Network Insight API Guide

You can find the most up-to-date technical documentation on the VMware website at:

https://docs.vmware.com/

If you have comments about this documentation, submit your feedback to

docfeedback@vmware.com

VMware, Inc. 3401 Hillview Ave. Palo Alto, CA 94304 www.vmware.com

Copyright [©] 2018 VMware, Inc. All rights reserved. Copyright and trademark information.

VMware, Inc.

Contents

- About This Programming Guide 4
 Understanding the REST APIs 5

 Overview of Rest APIs 5
 REST API Services 7
 Rest API Authentication and Authorization 7

 Managing Data Sources 9
 Tagging IP Addresses 15
- 5 Performing Search 17
- 6 Working with Entities 22
- 7 Creating Applications and Tiers 30
- 8 Generating the Recommended Firewall Rules 33
- 9 Fetching Metrics 38

About This Programming Guide

The Network Insight[™] API Programming Guide provides information about the VMware Network Insight REST APIs, including how to use the Representational State Transfer (REST) API resources, authenticate, and construct REST API calls.

Intended Audience

This information is intended for administrators and programmers who want to configure and manage Network Insight programmatically using the Network Insight REST API. The guide focuses on common use cases.

VMware Technical Publications Glossary

VMware Technical Publications provides a glossary of terms that might be unfamiliar to you. For definitions of terms as they are used in VMware technical documentation, go to

```
http://www.vmware.com/support/pubs
```

2

Understanding the REST APIs

You can use APIs to automate workflows in Network Insight. The APIs follow the REST style and is available to all licensed users.

This chapter includes the following topics:

- Overview of Rest APIs
- REST API Services
- Rest API Authentication and Authorization

Overview of Rest APIs

The clients of network Insight API implement a REST workflow making HTTP requests to the server and retrieving the information they need from the server's responses.

About REST

REST, an acronym for Representational State Transfer, describes an architectural style characteristic of applications that use the Hypertext Transfer Protocol (HTTP) to exchange serialized representations of objects between a client and a server. In the Network Insight API, these representations are JSON documents. In a REST workflow, object representations are passed back and forth between a client and a server with the explicit assumption that neither party need know anything about an object other than what is presented in a single request or response. The URLs at which these documents are available often persist beyond the lifetime of the request or response that includes them.

Network Insight API Reference is available at:

```
https://code.vmware.com/apis/322
```

REST API Workflows

Applications that use a REST API send HTTP requests. A script or other higher-level language runs the HTTP requests to make remote procedure calls. These procedure calls create, retrieve, update, or delete objects that the API defines. In the Network Insight REST API, these objects are defined by a collection of JSON schemas. The operations themselves are HTTP requests, and so are generic to all HTTP clients. To write a REST API client application, you must understand only the HTTP protocol, and the semantics of JSON, the transfer format that the Network Insight API uses. To use the API effectively in such a client, you must become familiar with the following concepts.

- The set of objects that the API supports, and what they represent.
- How the API represents these objects.
- How a client refers to an object on which it wants to operate. The API reference includes a complete list of API requests and model objects.

API Request

The following HTTP headers are typically included in API requests:

Table 2-1. API Request

Request Header	Description
Authorization	All requests must include an Authorization header with the authentication token generated from Network Insight auth API.
Content-Type	Requests that include a body must include HTTP Content-Type: application/json header.

Request Body

Ensure that the content in the request body conforms to the type constraint in the model objects in API Reference

API Response

Network Insight uses conventional HTTP response codes to indicate the success or failure of an API request.

- 2xx range indicates success.
- 4xx range indicates an error when the information provided is incorrect. For example, a required parameter was omitted.
- 5xx range indicates an error with Network Insight server. However, these errors are rare.

HTTP Response Codes

An API client can expect a subset of HTTP status codes in a response.

Status Code	Status Description
200 OK	The request is valid and was completed. The response includes a document body
201 Created	The request is valid. The requested object was created.
204 No Content	The request is valid and was completed. The response does not include a body.
400 Bad Request	The request body is malformed, incomplete, or otherwise invalid.
401 Unauthorized	Login failed or authentication token has expired.
403 Forbidden	The user is not authenticated or does not have adequate privileges to access one or more objects specified in the request.
404 Not Found	The object specified in the request cannot be found
405 Method Not Allowed	The HTTP method specified in the request is not supported for this object.
415 Unsupported Media Type	The resource identified by the request does not support a request of the specified Content-Type and HTTP method.
429 Too Many Requests	A client has sent too many requests or multiple clients are sending too many simultaneous requests and the server is unable to process them due to rate limits. To work around the problem, try sending the request again later.
500 Internal Server Error	The request was received but cannot be completed because of an internal error on the server.
503 Service Unavailable	The server is unable to handle the request due to a temporary condition such as resource exhaustion or server maintenance

Table 2-2.	HTTP	Response	Codes
------------	------	----------	-------

REST API Services

This topic provides a summary of REST API services and their functions.

Service	Description
Authentication	Acquire or delete an authentication token based on the user credentials provided
Data Source Management	Retrieve, update, add, and delete various data sources supported by Network Insight .
Entities	Retrieve entities from the Network Insight inventory
Applications	Create Applications and Tiers based on virtual machine membership criteria and/or IP address/subnet criteria.
Micro Segmentation	Determine the firewall rules recommended by Network Insight for the different tiers, security groups, and applications.
Search	Search Network Insight entities.

