administrator, and end
user, respectively. This chapter focuses on the protection provided at the system level, where
service providers can employ backup solutions from vendors of data protection software.

This chapter describes how to design software to back up and restore the vApps in a vCloud. To
back up or restore a vApp, you need to deal with both the vCloud configuration and the virtual
machines that belong to the vApp. In vSphere, a virtual machine is represented by configuration
files and virtual disk files.

Prerequisites

You should be familiar with programming concepts and techniques. You should also be familiar
with vCloud, vCloud API, vCloud SDK for .NET, and vSphere concepts. VMware also provides the
vCloud SDK for Java and the vCloud SDK for PHP, but this chapter focuses on .NET for the
backup and restore examples.

VMware recommends that you design backup and restore software for the vCloud environment
using the following APIs:

Virtual Disk Development Kit Programming Guide

VMware, Inc. 140

Table 8-1. APIs Used To Back Up vApps

Product API Data

vCloud Director vCloud API or vCloud SDK
wrapper

vApp metadata

vSphere WS API virtual machine configuration

VDDK VixDiskLib API or VixMntapi virtual disk contents

You use the vCloud API or SDK to identify vApp targets for backup and restore operations. The
vApp metadata identifies the virtual machines that constitute the vApp. You use the WS API to
back up and restore virtual machine configurations. You use the VDDK API to back up and
restore virtual disk files.

Note This chapter uses the term “metadata” in a general sense to mean all the vApp
configuration data, in addition to user-defined data that the vCloud REST API serializes in the
<Metadata> element.

You should be familiar with the use of the WS API and the VDDK API for backup and restore of
individual virtual machines.

Other Information

This chapter does not, in general, duplicate information available in other documents. In
particular, this chapter does not provide details about any storage or data protection API that
you need to use for backing up and restoring virtual machines in vSphere. You should consult
separate reference documentation for details about specific API calls.

This chapter emphasizes the use of the vCloud API and SDK for the purpose of managing
metadata of the virtual machines and related artifacts in vCloud Director. The vCloud SDK
for .NET translates your C# code into REST operations using the vCloud API.

To learn about VMware vCloud and vSphere concepts and usage, refer to the vCloud Director
documentation available from the VMware Web site, http://www.vmware.com/support/
sdk_pubs.html. You can also visit the VMware SDK community forum at http://
communities.vmware.com/community/vmtn.

Conceptual Overview

This section summarizes the backup and restore processes for vApps managed by vCloud
Director. It explains how to use VMware APIs to collect the metadata needed to control backup
and restore operations. The actual backup and restore operations are performed using the
VMware vStorage APIs for Data Protection (VADP).

VMware vCloud Director uses one or more vCenter servers to manage virtualized resources. At
the same time, it manages the vCloud feature of multi-tenancy by maintaining metadata related
to various tenant artifacts such as vApp, users, networks, storage, and so on.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 141

When a system administrator chooses to back up a vApp, certain vApp metadata must be
retrieved from vCloud Director. The metadata includes general information about the vApp
(name, description, virtual machine descriptions), networking information (organization network
connectivity, external network connectivity), user information, lease, and quota. This information
becomes particularly important when restoring the vApp, in addition to the names of virtual disk
files and .vmx files typically retrieved from vSphere using the VADP.

The Backup Process

The backup process requires the backup/restore software to collect and store information both
from vCloud Director and from vSphere. This process assumes that you use vCloud Director
system administrator credentials to connect to vCloud Director. System administrator credentials
allow the software to access vApps belonging to any Organization, and to access all the
necessary information about a vApp and associated vCloud constructs.

A vApp in vCloud Director can comprise one or more virtual machines. When you work with a
single vApp in vCloud Director, you might be working with a number of virtual machines in
vSphere.

To back up a vApp or set of vApps:

Procedure

1 Connect to vCloud Director and access the organization where vApp (or vApps) will be
backed up.

2 When backing up a vApp for a given Organization or VDC in vCloud Director, access the
vCloud Director inventory for a list of all desired vApps.

3 Select maintenance mode for each vApp to prevent updates during the backup process.

4 Collect all the metadata related to the vApp(s), including any user-defined metadata
associated with any given vApp.

5 Use the vApp metadata to identify the virtual machines associated with each vApp.

6 Connect to vCenter Server as a user with sufficient permissions to access the virtual
machines. Use the vSphere inventory to locate the virtual machine configuration and virtual
disk files.

7 Use the VMware APIs for Data Protection to back up the vSphere virtual machine files:

a (optional) Save a snapshot of the virtual machine.

b Save the virtual machine configuration, using the WS API.

c Save the virtual disks using the VDDK API.

d (optional) Delete the virtual machine snapshot, if applicable.

8 Store the vApp metadata in an appropriate format along with the associated virtual machine
files.

9 Deselect maintenance mode for each vApp.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 142

The Restore Process

The restore process offers some options to the administrator.

When you restore a vApp, you can choose to overwrite an existing vApp. For instance, the
restore software might need to overwrite a vApp with data corruption. You can also choose to
restore a vApp that no longer exists, for instance, a vApp that was accidentally deleted.

You can choose whether to keep the same vApp name and other vApp attributes, or you can
choose to change attributes during the restore process. If the attributes of the restored vApp no
longer conform to the environment because of changes since the backup was taken, you can
select new values for the non-conforming attributes.

You might want to restore an existing vApp to an earlier state, or you might want to replace it
because it has become corrupted.

To restore an existing vApp:

1 Identify the child virtual machines of the vApp, using the metadata stored with the backup.

2 Connect to vCenter Server as a user with sufficient permissions to access the virtual machines
and restore the virtual machines in the vSphere environment. This step restores the virtual
disk files and virtual machine configuration. If you are overwriting an existing vApp, you
generally restore the files to the same data store that vCloud Director currently uses for the
vApp.

3 Connect to vCloud Director and authenticate as an administrator, which gives you backup
and restore privileges.

4 Locate the corrupted vApp, using the ID retrieved from the metadata in the backup store.

5 Select maintenance mode for the vApp, to prevent changes while restoring metadata.

6 Edit vApp settings such as network, user privileges, lease, and quota as needed. Make sure to
include any user-defined metadata from the backup store. If you restored a virtual machine to
a different location from the original, you might need to adjust the vApp settings.

7 Deselect maintenance mode for the vApp.

You might want to restore a missing vApp because somebody deleted it, or as part of disaster
recovery.

To restore a missing vApp:

1 Identify the child virtual machines of the vApp, using the metadata stored with the backup.

2 Connect to vCenter Server as a user with sufficient permissions to access the virtual machines
and restore the virtual machines in the vSphere environment. This step restores the virtual
disk files and virtual machine configuration.

3 Connect to vCloud Director and authenticate as an administrator, which gives you backup
and restore privileges.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 143

4 Compose a new vApp or import the virtual machine(s) into vCloud Director to create a new
vApp with these characteristics:

a It has the same name as the lost vApp.

b It belongs to the same Organization as the lost vApp.

c It obtains resources from the same provider VDC as the lost vApp.

5 Select maintenance mode for the vApp, to prevent changes while restoring metadata.

6 Edit vApp settings such as network, user privileges, lease, and quota as needed. Make sure to
include any user-defined metadata from the backup store.

7 Deselect maintenance mode for the vApp.

Note This is a simplified view of the restore process. The exact process you use will depend on
the features provided by your software. For instance, if the datastore is full, the software could
offer to migrate the vApp to a different datastore.

Use Cases Overview

The following sections give an overview of use cases related to the backup and restore
processes.

Managing Credentials

Backup software needs vCloud Director access to manage vApps at the metadata level, and
vCenter Server access to manage vApps at the virtual machine and virtual disk level. The backup
software must collect and retain authentication credentials for both vCloud Director and vCenter
Server.

For information about vCloud Director authentication, see Getting Access to vCloud Director. For
information about vSphere authentication, see the vSphere Web Services SDK Programming
Guide.

Finding a vApp

There are different ways to locate a vApp managed by vCloud Director. One way is to traverse
the vCloud Director inventory. Another way is to use the query service.

Inventory Traversal

Using the vCloud Director inventory to locate a vApp requires navigating a hierarchy of
containers based on organizational and resource divisions. The process is explained in Inventory
Access.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 144

Using the Query Service

The vCloud SDK for .NET also supports the query service of the vCloud API for finding vApps.
Consult the sample programs in the SDK for more information about how to use the query
service in the SDK.

Protecting Specified vApps

Backup systems typically identify vApps to be backed up in a given Organization based on their
identity, using vApp attributes such as name and ID or user defined metadata. A set of vApps to
be backed up can also be created based on their Organization (for example, all vApps in the
Human Resources Organization), the VDC where they are deployed, and so forth.

