
CIM SMASH/Server Management API
Programming Guide

ESXi 6.0

This document supports the version of each product listed and
supports all subsequent versions until the document is replaced
by a new edition. To check for more recent editions of this
document, see http://www.vmware.com/support/pubs.

EN-001421-00

http://www.vmware.com/support/pubs

You can find the most up-to-date technical documentation on the VMware Web site at:

http://www.vmware.com/support/

The VMware Web site also provides the latest product updates.

If you have comments about this documentation, submit your feedback to:

docfeedback@vmware.com

Copyright © 2007–2015 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and
intellectual property laws. VMware products are covered by one or more patents listed at
http://www.vmware.com/go/patents.

VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions. All other marks
and names mentioned herein may be trademarks of their respective companies.

VMware, Inc.
3401 Hillview Ave.
Palo Alto, CA 94304
www.vmware.com

2 VMware, Inc.

CIM SMASH/Server Management API Programming Guide

http://www.vmware.com/support/
http://www.vmware.com/support
mailto:docfeedback@vmware.com
http://www.vmware.com/go/patents
http://www.vmware.com/go/patents

VMware, Inc. 3

Contents

About This Book 5

1 Introduction 9
Platform Product Support 9
Supported Protocols and Versions 9

CIM Version 9
SMASH Version 9
Supported Profiles 10
CIM and SMASH Resources Online 11

Installing CIM Provider VIBs 11
Downloading CIM Provider VIBs 11
Adding a CIM Provider VIB to your ESXi Image 11
Adjusting the Resource Pool Allocation 12

2 Developing Client Applications 13
CIM Server Ports 13
CIM Object Namespaces 14

Crossing Between Namespaces 14
Determining the Namespaces in Your Installation 15

WS-Management Resource URIs 15
Locating a Server with SLP 15
CIM Ticket Authentication 16
Active Directory Authentication 16
Making a Connection to the CIMOM 16
Listing Registered Profiles 18
Identifying the Base Server Scoping Instance 19
Mapping Integer Property Values to Strings 21
Using the Web Services for Management Perl Library 21

3 Using the CIM Object Space 25
Reporting Manufacturer, Model, and Serial Number 25
Reporting Manufacturer, Model, and Serial Number By Using Only the Implementation Namespace 27
Reporting the BIOS Version 29
Reporting Installed VIBs 31
Installing VIBs 33
Monitoring VIB Installation 36
Monitoring State of All Sensors 38
Monitoring State of All Sensors By Using Only the Implementation Namespace 39
Reporting Fan Redundancy 40
Reporting CPU Cores and Threads 42
Reporting Empty Memory Slots By Using Only the Implementation Namespace 45
Reporting the PCI Device Hierarchy By Using Parent DeviceIDs 46
Reporting the Path to a PCI Device By Using PortGroups 49
Monitoring RAID Controller State 53
Monitoring State of RAID Connections 55
Reporting Accessible Storage Extents 57

CIM SMASH/Server Management API Programming Guide

4 VMware, Inc.

Reporting Storage Extents Without Third-Party Storage Provider 60
Working with the System Event Log 60
Subscribing to Indications 62

4 Troubleshooting Connections 65
Connections from Client to CIM Server 65

Using SLP 65
Using a Web Browser 65
Using a Command-Line Interface 65
Verifying User Authentication Credentials 66
Rebooting the Server 66
Using Correct Client Samples 66
Using Other CIM Client Libraries 66
Using the WS-Management Library 66

Connections from CIM Server to Indication Consumer 66
Firewall Configuration 66
System Event Log 67

5 Offline Bundles 69
Creating an Offline Bundle With VMware vSphere PowerCLI 69

Index 71

VMware, Inc. 5

The CIM SMASH/Server Management API Programming Guide provides information about developing
applications using the CIM SMASH/Server Management API version 6.0.

VMware® provides many different APIs and SDKs for various applications and goals. This book provides
information about developing management clients that use industry-standard data models. The System
Management Architecture for Server Hardware (SMASH) is an industry standard for managing server
hardware. This book describes the SMASH profiles implemented by VMware and contains suggestions for
using the Common Information Model (CIM) classes to accomplish common use cases.

To view the current version of this book as well as all VMware API and SDK documentation, go to
http://www.vmware.com/support/pubs/sdk_pubs.html.

Revision History
This book is revised with each release of the product or when necessary. A revised version can contain minor
or major changes. Table 1 summarizes the significant changes in each version of this book.

About This Book

Table 1. Revision History

Revision Description

20150312 Re-released for vSphere 6.0. No revisions.

20130912 Minor corrections only.

20120910 Updated to include information about adding CIM Provider VIBs.
Updated to include information about adjusting resource pool allocation.

20110824 Added PCI Device use cases.
Corrected Software Update use cases to match current design.
Updated product version numbers.
Corrected CIM profile version numbers.
Removed Host Hardware RAID Controller profile support from default
configuration.
Revised Perl WS-Management section to bypass deprecated StubOps
module.
Removed section about Rebooting the Managed Server (deprecated
feature).
Revised sections about manufacturer, model, and serial number.

http://www.vmware.com/support/pubs/sdk_pubs.html

CIM SMASH/Server Management API Programming Guide

6 VMware, Inc.

Intended Audience
This book is intended for software developers who create applications that need to manage VMware vSphere®
server hardware with interfaces based on CIM standards.

VMware Technical Publications Glossary
VMware Technical Publications provides a glossary of terms that might be unfamiliar to you. For definitions
of terms as they are used in VMware technical documentation, go to http://www.vmware.com/support/pubs.

Document Feedback
VMware welcomes your suggestions for improving our documentation. Send your feedback to
docfeedback@vmware.com.

Technical Support and Education Resources
The following sections describe the technical support resources available to you. To access the current versions
of other VMware books, go to http://www.vmware.com/support/pubs.

20100430 Added Active Directory Authentication.
Added WS-Management code sample.
Added Software Update use cases.
Corrected Software Inventory use case.
Updated version numbers for vSphere 4.1 release.
Added Software Inventory use case.
Corrected error in RAID controller illustration.
Added information on crossing namespace boundaries.
Corrected error in WS-Man Resource URI for VMware classes.

20090521 Updated product names for vSphere 4.0 release.
Added use cases for SEL, and physical memory slots.
Added namespace, ports, and XML schema information.

20080703 VMware ESX™ Server 3.5 Update 2 and ESX Server 3i version 3.5 Update
2 release.
Replaced instance diagrams with expanded versions.
Added use case for CPU core & threading model.
Added use case for fan redundancy.
Added use cases for Host Hardware RAID Controller profile.
Added appendix about troubleshooting connections.
Replaced Profile Reference appendix with a URL.
Listed indications supported.
Added ESX Server 3.5.

20080409 ESX Server 3i version 3.5 Update 1 release.
Changed title (formerly CIM SMASH API Programming Guide)
Updated URLs.
Removed List of Tables.
Added Physical Asset profile; listed properties for all profiles.
Updated ElementName of Base Server registered profile.
Added SMI-S RAID Controller profile.
Divided chapter 2 into 2 parts, and expanded introductory material.
Corrected typographical errors.
Added some illustrations.

20071210 ESX Server 3i version 3.5 release.

Table 1. Revision History (Continued)

Revision Description

http://www.vmware.com/support/pubs
mailto:docfeedback@vmware.com
http://www.vmware.com/support/pubs

VMware, Inc. 7

About This Book

Online Support

To use online support to submit technical support requests, view your product and contract information, and
register your products, go to http://communities.vmware.com/community/developer.

Support Offerings

To find out how VMware support offerings can help meet your business needs, go to
http://www.vmware.com/support/services.

VMware Professional Services

VMware Education Services courses offer extensive hands-on labs, case study examples, and course materials
designed to be used as on-the-job reference tools. Courses are available onsite, in the classroom, and live
online. For onsite pilot programs and implementation best practices, VMware Consulting Services provides
offerings to help you assess, plan, build, and manage your virtual environment. To access information about
education classes, certification programs, and consulting services, go to http://www.vmware.com/services.

http://communities.vmware.com/community/developer
http://www.vmware.com/support/services
http://www.vmware.com/services/

CIM SMASH/Server Management API Programming Guide

8 VMware, Inc.

VMware, Inc. 9

1

VMware ESXi 6.0 includes a CIM Object Manager (CIMOM) that implements a set of server discovery and
monitoring features that are compatible with the SMASH standard. With the VMware
CIM SMASH/Server Management API, clients that use industry-standard protocols can do the following:

 Enumerate system resources

 Monitor system health data

 Upgrade installed software

The VMware implementation of the SMASH standard uses the open-source implementation of the
Open Management with CIM (OMC) project. OMC provides tools and software infrastructure for hardware
vendors and others who require a reliable implementation of the Distributed Management Task Force (DMTF)
management profiles.

This chapter includes the following topics:

 “Platform Product Support” on page 9

 “Supported Protocols and Versions” on page 9

Platform Product Support
The VMware CIM SMASH/Server Management API is supported by ESXi 6.0. Hardware compatibility for
ESXi is documented in the hardware compatibility guides, available on the VMware Web site. See
http://www.vmware.com/support/pubs.

Supported Protocols and Versions
The VMware CIM SMASH/Server Management API supports the following protocols:

 CIM-XML over HTTP or HTTPS

 WS-Management over HTTP or HTTPS

 SLP

CIM Version

The CIM standard is an object model maintained by the DMTF, a consortium of leading hardware and
software vendors. ESXi 6.0 is compatible with version 2.26.0 Final of the CIM schema.

SMASH Version

The SMASH standard is maintained by the Server Management Working Group (SMWG) of the DMTF. ESXi
6.0 is compatible with version 1.0.0 of the SMASH standard.

Introduction 1

http://www.vmware.com/support/pubs/

CIM SMASH/Server Management API Programming Guide

10 VMware, Inc.

Supported Profiles

The VMware CIM SMASH/Server Management API supports a subset of the profiles defined by the SMWG.
These profiles have overlapping structures and can be used in combinations to manage a server.

This VMware CIM implementation also includes a profile from the SMI specification developed by the Storage
Networking Industry Association (SNIA). The implementation uses SMI-S version 1.3.

In some situations, the version of a profile supported by the CIMOM is important. The following table shows
the version of each profile that is implemented by the VMware CIM SMASH/Server Management API for this
release of ESXi.

Some profiles are only partially implemented by VMware. The implementation does not include all
mandatory elements specified in the profile. These profiles are listed with “N/A” in the Version column. For
information about which elements are implemented, see the VMware CIM SMASH/Server Management API
and Profile Reference at
http://pubs.vmware.com/vsphere-51/topic/com.vmware.cimsdk.smashref.doc/title_page.html.

The Job Control subprofile is specified by the SNIA, as part of the SMI-S. All other profiles are specified by the
DMTF.

Table 1-1. Profile Versions

Profile Version

Base Server 1.0.0

Battery 1.0.0

CLP Admin Domain N/A

CPU 1.0.0

Ethernet Port N/A

Fan 1.0.1

Host Discovered Resources N/A

Host LAN Port N/A

Indications N/A

IP Interface N/A

Job Control 1.3.0

PCI Device N/A

Physical Asset 1.0.2

Power State Management 1.0.1

Power Supply 1.0.1

Profile Registration 1.0.0

Record Log 1.0.0

Sensors 1.0.0

Software Inventory 1.0.0

Software Update 1.0.0

System Memory 1.0.0

http://pubs.vmware.com/vsphere-51/topic/com.vmware.cimsdk.smashref.doc/title_page.html

VMware, Inc. 11

Chapter 1 Introduction

CIM and SMASH Resources Online

The following resources related to the CIM, SMASH, and SMI standards are available:

 http://www.dmtf.org (DMTF home page)

 http://www.dmtf.org/standards/cim (CIM standards)

 http://www.dmtf.org/standards/published_documents (DMTF publications)

 http://www.snia.org (SNIA home page)

 http://www.snia.org/tech_activities/standards/curr_standards/smi (SMI-S)

Installing CIM Provider VIBs
The 3.5 and 4.1 versions of vSphere included the LSI and HP RAID CIM providers in the default VIB for the
ESXi server.

In vSphere 5.0 and later, the LSI and HP provider VIBs are not included in the default VIBs. Therefore, if you
are using an LSI or HP RAID controller card on your host with vSphere 5.0 or later, you will need to install an
LSI or HP VIB before the associated RAID storage device will show up in your vCenter Server Inventory.

Downloading CIM Provider VIBs

The following procedure gives you the general steps for downloading a VIB from a third-party website. The
instructions may be slightly different for each third-party site.

To download a CIM Provider VIB

1 Go to the website of the CIM Provider, and look for the ‘Support’ or ‘Downloads’ section. For example,
on the HP website, the section is called, ‘HP Drivers and Support’. On the LSI Corporation website, the
section is called, ‘Support Downloads By Product‘ under the ‘Support’ tab.

2 Enter the hardware type for the VIB you want to download, or select the type from a list.

3 Choose the VIB bundle that contains the words ‘VMware’ and the VMware product, such as ‘ESXi’.

Adding a CIM Provider VIB to your ESXi Image

You can add a CIM Provider VIB to your ESXi image using the vSphere ESXi Image Builder CLI. Install VIBs
from only one OEM vendor at a time.

Before you begin, install the VMware PowerCLI software.

Use the following steps to add a new VIB to your image:

1 Run Add-EsxSoftwareDepot for each depot you want to work with.

Run Add-EsxSoftwareDepot -DepotUrl depot_url

or

Run Add-EsxSoftwareDepot -DepotUrl C:\file_path\offline-bundle.zip

The cmdlet returns one or more SoftwareDepot objects.

2 Run Get-EsxImageProfile to list all image profiles in all currently visible depots.

Get-EsxImageProfile

The cmdlet returns all available profiles. You can narrow your search by using the optional arguments to filter
the output.

3 Clone the profile and make changes to the clone if the image profile is read only.

New-EsxImageProfile -CloneProfile My_Profile -Name "Test Profile Name"

Image profiles published by VMware and its partners are read only.

http://www.dmtf.org
http://www.dmtf.org/standards/cim
http://www.dmtf.org/standards/published_documents
http://www.snia.org/tech_activities/standards/curr_standards/smi/
http://www.snia.org/

CIM SMASH/Server Management API Programming Guide

12 VMware, Inc.

4 Run Add-EsxSoftwarePackage to add a new package to one of the image profile.

Add-EsxSoftwarePackage -ImageProfile My_Profile -SoftwarePackage partner-package

The cmdlet runs the standard validation tests on the image profile. If validation succeeds, the cmdlet returns
a modified, validated image profile. If the VIB that you want to add depends on a different VIB, the cmdlet
displays that information and includes the VIB that would resolve the dependency. If the acceptance level of
the VIB that you want to add is lower than the image profile acceptance level, an error results. Change the
acceptance level of the image profile to add the VIB.

Your image profile now includes the new VIB.

See
http://pubs.vmware.com/vsphere-50/topic/com.vmware.vsphere.install.doc_50/GUID-B81FE465-A43B-462D-
BBBF-85B27F5BBAE8.html for more information about how to add a VIB to an image profile.

Adjusting the Resource Pool Allocation

When you install several CIM provider VIBs on an ESXi system, you might find that the providers as a whole
exceed the default capacity of the memory resource pool allocated for plug-ins. Therefore, if you experience
memory contention after adding more than one CIM plug-in, you may need to adjust the memory pool on
your ESXi server.

To adjust the resource pool using the vSphere client

1 Navigate to the Host->Configuration->System Resource Allocation->Advanced page.

2 Select a resource pool, click the right mouse button, and select ‘Edit Settings’.

3 Use the slider mechanism or the up and down arrows to adjust the resource allocation for each pool.

For more information about Resource Pool Allocation for CIM Plug-ins, see the Tech Note, “Dynamic Resource
Pool Allocation for CIM Plug-ins“ on the CIM SMASH/Server Management API documentation page located
here: https://www.vmware.com/support/developer/cim-sdk/index.html.

http://pubs.vmware.com/vsphere-50/topic/com.vmware.vsphere.install.doc_50/GUID-B81FE465-A43B-462D-BBBF-85B27F5BBAE8.html

http://pubs.vmware.com/vsphere-50/topic/com.vmware.vsphere.install.doc_50/GUID-B81FE465-A43B-462D-BBBF-85B27F5BBAE8.html

https://www.vmware.com/support/developer/cim-sdk/index.html

https://www.vmware.com/support/developer/cim-sdk/index.html

VMware, Inc. 13

2

A basic CIM client that allows you to connect to a CIM server can be outlined as several steps that build on
prior steps. Each step is explained and illustrated with pseudocode. You can expand this outline to create
clients that allow you to manage the server.