Rest API Authentication and Authorization

Network Insight supports CSP (Common SaaS Platform) access token based authentication.

Network Insight requires API requests to be authenticated. The first step in this workflow is to obtain a CSP access token as described below.

Acquire an access token

Prerequisites

User is subscribed to Network Insight and has valid credentials to log in via the UI at least once.

Steps

• Obtain an org-scoped refresh token from NetworkInsight UI. Refresh token has an expiry of 6 months.

\leftrightarrow \rightarrow	C Secure	https://www	.mgmt.cloud.v	mware.com/ni/#h	nome	-		D			~ ~				\$	
vm	Network Insig	ght	networking	Performance	setups	- UCS	NSX	NSX WebSe	rvice API	ScaleTesting		API Design	NI_CI_Migration	A R	ohit Reja VMware	sookmarks
63													VMware Organization ID: j4	50bpvo		
**													Rohit Reja			
														6 10		
Ēq													Change Pass	sword		
ф;													Access Toke	ins		
														SIGN O	т	

Exchange CSP access token from org-scoped refresh token using following CSP API.

https://console.cloud.vmware.com/csp/gateway/am/api/swaggerui.html#/Authentication/getAccessTokenByApiRefreshTokenUsingPOST

Revoking a refresh token

Refresh token can be revoked by NetworkInsight UI.

Use the access token

Each API request must contain the authorization token in csp-auth-token Header in the following format:

csp-auth-token:auth-token

3

Managing Data Sources

You can manage data sources using APIs. Data sources can be added, updated, deleted, enabled, or disabled using APIs.

Data Sources URL Prefix

/data-sources/

Data sources are grouped on the basis of the data source type. URL Prefix corresponding to data sources types are listed in this table.

Data Source Type	URL Prefix
VCenterDataSource	/data-sources/vcenters
NSXVManagerDataSource	/data-sources/nsxv-managers
CiscoSwitchDataSource	/data-sources/cisco-switches
AristaSwitchDataSource	/data-sources/arista-switches
DellSwitchDataSource	/data-sources/dell-switches
BrocadeSwitchDataSource	/data-sources/brocade-switches
JuniperSwitchDataSource	/data-sources/juniper-switches
UCSManagerDataSource	/data-sources/ucs-managers
HPOneViewDataSource	/data-sources/hpov-managers
HPVCManagerDataSource	/data-sources/hpvc-managers
CheckpointFirewallDataSource	/data-sources/checkpoint-firewalls
PanFirewallDataSource	/data-sources/panorama-firewalls

Table 3-1. Data Source Type to URL Prefix

List Data Sources

Prerequisites

 Get the data source URL for the data source type. For more information, see Table 3-1: DataSourceType to URL Prefix.

Procedure

Make a GET request to the URL corresponding to the data source type.

```
Request
        GET https://api.mgmt.cloud.vmware.com/ni/api/ni/data-sources/vcenters
    Response Body
{
    "results": [
        {
            "entity_id": "10000:902:627340223",
            "entity_type": "VCenterDataSource"
        },
        {
            "entity_id": "10000:902:993642840",
            "entity_type": "VCenterDataSource"
        },
        {
            "entity_id": "10000:902:738162743",
            "entity_type": "VCenterDataSource"
        },
        {
            "entity_id": "10000:902:627340998",
            "entity_type": "VCenterDataSource"
        },
        {
            "entity_id": "10000:902:390269772",
            "entity_type": "VCenterDataSource"
        }
   ],
    "total_count": 5
}
```

Fetch Data Source Details

Prerequisites

- Get the data source URL for the data source type. For more information, see Table 3-1: DataSourceType to URL Prefix.
- Get entity ID using the list command.

Procedure

Make a GET request for the specific data source entity ID.

For example:

```
Request
   GET https://api.mgmt.cloud.vmware.com/ni/api/ni/data-sources/vcenters/10000:902:627340223
Repsonse Body
   {
        "entity_id": "10000:902:993642895",
        "entity_type": "VCenterDataSource",
```

```
"ip": "10.197.17.68",
"proxy_id": "10000:901:1586035958",
"nickname": "aa",
"enabled": true,
"notes": "ecmp lab aa",
"credentials": {
"username": "administrator@vsphere.local",
"password": ""
}
```

Update Data Source Credentials

Prerequisites

- Get the data source URL for the data source type. For more information, see Table 3-1: DataSourceType to URL Prefix.
- Get entity ID using the list command.

Procedure

- Make a GET request for the specific data source entity ID.
- Make a PUT request with request body after changing the credentials in the response retrieved in step 1.

For example:

```
Request
    PUT https://api.mgmt.cloud.vmware.com/ni/api/ni/data-sources/vcenters/10000:902:627340223
Request Body
    {
        "entity_id": "10000:902:993642895",
        "entity_type": "VCenterDataSource",
        "ip": "10.197.17.68",
        "proxy_id": "10000:901:1586035958",
         "nickname": "aa",
        "enabled": true,
         "notes": "ecmp lab aa",
         "credentials": {
            "username": "newuser",
             "password": "newpassword"
        }
    }
Response Body
    {
        "entity_id": "10000:902:993642895",
        "entity_type": "VCenterDataSource",
        "ip": "10.197.17.68",
        "proxy_id": "10000:901:1586035958",
         "nickname": "aa",
        "enabled": true,
         "notes": "ecmp lab aa",
```

```
"credentials": {
"username": "newuser",
"password": ""
}
}
```

Enable a Data Source

Prerequisites

- Get the data source URL for the data source type. For more information, see Table 3-1: DataSourceType to URL Prefix.
- Get entity_id from the list command.