In all these cases you must traverse the given Organization and its contents to locate and make a
list of vApps.

Recovering an Older Version of a vApp

If a vApp has become corrupted, or if users need to revert to an older state of the vApp, the
administrator can restore a version of the vApp from backup storage even when the vApp still
exists in vCloud Director. The backup/restore application in these cases can access vCloud
Director to get vApp identity information and metadata before restoring the backup copy.

The backup/restore application has a choice between overwriting the current vApp instance or
deleting it and creating a new vApp. The choice to delete the vApp can be convenient when the
vApp configuration has changed since the last backup, especially when a virtual machine has
been added to or deleted from the vApp.

Recovering a Deleted vApp

When recovering a deleted vApp, the backup/restore application must identify the vApp from
user input to locate the vApp metadata and virtual machine files on the backup storage medium.
After the virtual machines have been restored using vSphere APIs, the vApp can be recomposed
using the vCloud API. The backup software must first create a vApp from one of the virtual
machines, then import the remaining virtual machines into the same vApp.

Recovering a Single Virtual Machine

The process of recovering a single virtual machine from the backup storage medium is a special
case of recovering a deleted vApp. In the case of a deleted vApp, the backup software must re-
create the vApp in vCloud Director, then import the remaining virtual machines. For a single lost
virtual machine, the backup software must only import the one virtual machine into the existing
vApp.

Backing Up vCloud Director

The vCloud SDK for .NET does not offer any special features for backing up or restoring the
vCloud Director application and its data. Users should follow standard industry advice for
protecting Tomcat applications and Oracle or SQL Server databases.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 145

vCloud API Operations

The following sections describe commonly used vCloud API operations using vCloud SDK
for .NET. The API descriptions in this chapter do not provide complete backup/restore
implementation details, but focus instead on identifying a set of vCloud API methods that
facilitate certain operations that use vCloud Director.

You should be familiar with vCloud Director and vCloud API concepts. Every resource in vCloud
Director can be accessed using either its unique ID or HREF (the reference URL) in the vCloud
API. The .NET SDK provides wrapper utility classes for commonly-used resources to make the
programming easier.

The operations described in the following sections are:

n Getting Access to vCloud Director – Shows how to connect and authenticate with the vCloud
API.

n Inventory Access – Shows how to retrieve data for different Organization types.

n Retrieving Catalog information – Shows how to retrieve Catalog entries for backup.

n Retrieving vApp Configuration – Shows how to list virtual machines and vApp configuration
data.

n Preventing Updates to a vApp During Backup or Restore – Shows how to use maintenance
mode to quiesce vApp configuration.

n Associating vCloud Resources with vSphere Entities – Shows how to get Managed Object
References of virtual machines and storage resources from vCloud Director.

n Restoring vApps – Shows how to import virtual machines into vApps.

Getting Access to vCloud Director

The backup/restore software component must use system administrator privileges to connect to
vCloud Director, so that it can access any Organization. The system administrator always logs
into the System organization. When Administrator@System is used as the user name for the API,
Administrator is the login name and System is the System Organization name.

Using system administrator privileges to connect to vCloud Director also allows the backup/
restore software to access additional information relating a vApp to the corresponding resources
in vSphere. This is described in Inventory Access.

The following example shows how to log in using C# with the vCloud SDK for .NET. After logging
in, the code shows how to access Organization data.

// vCloud Director login code sample using Administrator@System/<password>

using com.vmware.vcloud.sdk;

using com.vmware.vcloud.api.rest.schema;

public static vCloudClient client = null;

client = new vCloudClient(vCloudURL, com.vmware.vcloud.sdk.constants.Version.V1_5);

client.Login(username, password);

Virtual Disk Development Kit Programming Guide

VMware, Inc. 146

// Get references to all Organizations:

Dictionary<string,ReferenceType> organizationsMap = client.GetOrgRefsByName();

// Get reference to a specific Organization:

string orgName = "Org1";

ReferenceType orgRef = client.GetOrgRefByName(orgName);

// Convert Organization reference to Organization object:

Organization org = Organization.GetOrganizationByReference(client, orgRef);

Inventory Access

In general, you locate a desired vApp for backup in the context of a given Organization and VDC.
To locate a vApp that you want to back up, you first need a reference to its parent Organization.

You use the Organization reference to get the Organization object, which you use to get a list of
references to the VDCs that belong to the Organization. You use a VDC reference to get a VDC
object, which you then use to get a list of references to the vApps that belong to the
Organization. You convert the desired vApp reference to a vApp object, which you use to list the
virtual machines that belong to the vApp.

The following example shows how to get a reference to the user view of an Organization, and
how to get a reference to the admin view of an Organization and a VDC.

// Get admin Org and vDC

public static vCloudClient client = null;

// Login

...

// Get admin view of Org

VcloudAdmin admin = client.GetVcloudAdmin();

string orgName = "Org1";

ReferenceType orgRef = admin.GetAdminOrgRefByName(orgName);

AdminOrganization adminOrg = Organization.AdminGetOrgByReference(client, orgRef);

// Get admin vDC

string vdcName = "VDC1";

ReferenceType vdcRef = adminOrg.GetAdminVdcRefByName(vdcName);

...

AdminVdc adminVdc = AdminVdc.GetAdminVdcByReference(client, vdcRef);

Admin Views

The admin view of resources such as Organization, VDC, and vApp provides extra information
that is useful to users with administrative privileges. For example, in the case of a vApp, admin
view provides information about vCenter and the virtual machines that belong to the vApp. The
admin view provides information such as Managed Object References that vCenter uses for those
entities. See Associating vCloud Resources with vSphere Entities for more information about
getting vCenter Managed Object References.

To access admin views, you use a method of the client connection object to create an admin
client proxy. The admin proxy has methods similar to those of the client connection object to get
references to Organizations and other vCloud objects. However, the objects you get from the
admin proxy have additional properties not present in user objects.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 147

Admin Extensions

Similar to the admin views, you can use a different method of the client connection object to
create an admin extension client proxy. You use the admin extension proxy to find provider VDC.
A provider VDC includes one or more resource pools and allocates resources from those pools to
the Org VDCs that it supports.

The following example shows how to get a Provider VDC.

// Login

…

// Get dictionary of Provider vDCs:

AdminExtension.VcloudAdminExtension adminExt = client.GetVcloudAdminExtension();

string pvdcName = "ProvVDC1";

Dictionary<string, ReferenceType> refs = adminExt.GetVMWProviderVdcRefsByName();

…

// Get reference for pvdcName -> pvdcRef

ReferenceType pvdcRef = refs[pvdcName];

VMWProviderVdc vmwPvdc = VMWProviderVdc.GetVMWProviderVdcByReference(client, pvdcRef);

Using the vCloud SDK for .NET allows you to access vCloud Director from a C# development
environment. These examples show how to use .NET methods. The vCloud SDK for .NET
simplifies access to the vCloud API. For more information about using the SDK, see the vCloud
SDK for .NET Developer's Guide.

The vCloud API is REST-based. For more information about the vCloud API, see the vCloud API
Programming Guide. The following example shows the REST API calls that accomplish the tasks
shown in examples above, after logging in. RESA API Calls To Get Provider VDC:

GET https://vCloud/api/admin

GET https://vCloud/api/admin/org/id

GET https://vCloud/api/admin/vdc/id

GET https://vCloud/api/admin/extension

GET https://vCloud/api/admin/extension/providervdc/id

In general, if you do not need admin views or provider views, you can use an Organization
reference to get a VDC reference, and you can use the VDC reference to get a list of vApps
belonging to the VDC. The following example shows how to list the hierarchy of Organizations,
VDCs, and vApps known to vCloud Director. This example assumes you have already logged in
to vCloud Director.