The CIM client outline presented in this chapter shows a recommended general approach to accessing the CIM
objects from the Interop namespace. This approach assumes no advance knowledge of the specifics of the CIM
implementation. If your client is aware of items such as the Service URL and the namespaces used in the
VMware implementation, see “Using the CIM Object Space” on page 25 for more information about accessing
specific objects in the Implementation namespace.

This chapter includes the following topics:

 “CIM Server Ports” on page 13

 “CIM Object Namespaces” on page 14

 “WS-Management Resource URIs” on page 15

 “Locating a Server with SLP” on page 15

 “CIM Ticket Authentication” on page 16

 “Active Directory Authentication” on page 16

 “Making a Connection to the CIMOM” on page 16

 “Listing Registered Profiles” on page 18

 “Identifying the Base Server Scoping Instance” on page 19

 “Mapping Integer Property Values to Strings” on page 21

 “Using the Web Services for Management Perl Library” on page 21

CIM Server Ports
CIM servers are available for both CIM-XML and WS-Management protocols, and for both secured and
non-secured HTTP connections. Select one of the ports that corresponds to the type of connection you want to
make. Table 2-1 shows the default port numbers used by the CIM servers.

Developing Client Applications 2

Table 2-1. Port Numbers for CIM Client Connections

Connection Type Port Number Active in the Default Configuration?

CIM-XML/HTTP 5988 No

CIM-XML/HTTPS 5989 Yes

WS-Man/HTTP 80 No

WS-Man/HTTPS 443 Yes

CIM SMASH/Server Management API Programming Guide

14 VMware, Inc.

CIM Object Namespaces
To access a CIM object directly, you must know the namespace in which the object is stored. A managed server
can have several CIM namespaces. This guide uses the Interop namespace and the Implementation
namespace.

Most CIM objects are stored in the Implementation namespace. If you know the URL and the Implementation
namespace in advance, you can enumerate objects directly by connecting to that namespace.

The Interop namespace contains a few CIM objects, particularly instances of CIM_RegisteredProfile. One
of these instances exists for each CIM profile that is fully implemented on the managed server.

CIM_RegisteredProfile acts as a repository of information that can be used to identify and access objects
in the Implementation namespace. For each registered CIM profile, the CIM server has an association that you
can follow to move from the Interop namespace to the Implementation namespace.

Some profiles in the VMware implementation are only partially implemented. The implementation does not
include all the mandatory properties and methods for those profiles. The Interop namespace does not contain
instances of CIM_RegisteredProfile for profiles that are only partially implemented. To access
unregistered profiles, you must know the Implementation namespace.

Crossing Between Namespaces

The ElementConformsToProfile association crosses the boundary between the Interop namespace and the
Implementation namespace. The association is instantiated in both namespaces, so you can enumerate it in
either namespace.

The endpoint references in any instance of the ElementConformsToProfile association include the namespace
for the endpoint. If you access the referenced endpoint, such as with a GetInstance() method, the request
is directed to the provider in the correct namespace.

For example, if you enumerate the class OMC_ElementConformsToRecordLogProfile in the Interop
namespace, you get an object that associates an instance of OMC_RegisteredRecordLogProfile in the
Interop namespace with an instance of OMC_IpmiRecordLog in the Implementation namespace. The
endpoint references look similar to these:

ConformantStandard =
root/interop:OMC_RegisteredRecordLogProfile.InstanceID=”IPMI:vmware-host SEL Log”

ManagedElement =
root/cimv2:OMC_IpmiRecordLog.InstanceID=”IPMI:vmware-host SEL Log (Node 0)”

If you enumerate the class OMC_ElementConformsToRecordLogProfile in the Implementation namespace,
you get an object in the Implementation namespace that is otherwise identical to the object in the Interop
namespace.

Regardless of which namespace provides the ElementConformsToProfile instance, the endpoint references
work the same. If you do a GetInstance() for the ConformantStandard endpoint, the CIM server returns
an instance of OMC_RegisteredRecordLogProfile in the Interop namespace. If you do a GetInstance()
for the ManagedElement endpoint, the CIM server returns an instance of OMC_IpmiRecordLog in the
Implementation namespace.

To simplify the diagrams in this document, the ElementConformsToProfile association is pictured as a single
object on the boundary between namespaces, rather than as two objects, one in each namespace. See “Base
Server Scoping Instance Associated with Profile Registration” on page 19 for an example diagram.

VMware, Inc. 15

Chapter 2 Developing Client Applications

Determining the Namespaces in Your Installation

You can hard-code namespaces in the client, or specify them at run time, or you can obtain the namespaces
from a Service Location Protocol (SLP) Service Agent. Table 2-2 lists the namespaces used by ESXi.

You can obtain both the Interop namespace and the Implementation namespace for your managed server from
SLP. You can identify the Interop namespace more conveniently than the Implementation namespace in the
SLP output.

The approach preferred in this document is to use SLP to obtain the Interop namespace and the URL to
enumerate CIM_RegisteredProfile, and then move to the Scoping Instance of the Base Server profile in the
Implementation namespace. The Scoping Instance represents the managed server and is associated with many
other objects in the Implementation namespace. The Scoping Instance provides a reliable point from which to
navigate to CIM objects that represent any part of the managed server.

WS-Management Resource URIs
For WS-Management connections, the client must also specify a resource URI when accessing CIM objects. The
URI represents an XML namespace associated with the schema definition.

The choice of URI depends on the class name of the CIM object. The prefix of the class name determines which
URI the client must use. Table 2-3 shows which URI to use for each supported class name prefix.

Note that the URIs given above do not resolve to a web page location. Although they look like a web address,
they just represent a section of the CIM XML schema that you need to specify.

Example:

xmlns="http://schemas.vmware.com/wbem/wscim/1/cim-schema/2/"

See http://www.w3schools.com/schema/schema_example.asp for more information about XML namespaces.

Locating a Server with SLP
If you do not know the URL to access the WBEM service of the CIMOM on the ESXi machine, or if you do not
know the namespace, use SLP to discover the service and the namespace before your client makes a connection
to the CIMOM.

SLP-compliant services attached to the same subnet respond to a client SLP query with a Service URL and a
list of service attributes. The Service URL returned by the WBEM service begins with the service type
service:wbem:https:// and follows with the domain name and port number to connect to the CIMOM.

Among the attributes returned to the client is InteropSchemaNamespace. The value of this attribute is the
name of the Interop namespace.

For more information about SLP, see the following links:

 http://tools.ietf.org/html/rfc2608

 http://tools.ietf.org/html/rfc3059

Table 2-2. ESXi Namespaces

Interop Namespace Implementation Namespace

ESXi root/interop root/cimv2

Table 2-3. Resource URIs for CIM classes

Class Name Prefix Resource URI (Namespace only - link will not work in a browser)

VMware_ http://schemas.vmware.com/wbem/wscim/1/cim-schema/2/

OMC_ http://schema.omc-project.org/wbem/wscim/1/cim-schema/2/

CIM_ http://schemas.dmtf.org/wbem/wscim/1/cim-schema/2/

http://www.w3schools.com/schema/schema_example.asp
http://tools.ietf.org/html/rfc2608
http://tools.ietf.org/html/rfc3059

CIM SMASH/Server Management API Programming Guide

16 VMware, Inc.

CIM Ticket Authentication
A CIM client must authenticate before it can access data or perform operations on an ESXi host. The client can
authenticate in one of the following ways.

 Directly with the CIMOM on the managed host by supplying a valid user name and password for an
account that is defined on the managed host.

 With a sessionId that the CIMOM accepts in place of the user name and password. The sessionId (called
a “ticket”) can be obtained by invoking the AcquireCimServicesTicket() method on VMware
vCenter™ Server.

As a best practice, use CIM ticket authentication for servers managed by vCenter. If the managed host is
operating in lockdown mode, the CIMOM does not accept new authentication requests from CIM clients.
However, the CIMOM does continue to accept a valid ticket obtained from vCenter Server.

The ticket must be obtained by using the credentials of any user that has administrative privileges on vCenter
Server. For more information about CIM ticket authentication, see the VMware technical note CIM
Authentication for Lockdown Mode.

Active Directory Authentication
ESXi hosts implement the Pluggable Authentication Module (PAM) framework, which can be configured to
support authentication of Active Directory users. This feature is transparent to the CIM client. The client uses
Active Directory authentication by supplying a user name and password that were previously entered into the
Active Directory database.

System administrators can use the vSphere Client or the Web Services SDK to add an ESXi host to the Active
Directory domain and to grant access rights to specific users. Hosts configured to use Active Directory
authentication can also be configured to accept local users that have been granted access rights.

Making a Connection to the CIMOM
Before you can enumerate classes, invoke methods, or examine properties of the managed server, you must
create a connection object in your client. The connection object manages the connection with the CIM server,
accepts CIM methods by proxy, and passes them to the CIM server. The following pseudocode illustrates how
to create a connection by using command-line parameters passed to the client.

http://www.vmware.com/support/developer/cim-sdk/4.0/smash/cim_smash_400_ticket_authentication.pdf
http://www.vmware.com/support/developer/cim-sdk/4.0/smash/cim_smash_400_ticket_authentication.pdf

VMware, Inc. 17

Chapter 2 Developing Client Applications

To make a connection to the CIMOM

1 Collect the connection parameters from the environment.

use os

function parse_environment()
 ///Check if all parameters are set in the shell environment.///
 VI_SERVER = VI_USERNAME = VI_PASSWORD = VI_NAMESPACE=Null
 ///Any missing environment variable is cause to revert to command-line arguments.///
 try
 return { 'VI_SERVER':os.environ['VI_SERVER'], \
 'VI_USERNAME':os.environ['VI_USERNAME'], \
 'VI_PASSWORD':os.environ['VI_PASSWORD'], \
 'VI_NAMESPACE':os.environ['VI_NAMESPACE'] }
 catch
 return Null

use sys

function get_params()
 ///Check if parameters are passed on the command line.///
 param_host = param_user = param_password = param_namespace = Null
 if len(sys.argv) == 5
 print 'Connect using command-line parameters.'
 param_host, param_user, param_password, param_namespace = sys.argv [1:5]
 return { 'host':param_host, \
 'user':param_user, \

'password':param_password, \
'namespace':param_namespace }

 env = parse_environment()
 if env
 print 'Connect using environment variables.'
 return { 'host':env['VI_SERVER'], \
 'user':env['VI_USERNAME'], \
 'password':env['VI_PASSWORD'], \
 'namespace':env['VI_NAMESPACE'] }
 else
 print 'Usage: ' + sys.argv[0] + ' <host> <user> <password> [<namespace>]'
 print ' or set environment variables: VI_SERVER, VI_USERNAME, VI_NAMESPACE'
 return Null

params = get_params()
if params is Null
 exit(-1)

2 Create the connection object in the client.

use wbemlib
connection = Null

function connect_to_host(params)
 ///Connect to the server.///
 connection = wbemlib.WBEMConnection('https://' + params['host'], \
 (params['user'], params['password']), \
 params['namespace'])
 return connection

if connect_to_host(params)
 print 'Connected to: ' + params['host'] + ' as user: ' + params['user']
else
 print 'Failed to connect to: ' + params['host'] + ' as user: ' + params['user']

With some client libraries, creating a connection object in the client does not send a request to the CIMOM.
A request is not sent until a method is called. To verify that such a client can connect to and authenticate
with the server, see another use case, such as “Listing Registered Profiles” on page 18.

CIM SMASH/Server Management API Programming Guide

18 VMware, Inc.

Listing Registered Profiles
VMware recommends that CIM clients list the registered profiles before you use them for other purposes. If a
profile is not present in the registration list (CIM_RegisteredProfile), the profile is not implemented or is
incompletely implemented.

SMASH profiles are registered in the Interop namespace, even when they are implemented in the
Implementation namespace. A client exploring the CIM objects on the managed server can use the associations
to move from CIM_RegisteredProfile to the objects in the Implementation namespace.

The CIM_RegisteredProfile class is instantiated with subclasses that represent the profiles that are
registered in the Interop namespace. Each instance represents a profile that is fully implemented in the
Implementation namespace. Figure 2-1 shows a few instances of CIM_RegisteredProfile subclasses.

Figure 2-1. Registered Profile Subclasses in Interop Namespace

The following pseudocode shows one way to identify the profiles registered on the managed server. The
pseudocode in this topic depends on the pseudocode in “Making a Connection to the CIMOM” on page 16.

To list registered profiles

1 Connect to the server URL.

Specify the Interop namespace, supplied as a parameter, for the connection.

use wbemlib
use sys
use connection renamed cnx
connection = Null

params = cnx.get_params()
if params is Null
 sys.exit(-1)
interop_params = params
interop_params['namespace'] = 'root/interop'
connection = cnx.connect_to_host(interop_params)
if connection is Null
 print 'Failed to connect to: ' + params['host'] + ' as user: ' + params['user']

OMC_RegisteredBaseServerProfile

OMC_RegisteredSensorProfile

OMC_RegisteredCPUProfile

VMware_PowerManagementServiceRegisteredProfile

CIM_RegisteredProfile

.
 .
 .

root/interop

VMware, Inc. 19

Chapter 2 Developing Client Applications

2 Enumerate instances of CIM_RegisteredProfile.

function get_registered_profile_names(connection)
 ///Get instances of RegisteredProfile.///
 instance_names = connection.EnumerateInstanceNames('CIM_RegisteredProfile')
 if instance_names is Null
 print 'Failed to enumerate RegisteredProfile.'
 return Null
 else
 return instance_names

instance_names = get_registered_profile_names(connection)
if instance_names is Null
 sys.exit(-1)

3 For each instance of CIM_RegisteredProfile, print the name and version of the profile.

function print_profile(instance)
 print '\n' + ' [' + instance.classname + '] ='
 for prop in ('RegisteredName', 'RegisteredVersion')
 print ' %30s = %s' % (prop, instance[prop])

for instance_name in instance_names
 instance = connection.GetInstance(instance_name)
 print_profile(instance)

Identifying the Base Server Scoping Instance
The Scoping Instance of CIM_ComputerSystem for the Base Server profile is an object that represents the
managed server. Various hardware and software components of the managed server are represented by CIM
objects associated with this Scoping Instance.

A client can locate CIM objects by using one of the following ways:

 Enumerate instances in the Implementation namespace, and then filter the results by their property
values. This approach requires specific knowledge of the Implementation namespace and the subclassing
used by the SMASH implementation on the managed server.

 Locate the Base Server Scoping Instance that represents the managed server, and then traverse selected
association objects to find the desired components. This approach requires less knowledge of the
implementation details.

Figure 2-2 shows the association between the profile registration instance in the Interop namespace and the
Base Server Scoping Instance in the Implementation namespace.

Figure 2-2. Base Server Scoping Instance Associated with Profile Registration

The following pseudocode shows how to traverse the association to arrive at the Base Server Scoping Instance.
This pseudocode depends on the pseudocode in “Making a Connection to the CIMOM” on page 16.