Procedure

To enable a data source, make a POST request.

```
For example:
```

```
Request
   POST
   https://api.mgmt.cloud.vmware.com/ni/api/ni/data-sources/vcenters/10000:902:627340223/enable
Repsonse
   200 OK
```

Disable a Data Source

Prerequisites

- Get the data source URL for the data source type. For more information, see Table 3-1: DataSourceType to URL Prefix.
- Get entity_id from the list command.

Procedure

To disable a data source, make a POST request.

For example:

```
Request
   POST
   https://api.mgmt.cloud.vmware.com/ni/api/ni/data-sources/vcenters/10000:902:627340223/disable
Repsonse
   200 OK
```

Add a Data Source

Prerequisites

- Get the data source URL for the data source type. For more information, see Table 3-1: DataSourceType to URL Prefix.
- You must have IP Address or the FQDN of the data source and its credentials.

Procedure

Make a POST request conforming to the API specification. For example, to add a vCenter data source:

```
Request
    POST https://api.mgmt.cloud.vmware.com/ni/api/ni/data-sources/vcenters/
Request Body
{
    "ip": "10.197.17.68",
    "fqdn": "",
    "proxy_id": "10000:901:1586035958",
    "nickname": "aa",
    "enabled": true,
    "notes": "ecmp lab aa",
    "credentials":
    {
        "username": "administrator@vsphere.local",
        "password": "password"}
}
Response Body
{
    "entity_id": "10000:902:993642895",
    "entity_type": "VCenterDataSource",
    "ip": "10.197.17.68",
     "proxy_id": "10000:901:1586035958",
     "nickname": "aa",
     "enabled": true,
     "notes": "ecmp lab aa",
     "credentials": {
        "username": "administrator@vsphere.local",
        "password": ""
    }
}
```

Delete a Data Source

Prerequisites

 Get the data source URL for the data source type. For more information, see Table 3-1: DataSourceType to URL Prefix. Get entity_id from the list command.

Procedure

Make a DELETE request for the specific entity_id.

```
Request DELETE https://api.mgmt.cloud.vmware.com/ni/api/ni/data-
sources/vcenters/10000:902:627340223/
Response
204 No Content
```

Configure SNMP on a Switch Data Source

Prerequisites

- Get the switch data source URL for the data source type. For more information, see Table 3-1: DataSourceType to URL Prefix.
- Get entity_id from the list command.

Procedure

Make a PUT request conforming to the API specification.

```
Request PUT
https://api.mgmt.cloud.vmware.com/ni/api/ni/data-sources/cisco-switches/10000:903:627340223
Request Body
{
        "snmp_enabled": true,
        "snmp_version": "v3",
        "config_snmp_3": {
            "username": "nilesh",
            "authentication_type": "SHA",
            "authentication_password": "authentication_password",
            "privacy_type": "NO_PRIV"
    }
Response Body
{
        "snmp_enabled": true,
        "snmp_version": "v3",
        "config_snmp_3": {
            "username": "nilesh",
            "authentication_type": "SHA",
            "privacy_type": "NO_PRIV"
    }
```

4

Tagging IP Addresses

IP Addresses/Subnets can be tagged with EAST_WEST/INTERNET tags with this API.

List All Available Tags

Following API returns all the available tags in system.

```
Request
   GET https://api.mgmt.cloud.vmware.com/ni/api/ni/settings/ip-tags
Response
{
   "tag_ids": [
    "INTERNET",
    "EAST_WEST"
  ]
}
```

Add IP Address/Subnet to a Tag.

Use the following request to add a subnet or IP address (es) to a tag. In the following example,

Subnet and IP addresses are being tagged with EAST_WEST tag.

```
Request
    POST https://api.mgmt.cloud.vmware.com/ni/api/ni/settings/ip-tags/EAST_WEST/add
Request Body
{
  "tag_id": "EAST_WEST",
  "subnets": [
   "192.168.10.0/24"
  ],
  "ip_address_ranges": [
    {
      "start_ip": "192.168.20.1",
      "end_ip": "192.168.20.5"
   }
  ]
}
Response 200 OK.
```

Remove IP Address/Subnet from a Tag

Use the following request to remove the subnet or IP address (es) for a tag. In the following example,

IP address ranges (192.168.20.1-192.168.20.5) are being removed from EAST_WEST tag.

```
Request
    POST https://api.mgmt.cloud.vmware.com/ni/api/ni/settings/ip-tags/EAST_WEST/remove
Request Body
{
    "tag_id": "EAST_WEST",
    "ip_address_ranges": [
        {
            "istart_ip": "192.168.20.1",
            "end_ip": "192.168.20.5"
        }
    ]
}
Response 200 OK.
```

Get Tag Details

Use the following request to get tag details.

```
Request
    GET https://api.mgmt.cloud.vmware.com/ni/api/ni/settings/ip-tags/EAST_WEST
Response
{
    "tag_id": "EAST_WEST",
    "ip_address_ranges": [
        {
            "start_ip": "192.168.20.1",
            "end_ip": "192.168.20.5"
        }
    ]
}
```

5

Performing Search

You can search for entities using the entity type and search criteria. You can define a search criteria using filter expressions based on entity properties as defined in the API reference. Search results return a paginated list of entity IDs that match the filter criteria.