// List vApps in a VDC for a Given Organization

Dictionary<string, ReferenceType> organizationsMap = client.GetOrgRefsByName();

if (organizationsMap != null)

{

 foreach (string organizationName in organizationsMap.Keys)

 {

 ReferenceType organizationReference = organizationsMap[organizationName];

 Organization org = Organization.GetOrganizationByReference(client, organizationReference);

 string OrgID = org.Resource.id;

 Console.WriteLine("Organization Name:" + organizationName);

 Console.WriteLine("Organization Id :" + OrgID);

Virtual Disk Development Kit Programming Guide

VMware, Inc. 148

 }

 foreach (ReferenceType orgRef in organizationsMap.Values)

 {

 Organization org = Organization.GetOrganizationByReference(client, orgRef);

 foreach (ReferenceType vdcRef in org.GetVdcRefs())

 {

 Vdc vdc = Vdc.GetVdcByReference(client, vdcRef);

 string vdcId = vdc.Resource.id;

 Console.WriteLine("Org vDC Id:" + vdcId);

 Console.WriteLine("Org vDC Name:" + vdc.Reference.name);

 foreach (ReferenceType vAppRef in Vdc.GetVdcByReference(client, vdcRef).GetVappRefs())

 {

 Vapp vapp = Vapp.GetVappByReference(client, vAppRef);

 Console.WriteLine("vApp Id:" + vapp.Resource.id);

 Console.WriteLine("vApp Name:" + vapp.Resource.name);

 List<VM> vms = new List<VM>();

 try

 {

 vms = vapp.GetChildrenVms();

 }

 catch

 {

 // Handle exception here

 }

 foreach (VM vm in vms)

 {

 Console.WriteLine("VM Id : " + vm.Resource.id);

 Console.WriteLine("VM Name : " + vm.Resource.name);

 }

 }

 }

 }

}

The .NET SDK code in the following example translates to the API calls shown in the example
below this one. REST API Calls To List vApps in a VDC for a Given Organization:

GET https://vCloud/api/admin

GET https://vCloud/api/admin/org/id

GET https://vCloud/api/admin/vdc/id

GET https://vCloud/api/admin/extension

GET https://vCloud/api/admin/extension/providervdc/id

You can use a provider VDC reference to enumerate its associated datastores, as shown in the
following example, which assumes you have already logged in to vCloud Director. List
Datastores:

/// <summary>

/// Returns list of Provider vDCs.

/// </summary>

/// <returns>ReferenceType</returns>

public static List<ReferenceType> GetProviderVdc()

Virtual Disk Development Kit Programming Guide

VMware, Inc. 149

{

 List<ReferenceType> vdcRefList = new List<ReferenceType>();

 foreach (ReferenceType vdcRef1 in

 client.GetVcloudAdminExtension().GetVMWProviderVdcRefsByName().Values)

 {

 vdcRefList.Add(vdcRef1);

 }

 return vdcRefList;

}

/// <summary>

/// Returns the list of DataStores

/// </summary>

/// <returns>ReferenceType</returns>

public static List<ReferenceType> GetDataStore()

{

 extension = client.GetVcloudAdminExtension();

 List<ReferenceType> vmDatastorelist = new List<ReferenceType>();

 foreach (ReferenceType datastoreRef in extension.GetVMWDatastoreRefs())

 {

 vmDatastorelist.Add(datastoreRef);

 }

 return vmDatastorelist;

}

// Get the datastores for the list of Provider vDCs.

foreach (ReferenceType providerVdcRef in GetProviderVdc())

{

 string providerVdcId = GetId(providerVdcRef.href);

 Console.WriteLine("Provider vDC Id:" + providerVdcId);

 Console.WriteLine("Provider vDC Name:" + providerVdcRef.name);

 foreach (string morefitem in

 VMWProviderVdc.GetResourcePoolsByMoref(client, providerVdcRef).Keys)

 {

 Console.WriteLine("Moref :" + morefitem);

 }

 foreach (VMWProviderVdcResourcePoolType VcResourcePool in

 VMWProviderVdc.GetResourcePoolsByMoref(client, providerVdcRef).Values)

 {

 string VcResourcePoolId = GetId(VcResourcePool.ResourcePoolVimObjectRef.VimServerRef.href);

 Console.WriteLine("VcResourcePoolId :" + VcResourcePoolId);

 }

}

foreach (ReferenceType item in GetDataStore())

{

 string DatastoreId = GetId(item.href);

 Console.WriteLine("Data Store ID:" + DatastoreId);

 Console.WriteLine("DataStore:" + item.name);

}

Virtual Disk Development Kit Programming Guide

VMware, Inc. 150

Retrieving Catalog information

Catalogs on vCloud Director store vApp templates and ISO images as Catalog items. Backup
solutions can be asked to back up the items in the Catalog for a given Organization. Catalogs can
be shared or private. A user can choose to back up all items or only selected items in the given
catalog. For this it is necessary to traverse the given Catalog in an Organization to access the
contents and extract the various metadata associated with the vApp.

The following example shows inventory traversal to access the Catalog items in a given
Organization, and assumes you have logged in to vCloud Director and obtained a map of
Organizations, as in examples above.

// List catalogs and catalog items for a given organization:

Console.WriteLine();

if (organizationsMap != null && organizationsMap.Count > 0)

{

 foreach (string organizationName in organizationsMap.Keys)

 {

 ReferenceType organizationReference = organizationsMap[organizationName];

 Console.WriteLine(organizationName);

 Console.WriteLine(organizationReference.href);

 Organization organization = Organization.GetOrganizationByReference(client,

organizationReference);

 List<ReferenceType> catalogLinks = organization.GetCatalogRefs();

 if (catalogLinks != null && catalogLinks.Count > 0)

 {

 foreach (ReferenceType catalogLink in catalogLinks)

 {

 Catalog catalog = Catalog.GetCatalogByReference(client, catalogLink);

 CatalogType catalogType = catalog.Resource;

 Console.WriteLine(" " + catalogType.name);

 Console.WriteLine(“ " + catalogLink.href);

 List<ReferenceType> catalogItemReferences = catalog.GetCatalogItemReferences();

 if (catalogItemReferences != null && catalogItemReferences.Count > 0)

 {

 foreach (ReferenceType catalogItemReference in catalogItemReferences)

 {

 Console.WriteLine(“ " + catalogItemReference.name);

 Console.WriteLine(" " + catalogItemReference.href);

 }

 Console.WriteLine();

 }

 else

 {

 Console.WriteLine("No CatalogItems

Found");

 }

 }

 Console.WriteLine();

 }

 else

 {

 Console.WriteLine("No Catalogs Found");

 }

Virtual Disk Development Kit Programming Guide

VMware, Inc. 151

 }

}

else

{

 Console.WriteLine("No Organizations");

}

The following example shows REST API calls that accomplish some of the tasks shown in the
example above. REST API calls to list catalog items:

GET https://vCloud/api/catalog/id

GET https://vCloud/api/catalog/id/catalogItems

GET https://vCloud/api/catalogitem/id

Retrieving vApp Configuration

For a typical user, a vApp is the basic unit of backup specified in vCloud Director. The current
generation of backup software maps vApps to their associated virtual machines in vSphere, and
thus the virtual machine becomes an actual artifact. Virtual disk and virtual machine configuration
files need to be stored in a backup. Along with the associated virtual machine artifacts, the user
needs to back up the metadata and properties associated with every vApp to successfully
restore it in vCloud Director when needed.

When a vApp is lost or deleted from vCloud Director, backup software can restore the vApp by
composing a new vApp using virtual machines restored in vSphere. In such a case it becomes
imperative to restore the properties and metadata associated with the vApp in vCloud Director.

The SDK includes a number of methods that you can use to get vApp configuration information.
Although some of this information is included in the OVF used to upload the vApp to vCloud
Director, the information might have subsequently been modified either by using the vCloud API
or through the user interface.

All of these methods apply to an object of type Vapp.

Methods To Retrieve vApp Configuration

n GetChildrenVms()

Gets a list of all child virtual machines that constitute a given vApp. Returns List<VM>.

n GetStartupSection()

Get virtual machine startup information. Returns StartupSectionType.

n GetNetworksByName()

Get mapping of all the network sections using their name. Returns Dictionary<string,
NetworkSection_TypeNetwork>.

n GetNetworkConfigSection()

Virtual Disk Development Kit Programming Guide

VMware, Inc. 152

Get network configuration details for a vApp. The information typically contains IP scope
(gateway, netmask, DNS settings, IP range), Parent network, Fence Mode settings, and so on.
Returns NetworkConfigSectionType.

n GetLeaseSettingSection()

Get lease settings information. It includes deployment and storage lease settings for the
vApp. Returns LeaseSettingsSectionType.

n GetOwner()

Get owner information for the vApp. Returns ReferenceType.

n GetMetadata()

Every resource in vCloud API can be associated with user-defined metadata. This method
returns user-defined metadata associated with a vApp. Returns MetadataType.

The following example shows REST API calls used to get vApp configuration data.

GET https://vCloud/api/vapp/id

GET https://vCloud/api/vapp/id/startupSection

GET https://vCloud/api/vapp/id/networkConnectionSection

GET https://vCloud/api/vapp/id/networkConfigSection

GET https://vCloud/api/vapp/id/leaseSettingsSection

GET https://vCloud/api/vapp/id/owner

GET https://vCloud/api/vapp/id/metadata

Virtual Machine Information

vCloud Director also stores virtual machine configuration information uploaded from an OVF file
into a vApp template. If you have not modified a virtual machine configuration since uploading,
you can use this information to verify the configuration of the virtual machine before restoring it.

The following methods, applied to an object of type VM, retrieve configuration data structures
from vCloud Director.