CIM_RegisteredProfile::
OMC_RegisteredBaseServerProfile

CIM_ComputerSystem::
OMC_UnitaryComputerSystem

root/interop

root/cimv2

ConformantStandard
ManagedElement

CIM_ElementConformsToProfile::
OMC_ElementConformsToBaseServerProfile

CIM SMASH/Server Management API Programming Guide

20 VMware, Inc.

To identify the Base Server Scoping Instance

1 Connect to the server URL.

Specify the Interop namespace, supplied as a parameter, for the connection.

use wbemlib
use sys
use connection renamed cnx
connection = Null

params = cnx.get_params()
if params is Null
 sys.exit(-1)
interop_params = params
interop_params['namespace'] = 'root/interop'
connection = cnx.connect_to_host(interop_params)
if connection is Null
 print 'Failed to connect to: ' + params['host'] + ' as user: ' + params['user']
 sys.exit(-1)

2 Enumerate instances of CIM_RegisteredProfile.

use registered_profiles renamed prof

profile_instance_names = prof.get_registered_profile_names(connection)
if profile_instance_names is Null

print ‘No registered profiles found.’
 sys.exit(-1)

3 Select the instance that corresponds to the Base Server profile.

function isolate_base_server_registration(connection, instance_names)
 ///Isolate the Base Server registration.///
 for instance_name in instance_names
 instance = connection.GetInstance(instance_name)
 if instance['RegisteredName'] == 'Base Server'
 return instance_name
 return Null

profile_instance_name = isolate_base_server_registration(connection, \
profile_instance_names)

if profile_instance_name is Null
 print 'Base Server profile is not registered in namespace ' + namespace

sys.exit(-1)

4 Traverse the CIM_ElementConformsToProfile association to reach the Scoping Instance.

function associate_to_scoping_instance(connection, profile_name)
 ///Follow ElementConformsToProfile from RegisteredProfile to ComputerSystem.///
 instance_names = connection.AssociatorNames(profile_name, \
 AssocClass = 'CIM_ElementConformsToProfile', \
 ResultRole = 'ManagedElement')
 if len(instance_names) > 1
 print 'Error: %d Scoping Instances found.' % len(instance_names)
 sys.exit(-1)
 return instance_names.pop()

function print_instance(instance)
 print '\n' + ' [' + instance.classname + '] ='
 for prop in instance.keys()
 print ' %30s = %s' % (prop, instance[prop])

scoping_instance_name = associate_to_scoping_instance(connection, profile_instance_name)
if scoping_instance_name is Null
 print 'Failed to find Scoping Instance.'
 sys.exit(-1)
else
 print_instance(connection.GetInstance(scoping_instance_name)

VMware, Inc. 21

Chapter 2 Developing Client Applications

Mapping Integer Property Values to Strings
Many of the properties defined in CIM contain integer values that represent status or configuration
information. The qualifiers for those properties define a mapping to human-readable string values.

This example shows a general-purpose routine for converting an integer value to the corresponding string
value. The example assumes that the client library you are using has support for introspecting class property
information available in the qualifiers.

The following function expects three parameters:

 A connection object that you have previously created, as described in “Making a Connection to the
CIMOM” on page 16

 An instance of the class that you have retrieved from the CIMOM

 A string value containing the name of a property of that instance, to be mapped to its string descriptor

use wbemlib
use connection

function map_instance_property_to_string(connection, instance, prop)
class_info = connection.GetClass(instance.classname, includeQualifiers=True)
qualifiers = class_info.properties[prop].qualifiers
if qualifiers.key(‘ValueMap’) and qualifiers.key(‘Values’)

strings = qualifiers[‘Values’]
nums = qualifiers[‘ValueMap’]
prop_val = instance[prop]
for (i=0; len(nums) - 1; i++)

if str(nums[i]) == str(prop_val)
return strings[i]

return Null

Using the Web Services for Management Perl Library
VMware ESXi supports the WS-Management protocol in addition to the CIM-XML protocol for passing CIM
information between client and server. VMware provides WS-Management client libraries as part of the
vSphere SDK for Perl.

In the VMware Web Services for Management Perl Library there are two API layers recommended for Perl
clients:

 WSMan::WSBasic implements serialization and deserialization of objects transported with the SOAP
protocol.

 WSMan::GenericOps implements a wrapper interface for WSMan::WSBasic. WSMan::GenericOps
provides CIM objects in the form of Perl hashes.

NOTE The StubOps API layer, which provided a wrapper for WSMan::GenericOps, was deprecated in ESXi
5.0. You can use the GenericOps API layer to get the same results.

Using the WSMan::GenericOps layer of the SDK is similar to using a CIM-XML client library. The client creates
a connection object, enumerates instances, and traverses associations in the same general way as described in
“Making a Connection to the CIMOM” on page 16, “Listing Registered Profiles” on page 18, and “Identifying
the Base Server Scoping Instance” on page 19. For more information about the vSphere SDK for Perl, see the
vSphere SDK for Perl Programming Guide.

The following code example shows how you can make a connection to the CIM server, enumerate registered
profiles, and follow the ElementConformsToProfile association to the Base Server Scoping Instance of
ComputerSystem.

CIM SMASH/Server Management API Programming Guide

22 VMware, Inc.

#!/usr/bin/perl
use strict;
use warnings;
use VMware::VIRuntime;
use WSMan::GenericOps;
use VMware::VILib;
$Util::script_version = "1.0";
=pod
 USAGE:: perl central_server.pl --server myserver.example.com --username abc
 --password xxxx [--namespace xxx/xxx] [--timeout numsecs]
=cut
my %opts = (
 namespace => {
 type => '=s',
 help => 'Namespace for queries. Default is root/interop for profile registration.',
 required => 0,
 default => 'root/interop',
 },
 timeout => {
 type => '=s',
 help => 'Default http timeout for all the queries. Default is 120',
 required => 0,
 default => '120'
 },
);
Opts::add_options(%opts);
Opts::parse();
Opts::validate();

Opts::set_option('protocol', 'http');
Opts::set_option('servicepath', '/wsman');
Opts::set_option('portnumber', '80');

sub create_connection_object
{
 my %args = (
 path => Opts::get_option('servicepath'),
 username => Opts::get_option('username'),
 password => Opts::get_option('password'),
 port => Opts::get_option ('portnumber'),
 address => Opts::get_option ('server'),
 namespace => Opts::get_option('namespace'),
 timeout => Opts::get_option('timeout')
);
 my $client = WSMan::GenericOps->new(%args);
 if (not defined $client) {
 print "Failed to create connection object.\n";
 return undef;
 }
 # Add resource URIs for derived classes:
 $client->register_class_ns(OMC => 'http://schema.omc-project.org/wbem/wscim/1/cim-schema/2',
 VMware => 'http://schemas.vmware.com/wbem/wscim/1/cim-schema/2',
);
 return $client;
}

VMware, Inc. 23

Chapter 2 Developing Client Applications

sub get_registered_profiles
{
 my ($client) = @_;
 my @instances = ();
 eval {
 @instances = $client->EnumerateInstances(
 class_name => 'CIM_RegisteredProfile');
 };
 if ($@) {
 print "Failed EnumerateInstances() on CIM_RegisteredProfile.\n";
 die $@;
 }
 return @instances;
}

sub isolate_base_server_registration
{
 my ($client, @instances) = @_;
 foreach my $instance (@instances) {
 my $class_name = (keys %$instance)[0];
 my $profile = $instance->{ $class_name };
 if ($profile->{'RegisteredName'}
 && $profile->{'RegisteredName'} eq 'Base Server') {
 return $instance;
 }
 }
 return undef;
}

sub associate_to_scoping_instance
{
 my ($client, $instance) = @_;
 my $class_name = (keys %$instance)[0];
 my $profile = $instance->{ $class_name };
 my @instances = ();
 eval {
 @instances = $client->EnumerateAssociatedInstances(
 class_name => $class_name,
 selectors => $profile,
 associationclassname => 'CIM_ElementConformsToProfile',
 resultrole => 'ManagedElement');
 };
 if ($@) {
 print "Failed EnumerateAssociatedInstances() for Base Server profile registration.\n";
 die $@;
 }
 if (scalar(@instances) > 1) {
 print "Error: " . scalar(@instances) . " Scoping Instances found.\n";
 return undef;
 }
 pop @instances;
}

Create client connection object for ESX host:
my $client = create_connection_object();
if (not defined $client) {
 die "Aborting.\n";
}
my @profile_instances = get_registered_profiles($client);
if (scalar(@profile_instances) == 0) {
 die('No registered profile instances found on '
 . Opts::get_option('server') . ':'
 . Opts::get_option('namespace') . "\n"
);
}

CIM SMASH/Server Management API Programming Guide

24 VMware, Inc.

my $profile_instance = isolate_base_server_registration($client, @profile_instances);
if (not defined $profile_instance) {
 die("Base Server profile is not registered in namespace.\n");
}
my $scoping_instance = associate_to_scoping_instance($client, $profile_instance);
if (not defined $scoping_instance) {
 die("No managed element found for base server.\n");
}
print "Base Server profile Scoping Instance properties:\n";
my $class_name = (keys %$scoping_instance)[0];
my $base_server = $scoping_instance->{ $class_name };
for my $property (keys %$base_server) {
 my $value = 'undefined';
 if (defined $base_server->{$property}) {
 $value = $base_server->{$property}
 }
 print ' ', $property, ': ', $value, "\n";

}

VMware, Inc. 25

3

You can learn how to use the CIM object space to get information and manage a server that runs VMware ESXi
by studying these examples. Each example describes a goal to accomplish, steps to accomplish the goal, and a
few lines of pseudocode to demonstrate the steps used in the client. These examples are chosen primarily to
explain features of the VMware implementation of the profiles, and secondarily to demonstrate common
operations.

This chapter includes the following topics:

 “Reporting Manufacturer, Model, and Serial Number” on page 25

 “Reporting Manufacturer, Model, and Serial Number By Using Only the Implementation Namespace” on
page 27

 “Reporting the BIOS Version” on page 29

 “Reporting Installed VIBs” on page 31

 “Installing VIBs” on page 33

 “Monitoring VIB Installation” on page 36

 “Monitoring State of All Sensors” on page 38

 “Monitoring State of All Sensors By Using Only the Implementation Namespace” on page 39

 “Reporting Fan Redundancy” on page 40

 “Reporting CPU Cores and Threads” on page 42

 “Reporting Empty Memory Slots By Using Only the Implementation Namespace” on page 45

 “Reporting the PCI Device Hierarchy By Using Parent DeviceIDs” on page 46

 “Reporting the Path to a PCI Device By Using PortGroups” on page 49

 “Monitoring RAID Controller State” on page 53

 “Monitoring State of RAID Connections” on page 55

 “Reporting Accessible Storage Extents” on page 57

 “Reporting Storage Extents Without Third-Party Storage Provider” on page 60

 “Working with the System Event Log” on page 60

 “Subscribing to Indications” on page 62

Many of the examples build on the basic steps described in “Developing Client Applications” on page 13.

Reporting Manufacturer, Model, and Serial Number
Taking an inventory of systems in your datacenter can be a first step to monitoring the status of the servers.
You can store the inventory data for future use when you monitor configuration changes.

Using the CIM Object Space 3

CIM SMASH/Server Management API Programming Guide

26 VMware, Inc.

This example shows how to get physical identifying information from the Interop namespace by traversing
associations to the CIM_Chassis for the Scoping Instance. Figure 3-1 shows the relationships of the CIM
objects involved.

If you know the Implementation namespace in advance, you can bypass the Interop namespace. For
information about getting physical identifying information by using only the Implementation namespace, see
“Reporting Manufacturer, Model, and Serial Number By Using Only the Implementation Namespace” on
page 27.

Figure 3-1. Locating Chassis Information from the Base Server Scoping Instance

This pseudocode depends on the pseudocode in “Making a Connection to the CIMOM” on page 16 and
“Identifying the Base Server Scoping Instance” on page 19.

To report manufacturer, model, and serial number

1 Connect to the server URL.

Specify the Interop namespace, supplied as a parameter, for the connection.

use wbemlib
use sys
use connection renamed cnx
connection = Null

params = cnx.get_params()
if params is Null
 sys.exit(-1)
interop_params = params
interop_params['namespace'] = 'root/interop'
connection = cnx.connect_to_host(interop_params)
if connection is Null
 print 'Failed to connect to: ' + params['host'] + ' as user: ' + params['user']
 sys.exit(-1)

Manufacturer
Model
SerialNumber
ElementName
Tag

Dependent
Antecedent

CIM_RegisteredProfile::
OMC_RegisteredBaseServerProfile

CIM_ComputerSystem::
OMC_UnitaryComputerSystem

CIM_ComputerSystemPackage::
OMC_ComputerSystemPackage

CIM_Chassis::
OMC_Chassis

root/interop

root/cimv2
ConformantStandard
ManagedElement

CIM_ElementConformsToProfile::
OMC_ElementConformsToBaseServerProfile

VMware, Inc. 27

Chapter 3 Using the CIM Object Space

2 Locate the Base Server Scoping Instance of CIM_ComputerSystem.

use scoping_instance renamed si

scoping_instance_name = si.get_scoping_instance_name(connection)
if scoping_instance_name is Null
 print 'Failed to find Scoping Instance.'
 sys.exit(-1)

3 Traverse the CIM_ComputerSystemPackage association to reach the CIM_Chassis instance that
corresponds to the managed server.

instance_names = connection.AssociatorNames(scoping_instance_name, \
 AssocClass = 'CIM_ComputerSystemPackage', \
 ResultClass = 'CIM_Chassis')
if len(instance_names) > 1
 print 'Error: %d Chassis instances found for Scoping Instance.' \
 % len (instance_names)
 sys.exit(-1)

4 Print the Manufacturer, Model, and SerialNumber properties.

This example prints additional properties to help identify physical components.

instance_name = instance_names.pop()
instance = connection.GetInstance(instance_name)
print ’\n’ + ’CIM_Chassis [’ + instance.classname + ’] =’
for property_name in [’ElementName’, ’Tag’, \

’Manufacturer’, ’Model’, ’SerialNumber’]
if instance.key(property_name)

value = instance[property_name]
else

value = ’(not available)’
print ’ %30s : %s’ % (property_name, value)

A sample of the output looks like the following:

CIM_Chassis [OMC_Chassis] =
 ElementName : Chassis
 Tag : 23.0
 Manufacturer : Cirrostratus Systems
 Model : 20KF6KM
 SerialNumber : 67940851

Reporting Manufacturer, Model, and Serial Number By Using Only the
Implementation Namespace

Taking an inventory of systems in your datacenter can be a first step to monitoring the status of the servers.
You can store the inventory data for future use in monitoring configuration changes.

This example shows how to get the physical identifying information from the Implementation namespace by
enumerating CIM_Chassis for the managed server. This approach is convenient when the namespace is
known in advance. For information about getting physical identifying information by using the Interop
namespace, see “Reporting Manufacturer, Model, and Serial Number” on page 25.

You might see more than one instance of CIM_Chassis if the managed server is a blade system. Figure 3-2
shows an example of a server with two instances of CIM_Chassis, one for a blade and the other for the blade
enclosure.

CIM SMASH/Server Management API Programming Guide

28 VMware, Inc.

Figure 3-2. Locating Chassis Information in a Blade Server

This pseudocode depends on the pseudocode in “Making a Connection to the CIMOM” on page 16,
“Identifying the Base Server Scoping Instance” on page 19, and “Mapping Integer Property Values to Strings”
on page 21.

To report Manufacturer, Model, and Serial Number by using only the Implementation namespace

1 Connect to the server URL.

Specify the Implementation namespace, supplied as a parameter, for the connection.