Search Request

Format of the Search Request body:

```
{
    "entity_type": "string",
    "filter": "string",
    "sort_by": {
        "field": "string",
        "order": "ASC"
    },
    "size": 0,
    "cursor": "string",
    "time_range": {
        "start_time": 0,
        "end_time": 0
    }
}
```

Entity Type

In the Entity Type field, use the entity types defined in AllEntityType enum in the API Reference.

Filter Expression

A filter expression defines search criteria in one of the following formats:

- {field_name} {binary operator} {field_value}
- {field_name} {unary_operator}

Optionally, complex expressions can be designed using {logical operators} and parenthesis (...).

{field_name}	The name of a field in an Object. For example, VirtualMachine has a field named vendor_id.
{binary operator}	Used to compare a field to a value creating an expression.
{unary_operator}	Unary operator is used to test the field_name against the operator check. For example, IS SET is used to determine if a field is non NULL.
{field_value}	Represents the value of a field and can either be a number, string , list of numbers or list of strings.
{logical operator}	Logical operators are used to create complex filters. For example: (name = ' <i>my_vm</i> ') OR (vendor_id = ' <i>vm-101</i> ')
parentheses ()	Parentheses are used to group expressions. They also determine the orde in which the components of the expression are evaluated. For example: ((name = ' mv vm') AND (default gateway = '10.1.1.1'))

Considerations

- You can use spaces in filter expressions.
- Use quotes with strings. You need not use quotes with numbers.

Building Filter Expression

Components of a filter expression are: FIELD_NAME OPERATOR VALUE

FIELD_NAME

Field name can be a property defined in the model object as per the API Reference or it can be a property of a related object in the response. For example, a subset of the VirtualMachine object properties appears as follows:

Network Insight API Guide

```
"entity_type": "Cluster"
},
"host": {
    "entity_id": "18230:4:652218965",
    "entity_type": "Host"
}
```

From the preceding model, you can use the following field names:

- Direct primitive properties
 - name
 - default_gateway
- Properties inside the structure.

For example:

- ip_addresses.ip_address.
- host.entity_id
- Properties of a related object.

For example:

- host.name
- cluster.name

Table 5-1. Operators

Operator	Description
=	Equals
!=	Not Equals
>	Greater Than
<	Less Than
>=	Greater Than OR Equals
<=	Less Than OR Equals
LIKE	Value contains the the field value
IN	Value matches one of the field values in list
NOT IN	Value does not match any field value in list
SET	Value is not null
NOT SET	Value is null

FIELD_VALUE

The search value can be a string, integer, list of strings or list of integers.

For example:

- String: 'securitygroup-10'
- Integer : 211

Examples of Search

Sample Search Requests

Find VMs with a specific ip_address, such as 192.168.10.1:

```
Request
    POST https://api.mgmt.cloud.vmware.com/ni/api/ni/search
Request Body
    {
        "entity_type": "VirtualMachine",
        "filter": "ip_addresses.ip_address = '192.168.10.1'",
    }
```

Find all VMs on a host with name 'host-a'

```
Request
    POST https://www.mgmt.cloud.vmware.com/ni/api/ni/search
Request Body
    {
        "entity_type": "VirtualMachine",
        "filter": "host.name = 'host-a'",
    }
```

Find all VMs in the NSX security group with moref 'securitygroup-10'

```
Request
   POST https://api.mgmt.cloud.vmware.com/ni/api/ni/search
Request Body
   {
        "entity_type": "VirtualMachine",
        "filter": "security_groups.vendor_id = 'securitygroup-10'",
    }
```

Find all VMs where the name is 'vm-a' or 'vm-b' or 'vm-c'

```
Request
   POST https://api.mgmt.cloud.vmware.com/ni/api/ni/search
Request Body
   {
        "entity_type": "VirtualMachine",
        "filter": "name IN ('vm-a', 'vm-b', 'vm-c')",
   }
```

Find all VMs where the default gateway is set

```
Request
   POST https://api.mgmt.cloud.vmware.com/ni/api/ni/search
Request Body
   {
        "entity_type": "VirtualMachine",
        "filter": "default_gateway is set",
    }
```

Find all VMs in host 'host-a' and security group 'sg-1'

```
Request
    POST https://api.mgmt.cloud.vmware.com/ni/api/ni/search
Request Body
    {
        "entity_type": "VirtualMachine",
        "filter": "((security_groups.name = 'sg-1') and (host.name = 'host-a'))",
    }
```

Find all VMs in security group sg-1 and that do not have network address '192.168.10.0/24'

```
Request
    POST https://api.mgmt.cloud.vmware.com/ni/api/ni/search
    Request Body
    {
        "entity_type": "VirtualMachine",
        "filter": "((security_groups.name = 'sg-1') and (ip_addresses.network_address !=
'192.168.10.0/24'))",
    }
```

6

Working with Entities

Each entity in Network Insight has an associated entity ID that is unique and an entity type. You can fetch an entity using the entity ID from the URL corresponding its entity type. You can get the list of all entity IDs using a paginated list request.

You can determine the entity ID using a generic search based on the properties of the entity. For more information, see the Performing Search topic.

List All Entities for an Entity Type

Listing all entities of an entity type requires issuing a GET request on the URL corresponding to the entity type. The response contains a paginated list of entities with time corresponding to the version of the entity that has been retrieved. Response contains the cursor that can be used as a query parameter to fetch next page of results. You can add the *size* query parameter to request to set the number of entities that server should send in response. It can be set to a maximum of 10000.