Configuration Data for a Virtual Machine

n GetVirtualHardwareSection()

Get hardware requirements of the virtual machine. Returns VirtualhardwareSection_Type.

n GetOperatingSystemSection()

Get information about the guest operating system installed on this virtual machine. Returns
OperatingSystemSectionType.

n GetNetworkConnectionSection()

Get information about virtual network devices used by this virtual machine. Returns
NetworkConnectionSectionType.

n GetRuntimeInfoSection()

Virtual Disk Development Kit Programming Guide

VMware, Inc. 153

Get version of VMware Tools installed on the virtual machine. Returns
RuntimeInfoSectionType.

The following example shows the REST API calls corresponding to the virtual machine
configuration sections available from the SDK for .NET. REST API calls to get virtual machine
configuration data:

GET https://vCloud/api/vapp/id/virtualhardwaresection

GET https://vCloud/api/vapp/id/operatingSystemSection

GET https://vCloud/api/vapp/id/networkConnectionSection

GET https://vCloud/api/vapp/id/runtimeInfoSection

Preventing Updates to a vApp During Backup or Restore

While you are backing up or restoring a vApp, you need to prevent updates to the vApp
configuration and metadata so that the vApp remains internally consistent. To prevent updates
during the backup/restore process, the vCloud API allows the vApp to be placed in maintenance
mode, which rejects any new updates to the configuration and metadata.

The backup software must select maintenance mode for the vApp before starting backup or
restore operations, and deselect maintenance mode for the vApp after the operations are
completed. The following example shows how to protect a vApp by selecting and deselecting
maintenance mode.

using com.vmware.vcloud.sdk;

using com.vmware.vcloud.api.rest.schema;

...

VApp vapp; // VApp utility class from vCloud SDK

// Identify vApp

vapp.EnableMaintenance(); // Enter maintenance mode

// Perform backup/restore here

...

vapp.DisableMaintenance(); // Exit maintenance mode

The following lines show corresponding REST API calls to select and deselect maintenance mode
for a vApp.

POST https://vCloud/api/vapp/id/action/enterMaintenancemode

POST https://vCloud/api/vapp/id/action/exitMaintenanceMode

Note Selecting maintenance mode does not affect current or pending tasks associated with the
vApp. Current or pending tasks will run to completion concurrent with the backup or restore
operation. If these tasks involve configuration changes, they could result in an inconsistent vApp
configuration. The backup system must ensure that such tasks are complete before storing the
vApp properties and metadata.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 154

Associating vCloud Resources with vSphere Entities

The admin view of vCloud Director resources provides additional information about the
corresponding entities relevant to the vSphere platform. This information is available only when
administrative credentials are used to log in to vCloud Director. The additional information does
not replace the use of the vSphere API to provide comprehensive information about the entities.
It merely provides the bridge between the vCloud and vSphere by mapping the IDs known to the
respective systems.

For example, any given virtual machine is known in vCloud Director by a URN that contains the
UUID and resource type. The same resource is identified in vSphere using its native identification,
a MoRef (Managed object reference). Additional information provided in the vCloud API makes
the necessary link between the two entities by mapping their ID in the two systems. The mapping
context is shown in the following figure.

Figure 8-2. Mapping vApp to virtual machine

vCloud Director

Org

Provider vDC

vDC

vApp

vCenter Server

Datacenter

ComputeResource

ResourcePool

VirtualMachine

MORef

Virtual Disk Development Kit Programming Guide

VMware, Inc. 155

The vCloud API describes the mapping in terms of XML elements, shown in the following
example. The box in the example highlights XML data that maps a virtual machine from vCloud
Director to vSphere. The MoRef of the virtual machine is in bold type.The object type is shown as
VIRTUAL_MACHINE.

// XML Mapping a Virtual Machine URL to a MoRef

<Vm needsCustomization="false" deployed="false" status="3" name="RedHat6"

id="urn:vcloud:vm:f487ba71-058a-47a9-9e9a-def458c63fd5" type="application/vnd.vmware.vcloud.vm+xml"

href="https://10.20.140.167/api/vApp/vm-f487ba71-058a-47a9-9e9a-def458c63fd5">

 <VCloudExtension required="false">

 <vmext:VmVimInfo>

 <vmext:VmVimObjectRef>

 <vmext:VimServerRef type="application/vnd.vmware.admin.vmwvirtualcenter+xml"

name="dao_w2k8_vc" href="https://10.20.140.167/api/admin/extension/vimServer/

e7026985-19f6-4b9a-9d0d-588629e63347"/>

 <vmext:MoRef>vm-63</vmext:MoRef>

 <vmext:VimObjectType>VIRTUAL_MACHINE</vmext:VimObjectType>

 </vmext:VmVimObjectRef>

 <vmext:DatastoreVimObjectRef>

 <vmext:VimServerRef type="application/vnd.vmware.admin.vmwvirtualcenter+xml"

name="dao_w2k8_vc" href="https://10.20.140.167/api/admin/extension/vimServer/

e7026985-19f6-4b9a-9d0d-588629e63347"/>

 <vmext:MoRef>datastore-29</vmext:MoRef>

 <vmext:VimObjectType>DATASTORE</vmext:VimObjectType>

 </vmext:DatastoreVimObjectRef>

 <vmext:HostVimObjectRef>

 <vmext:VimServerRef type="application/vnd.vmware.admin.vmwvirtualcenter+xml"

name="dao_w2k8_vc" href="https://10.20.140.167/api/admin/extension/vimServer/

e7026985-19f6-4b9a-9d0d-588629e63347"/>

 <vmext:MoRef>host-28</vmext:MoRef>

 <vmext:VimObjectType>HOST</vmext:VimObjectType>

 </vmext:HostVimObjectRef>

 <vmext:VirtualDisksMaxChainLength>1</vmext:VirtualDisksMaxChainLength>

 </vmext:VmVimInfo>

 </VCloudExtension>

</Vm>

Besides the virtual machine object itself, the VmVIMInfo element encapsulated in the
VCloudExtension element of the example lists a datastore object and a host object. Each section
provides the vSphere entity reference (MoRef) for the corresponding entity, along with its type.
The types are DATASTORE and HOST, respectively. In vCloud Director, the virtual machine can be
described as virtual machine vm-63 stored in datastore datastore-29 and managed by vCenter
Server dao_w2k8_vc.

Similarly, the following example shows the administrative view of a VDC wherein the
VCloudExtension element provides additional information about the corresponding entities in
vSphere. In this particular case, the VDC in the example is based on a resource pool configured in
vCenter Server, named dao_w2k8_vc. More information on this server can be obtained by using
the vCloud API and its reference URL, which is available as the href property. The MoRef element
provides the ID of the resource pool that backs the given VDC, as known to vSphere. Since a

Virtual Disk Development Kit Programming Guide

VMware, Inc. 156

MoRef is treated as an opaque value, the VimObjectType element specifies the type of object that
the MoRef points to. Combining these elements enables you to use the vSphere API and to locate
the Resource Pool served by the specified vCenter Server. XML mapping a datacenter URL to a
MoRef:

<AdminVdc … >

 <VCloudExtension required="false">

 <vmext:VimObjectRef>

 <vmext:VimServerRef

type="application/vnd.vmware.admin.vmwvirtualcenter+xml" name="dao_w2k8_vc"

href="https://10.20.140.167/api/admin/extension/vimServer/e7026985-19f6-..."/>

 <vmext:MoRef>resgroup-52</vmext:MoRef>

 <vmext:VimObjectType>RESOURCE_POOL</vmext:VimObjectType>

 </vmext:VimObjectRef>

 </VCloudExtension>

...

</AdminVdc … >

The following example shows how to use SDK helper methods to access the vSphere specific
information for the virtual machines of a given vApp.

The return value of the methods has type VimObjectRefType, which provides a reference to a
vCenter Server, a MoRef to the vSphere entity, and the type of the entity it is referring to.

// Using the SDK for .NET To Access MoRefs

using com.vmware.vcloud.sdk;

using com.vmware.vcloud.api.rest.schema;

…

// Log in with admin privileges and get admin view of vDC containing the vApp.

…

VApp vapp; // VApp utility class from vCloud SDK

// Identify vApp.

…

List<VM> Vms;

// Get list of children VM(s)

Vms = vapp.GetChildrenVms();

foreach (VM vm in Vms)

{

 Console.WriteLine();

 // Access vSphere information for VM

 …

 // VM Info from vSphere

 VimObjectRefType vmRef = vm.GetVMVimRef();

 Console.WriteLine(“VirtualMachine: “ + vmRef.moRefField);

 // Datastore Info from vSphere for VM

 VimObjectRefType datastoreRef = vm.GetVMDatastoreVimRef();

 Console.WriteLine(“Datastore: “ + datastoreRef.moRefField);

 // Host info form vSphere for VM

 VimObjectRefType hostRef = vm.GetVMHostVimRef();

Virtual Disk Development Kit Programming Guide

VMware, Inc. 157

 Console.WriteLine(“Host: “ + hostRef.moRefField);

}

Restoring vApps

During the restore process, the backup software typically restores a virtual machine in vSphere
using the virtual machine configuration and disk files. In situations where the vApp has been lost
from the vCloud Director inventory, the backup software needs to first restore the virtual
machine in vSphere, and then import the virtual machine into vCloud Director.