The actual namespace you will use depends on your installation.

use wbemlib
use sys
use connection renamed cnx
connection = Null

params = cnx.get_params()
if params is Null
 sys.exit(-1)
connection = cnx.connect_to_host(params)
if connection is Null
 print 'Failed to connect to: ' + params['host'] + ' as user: ' + params['user']
 sys.exit(-1)

2 Use the EnumerateInstances method to get all the CIM_Chassis instances on the server.

chassis_instance_names = connection.EnumerateInstanceNames('CIM_Chassis')
if len(chassis_instance_names) is 0
 print 'No %s instances were found.' % ('CIM_Chassis')

sys.exit(0)

Manufacturer
Model
SerialNumber
ElementName
Tag
PackageType = Blade

Antecedent
Dependent

Antecedent
Dependent

CIM_ComputerSystem::
OMC_ModularComputerSystem

CIM_ComputerSystemPackage::
OMC_ComputerSystemPackage

CIM_Chassis::
OMC_Chassis

Manufacturer
Model
SerialNumber
ElementName
Tag
PackageType = Chassis/Frame

GroupComponent
PartComponent

CIM_ComponentCS::
OMC_ComponentCS

CIM_ComputerSystem::
OMC_UnitaryComputerSystem

CIM_ComputerSystemPackage::
OMC_ComputerSystemPackage

CIM_Chassis::
OMC_Chassis

root/cimv2

VMware, Inc. 29

Chapter 3 Using the CIM Object Space

3 Print the Manufacturer, Model, and SerialNumber properties of the Chassis instances.

This example prints additional properties to help identify physical components.

use value_mapper renamed mapper

for instance_name in chassis_instance_names
print_chassis(connection, instance_name)

function print_chassis(connection, instance_name)
 instance = connection.GetInstance(instance_name)
 print '\n' + 'CIM_Chassis [' + instance.classname + '] ='
 for property_name in ['ElementName', 'Tag', 'Manufacturer', \
 'Model', 'SerialNumber']
 if instance.key(property_name)

value = instance[property_name]
 else

value = '(not available)'
 print ' %30s : %s' % (property_name, value)
 for property_name in [’PackageType’, 'ChassisPackageType']

if instance.key(property_name)
value = mapper.map_instance_property_to_string(connection,

instance,
property_name)

if value is Null
value = ’’

 else
value = '(not available)'

 print ' %30s : %s' % (property_name, value)

A sample of the output looks like the following:

CIM_Chassis [OMC_Chassis] =
 ElementName : Chassis
 Tag : 23.0
 Manufacturer : Cirrostratus Systems
 Model : 20KF6KM-02
 SerialNumber : 67940851

PackageType : Blade
 ChassisPackageType : None

CIM_Chassis [OMC_Chassis] =
 ElementName : Chassis
 Tag : 23.1
 Manufacturer : Cirrostratus Systems
 Model : 20KF6KM-W
 SerialNumber : 439-41902

PackageType : Chassis/Frame
ChassisPackageType : Blade Enclosure

Reporting the BIOS Version
System administrators can query the BIOS version of the managed server as part of routine maintenance.

This example shows how to get the BIOS version string by traversing the CIM_InstalledSoftwareIdentity
association from the server Scoping Instance. The VMware implementation of the Software Inventory profile
uses CIM_InstalledSoftwareIdentity to associate firmware and hypervisor instances of
CIM_SoftwareIdentity to the server Scoping Instance. VMware does not implement the
CIM_ElementSoftwareIdentity association for firmware and hypervisor instances, so you must use
CIM_InstalledSoftwareIdentity to locate the system BIOS instance of CIM_SoftwareIdentity.

Figure 3-3 shows the relationships of the CIM objects involved.

CIM SMASH/Server Management API Programming Guide

30 VMware, Inc.

Figure 3-3. Locating the BIOS Version from the Base Server Scoping Instance

The VMware implementation of CIM_SoftwareIdentity makes the version available in the
VersionString property rather than in the MajorVersion and MinorVersion properties.

This pseudocode depends on the pseudocode in “Making a Connection to the CIMOM” on page 16 and
“Identifying the Base Server Scoping Instance” on page 19.

To report the BIOS version

1 Connect to the server URL.

Specify the Interop namespace, supplied as a parameter, for the connection.

use wbemlib
use sys
use connection renamed cnx
connection = Null

params = cnx.get_params()
if params is Null
 sys.exit(-1)
interop_params = params
interop_params['namespace'] = 'root/interop'
connection = cnx.connect_to_host(interop_params)
if connection is Null
 print 'Failed to connect to: ' + params['host'] + ' as user: ' + params['user']
 sys.exit(-1)

2 Locate the Base Server Scoping Instance that represents the managed server.

use scoping_instance renamed si

scoping_instance_name = si.get_scoping_instance_name(connection)
if scoping_instance_name is Null
 print 'Failed to find server Scoping Instance.'
 sys.exit(-1)

Manufacturer
VersionString

System
InstalledSoftware

CIM_RegisteredProfile::
OMC_RegisteredBaseServerProfile

CIM_ComputerSystem::
OMC_UnitaryComputerSystem

CIM_InstalledSoftwareIdentity::
OMC_InstalledSoftwareIdentity

CIM_SoftwareIdentity::
OMC_SMASHFirmwareIdentity

root/interop

root/cimv2
ConformantStandard
ManagedElement

CIM_ElementConformsToProfile::
OMC_ElementConformsToBaseServerProfile

VMware, Inc. 31

Chapter 3 Using the CIM Object Space

3 Traverse the CIM_InstalledSoftwareIdentity association to reach the CIM_SoftwareIdentity
instances that correspond to the software on the managed server.

instance_names = connection.Associators(scoping_instance_name, \
 AssocClass = 'CIM_InstalledSoftwareIdentity', \
 ResultRole = 'InstalledSoftware')

4 Select the CIM_SoftwareIdentity instance that represents the BIOS of the managed server, and print
the Manufacturer and VersionString properties.

function print_info(connection, instance_name)
instance = connection.GetInstance(instance_name)
print '\n' + ’CIM_SoftwareIdentity’ + ' [' + instance.classname + '] ->'

 for prop in ['Manufacturer', 'VersionString']
 print ' %30s = %s' % (prop, instance[prop])

for instance_name in instance_names
instance = connection.GetInstance(instance_name)

 if instance['Name'] == 'System BIOS'
 print_info(connection, instance_name)

Reporting Installed VIBs
System administrators can use a CIM client application to query the name and version information for the
vSphere Installation Bundles (VIBs) that are installed on the managed server. This information is valuable for
diagnosing software problems.

This example shows how to get the name and software version string by traversing the
CIM_ElementSoftwareIdentity association from the server Scoping Instance. The VMware
implementation of the Software Inventory profile uses CIM_InstalledSoftwareIdentity to associate only
firmware and hypervisor instances of CIM_SoftwareIdentity to the server Scoping Instance. For VIBs,
VMware implements the CIM_ElementSoftwareIdentity association. The ElementSoftwareStatus
property of the CIM_ElementSoftwareIdentity association contains the value 6 (Installed).

Figure 3-4 shows the relationships of the CIM objects involved. VIBs are modeled with instances of
VMware_ComponentSoftwareIdentity.

The CIM_InstalledSoftwareIdentity association that leads to the instance of
VMware_HypervisorSoftwareIdentity is included in the illustration for comparison only.

CIM SMASH/Server Management API Programming Guide

32 VMware, Inc.

Figure 3-4. Locating the Installed Software Versions from the Base Server Scoping Instance

The VMware implementation of CIM_SoftwareIdentity for VIBs makes the version available in the
VersionString property rather than in the MajorVersion and MinorVersion properties.

This pseudocode depends on the pseudocode in “Making a Connection to the CIMOM” on page 16 and
“Identifying the Base Server Scoping Instance” on page 19.

To report the VIB versions

1 Connect to the server URL.

Specify the Interop namespace, supplied as a parameter, for the connection.

use wbemlib
use sys
use connection renamed cnx
use registered_profiles renamed prof
connection = Null

params = cnx.get_params()
if params is Null
 sys.exit(-1)
interop_params = params
interop_params['namespace'] = 'root/interop'
connection = cnx.connect_to_host(interop_params)
if connection is Null
 print 'Failed to connect to: ' + params['host'] + ' as user: ' + params['user']
 sys.exit(-1)

System
InstalledSoftware

CIM_SoftwareIdentity::
VMware_InstalledSoftwareIdentity

Dependent
Antecedent

ElementSoftwareStatus==6

CIM_ElementSoftwareIdentity::
VMware_ElementSoftwareIdentity

CIM_System::
OMC_UnitaryComputerSystem

ElementName
VersionString

CIM_SoftwareIdentity::
VMware_ComponentSoftwareIdentity

ElementName
VersionString

CIM_SoftwareIdentity::
VMware_HypervisorSoftwareIdentity

CIM_RegisteredProfile::
OMC_RegisteredBaseServerProfile

root/interop

root/cimv2 ConformantStandard
ManagedElement

CIM_ElementConformsToProfile::
OMC_ElementConformsToBaseServerProfile

VMware, Inc. 33

Chapter 3 Using the CIM Object Space

2 Locate the Base Server Scoping Instance that represents the managed server.

use scoping_instance renamed si

scoping_instance_name = si.get_scoping_instance_name(connection)
if scoping_instance_name is Null
 print 'Failed to find server Scoping Instance.'
 sys.exit(-1)

3 Use the CIM_ElementSoftwareIdentity association to identify the CIM_SoftwareIdentity
instances that correspond to the software on the managed server.

element_softwares = connection.References(scoping_instance_name, \
 ResultClass = 'VMware_ElementSoftwareIdentity')
if len(element_softwares) < 1

print 'No software was found for the server Scoping Instance.'
sys.exit(-1)

4 Select only those instances for which the ElementSoftwareStatus property of the
CIM_ElementSoftwareIdentity association has a value of 6 (Installed).

Print the ElementName and VersionString properties of the CIM_SoftwareIdentity instances.

function print_info(instance)
 print ' Software = %s' % (instance['ElementName'])
 print ' (Version %s)' % (instance['VersionString'])

print 'Installed software:'
count = 0
for software in element_softwares

if software['ElementSoftwareStatus'] == [6L]
print_instance(connection.GetInstance(software['Antecedent']))
count = count + 1

if not count
print ' None'

Installing VIBs
The VMware implementation of the DMTF Software Update profile allows system administrators to update
ESXi software by using CIM client applications. The CIM software installation service applies an offline
bundle file to update the software on the managed server. To identify the current software version, see
“Reporting Installed VIBs” on page 31.

This example shows how to locate the CIM_SoftwareInstallationService by traversing the
CIM_HostedService association from the server Scoping Instance. The InstallFromURI() method starts
the update process on the managed server and returns a CIM_ConcreteJob instance that you can use to
monitor completion of the installation.

The VMware implementation of the Software Update profile does not include a
CIM_ServiceAffectsElement association between the instance of CIM_SoftwareInstallationService
and the instance of CIM_SoftwareIdentity that represents a VIB. As a result, you cannot use the
InstallFromSoftwareIdentity() method that is described in the Software Update profile specification.

To use the InstallFromURI() method, you must know the location of the offline bundle in a local file
system. You supply the path to the offline bundle in the form of a URI when you invoke the method. For
example, you might pass "file:///vmfs/Storage1/bundle.zip" as the value of the URI parameter.

Figure 3-5 shows the relationships of the CIM objects involved in the installation of VIBs by using CIM. The
CIM_SoftwareInstallationService instance in Figure 3-5 represents the CIM provider that starts the
software installation.

NOTE You cannot use an online depot in the URI that you pass to the InstallFromURI() method. For
instructions to create an offline bundle from a set of VIBs in an online depot, see “Offline Bundles” on page 69.

CIM SMASH/Server Management API Programming Guide

34 VMware, Inc.

Figure 3-5. Starting an Update of ESXi Software

The CIM_SoftwareInstallationServiceCapabilities instance advertises the InstallFromURI action
and the supported URI schemes that it supports. Figure 3-5 includes the instance for completeness. The
pseudocode example does not use it.

This pseudocode depends on the pseudocode in “Making a Connection to the CIMOM” on page 16 and
“Identifying the Base Server Scoping Instance” on page 19.

To install VIBs

1 Connect to the server URL.

Specify the Interop namespace, supplied as a parameter, for the connection.

use wbemlib
use sys
use connection renamed cnx
connection = Null

params = cnx.get_params()
if params is Null
 sys.exit(-1)
interop_params = params
interop_params['namespace'] = 'root/interop'
connection = cnx.connect_to_host(interop_params)
if connection is Null
 print 'Failed to connect to: ' + params['host'] + ' as user: ' + params['user']
 sys.exit(-1)

AffectedElement
AffectingElement

CIM_ServiceAffectsElement::
VMware_InstallationServiceAffectsElement

Antecedent
Dependent

CIM_HostedService::
VMware_HostedInstallationService

ManagedElement
Capabilities

CIM_ElementCapabilities::
VMware_ElementSoftwareInstallationCapabilities

CIM_System::
OMC_UnitaryComputerSystem

InstallFromURI()

CIM_SoftwareInstallationService::
VMware_SoftwareInstallationService

SupportedAsynchronousActions=[5] (InstallFromURI)
SupportedURISchemes=[3] (file)

CIM_SoftwareInstallationServiceCapabilities::
VMware_SoftwareInstallationServiceCapabilities

CIM_RegisteredProfile::
OMC_RegisteredBaseServerProfile

root/interop

root/cimv2 ConformantStandard
ManagedElement

CIM_ElementConformsToProfile::
OMC_ElementConformsToBaseServerProfile

VMware, Inc. 35

Chapter 3 Using the CIM Object Space

2 Locate the Base Server Scoping Instance that represents the managed server.

use scoping_instance renamed si

scoping_instance_name = si.get_scoping_instance_name(connection)
if scoping_instance_name is Null
 print 'Failed to find server Scoping Instance.'
 sys.exit(-1)

3 Use the CIM_HostedService association to identify the CIM_SoftwareInstallationService
instance that represents the Software Update provider on the managed server.

The VMware implementation includes only one instance of CIM_SoftwareInstallationService.

installation_services = connection.AssociatorNames(scoping_instance_name, \
AssocClass = ’CIM_HostedService’, \
ResultClass = 'CIM_SoftwareInstallationService')

if len(installation_services) != 1
print 'Failed to find the software installation service for the scoping computer system.'
sys.exit(-1)

installation_service = installation_services.pop()

4 On the CIM_SoftwareInstallationService instance, invoke the InstallFromURI() method with
the following parameters.

 A URI that identifies the offline bundle file containing the VIBs that you choose to install.

 A reference to the CIM_ComputerSystem instance that represents the managed server.

 An empty list for the InstallOptions parameter. The CIM provider ignores any install options that
you specify.

The method returns a single output parameter, which is a reference to an instance of CIM_ConcreteJob.
You can use the instance to monitor completion of the software installation.

function launch_installation(service, \
bundle_file, \
server, \
cli_options)

metadata_uri = ’file://%s’ % bundle_file
method_params = { ’URI’ : metadata_uri, \

’Target’ : server, \
’InstallOptions’ : cli_options }

(error_return, output) = connection.InvokeMethod('InstallFromURI', \
service, \
**method_params)

if error_return == 4096
print ’Software installation in progress...’
job_ref = output[’Job’]
return job_ref

else
print ’Invalid method parameters; error = %s’ % error_return
sys.exit(-1)

vib = params[’extra_params’][0]
cli_options = []
job_ref = launch_installation(installation_service, \

vib, \
scoping_instance_name, \
cli_options)

If there is an error in the method parameters, such as a mismatch in the option lists, the
InstallFromURI() method returns immediately.

If the method returns the value 4096, the provider has accepted the method parameters and will start the
update process. You can monitor the installation by using the instance of CIM_ConcreteJob that is
returned by the method. See “Monitoring VIB Installation” on page 36.

CIM SMASH/Server Management API Programming Guide

36 VMware, Inc.

Monitoring VIB Installation
The VMware implementation of the DMTF Software Update profile allows system administrators to use CIM
client applications to update ESXi software. See “Installing VIBs” on page 33. The update can take several
minutes to complete. For a CIM client, this is an asynchronous operation because the CIM server returns before
the update is complete.

You can monitor the status of the update operation in one of two ways:

 You can poll for status of the operation by using the CIM_ConcreteJob class.

 You can subscribe to any of the supported indications that report changes in the status of the update
operation. The supported indications are shown in Table 3-1.

This example shows how to monitor the update and report completion status by polling an instance of
CIM_ConcreteJob.

Figure 3-6 shows the relationships of the CIM objects involved.

Figure 3-6. Monitoring an Update of ESXi Software

Table 3-1. Indications Supported by the VMware Implementation of the Software Update Profile

Condition CQL Expression

Any job creation SELECT * from CIM_InstCreation WHERE SourceInstance ISA CIM_ConcreteJob

Any job change SELECT * from CIM_InstModification WHERE SourceInstance ISA CIM_ConcreteJob

Any job deletion SELECT * from CIM_InstDeletion WHERE SourceInstance ISA CIM_ConcreteJob

OwningElement
OwnedElement

CIM_OwningJobElement::
VMware_OwningJobElement

Job
JobParameters

PreCallIndication
PostCallIndication

CIM_AssociatedJobMethodResult::
VMware_AssociatedJobMethodResult

InstallFromURI()

CIM_SoftwareInstallationService::
VMware_SoftwareInstallationService

CIM_ConcreteJob::
VMware_ConcreteJob

CIM_MethodResult::
VMware_MethodResult

OwningEntity
Message
ProbableCause
CIMStatusCode

CIM_Error::
VMware_Error

root/cimv2

ElementName
PercentComplete
JobState
ErrorCode
ErrorDescription
GetError()

VMware, Inc. 37

Chapter 3 Using the CIM Object Space

Figure 3-6 shows some classes, such as CIM_Error, that you can use to provide detail on status of the software
update operation, but their use is not shown here. This example pseudocode relies only on the properties
available in the CIM_ConcreteJob instance that represents the status of an operation in progress. The
CIM_ConcreteJob instance remains in existence for a few minutes after the job completes.