Prerequisite

Obtain the URL corresponding to the entity type in the search result.

Procedure

 Issue a GET request using the URL. For example, use this GET request to list all VMs in Network Insight.

```
Request
GET https://api.mgmt.cloud.vmware.com/ni/api/ni/entities/vms/
Response
{
    "results": [
        {
            "entity_id": "10000:1:875335999",
            "entity_type": "VirtualMachine",
            "time": 1508745899
      },
      {
            "entity_id": "10000:1:1206990361",
            "entity_type": "VirtualMachine",
            "time": 1508745899
      },
```

```
],
    "cursor": "MTA=",
    "total_count": 78,
    "start_time": 1508972172,
    "end_time": 1508972172
}
```

 Response contains a paginated list with the cursor to be passed in the next request as a parameter to retrieve the next set of VMs.

Retrieve an Entity

Prerequisite

- Obtain the entity ID of the entity by using a search or list command
- Obtain the URL corresponding to the entity type in the search result. For more information, see Table 3: EntityType to URI.

Procedure

Run a GET request using the entity ID and the URL. This example uses entity_id 1000:1:123121 and entity_type is VirtualMachine.

```
Request
GET https://api.mgmt.cloud.vmware.com/ni/api/ni/entities/vms/1000:1:123121
Response
{
    "entity_id": "10000:1:1207046967",
    "name": "pashan-69-1",
    "entity_type": "VirtualMachine",
    "ip_addresses": [
        {
            "ip_address": "192.168.24.40",
            "netmask": "255.255.255.0",
            "network_address": "192.168.24.0/24"
        }
    ],
    "default_gateway": "192.168.24.10",
    "vnics": [
        {
            "entity_id": "10000:18:928014219",
            "entity_type": "Vnic"
        }
    ],
    "security_groups": [
        {
            "entity_id": "10000:82:1509031646",
            "entity_type": "NSXSecurityGroup"
        }
   ],
    "source_firewall_rules": [
        {
            "rules": [
```

```
{
                "entity_id": "10000:87:1310503280",
                "entity_type": "NSXFirewallRule"
            },
            {
                "entity_id": "10000:87:1310503311",
                "entity_type": "NSXFirewallRule"
            }
        ],
        "firewall": {
            "entity_id": "10000:39:306795770",
            "entity_type": "NSXDistributedFirewall"
        },
        "rule_set_type": "NSX_STANDARD"
   }
],
"destination_firewall_rules": [
   {
        "rules": [
            {
                "entity_id": "10000:87:1310621266",
                "entity_type": "NSXFirewallRule"
            },
            {
                "entity_id": "10000:87:1310503280",
                "entity_type": "NSXFirewallRule"
            }
        ],
        "firewall": {
            "entity_id": "10000:39:306795770",
            "entity_type": "NSXDistributedFirewall"
        },
        "rule_set_type": "NSX_STANDARD"
   }
],
"ip_sets": [
    {
        "entity_id": "10000:84:1256619295",
        "entity_type": "NSXIPSet"
   }
],
"cluster": {
    "entity_id": "10000:66:850307201",
    "entity_type": "Cluster"
},
"resource_pool": {
    "entity_id": "10000:79:1730744919",
    "entity_type": "ResourcePool"
},
"security_tags": [
    {
        "entity_id": "10000:99:1129991034",
        "entity_type": "SecurityTag"
    }
],
```

```
"layer2_networks": [
    {
        "entity_id": "10000:11:604852557",
        "entity_type": "VxlanLayer2Network"
   }
],
"host": {
    "entity_id": "10000:4:2142603919",
    "entity_type": "Host"
},
"vlans": [],
"vendor_id": "vm-174",
"vcenter_manager": {
   "entity_id": "10000:8:2048038675",
    "entity_type": "VCenterManager"
},
"folders": [
   {
        "entity_id": "10000:81:1937753507",
        "entity_type": "Folder"
   }
],
"datastores": [
   {
        "entity_id": "10000:80:2099650948",
        "entity_type": "Datastore"
   }
],
"datacenter": {
    "entity_id": "10000:105:246393763",
    "entity_type": "VCDatacenter"
},
"nsx_manager": {
    "entity_id": "10000:7:935317189",
    "entity_type": "NSXVManager"
},
"applied_to_source_rules": [
   {
        "rules": [
            {
                "entity_id": "10000:87:1310503280",
                "entity_type": "NSXFirewallRule"
            },
            {
                "entity_id": "10000:87:1310622351",
                "entity_type": "NSXFirewallRule"
            }
        ],
        "firewall": {
            "entity_id": "10000:39:306795770",
            "entity_type": "NSXDistributedFirewall"
        },
        "rule_set_type": "NSX_STANDARD"
   }
],
```

```
"applied_to_destination_rules": [
        {
            "rules": [
                {
                    "entity_id": "10000:87:1310621266",
                    "entity_type": "NSXFirewallRule"
                },
                {
                    "entity_id": "10000:87:1310503280",
                    "entity_type": "NSXFirewallRule"
                }
            ],
            "firewall": {
                "entity_id": "10000:39:306795770",
                "entity_type": "NSXDistributedFirewall"
            },
            "rule_set_type": "NSX_STANDARD"
        }
    ],
    "source_inversion_rules": [],
    "destination_inversion_rules": []
}
```

Retrieve an Entity at Specified Time

Network Insight stores different versions of an entity and creates an image of the entity with a new timestamp when the data changes. A previous version of an entity can be retrieved by passing the time as query parameter in the retrieve entity request. Ensure to provide the time in epoch seconds.