Although the vApp may contain multiple virtual machines in the view of vCloud Director, the
virtual machines are known individually to vSphere. To complete the restore operation, the
backup software needs to re-create the restored vApp so that all the member virtual machines
are created as child virtual machines of the vApp.

To re-create the vApp using the vCloud SDK for .NET, the backup software must use two method
calls: ImportVmAsVapp and ImportVmIntoVapp. Use the ImportVmAsVapp method to create a vApp
from any one of the child virtual machines. Then call the ImportVmIntoVapp method once for
each remaining child virtual machine. The following example shows how to use both methods to
create a vApp using the vCloud SDK.

// Importing Virtual Machines into vApps

/// <summary>

/// Reference to hold the vCloud Client reference

/// </summary>

private static VcloudAdminExtension extension = null;

vcloudClient.login(user, password);

extension = vcloudClient.getVcloudAdminExtension();

// Get references for known VIM Servers

Dictionary<string, ReferenceType> vimServerRefsByName = extension.GetVMWVimServerRefsByName();

// Select VIM Server Reference

VMWVimServer vimServer = VMWVimServer.GetVMWVimServerByReference(vcloudClient,

vimServerRefsByName[vimServerName]);

...

// Import first VM from VIM server as vApp:

ImportVmIntoVAppParamsType importVmIntoVAppParamsType = new ImportVmIntoVAppParamsType();

importVmIntoVAppParamsType.vmMoRefField = moref; // vSphere ID from backup data.

importVmIntoVAppParamsType.vdcField = vdcRef; // vDC where the new vApp will be created.

Vapp vapp = vimServer.ImportVmAsVApp(importVmAsVAppParamsType); // Task is embedded in vapp.

...

foreach (VM vm in vms)

{

 // Import remaining VMs from VIM Server into existing vApp:

 …

 importVmIntoVAppParamsType.vmMoRefField = moref; // vSphere ID from backup data.

 importVmIntoVAppParamsType.vAppField = vapp; // vApp to hold restored VMs.

 Task task = vimServer.ImportVmIntoVApp(importVmIntoVAppParamsType);

 …

};

Virtual Disk Development Kit Programming Guide

VMware, Inc. 158

The following example shows the corresponding REST API calls used to rebuild a vApp in vCloud
Director.

POST https://vCloud/api/admin/extension/vimServer/id/importVmAsVApp

POST https://vCloud/api/admin/extension/vimServer/id/importVmIntoExistingVApp

Conclusion

This chapter provided an overview of how to use the vCloud SDK for .NET to back up and restore
vApps in vCloud Director. This information serves as a guide to using the vCloud SDK for writing
backup and restore software. Other documentation is require to supplement aspects not
described in this chapter.

The examples in this chapter are not intended to be complete. They are intended only to
illustrate the method calls you would use during backup and restore operations with vCloud
Director and vCenter Server. For more detail about the SDK methods and examples of their use,
see the vCloud SDK for .NET Developer's Guide.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 159

Virtual Disk Mount API 9
To perform file based restore, you can use the disk mount API (vixMntapi) for local and remote
mounting of virtual disks. VixMntapi involves a separate library for programs to load.

Note As of VDDK 6.7.1, the VixMntapi library for Windows and Linux supports NBDSSL, HotAdd,
and SAN transport. For earlier VDDK versions, and when used with earlier vSphere releases, the
vixMntapi library for Linux supported only file and NBD transport.

This chapter includes the following topics:

n The VixMntapi Library

n Programming with VixMntapi

n Sample VixMntapi Code

n Restrictions on Virtual Disk Mount

The VixMntapi Library

The VixMntapi library supports guest operating systems on multiple platforms. On POSIX systems
it requires FUSE mount, available on recent Linux systems, and freely available on the Github web
site. Definitions are contained in the following header file, installed in the same directory as
vixDiskLib.h:

#include "vixMntapi.h"

Types and Structures

This section summarizes the important types and structures.

Operating System Information

The VixOsInfo structure encapsulates the following information:

n Family of the guest operating system, VixOsFamily, one of the following:

n Windows (NT-based)

n Linux

n Netware

VMware, Inc. 160

n Solaris

n FreeBSD

n OS/2

n Mac OS X (Darwin)

n Major version and minor version of the operating system

n Whether it is 64-bit or 32-bit

n Vendor and edition of the operating system

n Location where the operating system is installed

Disk Volume Information

The VixVolumeInfo structure encapsulates the following information:

n Type of the volume, VixVolumeType, one of the following:

n Basic partition.

n GPT – GUID Partition Table.

n Dynamic volume, including Logical Disk Manager (LDM).

n LVM – Logical Volume Manager disk storage. Not supported with Linux.

n Whether the guest volume is mounted on the proxy.

n Path to the volume mount point on the proxy, or NULL if the volume is not mounted.

n On Windows, numGuestMountPoints is the number of times a basic volume is mapped to a
drive letter, or 0 if the volume is not mounted. IDE and boot disk come first. Unimplemented
on Linux.

n Mount points for the volume in the guest.

Function Calls

To obtain these functions, load the vixMntapi library separately from the vixDiskLib library. On
Windows, compile with the vixMntapi.lib library so your program can load the vixMntapi.dll
runtime.

These calls can be used to mount and read Windows virtual disks on Windows hosts (with at
least one NTFS volume) or Linux virtual disks on Linux hosts. Cross-mounting is restricted, though
it is possible to mount a virtual disk with a mix of formats, if the mounted partition was formatted
with Windows.

You should run only one vixMntapi program at a time on a virtual machine, to avoid conflict
between registry hives. See Multithreading Considerations for advice on worker threads.

Available functions in the library are listed below. Under parameters, [in] indicates input, and
[out] indicates output parameters. Functions that return vixError return VIX_OK on success,
otherwise a VIX error code.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 161

VixMntapi_Init()

Initializes the library. This is similar to VixDiskLib_InitEx() – see Initialize Virtual Disk API. You
should call VixMntapi_Init() only once per process.

VixError

VixMntapi_Init(uint32 majorVersion,

 uint32 minorVersion,

 VixDiskLibGenericLogFunc *log,

 VixDiskLibGenericLogFunc *warn,

 VixDiskLibGenericLogFunc *panic,

 const char *libDir,

 const char *configFile);

Parameters:

n majorVersion [in] VixMntapi major version number, currently must be 1 (one).

n minorVersion [in] VixMntapi minor version number, currently must be 0 (zero).

n log [in] Callback function to write log messages.

n warn [in] Callback function to write warning messages.

n panic [in] Callback function to report fatal errors.

n libDir [in] and configFile [in] as for VixDiskLib_InitEx() allows you to set tmpDirectory.

VixMntapi_Exit()

Cleans up the VixMntapi library. You should call VixMntapi_Exit() only once per process

void VixMntapi_Exit();

VixMntapi_OpenDiskSet()

Opens the set of disks for mounting on a Windows virtual machine. All the disks for a dynamic
volume or Logical Disk Manager (LDM) must be opened together.

VixError

VixMntapi_OpenDiskSet(VixDiskLibHandle diskHandles[],

 int numberOfDisks,

 uint32 openMode,

 VixDiskSetHandle *diskSet);

The VixDiskLibHandle type, defined in vixDiskLib.h, is the same as for the diskHandle
parameter in the VixDiskLib_Open() function, but here it is an array instead of a single value.

Parameters:

n diskHandles [in] Array of handles to open disks.

n numberOfDisks [in] Number of disk handles in the array.

n openMode [in] Must be 0 (zero).

Virtual Disk Development Kit Programming Guide

VMware, Inc. 162

n diskSet [out] Disk set handle to be filled in.

If you want to mount disks on a Windows system, first call VixDiskLib_Open() for every disk,
then use the returned disk handle array to call VixMntapi_OpenDiskSet(), which returns a disk
set handle.

If you want to mount disks on a Linux system, call the function VixMntapi_OpenDisks(), which
opens and creates the disk set handle, all in one function.

VixMntapi_OpenDisks()

Opens disks for mounting on a Linux virtual machine, or disk sets on a Windows virtual machine.
VixMntapi supports whatever file systems the proxy supports. On Linux, VixMntapi does not
support Logical Volume Manager (LVM), although vendors can write their own scripts to support
LVM disks.