This pseudocode depends on the pseudocode in “Making a Connection to the CIMOM” on page 16 and
“Identifying the Base Server Scoping Instance” on page 19.

To monitor VIB installation

1 After invoking the InstallFromURI() method, save the object reference returned in the Job output
parameter.

The output parameter is a reference to an instance of CIM_ConcreteJob that you can use to monitor
progress of the software update operation.

(error_return, output) = connection.InvokeMethod('InstallFromURI', \
service, \
**method_params)

...
job_ref = output[’Job’]
...

2 Retrieve the referenced instance of CIM_ConcreteJob and test the value of the PercentComplete
property.

Repeat this step until the PercentComplete property has the value 100.

function check_job_done(job_ref)
job = connection.GetInstance(job_ref)
print ’ percent complete %3d’ % job[’PercentComplete’]
print ’ job status: %s’ % job[’JobStatus’]
if job[’PercentComplete’] == 100

return 1
else

return 0

use time
ticks = 0
while not check_job_done(job_ref)

print ’Job time elapsed: %d seconds’ % ticks
print
time.sleep(10)
ticks = ticks + 10

print ’ error code: %s’ % job[’ErrorCode’]
print ’ description: %s’ % job[’ErrorDescription’]
print ’Time elapsed: %d seconds’ % ticks

While the software update operation is in progress, the property has an arbitrary value less than 100.
After the operation completes, the PercentComplete property takes the value 100 and the CIM server
no longer updates the CIM_ConcreteJob instance.

A sample of the output looks like the following:

Software installation in progress...
percent complete 10
job status: Scanning URI for installable packages

Time elapsed: 0 seconds

percent complete 10
job status: Scanning URI for installable packages

Time elapsed: 10 seconds

percent complete 10
job status: Scanning URI for installable packages

Time elapsed: 20 seconds

percent complete 30
job status: Scan of URI Complete and installable packages found. Starting Update.

CIM SMASH/Server Management API Programming Guide

38 VMware, Inc.

Time elapsed: 30 seconds

percent complete 30
job status: Scan of URI Complete and installable packages found. Starting Update.

Time elapsed: 40 seconds

...

percent complete 100
job status: The update completed successfully, but the system needs to be rebooted for the

changes to be effective.
error code: None

description: None
Time elapsed: 1000 seconds

Monitoring State of All Sensors
This information is useful to system administrators who need to monitor system health. This example shows
how to locate system sensors, report their current states, and flag any sensors that have abnormal states.

The example uses only CIM_NumericSensor instances for simplicity. You can also query discrete sensors by
substituting CIM_Sensor for CIM_NumericSensor. Determining which values constitute normal sensor state
is hardware-dependent.

This example shows how to get the sensor states by starting from the Interop namespace and traversing
associations from the managed server Scoping Instance. Figure 3-7 shows the relationships of the CIM objects
involved. For information about getting sensor states by using only the Implementation namespace, see
“Monitoring State of All Sensors By Using Only the Implementation Namespace” on page 39.

Figure 3-7. Locating Sensor State from the Base Server Scoping Instance

This pseudocode depends on the pseudocode in “Making a Connection to the CIMOM” on page 16 and
“Identifying the Base Server Scoping Instance” on page 19.

ElementName
CurrentState
PossibleStates

GroupComponent
PartComponent

CIM_RegisteredProfile::
OMC_RegisteredBaseServerProfile

CIM_ComputerSystem::
OMC_UnitaryComputerSystem

CIM_SystemDevice::
OMC_SystemDevice

CIM_NumericSensor::
OMC_NumericSensor

root/interop

root/cimv2

ConformantStandard
ManagedElement

CIM_ElementConformsToProfile::
OMC_ElementConformsToBaseServerProfile

VMware, Inc. 39

Chapter 3 Using the CIM Object Space

To report state for all sensors

1 Connect to the server URL.

Specify the Interop namespace, supplied as a parameter, for the connection.

use wbemlib
use sys
use connection renamed cnx
connection = Null

params = cnx.get_params()
if params is Null
 sys.exit(-1)
interop_params = params
interop_params['namespace'] = 'root/interop'
connection = cnx.connect_to_host(interop_params)
if connection is Null
 print 'Failed to connect to: ' + params['host'] + ' as user: ' + params['user']
 sys.exit(-1)

2 Locate the Base Server profile Scoping Instance of CIM_ComputerSystem.

use scoping_instance renamed si

scoping_instance_name = si.get_scoping_instance_name(connection)
if scoping_instance_name is Null
 print 'Failed to find server Scoping Instance.'
 sys.exit(-1)

3 Traverse the CIM_SystemDevice association to reach the CIM_NumericSensor instances on the
managed server.

instances = connection.Associators(scoping_instance_name, \
 AssocClass = 'CIM_SystemDevice', \
 ResultClass = 'CIM_NumericSensor')
if len(instances) is 0
 print 'Error: No sensors associated with server Scoping Instance.'
 sys.exit(-1)

4 For each sensor instance, print the ElementName and CurrentState properties.

You can flag any abnormal values you find. Abnormal values depend on the sensor type and its
PossibleStates property.

function print_info(instance, base_class)
 print '\n' + base_class + ' [' + instance.classname + '] ='
 if instance['CurrentState'] != 'Normal'
 print '********* SENSOR STATE WARNING *********\n'
 for prop in ['ElementName', 'CurrentState']
 print ' %30s = %s' % (prop, instance[prop])

for instance in instances
 print_info(instance, 'CIM_NumericSensor')

A sample of the output looks like the following:

CIM_NumericSensor [OMC_NumericSensor] =
ElementName = FAN 1 RPM for System Board 1

CurrentState = Normal
CIM_NumericSensor [OMC_NumericSensor] =

ElementName = Ambient Temp for System Board 1
CurrentState = Normal

Monitoring State of All Sensors By Using Only the Implementation
Namespace

This information is useful to system administrators who need to monitor system health. This example shows
how to locate system sensors, report their current states, and flag any sensors with abnormal states.

CIM SMASH/Server Management API Programming Guide

40 VMware, Inc.

The example uses only CIM_NumericSensor instances for simplicity. You can also query discrete sensors by
substituting CIM_Sensor for CIM_NumericSensor. Determining which values constitute normal sensor state
is hardware-dependent.

This example shows how to get the sensor states from the Implementation namespace, assuming you already
know its name. For information about getting sensor state by using the standard Interop namespace,
see“Monitoring State of All Sensors” on page 38.

This pseudocode depends on the pseudocode in “Making a Connection to the CIMOM” on page 16.

To report state of all sensors by using only the Implementation namespace

1 Connect to the server URL.

Specify the Implementation namespace, supplied as a parameter, for the connection.

The actual namespace you will use depends on your installation.

use wbemlib
use sys
use connection renamed cnx
connection = Null

params = cnx.get_params()
if params is Null
 sys.exit(-1)
connection = cnx.connect_to_host(params)
if connection is Null
 print 'Failed to connect to: ' + params['host'] + ' as user: ' + params['user']
 sys.exit(-1)

2 Enumerate instances of CIM_NumericSensor.

instances = connection.EnumerateInstances(’CIM_NumericSensor’)
if len(instances) is 0
 print 'Error: No sensors found on managed server.'
 sys.exit(-1)

3 Iterate over the sensor instances, printing the properties ElementName and CurrentState.

function print_info(instance)
 print '\n' + 'CIM_NumericSensor [' + instance.classname + '] ='
 if instance['CurrentState'] != 'Normal'
 print '********* SENSOR STATE WARNING *********\n'
 for prop in ['ElementName', 'CurrentState']
 print ' %30s = %s' % (prop, instance[prop])

for instance in instances
 print_info(instance)

A sample of the output looks like the following:

CIM_NumericSensor [OMC_NumericSensor] =
ElementName = FAN 1 RPM for System Board 1

CurrentState = Normal
CIM_NumericSensor [OMC_NumericSensor] =

ElementName = Ambient Temp for System Board 1
CurrentState = Normal

Reporting Fan Redundancy
Fan redundancy information is useful to system administrators who need to monitor system health.
This example shows how to locate system fans and query the CIMOM for redundant fan relationships.

This example shows how to enumerate the fans by starting from the Interop namespace and traversing
associations from the managed server Scoping Instance. Figure 3-8 shows the relationships of the CIM objects
involved. If the managed server provides redundant cooling, the redundancy is modeled in the CIMOM by an
instance of CIM_RedundancySet that is associated with two (or more) redundant fans.

VMware, Inc. 41

Chapter 3 Using the CIM Object Space

Figure 3-8. Locating Redundant Fans

This pseudocode depends on the pseudocode in “Making a Connection to the CIMOM” on page 16 and
“Identifying the Base Server Scoping Instance” on page 19.

To report fan redundancy

1 Connect to the server URL.

Specify the Interop namespace, supplied as a parameter, for the connection.

use wbemlib
use sys
use connection renamed cnx
connection = Null

params = cnx.get_params()
if params is Null
 sys.exit(-1)
interop_params = params
interop_params['namespace'] = 'root/interop'
connection = cnx.connect_to_host(interop_params)
if connection is Null
 print 'Failed to connect to: ' + params['host'] + ' as user: ' + params['user']
 sys.exit(-1)

GroupComponent
PartComponent

ElementName
DeviceID

ElementName
DeviceID

CIM_RegisteredProfile::
OMC_RegisteredBaseServerProfile

CIM_ComputerSystem::
OMC_UnitaryComputerSystem

CIM_SystemDevice::
OMC_SystemDevice

Member
Collection

CIM_MemberOfCollection::
OMC_MemberOfFanRedundancySet

Member
Collection

CIM_MemberOfCollection::
OMC_MemberOfFanRedundancySet

CIM_RedundancySet::
OMC_FanRedundancySet

Name
RedundancyStatus

GroupComponent
PartComponent

CIM_SystemDevice::
OMC_SystemDevice

CIM_Fan::
OMC_Fan

CIM_Fan::
OMC_Fan

root/interop

root/cimv2
ConformantStandard
ManagedElement

CIM_ElementConformsToProfile::
OMC_ElementConformsToBaseServerProfile

CIM SMASH/Server Management API Programming Guide

42 VMware, Inc.

2 Locate the Base Server Scoping Instance of CIM_ComputerSystem.

use scoping_instance renamed si

scoping_instance_name = si.get_scoping_instance_name(connection)
if scoping_instance_name is Null
 print 'Failed to find server Scoping Instance.'
 sys.exit(-1)

3 Traverse the CIM_SystemDevice association to reach the CIM_Fan instances on the managed server.

fan_instances = connection.Associators(scoping_instance_name, \
AssocClass = 'CIM_SystemDevice', \
ResultClass = ’CIM_Fan’)

if len(fan_instances) is 0
 print 'Error: No fans associated with server Scoping Instance.'
 sys.exit(-1)

4 For each fan instance, print the ElementName and DeviceID properties.

function print_info(instance)
 print '\n' + ’CIM_Fan [' + instance.classname + '] ='
 for prop in ['ElementName', 'DeviceID']
 print ' %30s = %s' % (prop, instance[prop])

for fan_instance in fan_instances
 print_info(fan_instance)

5 For each fan instance, traverse the CIM_MemberOfCollection association to reach any instances of
CIM_RedundancySet.

set_instances = connection.Associators(scoping_instance_name, \
AssocClass = 'CIM_MemberOfCollection', \
ResultClass = ’CIM_RedundancySet’)

6 For each fan instance, print the redundancy status. If the fan is not a member of a redundancy set, the
redundancy status is not applicable.

if len(set_instances) is 0
print ' Redundancy status: N/A'

else
for instance in set_instances

name = instance[’Name’]
status = instance[’RedundancyStatus’]
print ’ redundancy set (%s) status = %s’ %

(instance[’Name’], (status==2 ? ’Fully Redundant’ : ’unknown or degraded’)

A sample of the output looks like the following:

CIM_Fan [OMC_Fan] =
ElementName = FAN 1 RPM
DeviceID = 48.0.32.99

redundancy set (117.0.32.0) status = Fully Redundant
CIM_Fan [OMC_Fan] =

ElementName = FAN 2 RPM
DeviceID = 49.0.32.99

redundancy set (117.0.32.0) status = Fully Redundant

Reporting CPU Cores and Threads
This information is useful to system administrators who need to monitor system health. This example shows
how to enumerate the processor cores and hardware threads in a managed server.

The VMware implementation does not include instances of CIM_ProcessorCapabilities, but cores and
hardware threads are modeled with individual instances of CIM_ProcessorCore and
CIM_HardwareThread.

VMware, Inc. 43

Chapter 3 Using the CIM Object Space

This example shows how to locate information about the CPU cores and threads by starting from the Interop
namespace and traversing associations from the managed server Scoping Instance. A managed server has one
or more processors, each of which has one or more cores with one or more threads. Figure 3-9 shows the
relationships of the CIM objects involved. For simplicity, the diagram shows only a single processor with one
core and one hardware thread.

Figure 3-9. Locating CPU Cores and Hardware Threads

This pseudocode depends on the pseudocode in “Making a Connection to the CIMOM” on page 16 and
“Identifying the Base Server Scoping Instance” on page 19.

ElementName
CoreEnabledState

ElementName
Family
CurrentClockSpeed

GroupComponent
PartComponent

CIM_RegisteredProfile::
OMC_RegisteredBaseServerProfile

CIM_ComputerSystem::
OMC_UnitaryComputerSystem CIM_SystemDevice::

OMC_SystemDevice

CIM_Processor::
OMC_Processor

GroupComponent
PartComponent

CIM_ConcreteComponent::
OMC_ProcessorCoreConcreteComponent

CIM_ConcreteComponent::
OMC_HardwareThreadConcreteComponent

CIM_ProcessorCore::
OMC_ProcessorCore

GroupComponent
PartComponent

CIMHardwareThread::
OMC_HardwareThread

root/interop

root/cimv2

ConformantStandard
ManagedElement

CIM_ElementConformsToProfile::
OMC_ElementConformsToBaseServerProfile

ElementName

CIM SMASH/Server Management API Programming Guide

44 VMware, Inc.

To report CPU cores and threads

1 Connect to the server URL.

Specify the Interop namespace, supplied as a parameter, for the connection.

use wbemlib
use sys
use connection renamed cnx
connection = Null

params = cnx.get_params()
if params is Null
 sys.exit(-1)
interop_params = params
interop_params['namespace'] = 'root/interop'
connection = cnx.connect_to_host(interop_params)
if connection is Null
 print 'Failed to connect to: ' + params['host'] + ' as user: ' + params['user']
 sys.exit(-1)

2 Locate the Base Server Scoping Instance of CIM_ComputerSystem.

use scoping_instance renamed si

scoping_instance_name = si.get_scoping_instance_name(connection)
if scoping_instance_name is Null
 print 'Failed to find server Scoping Instance.'
 sys.exit(-1)

3 Traverse the CIM_SystemDevice association to reach the CIM_Processor instances on the managed
server.

proc_instance_names = connection.AssociatorNames(scoping_instance_name, \
AssocClass = 'CIM_SystemDevice', \
ResultClass = ’CIM_Processor’)

if len(proc_instance_names) is 0
 print 'Error: No processors associated with server Scoping Instance.'
 sys.exit(-1)

4 For each CIM_Processor instance, print the ElementName, Family, and CurrentClockSpeed
properties.

for proc_instance_name in proc_instance_names
instance = connection.GetInstance(proc_instance_name)
print ‘ %s (Family: %s) (%sMHz)’ %

(instance[‘ElementName’], instance[‘Family’], instance[‘CurrentClockSpeed’])

5 For each CIM_Processor instance, traverse the CIM_ConcreteComponent association to reach the
CIM_ProcessorCore instances on the managed server.

core_instance_names = connection.AssociatorNames(proc_instance_name, \
AssocClass = 'CIM_ConcreteComponent', \
ResultClass = ’CIM_ProcessorCore’)

if len(core_instance_names) is 0
print 'No processor cores associated with this CPU.’
sys.exit(-1)

6 For each CIM_ProcessorCore instance, print the ElementName and CoreEnabledState properties.

for core_instance_name in core_instance_names
instance = connection.GetInstance(core_instance_name)
print ’ %s (%s)’ % \

(instance[‘ElementName’], \
(instance[‘CoreEnabledState’]==’Enabled’)?’Enabled’:’Disabled’)

VMware, Inc. 45

Chapter 3 Using the CIM Object Space

7 For each CIM_ProcessorCore instance, traverse the CIM_ConcreteComponent association to reach the
CIM_HardwareThread instances on the managed server.

thread_instance_names = connection.AssociatorNames(core_instance_name, \
AssocClass = 'CIM_ConcreteComponent', \
ResultClass = ’CIM_HardwareThread’)

if len(thread_instance_names) is 0
print 'No hardware threads associated with this CPU core.’
sys.exit(-1)

8 For each CIM_HardwareThread instance, print the ElementName property.

for thread_instance_name in thread_instance_names
instance = connection.GetInstance(thread_instance_name)
print ‘ %s’ % instance[‘ElementName’]

A sample of the output looks like the following:

CPU1 (Family: 179) (2667MHz)
CPU1 Core 1 (Enabled)

CPU1 Core 1 Thread 1
CPU1 Core 2 (Enabled)

CPU1 Core 2 Thread 1
CPU2 (Family: 179) (2667MHz)

CPU2 Core 1 (Enabled)
CPU1 Core 1 Thread 1

CPU2 Core 2 (Enabled)
CPU1 Core 2 Thread 1

Reporting Empty Memory Slots By Using Only the Implementation
Namespace

This example describes how to determine the empty slots available for new memory cards. This information
is useful to system administrators who want to upgrade the capacity of a managed server.