GET https://api.mgmt.cloud.vmware.com/ni/api/ni/entities/vms/10000:1:875335999?time=1508745500

Bulk fetch of entities

Bulk fetch of entities can be fetched using a bulk fetch API. The maximum batch size of bulk fetch is 1000 entities.

```
POST https://api.mgmt.cloud.vmware.com/ni/api/ni/entities/fetch
Request Body
{
    "entity_ids": [
        {
            "entity_id": "10000:4:132029350",
            "entity_type": "Host",
            "time": 1523605300
        },
        {
            "entity_id": "10000:4:132027614",
            "entity_type": "Host",
            "time": 1523605419
        }
    }
}
```

}

```
Response Body
{
 "results": [
   {
      "entity_id": "10000:4:132029350",
      "entity_type": "Host",
      "entity": {
       "entity_id": "10000:4:132029350",
        "name": "10.197.52.176",
        "entity_type": "Host",
        "vmknics": [
          {
            "entity_id": "10000:17:771614149",
            "entity_type": "Vmknic"
         }
       ],
        "vcenter_manager": {
          "entity_id": "10000:8:824493708",
          "entity_type": "VCenterManager"
        },
        "vm_count": 4,
        "datastores": [
          {
            "entity_id": "10000:80:1910974952",
            "entity_type": "Datastore"
          },
          {
            "entity_id": "10000:80:1910975665",
            "entity_type": "Datastore"
          },
          {
            "entity_id": "10000:80:1910975696",
            "entity_type": "Datastore"
          },
          {
            "entity_id": "10000:80:889229135",
            "entity_type": "Datastore"
          },
          {
            "entity_id": "10000:80:1910974983",
            "entity_type": "Datastore"
          }
       ],
        "service_tag": "",
        "vendor_id": "host-127",
        "maintenance_mode": "NOTINMAINTENANCEMODE",
        "connection_state": "CONNECTED"
      },
      "time": 1523605300
   },
    {
      "entity_id": "10000:4:132027614",
      "entity_type": "Host",
```

```
"entity": {
      "entity_id": "10000:4:132027614",
      "name": "10.197.52.178",
      "entity_type": "Host",
      "vmknics": [
        {
          "entity_id": "10000:17:1090151026",
          "entity_type": "Vmknic"
        }
      ],
      "vcenter_manager": {
        "entity_id": "10000:8:824493708",
        "entity_type": "VCenterManager"
      },
      "vm_count": 3,
      "datastores": [
        {
          "entity_id": "10000:80:1910974952",
         "entity_type": "Datastore"
        },
        {
          "entity_id": "10000:80:889230871",
          "entity_type": "Datastore"
        },
        {
          "entity_id": "10000:80:1910975665",
          "entity_type": "Datastore"
        },
        {
          "entity_id": "10000:80:1910975696",
          "entity_type": "Datastore"
        },
        {
          "entity_id": "10000:80:1910974983",
          "entity_type": "Datastore"
       }
      ],
      "service_tag": "",
      "vendor_id": "host-141",
      "maintenance_mode": "NOTINMAINTENANCEMODE",
      "connection_state": "CONNECTED"
    },
    "time": 1523605419
 }
]
```

Table 6-1. Entity Type to URI

EntityType	URI
VirtualMachine	/entities/vms
EC2Instance	/entities/vms
Host	/entities/hosts

}

EntityType	URI
Vnic	/entities/vnics
Vmknic	/entities/vmknics
VxlanLayer2Network	/entities/layer2-networks
VlanLayer2Network	/entities/layer2-networks
Cluster	/entities/clusters
SecurityTag	/entities/security-tags
ResourcePool	/entities/resouce-pools
NSXIPSet	/entities/ipsets
EC2IPSet	/entities/ipsets
NSXSecurityGroup	/entities/security-groups
EC2SecurityGroup	/entities/security-groups
Flow	/entities/flows
ProblemEvent	/entities/problems
NSXFirewallRule	/entities/firewall-rules
EC2SGFirewallRule	/entities/firewall-rules
NSXRedirectRules	/entities/firewall-rules
VCenterManager	/entities/vcenter-managers
NSXVManager	/entities/nsxv-managers
NSXService	/entities/services
EC2Service	/entities/services
NSXDistributedFirewall	/entities/firewalls
EC2Firewall	/entities/firewalls
NSXServiceGroup	/entities/service-groups
DistributedVirtualSwitch	/entities/distributed-virtual-switches
DistributedVirtualPortgroup	/entities/distributed-virtual-portgroups
VCDatacenter	/entities/vc-datacenters
Datastore	/entities/datastores
Folder	/entities/folders

Table 6-1. Entity Type to URI (Continued)

7

Creating Applications and Tiers

Network Insight provides APIs to create Applications and Tiers.

A Tier definition is based on membership criteria that can either be search based or IP address/subnet based. These applications and tiers can be used to fetch the recommended rules based on the traffic flow recorded by Network Insight from the environment.

Create an Application

Prerequisite

Ensure that you have the name of the application. Name must be unique and must not conflict with an existing application in the system.