VixError

VixMntapi_OpenDisks(VixDiskLibConnection connection,

 const char *diskNames[],

 size_t numberOfDisks,

 uint32 openFlags,

 VixDiskSetHandle *handle);

Parameters:

n connection [in] The VixDiskLibConnection to use for opening the disks. Calls
VixDiskLib_Open() with the specified flags for each disk to open.

n diskNames [in] Array of disk names to open.

n numberOfDisks [in] Number of disk handles in the array. Must be 1 for Linux.

n flags [in] Flags to open the disk.

n handle [out] Disk set handle to be filled in.

VixMntapi_GetDiskSetInfo()

Retrieves information about the disk set.

VixError

VixMntapi_GetDiskSetInfo(VixDiskSetHandle handle,

 VixDiskSetInfo **diskSetInfo);

Parameters:

n handle [in] Handle to an open disk set.

n diskSetInfo [out] Disk set information to be filled in.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 163

VixMntapi_FreeDiskSetInfo()

Frees memory allocated by VixMntapi_GetDiskSetInfo().

void VixMntapi_FreeDiskSetInfo(VixDiskSetInfo *diskSetInfo);

Parameter:

n diskSetInfo [in] OS info to be freed.

VixMntapi_CloseDiskSet()

Closes the disk set. Note, vixDiskLib_Disconnect() invalidates open file handles, so call this
function first.

VixError

VixMntapi_CloseDiskSet(VixDiskSetHandle diskSet);

Parameter:

n diskSet [in] Handle to an open disk set.

VixMntapi_GetVolumeHandles()

Retrieves handles to volumes in the disk set. The third parameter VixVolumeHandle can be a
volume handle or an array of volume handles. If you pass an array this function returns the
volume handle for the first volume only. If you pass a pointer (such as VixVolumeHandle
*volumeHandles) it returns all the volume handles.

VixError

VixMntapi_GetVolumeHandles(VixDiskSetHandle diskSet,

 int *numberOfVolumes,

 VixVolumeHandle **volumeHandles);

Parameters:

n diskSet [in] Handle to an open disk set.

n numberOfVolumes [out] Number of volume handles.

n volumeHandles [out] Volume handles to be filled in.

VixMntapi_FreeVolumeHandles()

Frees memory allocated by VixMntapi_GetVolumeHandles().

void VixMntapi_FreeVolumeHandles(VixVolumeHandle *volumeHandles);

Parameter:

n volumeHandles [in] Volume handle to be freed.

VixMntapi_GetOsInfo()

Retrieves information about the default operating system in the disk set.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 164

To get operating system information, VixMntapi_GetOsInfo() requires the system and boot
volumes to be already mounted. It does not dismount the system volume at the end of this
function. Your application should be prepared to handle the “volume already mounted” error
gracefully.

This function is effective only when used with operating systems of the same type. For instance,
a VixMntapi program running on Windows can provide information about the VMDK of a
Windows virtual machine, but not about the VMDK of a Linux virtual machine.

VixError

VixMntapi_GetOsInfo(VixDiskSetHandle diskSet,

 VixOsInfo **info);

Parameters:

n diskSet [in] Handle to an open disk set.

n info [out] OS information to be filled in.

VixMntapi_FreeOsInfo()

Frees memory allocated by VixMntapi_GetOsInfo().

void VixMntapi_FreeOsInfo(VixOsInfo* info);

Parameter:

n info [in] OS info to be freed.

VixMntapi_MountVolume()

Mounts the volume. After mounting the volume, use VixMntapi_GetVolumeInfo() to obtain the
path to the mounted volume. This mount call locks the source disks until you call
VixMntapi_DismountVolume(). The VixMntapi_MountVolume() function cannot mount Linux swap
or extended partitions.

VixError

VixMntapi_MountVolume(VixVolumeHandle volumeHandle,

 Bool isReadOnly);

Parameters:

n volumeHandle [in] Handle to a volume.

n isReadOnly [in] Whether to mount the volume in read-only mode. Does not override
openMode.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 165

VixMntapi_DismountVolume()

Unmounts the volume.

VixError

VixMntapi_DismountVolume(VixVolumeHandle volumeHandle,

 Bool force);

Parameters:

n volumeHandle [in] Handle to a volume.

n force [in] Force unmount even if files are open on the volume.

VixMntapi_GetVolumeInfo()

Retrieves information about a disk volume. Some information, such as the number of mount
points, requires you to set the open read-only flag. Some information is available only if a volume
was previously mounted by VixMntapi_MountVolume(). The Windows registry returns volume
information only for mounted disks. On Windows the VixMntapi_GetVolumeInfo() call returns a
symbolic link from the VixVolumeInfo structure in the form \\.\vstor2-mntapi10-shared-
<longhexnum>\. You can transform this symbolic link into a target path by replacing \\. with
\Device and deleting the final backslash, then map a drive letter with
DefineDosDevice(DDD_RAW_TARGET_PATH,...) and proceed as if you have a local drive.
Alternatively on Windows, you can open a volume with CreateFile() and traverse the file
system with FindFirstFile().

VixError

VixMntapi_GetVolumeInfo(VixVolumeHandle volumeHandle,

 VixVolumeInfo **info);

Parameters:

n volumeHandle [in] Handle to a volume.

n info [out] Volume information to be filled in.

VixMntapi_FreeVolumeInfo()

Frees memory allocated in VixMntapi_GetVolumeInfo().

void VixMntapi_FreeVolumeInfo(VixVolumeInfo *info);

Parameter:

n info [in] Volume info to be freed.

Programming with VixMntapi

At the top of your program, include vixMntapi.h along with any other header files you need.
Structures and type definitions are declared in the include file, so you do not need to create them
or allocate memory for them.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 166

Call VixMntapi_Init() to initialize the library in your application. This function takes major and
minor version number to account for future extensions. You can provide your own logging,
warning, or panic functions to substitute for the default VixMntapi handlers, and custom library
and temporary directories.

Call VixMntapi_OpenDiskSet() to open a set of virtual disks for mounting. Pass a set of disk
handles obtained from the VixDiskLib_Open() call. The VixMntapi_OpenDiskSet() function also
expects number of disks to open, an optional open mode, and a parameter to pass back the
resulting disk-set handle.

File System Support

Traditional Windows file systems (including FAT, FAT32, and NTFS) are supported. ReFS is
supported but read-only for VixMntapi. Linux file systems (including ext2, ext3, ext4) are
supported if the proxy machine supports them. VixMntapi depends on an operating system for
file attributes such as compression, encryption, hidden files, ACL, and alternate streams. If a
vixMntapi-linked application runs on a virtual machine that supports these attributes, vixMntapi
can support them. Windows basic volumes and simple dynamic volumes are supported for
writing, but spanned, striped (RAID-0), mirrored (RAID-1) and parity (RAID-5) volumes are
supported read-only for VixMntapi.

You must open a disk set read/write to obtain the OS information for dynamic volume types
including LDM and LVM. If you cannot open a base disk read/write, create a child disk in front,
and open it read/write. In a multi-boot setup, only the first entry #0 is opened.

The order of mounting is important. For instance, mount top-level directories before
subdirectories, and drives with dependencies after drives that they depend on. Mount points are
not enumerated, nor are they restored. When you mount one volume, the other volumes are not
implicitly mounted also.

Diagnostic Logging for VixMntapi

As of VDDK 6.7.1, logging is available to help diagnose behavior of the VixMntapi library.
Currently this facility is available for Linux but not Windows.

The output file is named vixMntapi.log and appears in the same directory as other log files, as
set by the tmpDirectory line in the VDDK configuration file passed as the seventh parameter to
VixDiskLib_InitEx. Logging levels are the same as for vixDiskLib.transport:

n 0 = Panic (failure)

n 1 = Error

n 2 = Warning

n 3 = Audit

n 4 = Info

n 5 = Verbose

n 6 = Trivia

Virtual Disk Development Kit Programming Guide

VMware, Inc. 167

Read-Only Mount on Linux

As of VDDK 6.7.1, read-only mount is supported on Linux, as it was previously on Windows. This
section describes a Linux solution for earlier VDDK releases. Now applications can mount the
base disk of a snapshot with the read-only flag.

Here are possible use cases for read-only mounting of virtual disks:

n Avoid accidentally writing data to the disk, which is opened read/write mode.

n Retain current disk data after the VM is powered off.

n Use previous VM as a restore point by reverting to its original snapshot.

In VDDK 6.7.0 and before, Linux VixMntapi did not support read-only access. To mount a disk
read-only, applications had to either mount the virtual disk of a powered off virtual machine, or
mount the snapshot of a powered on virtual machine. The VixMntapi library can combine the two
techniques to create read-only disk, as below.