This example shows how to locate information about the installed memory and available slots by using only
the objects in the Implementation namespace. Figure 3-10 shows the CIM objects involved.

You can locate used memory slots by enumerating physical memory instances. To locate unused slots, you also
enumerate the OMC_MemorySlot instances and compare the results. The set of unused slots comprises all
those OMC_MemorySlot instances whose ElementName property does not match any of the instances of
OMC_PhysicalMemory.

Figure 3-10. Locating Physical Memory Slots

NOTE This example assumes that the managed server is a single-node system.

ElementName
Capacity

CIM_PhysicalMemory::
OMC_PhysicalMemory

Number
ElementName

CIM_Slot::
OMC_MemorySlot

root/cimv2

CIM SMASH/Server Management API Programming Guide

46 VMware, Inc.

This pseudocode depends on the pseudocode in “Making a Connection to the CIMOM” on page 16.

To report empty memory slots

1 Connect to the server URL.

Specify the Implementation namespace, supplied as a parameter, for the connection.

The actual namespace you will use depends on your implementation.

use wbemlib
use sys
use connection renamed cnx
connection = Null

params = cnx.get_params()
if params is Null
 sys.exit(-1)
connection = cnx.connect_to_host(params)
if connection is Null
 print 'Failed to connect to: ' + params['host'] + ' as user: ' + params['user']
 sys.exit(-1)

2 Enumerate the OMC_PhysicalMemory instances.

chip_instances = connection.EnumerateInstances(’OMC_PhysicalMemory’)
if len(chip_instances) is 0
 print 'Error: No physical memory instances were found.'
 sys.exit(-1)

3 Enumerate the OMC_MemorySlot instances.

slot_instances = connection.EnumerateInstances(’OMC_MemorySlot’)
if len(slot_instances) is 0
 print 'Error: No memory slot instances were found.'
 sys.exit(-1)

4 For each OMC_MemorySlot instance, compare the ElementName property with the set of
OMC_PhysicalMemory instances, and discard the instances that have matching ElementName
properties.

For other instances, print the ElementName property.

function slot_filled(slot, chips)
 for chip in chips
 if slot['ElementName'] == chip['ElementName']
 return True
 return False

empty_slots = []
for slot_instance in slot_instances
 if not slot_filled(slot_instance, chip_instances)
 empty_slots.append(slot_instance)
print ' %s empty memory slots found.' % len(empty_slots)
for slot_instance in empty_slots
 print slot_instance['ElementName']

A sample of the output looks like the following:

4 empty memory slots found.
DIMM 3C
DIMM 4D
DIMM 7C
DIMM 8D

Reporting the PCI Device Hierarchy By Using Parent DeviceIDs
This example describes a simple way to enumerate the PCI devices present in the managed server. This
information is useful to system administrators who want to troubleshoot device problems or upgrade the
hardware in a managed server.

VMware, Inc. 47

Chapter 3 Using the CIM Object Space

The PCI Device profile specification allows flexibility in how the profile is implemented. Designers can apply
one of three approaches to modeling PCI device connections, or they can combine these approaches for a more
complete implementation. Device connections can be modeled with a combination of the following
approaches.

 DeviceConnection associations

 PCIPortGroup instances that express relationships between PCI ports

 Primary and secondary bus numbers that relate PCI devices to bridges and switches

The VMware implementation supports the first two modeling approaches. For an example that uses the
second approach to relating PCI devices, see “Reporting the Path to a PCI Device By Using PortGroups” on
page 49.

For convenience, the VMware implementation also provides a fourth way to model device connections:
ParentDeviceID.

The ParentDeviceID property relates a PCI device directly to the bridge or switch through which the device
accesses the CPU. The value of the property is the value of the DeviceID property of that bridge or switch,
which can be called its parent device. A CIM client that is aware of the ParentDeviceID property can map
the hierarchy of PCI devices by using only that property to determine the relationships between devices.

This example shows how you can map the PCI device hierarchy by using the ParentDeviceID property. For
illustration, this example enumerates PCI device instances by their VMware-specific class names, rather than
by a parent class. Alternatively, you could enumerate the CIM_PCIDevice class, because all three of the
VMware classes derive, directly or indirectly, from that class, as shown in Figure 3-11.

Figure 3-11. Inheritance Relationships of PCI Device Classes

This pseudocode depends on the pseudocode in “Making a Connection to the CIMOM” on page 16.

CIM_PCIDevice

VMware_PCIDeviceVMware_PCIBridge

CIM_PCIBridge CIM_PCIeSwitch

VMware_PCIeSwitch

CIM SMASH/Server Management API Programming Guide

48 VMware, Inc.

To report the PCI device hierarchy

1 Connect to the server URL.

Specify the Implementation namespace, supplied as a parameter, for the connection.

The actual namespace you will use depends on your implementation.

use wbemlib
use sys
use connection renamed cnx
connection = Null

params = cnx.get_params()
if params is Null
 sys.exit(-1)
connection = cnx.connect_to_host(params)
if connection is Null
 print 'Failed to connect to: ' + params['host'] + ' as user: ' + params['user']
 sys.exit(-1)

2 Enumerate the VMware_PCIDevice, VMware_PCIBridge, and VMware_PCIeSwitch instances.

Save each instance in an associative array, keyed by its parent’s DeviceID, or "none" if it has no parent.
This example saves the children of each parent device as a nested associative array of instances indexed
by the device’s own ID.

dev_entries = {}
enum_devs(’VMware_PCIDevice’)
enum_devs(’VMware_PCIBridge’)
enum_devs(’VMware_PCIeSwitch’)

function enum_devs(class_name)
dev_instances = connection.EnumerateInstances(class_name)
for dev in dev_instances

parent = dev[’ParentDeviceID’]
if not parent

parent = ’none’
id = dev[’DeviceID’]
if not dev_entries.key(parent)

dev_entries[parent] = {}
dev_entries[parent][id] = dev

3 Starting with the value "none" for devices that have no parent, access the children of each parent.

For each child, print the DeviceID, the BusNumber, DeviceNumber, and FunctionNumber, and the
ElementName properties. Recursively do the same for the children of each child device.

parent = ’none’
print_children(’’, parent)

function print_children(indent, id)
if dev_entries.key(id)

dev_list = dev_entries[id]
for key in dev_list.keys()

dev = dev_list[key]
print indent, print_dev(dev)
print_children(indent + ’ ’, dev[’DeviceID’])

function print_dev(dev)
dev_summary = ’ID=%s B/D/F=%s/%s/%s (%s)’ % \

(dev[’DeviceID], dev[’BusNumber’], dev[’DeviceNumber’], \
dev[’FunctionNumber’], dev[’ElementName’])

return dev_summary

VMware, Inc. 49

Chapter 3 Using the CIM Object Space

This pseudocode displays an indented representation of the hierarchy of PCI devices. A sample of the
output looks like the following:

ID=PCI 0:0:1:0 B/D/F=0/1/0 (Plutonic Devices PD-631 PCI-X Bridge)
ID=PCI 0:2:1:0 B/D/F=2/1/0 (Trans-Oort Networks E-1500 Terabit Ethernet Adapter)
ID=PCI 0:2:1:1 B/D/F=2/1/1 (Trans-Oort Networks E-1500 Terabit Ethernet Adapter)

ID=PCI 0:0:2:0 B/D/F=0/2/0 (Plutonic Devices PD-631 PCI-X Bridge)
ID=PCI 0:3:1:0 B/D/F=3/1/0 (Haumea HINA-15K Block Storage Adapter)
ID=PCI 0:3:1:1 B/D/F=3/1/1 (Haumea HINA-15K Block Storage Adapter)
ID=PCI 0:3:2:0 B/D/F=3/2/0 (Haumea HINA-15K Block Storage Adapter)
ID=PCI 0:3:2:1 B/D/F=3/2/1 (Haumea HINA-15K Block Storage Adapter)
ID=PCI 0:3:3:0 B/D/F=3/3/0 (Plutonic Devices PD-631 PCI-X Bridge)

ID=PCI 0:4:1:0 B/D/F=4/1/0 (Mercuricity Generic USB OHCI Hub)
ID=PCI 0:4:1:1 B/D/F=4/1/1 (Mercuricity Generic USB OHCI Hub)
ID=PCI 0:4:1:2 B/D/F=4/1/2 (Mercuricity Generic USB OHCI Hub)

ID=PCI 0:0:3:0 B/D/F=0/3/0 (Albedo-Kuiper Grafix Super X-Treme Duo)
ID=PCI 0:0:3:1 B/D/F=0/3/1 (Albedo-Kuiper Grafix Super X-Treme Duo)
ID=PCI 0:0:4:0 B/D/F=0/4/0 (vAndromeda FCoW Adapter)

Reporting the Path to a PCI Device By Using PortGroups
This example describes a way to discover the path to a PCI device in the managed server by using the
portgroup connections. This information is useful to system administrators who want to troubleshoot device
problems or upgrade the hardware in a managed server.

The PCI Device profile specification allows flexibility in how the profile is implemented. Designers can apply
one of three approaches to modeling PCI device connections, or they can combine these approaches for a more
complete implementation. Device connections can be modeled with a combination of the following
approaches.

 DeviceConnection associations

 PCIPortGroup instances that express relationships between PCI ports

 Primary and secondary bus numbers that relate PCI devices to bridges and switches

The VMware implementation supports the first two modeling approaches.

For convenience, the VMware implementation also provides a fourth way to model device connections:
ParentDeviceID. For an example that uses the ParentDeviceID property, see “Reporting the PCI Device
Hierarchy By Using Parent DeviceIDs” on page 46. The ParentDeviceID property is specific to VMware
classes, so it cannot be used in vendor-independent object traversal algorithms.

This example shows how you can trace the path to a PCI device by using the PCIPortGroup associations.
This way of relating PCI devices depends only on the properties defined in the CIM schema, so it is
vendor-independent. Figure 3-12 shows the relationships of the CIM objects involved.

Given a PCI device identified by bus, device, and function numbers (<bus>:<device>:<function>), this
example identifies and displays all ports, bridges, and switches between the chosen device and the CPU. The
PCI Device profile specifies how to model associations between devices and their ports, and between ports and
the logical port groups that represent all ports on the same PCI bus.

In Figure 3-12, the SystemDevice association to the managed server is included for reference, but is not used
in this example.

CIM SMASH/Server Management API Programming Guide

50 VMware, Inc.

Figure 3-12. Tracing the Path to a PCI Device By Using PortGroups

This pseudocode depends on the pseudocode in “Making a Connection to the CIMOM” on page 16.

To trace the path to a PCI device

1 Connect to the server URL.

Specify the Implementation namespace, supplied as a parameter, for the connection.

The actual namespace you will use depends on your implementation.

use wbemlib
use sys
use connection renamed cnx
connection = Null

params = cnx.get_params()
if params is Null
 sys.exit(-1)
connection = cnx.connect_to_host(params)
if connection is Null
 print 'Failed to connect to: ' + params['host'] + ' as user: ' + params['user']
 sys.exit(-1)

GroupComponent
PartComponent

CIM_SystemDevice::
VMware_PCISystemDevice

Antecedent
Dependent

CIM_ControlledBy::
VMware_PCIControlledBy

Antecedent
Dependent

CIM_ControlledBy::
VMware_PCIControlledBy

Member
Collection

CIM_MemberOfCollection::
VMware_PCIMemberOfCollection

Member
Collection

CIM_MemberOfCollection::
VMware_PCIMemberOfCollection

CIM_ComputerSystem::
OMC_UnitaryComputerSystem

CIM_PCIDevice::
VMware_PCIBridge

root/cimv2

DeviceID
BusNumber
DeviceNumber
FunctionNumber
PhysicalSlot
PCIDeviceID
ElementName
SecondaryBusNumber

CIM_PCIPort::
VMware_PCIPort

PortType

CIM_PCIPort::
VMware_PCIPort

PortType

CIM_PCIPortGroup::
VMware_PCIPortGroup

BusNumber
ElementName

CIM_PCIDevice::
VMware_PCIDevice

DeviceID
BusNumber
DeviceNumber
FunctionNumber
PhysicalSlot
PCIDeviceID
ElementName

VMware, Inc. 51

Chapter 3 Using the CIM Object Space

2 Enumerate the names of all CIM_PCIDevice instances and save each instance name in an array.

dev_instance_names = connection.EnumerateInstances(’CIM_PCIDevice’)
if len(dev_instance_names) is 0

print ’Error: No CIM_PCIDevice instances were found.’
sys.exit(-1)

3 Search the array of PCI devices for one that matches the bus number, device number, and function number
selected by the command-line parameters.

param_bus, param_device, param_function = params[’extra_params’][0].split(’:’)
chosen_name = Null
for dev_name in dev_instance_names

dev = connection.GetInstance(dev_name)
if (dev[’BusNumber’], dev[’DeviceNumber’], dev[’FunctionNumber’]) == \

(param_bus, param_device, param_function)
chosen_name = dev_name
break

if chosen_name is Null
print ’Error: Chosen device (%s:%s:%s) not found on the managed system.’ % \

(param_bus, param_device, param_function)
exit(-1)

4 Print the DeviceID, the BusNumber, DeviceNumber, and FunctionNumber, the PhysicalSlot,
and the ElementName properties of the chosen device.

print ’Chosen device:’
print_dev(dev)

function print_dev(dev)
print ’ID=%s B/D/F=%s/%s/%s Slot=%s Type=%s (%s)’ % \

(dev[’DeviceID’], dev[’BusNumber’], dev[’DeviceNumber’], dev[’FunctionNumber’], \
dev[’PhysicalSlot’], dev[’ElementName’])

5 Traverse the CIM_ControlledBy association to get instance names of the class CIM_PCIPort, selecting
the instance that has the same BusNumber as the chosen instance of CIM_PCIDevice.