Procedure

To create the application, make a POST request. For example:

```
Request
    POST https://api.mgmt.cloud.vmware.com/ni/api/ni/groups/applications
Request Body
    {
        "name" : "App-1",
   }
Response Body
    {
            "entity_id": "18230:561:271275765",
            "name": "App-1",
            "entity_type": "Application",
           "create_time": 1509410056733,
           "created_by": "admin@local",
           "last_modified_time": 0,
          "last_modified_by": ""
   }
```

Create a Tier Using Search Membership Criteria

Prerequisite

Ensure that you have the entity ID of the application. Name of the tier must be unique.

Procedure

To create the tier, make a POST request. For example:

```
Request
    POST https://api.mgmt.cloud.vmware.com/ni/api/ni/groups/applications/18230:561:271275765/tiers
Request Body
    {
          "name": "tier-1",
          "group_membership_criteria" : [
              {
                  "membership_type": "SearchMembershipCriteria",
                  "search_membership_criteria": {
                      "entity_type" : "VirtualMachine",
                    "filter": "security_groups.entity_id = '18230:82:604573173'"
              }
             }
          ]
   }
Response Body
        {
        "entity_id": "18230:562:1266458745",
            "name": "tier-1",
            "entity_type": "Tier",
            "group_membership_criteria": [
                {
                    "membership_type": "SearchMembershipCriteria",
                    "search_membership_criteria": {
                            "entity_type": "VirtualMachine",
                            "filter": "security_groups.entity_id = '18230:82:604573173'"
                        }
                   }
            ],
            "application": {
                "entity_id": "18230:561:271275765",
                    "entity_type": "Application"
           }
   }
```

Create a Tier Using IP Address Membership Criteria

Prerequisite

Ensure that you have the entity ID of the application. Name of the tier must be unique.

Procedure

To create the tier, make a POST request. For example:

```
Request
    POST https://api.mgmt.cloud.vmware.com/ni/api/ni/groups/applications/18230:561:271275765/tiers
Request Body
    {
        "name": "app-1-tier-2",
```

```
"group_membership_criteria": [
                {
                      "membership_type": "IPAddressMembershipCriteria",
                      "ip_address_membership_criteria": {
                            "ip_addresses": [
                                "11.122.2.212",
                         "11.122.1.0/24"
                            ]
                       }
              }
          ]
   }
Response Body
   {
          "name": "app-1-tier-2",
          "group_membership_criteria": [
                {
                      "membership_type": "IPAddressMembershipCriteria",
                      "ip_address_membership_criteria": {
                            "ip_addresses": [
                                "11.122.2.212",
                         "11.122.1.0/24"
                            ]
                       }
              }
         ],
    "application": {
                "entity_id": "18230:561:271275765",
                   "entity_type": "Application"
           }
   }
```

Generating the Recommended Firewall Rules

8

Network Insight provides APIs to generate the recommended firewall rules based on the flow data.

Recommended firewall rules API provides the service to retrieve recommended rules based on flow traffic that is observed between two groups or for a single group based on all the inbound and outbound traffic for that group. If two groups are provided, both groups must be of the same type. Groups that are currently supported include Application, Tier, NSXSecurityGroup, and EC2SecurityGroup. You can provide *time_range* to determine the flow traffic that is considered for the recommended rules computation. If *ime_range* is not provided, flow traffic for the last 24 hours is considered.

Retrieve the Recommended Rules for an Application

Prerequisite

Verify that you have the entity ID of the application. Use the search service to determineRetrieve recommended the application entity ID from application name.

Procedure

1 To determine the recommended rules for the application, make a POST request with the entity ID of the application. In the following sample request, rules are computed for the application with entity ID 10000:561:1663604768.

```
Request
POST https://api.mgmt.cloud.vmware.com/ni/api/ni/micro-seg/recommended-rules
Request body:
{
  "group_1": {
      "entity": {
        "entity_type": "Application",
        "entity_id": "10000:561:1663604768"
     }
 }.
  "time_range": {
        "start_time": 1508993971275,
        "end_time": 1509080371275
   }
}
Response body:
```

```
{
    "recommended_rules": [
        {
            "sources": [
                {
                     "entity_id": "10000:562:1904698621",
                     "entity_type": "Tier"
                }
            ],
            "destinations": [
                {
                     "entity_id": "10000:562:1780351215",
                     "entity_type": "Tier"
                }
            ],
            "protocols": [
                "UDP"
            ],
            "port_ranges": [
                {
                    "start": 53,
                     "end": 53
                },
                {
                    "start": 1025,
                     "end": 1025
                }
            ],
            "action": "ALLOW"
        },
        . . .
    ],
    "time_range": {
        "start_time": 1508993971275,
        "end_time": 1509080371275
    }
}
```

Retrieve the Recommended Rules Between Two Tiers

Prerequisite

Ensure that you have the entity ID of Tier1 and Tier2.

Procedure

1 To determine the recommended rules, make a POST request with the entiyID of the tiers. In the following sample request, rules are computed for the tier with entity ID 10000:562:190469862 and tier with entity ID 10000:562:178035121.

```
Request
POST https://api.mgmt.cloud.vmware.com/ni/api/ni/micro-seg/recommended-rules
Request body:
```

```
{
  "group_1": {
     "entity": {
       "entity_type": "Tier",
           "entity_id": "10000:562:1904698621"
     }
  },
  "group_2": {
      "entity": {
       "entity_type": "Tier",
            "entity_id": "10000:562:1780351215"
     }
 }
}
Response body:
{
    "recommended_rules": [
        {
            "sources": [
                {
                    "entity_id": "10000:562:1904698621",
                    "entity_type": "Tier"
               }
            ],
            "destinations": [
               {
                    "entity_id": "10000:562:1780351215",
                    "entity_type": "Tier"
                }
            ],
            "protocols": [
               "UDP"
            ],
            "port_ranges": [
                {
                    "start": 53,
                    "end": 53
                },
                {
                    "start": 1025,
                    "end": 1025
               }
            ],
            "action": "ALLOW"
        }
    ],
    "time_range": {
        "start_time": 1508996919391,
        "end_time": 1509083319391
   }
}
```

Export the Recommended Rules for an Application in the NSX Compatible Format

You can also export the recommended firewall rules and security groups in NSX compatible format as a ZIP file using this API.