To mount disks while saving a read-only copy:

1 Power off the VM if it is on.

2 Create a snapshot. Optionally revert to a previous snapshot if you want.

3 Connect to the VM for read/write access with VixDiskLib_Connect or VixDiskLib_ConnectEx.

4 Call VixMntapi_OpenDisks to open the current (not the snapshot) VM disk in read/write
mode.

5 Mount volumes to access files. Write operations can be performed, but they write to the redo
log of the current VM disk, not to the snapshot.

6 Close the disk and disconnect.

7 Revert to the snapshot created in step 2, to eliminate any write changes. Delete the
snapshot.

8 Power on the VM if it was on before.

Sample VixMntapi Code

You call the VixMntapi functions after initializing VixDiskLib, connecting to a virtual machine, and
opening a disk handle. The following example shows test code for Windows with the correct
order of function calls.

MountTest() {

 vixError = VIX_ERR_CODE(VixDiskLib_Init());

 vixError = VIX_ERR_CODE(VixMntapi_Init());

 VixDiskLib_ConnectEx(&connectParams, TRUE, NULL, NULL, &connection));

 diskHandles = GetMyDiskHandles(diskPaths, connection, &connectParams, flags, &numberOfDisks);

 vixError = VIX_ERR_CODE(VixMntapi_OpenDiskSet(diskHandles, numberOfDisks, flags, &diskSet));

 GetOsInfo(diskSet);

 vixError = VIX_ERR_CODE(VixMntapi_GetVolumeHandles(diskSet, &numberOfVolumes, &volumeHandles));

 for(size_t i = 0; i < numberOfVolumes; i++) {

Virtual Disk Development Kit Programming Guide

VMware, Inc. 168

 VixVolumeHandle volumeHandle = volumeHandles[i];

 VixVolumeInfo *volumeInfo;

 vixError = VIX_ERR_CODE(VixMntapi_MountVolume(volumeHandle, TRUE));

 vixError = VIX_ERR_CODE(VixMntapi_GetVolumeInfo(volumeHandle, &volumeInfo));

 VixMntapi_FreeVolumeInfo(volumeInfo);

 VerifyMountedVolume();

 CleanUpMountedVolume(volumeHandle, volumeInfo);

 }

 VixMntapi_FreeVolumeHandles(volumeHandles);

 vixError = VIX_ERR_CODE(VixMntapi_CloseDiskSet(diskSet));

 FreeMyDiskHandles(diskHandles, numberOfDisks);

 VixMntapi_Exit();

 VixDiskLib_Exit();

}

Restrictions on Virtual Disk Mount

The following limitations apply when mounting virtual disks:

n You cannot mount virtual disks that are in use by a running or suspended virtual machine.
You can mount virtual disks from any powered off virtual machine, or base disks when a
virtual machine is running read-only off a snapshot.

n You can mount the last snapshot in a chain read/write, but you must mount previous
snapshots read-only.

n If you specify a virtual disk with snapshots on a powered off virtual machine, VixMntapi
locates and mounts the last snapshot in the disk chain. While a disk is mounted, do not revert
to a previous snapshot using another VMware interface – this would make it impossible to
unmount the partition.

n You cannot mount virtual disk if any of its .vmdk files are encrypted, compressed, or read-
only. However you can change these attributes and then mount the virtual disk.

n With Windows, you must mount virtual disks on drive D: or greater, and choose a drive letter
not in use.

n With Linux, kernel version 2.6 or higher is required to run the FUSE (file system in user space)
module. You cannot mount Linux swap or extended partitions. Logical Volume Manager
(LVM) is not supported.

n On Linux virtual machines before VDDK 5.5, you could not mount previous snapshots in the
chain.

n You can mount Windows virtual disks on Windows hosts (with an NTFS volume) or Linux
virtual disks on Linux hosts. Cross-mounting is restricted but may be allowed for cross-
formatted file systems.

n The C: boot driver should be on scsi:0:0, and all disks should be opened in SCSI order (0:0,
0:1, 0:2, 1:0, 1:1, 1:2, etc.) before mounting any of them.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 169

Errors Codes and Open Source 10
This chapter includes the following topics:

n Recent Changes

n Finding Error Code Documentation

n Troubleshooting Dynamic Libraries

n Open Source Components

Recent Changes

In vSphere 6.0, the VDDK libraries were changed to return VIX_E_OUT_OF_MEMORY when an ESXi
host runs out of memory for network file copy (NFC). Previously, VDDK would hang during I/O
operations.

Error 2 – VIX_E_OUT_OF_MEMORY

Memory allocation failed. Out of memory.

Finding Error Code Documentation

For a list of Virtual Disk API error codes, see the online reference guide Introduction to the
VixDiskLib API:

n Windows – C:\Program Files\VMware\VMware Virtual Disk Development Kit\doc
\intro.html

n Linux – /usr/share/doc/vmware-vix-disklib/intro.html

In a Web browser, click the Error Codes link in the upper left frame, and click any link in the lower
left frame. The right-hand frame displays an alphabetized list of error codes, with explanations.

Association With VIX API Errors

The Virtual Disk API shares many errors with the VIX API, which explains the VIX prefix. The error
codes for the VIX API are likely to be the same, or almost the same as, a comparable release of
the VDDK.

VMware, Inc. 170

For information about the VIX API, including its online reference guide to functions and error
codes, see the developer support section of the VMware Web site:

https://www.vmware.com/support/developer/vix-api/index.html

Interpreting Errors Codes

A VIX error is a 64-bit value. A value of VIX_OK indicates success, but otherwise (if there is an
error), several bit regions in the 64-bit value might be set. The least significant 16 bits are set to
the error code described for VIX errors. More significant bit fields might be set to other values.

As for the VIX API, use the macro VIX_ERROR_CODE(err) to mask off bit fields not used by the
VDDK.

Troubleshooting Dynamic Libraries

Problem

On Windows, the SSL library is placed in the same directory as other vixDiskLib dynamically
loaded libraries. On Linux, functions that load the libraries libssl.so.0.9.8 and
libcrypto.so.0.9.8 do the following:

1 Attempt to load them from the environment’s LD_LIBRARY_PATH location.

2 Next, attempt to load them from the directory where libvixDiskLib.so is located.

3 Next, attempt to load them from the directory where the executable is located.

4 Failing that, exit with an error.

On install, VDDK creates the directory /usr/lib/vimware-vix-disklib, populated with 64-bit
executables and libraries placed into subdirectories bin64 and lib64. On determining the OS
type, VDDK copies the vixDiskLib and vixMntapi libraries into /usr/lib. It does not copy
libssl.so.0.9.8 or libcrypto.so.0.9.8 into /usr/lib.

On execution, the root user normally has no LD_LIBRARY_PATH, and /usr/lib is ahead of /opt/
vmware/lib in the path. Running the ldd command can help diagnose where a program is
getting libvixDiskLib.so and other libraries. The /opt/vmware/lib directory is neither created
nor updated by the VDDK install script.

If you see the error “Failed to load library libcrypto.so.0.9.8” there are several solutions:

Solution

u Set or reset the LD_LIBRARY_PATH environment so it contains one of the directories above, /
lib64 and possibly /bin64, before it contains /usr/lib.

u Change the symbolic link in /opt/vmware/lib (or elsewhere) so it points to the directory
above, /lib64.

u Copy the libssl and libcrypto libraries from /usr/lib/vmware-vix-disklib/lib64
into /usr/lib.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 171

https://www.vmware.com/support/developer/vix-api/index.html

Open Source Components

VDDK contains the following open source components, with license types indicated:

n Boost (BSD style license)

n Curl (MIT/X derivative license)

n Expat (BSD style license)

n FreeBSD (BSD license)

n ICU, International Components for Unicode (BSD style license)

n LibXML2 (MIT style license)

n OpenLDAP (OpenLDAP v 2.8 license)

n OpenSSL (OpenSSL license)

n Zlib (BSD license)

These open source components have the GNU library general public license:

n GetText (LGPL2.0)

n Glib (LGPL 2.0)

n LibFuse (LGPL2.0)

n LibIconv (LGPL2.0)

Virtual Disk Development Kit Programming Guide

VMware, Inc. 172

	Virtual Disk Development Kit Programming Guide
	Contents
	About This Book
	Introduction to the Virtual Disk API
	About the Virtual Disk API
	VDDK Components
	Virtual Disk Library
	Disk Mount Library
	Virtual Disk Utilities
	Backup and Restore on vSphere
	Backup Design for vCloud Director

	Use Cases for the Virtual Disk Library
	Developing for VMware Platform Products
	Managed Disk and Hosted Disk
	Advanced Transports
	VDDK and VADP Compared
	Platform Product Compatibility
	Redistributing VDDK Components

	Installing the Development Kit
	Prerequisites
	Development Systems
	Programming Environments
	Visual Studio on Windows
	C++ and C on Linux
	Java Development for VADP