Print the PortType property of the CIM_PCIPort instance. This example maps the PortType property
to the corresponding string value in its Values qualifier.

port_name = connected_port_on_bus(dev_name, dev[’BusNumber’]
if port_name is Null

print ’No upstream port found.’
break

port = connection.GetInstance(port_name)
print_port(port)

function connected_port_on_bus(dev_name, bus_number)
port_instance_names = connection.AssociatorNames(dev_name, \

AssocClass = ’CIM_ControlledBy’, \
ResultClass = ’CIM_PCIPort’)

for port_instance_name in port_instance_names
port = connection.GetInstance(port_instance_name, \

PropertyList = [’BusNumber’, ’PortType’])
if port[’BusNumber’] == bus_number

return port_instance_name
return Null

use value_mapper renamed mapper
function print_port(port)

port_type = mapper.map_property_value_to_string(port, ’PortType’)
print ’ (%s port on bus %s)’ % (port_type, port[’BusNumber’])

CIM SMASH/Server Management API Programming Guide

52 VMware, Inc.

6 Traverse the CIM_MemberOfCollection association to the class CIM_PCIPortGroup.

A port can only belong to one portgroup, so the result is a list with one member. Print the ElementName
property of the portgroup. If this portgroup has BusNumber 0, stop looping because bus 0 connects to
the CPU.

portgroup = portgroup_of_port(port_name)
print_portgroup(portgroup)
if (portgroup[’BusNumber’] == 0

break

function portgroup_of_port(port_name)
portgroup_instance_names = connection.AssociatorNames(\

port_name, \
AssocClass = ’CIM_MemberOfCollection’, \
ResultClass = ’CIM_PCIPortGroup’)

portgroup_instance_name = portgroup_instance_names[0]
return connection.GetInstance(portgroup_instance_name, \

PropertyList = [’BusNumber’, ’ElementName’]

function print_portgroup(portgroup)
print ’ ’, portgroup[’ElementName’]

7 Enumerate instances of the CIM_PCIBridge and find one that has the same SecondaryBusNumber as
the BusNumber of the instance of CIM_PCIPortGroup.

If no instance of CIM_PCIBridge is found, search for an instance of CIM_PCIeSwitch that has a
SecondaryBusNumbers property containing the same BusNumber as the instance of
CIM_PCIPortGroup.

dev_name = upstream_bridge_or_switch(portgroup[’BusNumber’], ’CIM_PCIBridge’)
if dev_name is Null

dev_name = upstream_bridge_or_switch(portgroup[’BusNumber’], ’CIM_PCIeSwitch’)
if dev_name is Null

print ’No upstream PCI device found.’
break

function upstream_bridge_or_switch(bus_number, class_name)
names = connection.EnumerateInstanceNames(class_name)
for name in names

instance = connection.GetInstance(name)
if class_name == ’CIM_PCIBridge’ and instance[’SecondaryBusNumber’] == bus_number \
or class_name == ’CIM_PCIeSwitch’ and bus_number in instance[’SecondaryBusNumbers’]

return name
return Null

8 Working backwards from the bridge or switch, traverse the CIM_ControlledBy association to the class
CIM_PCIPort, selecting the instance that has the same BusNumber as the portgroup.

port_name = connected_port_on_bus(dev_name, portgroup[’BusNumber’])
if port_name is Null

print ’Error: Missing port on downstream side of upstream device.’
sys.exit(-1)

9 Print the PortType property of the CIM_PCIPort.

port = connection.GetInstance(port_name)
print_port(port)

10 Print the DeviceID, the BusNumber, DeviceNumber, and FunctionNumber, the PhysicalSlot,
and the ElementName properties of the upstream bridge or switch.

dev = connection.GetInstance(dev_name)
print_dev(dev)

11 Repeat from step 4.

VMware, Inc. 53

Chapter 3 Using the CIM Object Space

A sample of the output looks like the following:

Chosen device:
ID=PCI 0:4:1:0 B/D/F=4/1/0 Slot=0 (Mercuricity Generic USB OHCI Hub)
(PCI-X port on bus 4)

PCI port group for bus number 4
(PCI-X port on bus 4)

ID=PCI 0:3:3:0 B/D/F=3/3/0 Slot=2 (Plutonic Devices PD-631 PCI-X Bridge)
(PCI-X port on bus 3)

PCI port group for bus number 3
(PCI-X port on bus 3)

ID=PCI 0:0:1:0 B/D/F=0/1/0 Slot=0 (Plutonic Devices PD-631 PCI-X Bridge)
(PCI port on bus 0)

Monitoring RAID Controller State
RAID controller state is useful to system administrators who need to monitor system health. This example
shows how you can report the health state of RAID controllers on the managed server.

This example assumes you have installed a VIB that contains an implementation of the Host Hardware RAID
profile, defined by the SNIA. VMware does not implement this profile, but prominent hardware vendors
provide implementations for their storage controllers.

You can enumerate the controllers by starting from the Interop namespace and traversing associations from
the Scoping Instance of the profile. Figure 3-13 shows the relationships of the CIM objects involved.
Figure 3-13 uses a fictitious namespace and class names that begin with the prefix ACME_.

NOTE This example is consistent with versions of SMI-S prior to version 1.4. It is not consistent with version
1.5 or later. Early releases of SMI-S 1.4 are also consistent.

The CIM_PortController instance is logically identical to an instance of CIM_ComputerSystem subclassed
as ACME_HBA. The ACME_HBA instance is the logical entity that is associated with the controller port objects.

Figure 3-13. Locating RAID Controllers

This pseudocode depends on the pseudocode in “Making a Connection to the CIMOM” on page 16 and
“Mapping Integer Property Values to Strings” on page 21.

ElementName
HealthState

CIM_RegisteredProfile::
ACME_HHRCRegisteredProfile

SameElement
SystemElement

CIM_LogicalIdentity::
ACME_LogicalIdentity

CIM_PortController::
ACME_PortController

ElementName
Name
EnabledState
HealthState
OperationalStatus

CIM_ComputerSystem::
ACME_HBA

root/interop

acme/cimv2
ConformantStandard
ManagedElement

CIM_ElementConformsToProfile::
ACME_ElementConformsToHHRCProfile

CIM SMASH/Server Management API Programming Guide

54 VMware, Inc.

To locate RAID controllers

1 Connect to the server URL.

Specify the Interop namespace, supplied as a parameter, for the connection.

use wbemlib
use sys
use connection renamed cnx
connection = Null

params = cnx.get_params()
if params is Null
 sys.exit(-1)
interop_params = params
interop_params['namespace'] = 'root/interop'
connection = cnx.connect_to_host(interop_params)
if connection is Null
 print 'Failed to connect to: ' + params['host'] + ' as user: ' + params['user']
 sys.exit(-1)

2 Locate the CIM_RegisteredProfile instance for the Host Hardware RAID Controller profile.

use registered_profiles renamed prof

profile_instance_name = prof.get_registered_profile_names(connection)
hhrc_instance_name = Null
for instance_name in profile_instance_names

instance = connection.GetInstance(instance_name)
if instance[’RegisteredName’] == ’Host Hardware RAID Controller’

hhrc_instance_name = instance_name
break

if hhrc_instance_name is Null
 print 'Host Hardware RAID Controller profile not registered.'
 sys.exit(-1)

3 Traverse the CIM_ElementConformsToProfile association to reach the CIM_PortController
instances for the Host Hardware RAID Controller profile on the managed server.

pc_instance_names = connection.AssociatorNames(hhrc_instance_name, \
AssocClass = 'CIM_ElementConformsToProfile', \
ResultClass = ’CIM_PortController’)

if len(pc_instance_names) is 0
 print 'Error: No RAID port controllers found.'
 sys.exit(-1)

4 For each port controller instance, traverse the CIM_LogicalIdentity association to reach the matching
instance of CIM_ComputerSystem representing the RAID controller.

The CIM_LogicalIdentity mapping is 1:1, so the resulting array has only one element.

for pc_instance_name in pc_instance_names
controller_instance_names = connection.AssociatorNames(pc_instance_name, \

AssocClass = 'CIM_LogicalIdentity', \
ResultClass = ’CIM_ComputerSystem’)

cs_instance_name = controller_instance_names[0]

VMware, Inc. 55

Chapter 3 Using the CIM Object Space

5 For the resulting controller instance, print the ElementName, Name, EnabledState, HealthState, and
OperationalStatus properties.

This pseudocode provides default values for the properties. VMware cannot guarantee that your
hardware vendor has implemented all the properties used in this example.

use value_mapper renamed map

instance = connection.GetInstance(cs_instance_name)
if instance.key(’ElementName’)

element_name = instance[’ElementName’]
else

element_name = ’ElementName not available’
if instance.key(’Name’)

name = instance[’Name’]
else

name = ’Name not available’
if instance.key(’EnabledState’)

enabled_state = map.map_instance_property_to_string(connection, \
 instance, \

’EnabledState’)
if not enabled_state

enabled_state = ’not available’
if instance.key(’HealthState’)

health_state = map.map_instance_property_to_string(connection, \
instance, \
’HealthState’)

if not health_state
health_state = ’not available’

if instance.key(’OperationalStatus’)
operational_status = map.map_instance_property_to_string(connection, \

instance, \
’OperationalStatus’)

if not operational_status
operational_status = ’not available’

print "%s (%s)’ % (element_name, name)
print ’ EnabledState: ’ + enabled_state
print ’ HealthState: ’ + health_state
print ’ OperationalStatus: ’ + operational_status

A sample of the output looks like the following:

Controller 0 SAS/SATA (1F7D708944192F00)
EnabledState: Enabled
HealthState: Minor failure
OperationalStatus: Degraded

Monitoring State of RAID Connections
This example shows how to report the connections of RAID controller initiators to targets on the managed
server. RAID connection information is useful to system administrators who need to monitor system health.

This example assumes you have installed a VIB that contains an implementation of the Host Hardware RAID
profile, defined by the SNIA. VMware does not implement this profile, but prominent hardware vendors
provide implementations for their storage controllers.

This example assumes an implementation that models serial-attached SCSI connections to drives that belong
to pooled RAID configurations. This model is similar to the SMI-S Host Hardware RAID Controller profile
published by the SNIA. The model might or might not correspond to your hardware vendor’s implementation.

Figure 3-14 shows the relationships of the CIM objects involved. Figure 3-14 uses a fictitious namespace and
class names that begin with the prefix ACME_.

This example enumerates the connections of a controller by starting from the instance of
CIM_ComputerSystem subclassed as ACME_HBA that represents the RAID controller. You must do this
procedure for each disk controller that you monitor on the managed server. See “Monitoring RAID Controller
State” on page 53 for information about locating the RAID controllers attached to a managed system.

CIM SMASH/Server Management API Programming Guide

56 VMware, Inc.

From the ACME_HBA instance, you traverse the CIM_SystemDevice association to the CIM_LogicalPort
instances, then traverse the CIM_DeviceSAPImplementation association to the
CIM_SCSIProtocolEndpoint instances.

The SMI-S specifies two different ways to model connections between targets and initiators. This example
shows the simpler but less detailed choice.

Your hardware vendor’s implementation might not follow this approach. Contact the hardware vendor for
more information about the implementation.

This example traverses the CIM_MemberOfCollection association from the CIM_SCSIProtocolEndpoint
to the CIM_ConnectivityCollection instance that represents a connection to a SCSI target. If your vendor’s
hardware implementation models the connection with the CIM_SCSIInitiatortargetLogicalUnitPath
association, you can find connection status in that association instead of in the
CIM_ConnectivityCollection instance.

Figure 3-14. Locating Connections Between HBA Initiators and Targets

This pseudocode depends on the pseudocode in “Making a Connection to the CIMOM” on page 16 and
“Mapping Integer Property Values to Strings” on page 21.

Member
Collection

CIM_MemberOfCollection::
ACME_MemberOfCollection

ElementName
Name

CIM_ComputerSystem::
ACME_HBA

Name
ConnectionType
Role

CIM_SCSIProtocolEndpoint::
ACME_SCSIProtocolEndpoint

InstanceID
ConnectivityStatus

CIM_ConnectivityCollection::
ACME_ConnectivityCollection

acme/cimv2

GroupComponent
PartComponent

CIM_SystemDevice::
ACME_SystemDevice

Antecedent
Dependent

CIM_DeviceSAPImplementation::
ACME_DeviceSAPImplementation

DeviceID
ElementName

CIM_LogicalPort::
ACME_SASSATAPort

VMware, Inc. 57

Chapter 3 Using the CIM Object Space

To report state of RAID connections

1 From a given instance of CIM_ComputerSystem that represents a SCSI controller, traverse the
CIM_SystemDevice association to reach the CIM_LogicalPort instances on the managed server.

port_instance_names = connection.AssociatorNames(controller_instance_name, \
AssocClass = 'CIM_SystemDevice', \
ResultClass = ’CIM_LogicalPort’)

if len(port_instance_names) is 0
 print 'Error: No ports associated with controller.'
 sys.exit(-1)

2 For each logical port instance, traverse the CIM_DeviceSAPImplementation association to reach the
matching instance of CIM_SCSIProtocolEndpoint.

for port_instance_name in port_instance_names
init_instance_names = connection.AssociatorNames(port_instance_name, \

AssocClass = 'CIM_DeviceSAPImplementation', \
ResultClass = ’CIM_SCSIProtocolEndpoint’)

3 From the instance of CIM_SCSIProtocolEndpoint, traverse the CIM_MemberOfCollection association
to reach the instance of CIM_ConnectivityCollection that represents the connection between initiator
and target.

for init_instance_name in init_instance_names
conn_instance_names = connection.AssociatorNames(init_instance_name, \

AssocClass = 'CIM_MemberOfCollection', \
ResultClass = ’CIM_ConnectivityCollection’)

4 For the resulting instance of CIM_ConnectivityCollection, print the InstanceID and
ConnectivityStatus properties.

for instance_name in conn_instance_names
print_scsi_connection_instance(connection, instance_name)

use value_mapper renamed map

function print_scsi_connection_instance(connection, instance_name
health_state = connectivity_status = ’’
instance = connection.GetInstance(instance_name)
if instance.key(’InstanceID’)

instance_id = instance[’InstanceID’]
else

instance_id = ’InstanceID not available’
if instance.key(’ConnectivityStatus’)

connectivity_status = map.map_instance_property_to_string(connection, \
instance, \
’ConnectivityStatus’)

if not connectivity_status
connectivity_status = ’not available’

print ’ Port connection ’ + instance_id
print ’ ConnectivityStatus: ’ + connectivity status

Reporting Accessible Storage Extents
This example shows how to report the disk storage extents that are accessible to a given SCSI controller. The
information can be useful for configuring the managed servers in a datacenter.

This example assumes you have already located an instance of CIM_ComputerSystem subclassed as
ACME_Controller that represents the RAID controller. See “Monitoring RAID Controller State” on page 53
for information about locating the RAID controllers attached to a managed system.

This example is based on the assumption that you have already installed a VIB that contains an
implementation of the Host Hardware RAID profile, defined by the SNIA. VMware does not implement this
profile, but prominent hardware vendors provide implementations for their storage controllers.

CIM SMASH/Server Management API Programming Guide

58 VMware, Inc.

This example is based on the assumption that the implementation on the managed server models
serial-attached SCSI connections to drives that belong to pooled RAID configurations. This model is similar to
the SMI-S Host Hardware RAID Controller profile published by the SNIA.

The model might or might not correspond to your hardware vendor’s implementation. Contact the hardware
vendor for more information about the implementation.

Figure 3-15 shows the relationships of the CIM objects involved. Figure 3-15 uses a fictitious namespace and
class names that begin with the prefix ACME_.

The SMI-S specifies two different ways to model connections between targets and initiators. If your hardware
vendor’s implementation uses the CIM_SCSIInitiatortargetLogicalUnitPath association, you can
follow the LogicalUnit reference of that association to get to the LUN directly.

Another way to locate disk storage extents is to start from each instance of CIM_ConnectivityCollection
connected to the controller and to follow a series of associations to the disk media attached to the target
endpoint. This procedure begins with the reverse of the last step in “Monitoring State of RAID Connections”
on page 55, except that you need to filter on the value of the Role property to retrieve only targets, not
initiators.

This example bypasses the issue of implementation choice by going from the SCSI controller to the target
endpoints in one step by using the CIM_HostedAccessPort association. With this approach, the hardware
vendor’s choice of SMI-S implementation does not matter.

Figure 3-15. Locating Storage Extents Attached to SCSI Targets

This pseudocode depends on the pseudocode in “Making a Connection to the CIMOM” on page 16 and
“Mapping Integer Property Values to Strings” on page 21.