Prerequisite

Ensure that you have the entity ID of the application. Use the search service to fetch the application ID from the name.

Procedure

1 To determine the recommended rules for the application, make a POST request using the application entity ID.

For example:

```
Request
POST https://api.mgmt.cloud.vmware.com/ni/api/ni/micro-seg/recommended-rule/nsx
Request Header
Accept-Type: "application/octet-stream"
Request Body:
{
  "group_1": {
      "entity": {
        "entity_type": "Application",
        "entity_id": "10000:561:1663604768"
      }
  },
  "time_range": {
        "start_time": 1508993971275,
        "end_time": 1509080371275
    }
}
Response
```

Zip File containing the NSX artifacts.

Exporting Recommended Rules Between Two Tiers in NSX Compatible Format

Prerequisite

Ensure that you have the entity ID of Tier1 and Tier2.

Procedure

1 To determine the recommended rules, make a POST request.

Network Insight API Guide

For example:

```
Request
POST https://api.mgmt.cloud.vmware.com/ni/api/ni/micro-seg/recommended-rule/nsx
Request Header
Accept-Type: "application/octet-stream"
Request Body:
{
  "group_1": {
     "entity": {
        "entity_type": "Tier",
            "entity_id": "10000:562:1904698621"
     }
  },
  "group_2": {
     "entity": {
       "entity_type": "Tier",
           "entity_id": "10000:562:1780351215"
     }
  }
}
Response
```

Zip File containing the NSX artifacts.

9

Fetching Metrics

Metrics can be fetched for an entity based using this API. Metrics schema APIs give the available metrics and their intervals for an entity type.

Retrieve Metrics Schema for an Entity Type

Prerequisite

Verify that you have the entity type for which metrics are required.

Procedure

1 To determine the metrics info for an entity type, make a GET request with the entity type of the application as a path parameter. In the following sample request, metrics info for a FLOW entity type is retrieved.

```
Request
GET https://api.mgmt.cloud.vmware.com/ni/api/ni/schema/Flow/metrics
Response body:
{
    "results": [
        {
            "metric": "flow.dstBytes.delta.summation.bytes",
            "display_name": "Destination Bytes",
            "intervals": [
                1800,
                7200,
                28800
            ],
            "description": "Total bytes sent by the server to client",
            "unit": "NoUnit"
        },
        {
            "metric": "flow.srcBytes.delta.summation.bytes",
            "display_name": "Source Bytes",
            "intervals": [
                1800,
                7200,
                28800
            ٦.
```

```
"description": "Total bytes sent by the client to server",
        "unit": "NoUnit"
    },
    {
        "metric": "flow.totalBytes.delta.summation.bytes",
        "display_name": "Bytes",
        "intervals": [
            1800,
            7200.
            28800
        ],
        "description": "Total bytes transferred in both directions",
        "unit": "NoUnit"
    },
    {
        "metric": "flow.totalBytesRate.rate.average.bitsPerSecond",
        "display_name": "Bytes Rate",
        "intervals": [
            1800,
            7200,
            28800
        ],
        "description": "Average Bits/sec rate of total traffic in both directions",
        "unit": "NoUnit"
    },
    {
        "metric": "flow.totalPackets.delta.summation.number",
        "display_name": "Packets",
        "intervals": [
            1800,
            7200,
            28800
        ],
        "description": "Total packets transferred in both directions",
        "unit": "NoUnit"
    },
    {
        "metric": "flow.allowedSessionCount.delta.summation.number",
        "display_name": "Session Count",
        "intervals": [
            1800,
            7200,
            28800
        ],
        "description": "Total number of allowed sessions",
        "unit": "NoUnit"
    }
]
```

Retrieve Metrics Points for an Entity

Prerequisite

}

Verify that you have the entity id, metrics name, interval, start, and end time.

Procedure

1 To fetch metrics points for an entity id and metric for a given time interval, make a GET request as shown in the following example. Maximum number of metrics point returned by API is 300 and a 400 response is returned in case the interval and time period combination have more than 300 metrics points. The client can break the time period to multiple batches to get all the metrics points.

```
Request
```

```
GET https://api.mgmt.cloud.vmware.com/ni/api/ni/metrics?entity_id=12347:515:1787493997
&metric=flow.srcBytes.delta.summation.bytes&interval=1800&start=1523351589&end=1523437989
```

```
Response body:
```

```
{
    "metric": "flow.srcBytes.delta.summation.bytes",
    "display_name": "Source Bytes",
    "interval": 1800,
    "unit": "NoUnit",
    "pointlist": [
        Ε
            1523352600,
            7141
        ],
        Ε
            1523354400,
            6898
        ],
        Ε
            1523356200,
            7370
        ],
        Ε
            1523358000,
            6898
        1
   ],
    "start": 1523351589,
    "end": 1523437989
}
```