	VMware Platform Products
	Storage Device Support

	Installing the VDDK Package
	Repackaging VDDK Libraries
	How to Find VADP Components

	Virtual Disk Interfaces
	VMDK File Location
	Virtual Disk Types
	Persistence Disk Modes
	VMDK File Naming
	Thin Provisioned Disk
	Internationalization and Localization
	Virtual Disk Internal Format
	Grain Directories and Grain Tables

	Data Structures in Virtual Disk API
	Credentials and Privileges for VMDK Access
	Adapter Types

	Virtual Disk Transport Methods
	Local File Access
	SAN Transport
	HotAdd Transport
	About the HotAdd Proxy

	NBDSSL Transport
	Asynchronous Mode NBDSSL
	NFC Session Limits and Timeouts
	SSL Certificates and Security

	Virtual Disk API Functions
	Virtual Disk Library Functions
	Alphabetic Table of Functions

	Start Up
	Initialize the Library
	Connect to a Workstation or Server
	VMX Specification

	Disk Operations
	Create a New Hosted Disk
	Open a Local or Remote Disk
	Read Sectors From a Disk
	Write Sectors To a Disk
	Close a Local or Remote Disk
	Get Information About a Disk
	Free Memory from Get Information

	Metadata Handling
	Read Metadata Key from Disk
	Get Metadata Table from Disk
	Write Metadata Table to Disk
	Check and Repair Sparse Disk Metadata

	Disk Chaining and Redo Logs
	Create Child from Parent Disk
	Attach Child to Parent Disk
	Opening in a Chain
	Redo Logs and Linked Clone Backup

	Cloning a Virtual Disk
	Compute Space Needed for Clone
	Clone a Disk by Copying Data

	Error Handling
	Return Error Description Text
	Free Error Description Text

	Administrative Disk Operations
	Rename an Existing Disk
	Grow an Existing Local Disk
	Defragment an Existing Disk
	Shrink an Existing Local Disk
	Unlink Extents to Remove Disk

	Shut Down
	Disconnect from Server
	Clean Up and Exit

	Advanced Transport APIs
	Initialize Virtual Disk API
	Phone Home Support
	Location of Log Files
	List Available Transport Methods
	Connect to VMware vSphere
	Get Selected Transport Method
	Prepare For Access and End Access
	SAN Mode on Linux Uses Direct Mode
	Clean Up After Disconnect

	Ordering of Function Calls in Sequence
	Updating Applications for Advanced Transport
	Algorithm for vSphere Backup
	Backup and Recovery Example

	Multithreading Considerations
	Multiple Threads and VixDiskLib

	Capabilities of Library Calls
	Support for Managed Disk
	Support for Hosted Disk

	Virtual Disk API Sample Code
	Compiling the Sample Program
	Visual C++ on Windows
	SLN and VCPROJ Files

	C++ on Linux Systems
	Makefile

	Library Files Required

	Usage Message
	Walk-Through of Sample Program
	Include Files
	Definitions and Structures
	Dynamic Loading
	Wrapper Classes
	Command Functions
	DoInfo()
	DoCreate()
	DoRedo()
	Write by DoFill()
	DoReadMetadata()
	DoWriteMetadata()
	DoDumpMetadata()
	DoDump()
	DoTestMultiThread()
	DoClone()

	SSL Certificate Thumbprint

	Practical Programming Tasks
	Scan VMDK for Virus Signatures
	Creating Virtual Disks
	Create Local Disk
	Create Remote Disk
	Special Consideration for ESXi Hosts

	VMDK File Versions
	Working with Virtual Disk Data
	Reading and Writing Local Disk
	Reading and Writing Remote Disk
	Deleting a Disk (Unlink)
	Effects of Deleting a Virtual Disk

	Renaming a Disk
	Effects of Renaming a Virtual Disk

	Managing Child Disks
	Create Redo Logs
	Virtual Disk in Snapshots

	RDM Disks and Virtual BIOS
	Restore RDM Disks
	Restore the Virtual BIOS or UEFI

	Interfacing With VMware vSphere
	The VIX API
	Virus Scan all Hosted Disk
	The vSphere Web Services API
	Virus Scan All Managed Disk
	Read and Write VMDK Using vSphere API
	First Class Disk (FCD) Backup

	Backing Up Virtual Disks in vSphere
	Design and Implementation Overview
	The Backup Process
	Communicating With the Server
	Information Containers as Managed Objects
	More About Managed Objects
	Managed Object References
	Unique ID for a Different vCenter

	Gathering Status and Configuration Information
	PropertyCollector Data
	Useful Property Information

	Doing a Backup Operation
	Prerequisites for Backup
	Create a Temporary Snapshot on the Target Virtual Machine
	Changed Block Tracking
	Extract Backup Data from the Target Virtual Machine
	Delete the Temporary Snapshot

	Restore a Virtual Machine
	Doing a Restore Operation
	Prerequisites for Restore
	Restore an Existing Virtual Machine to a Previous State
	Create a New Virtual Machine

	Access Files on Virtual Disks
	More VADP Details

	Low Level Backup Procedures
	Communicate with the Server
	The PropertyCollector
	PropertyCollector Arguments
	Getting the Data from the PropertyCollector
	Identifying Virtual Disks for Backup and Restore

	Creating a Snapshot
	Backing Up a Virtual Disk
	Deleting a Snapshot
	New Query Allocated Blocks Function
	Changed Block Tracking on Virtual Disks
	Enable Changed Block Tracking
	Gathering Changed Block Information
	CBT Enhancements in vSphere 7.0
	Troubleshooting
	Limitations on Changed Block Tracking

	Low Level Restore Procedures
	Restoring a Virtual Machine and Disk
	Creating a Virtual Machine
	Using the VirtualMachineConfigInfo
	Editing or Deleting a Device
	Restoring Virtual Disk Data
	Raw Device Mapping (RDM) Disks

	Restore Incremental Backup Data
	Restore with Direct Connection to ESXi Host

	Tips and Best Practices
	Best Practices for SAN Transport
	Best Practices for HotAdd Transport
	Best Practices for NBD Transport
	General Backup and Restore
	Backup and Restore of Thin-Provisioned Disk
	About Changed Block Tracking
	HotAdd and SCSI Controller IDs
	Encrypted VM Backup and Restore
	Backup and Restore With vTPM

	Windows Backup Implementations
	Disable Automount in Windows Proxy
	Security and Remote Desktop
	Working with Microsoft Shadow Copy
	Enable Virtual Machine Application Consistent Quiescing
	Application-Consistent Backup and Restore
	New VSS Support Added in vSphere 6.5
	The VMware VSS Implementation

	Linux Backup Implementation

	Backing Up vApps in vCloud Director
	Introduction to Tenant vApps
	Prerequisites
	Other Information

	Conceptual Overview
	The Backup Process
	The Restore Process

	Use Cases Overview
	Managing Credentials
	Finding a vApp
	Inventory Traversal
	Using the Query Service

	Protecting Specified vApps
	Recovering an Older Version of a vApp
	Recovering a Deleted vApp
	Recovering a Single Virtual Machine
	Backing Up vCloud Director

	vCloud API Operations
	Getting Access to vCloud Director
	Inventory Access
	Admin Views
	Admin Extensions

	Retrieving Catalog information
	Retrieving vApp Configuration
	Methods To Retrieve vApp Configuration
	Virtual Machine Information

	Preventing Updates to a vApp During Backup or Restore
	Associating vCloud Resources with vSphere Entities
	Restoring vApps

	Conclusion

	Virtual Disk Mount API
	The VixMntapi Library
	Types and Structures
	Operating System Information
	Disk Volume Information

	Function Calls
	VixMntapi_Init()
	VixMntapi_Exit()
	VixMntapi_OpenDiskSet()
	VixMntapi_OpenDisks()
	VixMntapi_GetDiskSetInfo()
	VixMntapi_FreeDiskSetInfo()
	VixMntapi_CloseDiskSet()
	VixMntapi_GetVolumeHandles()
	VixMntapi_FreeVolumeHandles()
	VixMntapi_GetOsInfo()
	VixMntapi_FreeOsInfo()
	VixMntapi_MountVolume()
	VixMntapi_DismountVolume()
	VixMntapi_GetVolumeInfo()
	VixMntapi_FreeVolumeInfo()

	Programming with VixMntapi
	File System Support
	Diagnostic Logging for VixMntapi
	Read-Only Mount on Linux

	Sample VixMntapi Code
	Restrictions on Virtual Disk Mount

	Errors Codes and Open Source
	Recent Changes
	Finding Error Code Documentation
	Association With VIX API Errors
	Interpreting Errors Codes

	Troubleshooting Dynamic Libraries
	Open Source Components