CIM_MediaPresent::
ACME_MediaPresent

AvailableSAP
ManagedElement

 Antecedent
Dependent

Collection
Member

CIM_MemberOfCollection::
ACME_MemberOfCollection

DeviceID
OperationalStatus
BlockSize
NumberOfBlocks

CIM_StorageExtent::
ACME_StorageExtent

DeviceID
ElementName

CIM_DiskDrive::
ACME_DiskDrive

Name
ConnectionType
Role

CIM_SCSIProtocolEndpoint::
ACME_SCSIProtocolEndpoint

InstanceID

CIM_ConnectivityCollection::
ACME_ConnectivityCollection

acme/cimv2

CIM_SAPAvailableForElement::
ACME_SAPAvailableForElement

Antecedent
Dependent

CIM_HostedAccessPort
ACME_HostedAccessPort

ElementName
Name

CIM_ComputerSystem::
ACME_HBA

VMware, Inc. 59

Chapter 3 Using the CIM Object Space

To report available storage extents

1 From a given instance of CIM_ComputerSystem subclassed as ACME_HBA, traverse the
CIM_HostedAccessPoint association to reach the CIM_SCSIProtocolEndpoint instances on the
managed server.

Use the value of the Role property to distinguish the target endpoints from the initiator endpoints.
Values of 3 or 4 indicate that the endpoint functions as a target.

targ_instance_names = connection.AssociatorNames(controller_instance_name, \
AssocClass = 'CIM_HostedAccessPoint', \
ResultClass = ’CIM_SCSIProtocolEndpoint’)

if len(targ_instance_names) is 0
 print 'Error: No targets associated with SCSI controller instance.'
 sys.exit(-1)
for instance_name in targ_instance_names

instance = connection.GetInstance(instance_name)
if (not (instance[’Role’] in [3, 4]))

targ_instance_names.delete(instance_name)

2 For each target instance, traverse the CIM_SAPAvailableForElement association to reach the disk drive
for the target.

for targ_instance_name in targ_instance_names
disk_instance_names = connection.AssociatorNames(targ_instance_name, \

AssocClass = 'CIM_SAPAvailableForElement', \
ResultClass = ’CIM_DiskDrive’)

3 From CIM_DiskDrive, traverse the CIM_MediaPresent association to reach the storage extents that
belong to that drive.

for disk_instance_name in disk_instance_names
ext_instance_names = connection.AssociatorNames(disk_instance_name, \

AssocClass = 'CIM_MediaPresent', \
ResultClass = ’CIM_StorageExtent’)

4 For each instance of CIM_StorageExtent, print the DeviceID and OperationalStatus properties.
Also print the computed extent size (BlockSize * NumberOfBlocks), if those properties are available.

for ext_instance_name in ext_instance_names
print_extent(connection, ext_instance_name)

use value_mapper renamed mapper
function print_extent(connection, instance_name)

instance = connection.GetInstance(instance_name)
device_id = instance[’DeviceID’]
operational_status = ’’
status_codes = instance[’OperationalStatus’]
for status_code in status_codes

value = mapper.map_instance_property_to_string(connection, \
instance, \
’OperationalStatus’)

operational_status = operational_status + ’ ’ + value
if instance.key(’BlockSize’)

block_size = instance[’BlockSize’]
else

block_size = 0
if instance.key(’NumberOfBlocks’)

num_blocks = instance[’NumberOfBlocks’]
else

num_blocks = 0
print ’Disk extent: ’ + device_id
print ’ Operational status: ’ + operational_status
size = num_blocks * block_size
if size

print ’ Size: " + size

CIM SMASH/Server Management API Programming Guide

60 VMware, Inc.

Reporting Storage Extents Without Third-Party Storage Provider
This example shows how to report the disk storage extents that are available to a managed server, in the
absence of a dedicated storage provider supplied by a storage vendor. Information about the storage extents
is limited when a dedicated storage provider is not installed. The limited information can still be useful for
configuring the managed servers in a datacenter.

You can locate disk storage extents by enumerating instances of VMware_HypervisorStorageExtent in the
Implementation namespace. The pseudocode in this topic depends on the pseudocode in “Making a
Connection to the CIMOM” on page 16.

To report storage extents

1 Connect to the server URL.

Specify the Implementation namespace, supplied as a parameter, for the connection.

The actual namespace you will use depends on your installation.

use wbemlib
use sys
use connection renamed cnx
connection = Null

params = cnx.get_params()
if params is Null
 sys.exit(-1)
connection = cnx.connect_to_host(params)
if connection is Null
 print 'Failed to connect to: ' + params['host'] + ' as user: ' + params['user']
 sys.exit(-1)

2 Enumerate instance names of VMware_HypervisorStorageExtent.

Select the instances where the OtherIdentifyingInfo property begins with ’/vmfs/devices/disks’.
For each such instance, print the ElementName, OtherIdentifyingInfo, and OperationalStatus
properties.

use value_mapper renamed mapper
instances = connection.EnumerateInstances(’VMware_HypervisorStorageExtent’)
for instance in instances
 if instance[’OtherIdentifyingInfo’][0] begins ’/vmfs/devices/disks’

status = mapper.map_instance_property_to_string(connection, \
instance, \
’OperationalStatus’)

print ’ Storage Extent = ’ + instance[’ElementName’]
print ’ Other Info: ’ + instance[’OtherIdentifyingInfo’]
print ’ OperationalStatus: ’ + status

A sample of the output looks like the following:

Storage Extent = Local Disk (naa.7001e4e041d08f00119991caf9fd2aaf)
Other Info: /vmfs/devices/disks/naa.7001e4e041d08f00119991caf9fd2aaf
OperationalStatus: OK

Working with the System Event Log
This example shows how to list the records in the system event log (SEL) of a managed server. This example
also shows how to clear the records from the SEL. Clearing the log entries can save on disk space and reduce
clutter from old records in the SEL.

You can locate the instance of CIM_RecordLog that represents the SEL by enumerating all instances of
CIM_RecordLog and filtering out other logs by name. The log records are associated to the CIM_RecordLog
instance. Figure 3-16 shows the relationships of the CIM objects involved.

NOTE This discussion assumes that the managed server is a single-node system.

VMware, Inc. 61

Chapter 3 Using the CIM Object Space

Figure 3-16. Listing Records of the System Event Log

This example shows how to get the log entries from the Implementation namespace, assuming you already
know its name. The pseudocode in this topic depends on the pseudocode in “Making a Connection to the
CIMOM” on page 16.

To list and clear the System Event Log

1 Connect to the server URL.

Specify the Implementation namespace, supplied as a parameter, for the connection.

The actual namespace you will use depends on your installation.

use wbemlib
use sys
use connection renamed cnx
connection = Null

params = cnx.get_params()
if params is Null
 sys.exit(-1)
connection = cnx.connect_to_host(params)
if connection is Null
 print 'Failed to connect to: ' + params['host'] + ' as user: ' + params['user']
 sys.exit(-1)

2 Enumerate instance names of CIM_RecordLog.

instance_names = connection.EnumerateInstanceNames(’CIM_RecordLog’)
if len(instance_names) is 0
 print 'Error: No logs found on managed server.'
 sys.exit(-1)

3 Iterate over the log instances, rejecting all log instances that are not named "IPMI SEL".

for instance_name in instance_names
instance = connection.GetInstance(instance_name)
if instance[’ElementName’] is ’IPMI SEL’

print_log_entries(instance_name)
clear_log_entries(instance_name)

4 From the log instance that represents the SEL, traverse the CIM_LogManagesRecord association to reach
the entries that belong to the log.

function print_log_entries(instance_name)
instances = connection.Associators(instance_name,

AssocClass = ’CIM_LogManagesRecord’)
for instance in instances

for prop in [’MessageTimestamp’, ’RecordData’]
print ’ %28s %s’ % (prop, instance[prop])

Log
Record

CIM_LogManagesRecord::
OMC_IpmiLogManagesRecord

ElementName = “IPMI SEL”
ClearLog()

CIM_RecordLog::
OMC_IpmiRecordLog

RecordID
RecordData
MessageTimestamp

CIM_LogRecord::
OMC_IpmiLogRecord

root/cimv2

CIM SMASH/Server Management API Programming Guide

62 VMware, Inc.

5 On the log instance that represents the SEL, invoke the ClearLog() method with no parameters.

function clear_log_entries(instance_name)
method_params = { }
(error_return, output) = connection.InvokeMethod('ClearLog', \

instance_name, \
**method_params)

if error_return is 0
print ’Log entries cleared.’

else
print ’Failed to clear log entries; error = %s’ % error_return

A sample of the output looks like the following:

Log contains 5 entries:
 MessageTimestamp 20090408014645.000000+000
 RecordData *81.0.32*1 0*2*5 2 220 73*32 0*4*16*81*false*111*2*255*255*1*
 MessageTimestamp 20090408014807.000000+000
 RecordData *3.0.32*2 0*2*87 2 220 73*32 0*4*1*3*false*1*87*149*129*1*
 MessageTimestamp 20090408015617.000000+000
 RecordData *3.0.32*3 0*2*65 4 220 73*32 0*4*1*3*false*1*89*149*129*1*
 MessageTimestamp 20090408020052.000000+000
 RecordData *3.0.32*4 0*2*84 5 220 73*32 0*4*1*3*false*1*89*149*129*1*
 MessageTimestamp 20090408020807.000000+000
 RecordData *3.0.32*5 0*2*7 7 220 73*32 0*4*1*3*false*1*89*150*129*1*
Log entries cleared.

Subscribing to Indications
ESXi 5.5 supports the following types of indications.

Table 3-2. Indications Supported by ESXi

Indication Description

OMC_IpmiAlertIndication Sent whenever entries are added to the IPMI System Event Log, and
whenever a sensor’s HealthState property becomes less healthy than
previously seen.

OMC_BatteryIpmiAlertIndication Specializes OMC_IpmiAlertIndication.

OMC_BIOSIpmiAlertIndication Specializes OMC_IpmiAlertIndication.

OMC_ChassisIpmiAlertIndication Specializes OMC_IpmiAlertIndication.

OMC_CoolingUnitIpmiAlertIndication Specializes OMC_IpmiAlertIndication.

OMC_DiskIpmiAlertIndication Specializes OMC_IpmiAlertIndication.

OMC_MemoryIpmiAlertIndication Specializes OMC_IpmiAlertIndication.

OMC_PowerIpmiAlertIndication Specializes OMC_IpmiAlertIndication.

OMC_ProcessorIpmiAlertIndication Specializes OMC_IpmiAlertIndication.

VMware_ConcreteJobCreation Notifies a listener when a new VMware_ConcreteJob has been created to
monitor an asynchronous operation initiated by an extrinsic method.

VMware_ConcreteJobModification Reports when the status of a VMware_ConcreteJob has changed. A
change to a job indicates progress or completion, or that an error occurred
during the asynchronous operation.

VMware_ConcreteJobDeletion Notifies a listener when a VMware_ConcreteJob has been deleted by the
provider for that job.

VMware_KernelIPChangedIndication This indication is sent whenever the ESXi kernel IP address for the host has
changed.

VMware, Inc. 63

Chapter 3 Using the CIM Object Space

To receive CIM indications, you must have a running process that accepts indication messages and logs them
or otherwise acts on them, depending on your application. You can use a commercial CIM indication
consumer to do this. If you choose to implement your own indication consumer, see the following documents:

 DMTF's CIM Event Model White Paper at http://www.dmtf.org/standards/documents/CIM/DSP0107.pdf

 DMTF's Indications Profile specification at
http://www.dmtf.org/standards/published_documents/DSP1054.pdf

 CIM indication specifications from your server supplier that are specific to the server model

The indication consumer must operate with a known URL. This URL is used when instantiating the
IndicationHandler object.

Similarly, you must know which indication class to monitor. This information is used when instantiating the
IndicationFilter object.

This example shows how to instantiate the objects needed to register for indications.

This pseudocode depends on the pseudocode in “Making a Connection to the CIMOM” on page 16.

To subscribe to indications

1 Connect to the server URL.

Specify the Interop namespace for the connection.

use wbemlib
use sys
use connection renamed cnx
connection = Null

params = cnx.get_params()
if params is Null
 exit(-1)
interop_params = params
interop_params['namespace'] = 'root/interop'
connection = cnx.connect_to_host(interop_params)
if connection is Null
 print 'Failed to connect to: ' + params['host'] + ' as user: ' + params['user']

2 Build the URL for the indication consumer.

destination = 'http://' + params['consumer_host'] \
 + ':' + params['consumerPort'] + '/indications'

3 Create the IndicationHandler instance to represent the consumer.

handlerBindings = { \
 'SystemCreationClassName' : 'OMC_UnitaryComputerSystem', \
 'SystemName' : clientHost, \

'Name': 'Org:Local', \
'CreationClassName' : 'CIM_IndicationHandlerCIMXML' \

 }

handlerName = wbemlib.CIMInstanceName(\
 'CIM_IndicationHandlerCIMXML', \
 keybindings=handlerBindings, \
 namespace='root/interop')

handlerInst = wbemlib.CIMInstance(\
 'CIM_IndicationHandlerCIMXML', \
 properties = handlerBindings, \
 path = handlerName)
handlerInst['Destination'] = destination

chandlerName = connection.CreateInstance(handlerInst)

Use a globally unique organization identifier in place of Org, and use an organizationally unique
identifier in place of Local.

http://www.dmtf.org/standards/documents/CIM/DSP0107.pdf
http://www.dmtf.org/standards/published_documents/DSP1054.pdf

CIM SMASH/Server Management API Programming Guide

64 VMware, Inc.

4 Create the IndicationFilter instance to specify the indication class (such as CIM_AlertIndication).

The SourceNamespace property of the filter must match the Implementation namespace of the
indication provider. In this pseudocode, the namespace is root/cimv2 but a third-party indication
provider might use a different namespace.

filterBindings = { \
 'SystemCreationClassName' : 'OMC_UnitaryComputerSystem', \
 'SystemName' : clientHost, \
 'Name': 'Org:Local', \
 'CreationClassName' : 'CIM_IndicationFilter' \
 }

filterName = wbemlib.CIMInstanceName(\
 'CIM_IndicationFilter', \
 keybindings=filterBindings, \
 namespace='root/interop')

filterInst = wbemlib.CIMInstance(\
 'CIM_IndicationFilter', \
 properties = filterBindings, \
 path = filterName)
 filterInst['SourceNamespace'] = 'root/cimv2'
 filterInst['Query'] = 'SELECT * FROM ' + params['className']
 filterInst['QueryLanguage'] = 'WQL'

 cfilterName = connection.CreateInstance(filterInst)

5 Create the IndicationSubscription association to link the filter with the handler.

subBindings = { 'Filter': cfilterName, \
'Handler' : chandlerName }

 subName = wbemlib.CIMInstanceName(\
 'CIM_IndicationSubscription', \
 keybindings = subBindings, \
 namespace = 'root/interop')

 subInst = wbemlib.CIMInstance('CIM_IndicationSubscription', \
path = subName)

 subInst['Filter'] = cfilterName
 subInst['Handler'] = chandlerName

 rsubName = connection.CreateInstance(subInst)

VMware, Inc. 65

4

If you have trouble with connections between a CIM client and a CIM server, or between a CIM server and a
process that consumes indications, you can try to diagnose and correct the trouble using this information.

This material is organized into two sections. One section applies to connections initiated by the client. The
other section applies to connections initiated by the server when delivering indications.

 See “Connections from Client to CIM Server” on page 65 if your CIM client is unable to connect to the
CIM server.

 See “Connections from CIM Server to Indication Consumer” on page 66 if your CIM client is able to
connect to the CIM server and subscribe to indications, but the indications are not delivered.

Connections from Client to CIM Server
If your client fails to complete a connection to a CIM server, use these suggestions to help verify the connection
parameters and the health of the CIM server.

Using SLP

Check the connection parameters using an SLP client (available on the Web). Run the SLP client on the same
subnetwork as the managed server. Verify that the managed server advertises the expected CIM service and
the correct URL.

Using a Web Browser

To verify that you can reach the CIM service at the advertised location, connect to the managed server with a
Web browser. Use a URL of the form https://<cim-server.mydomain.com>:5989/ (substituting the name of the
actual server), and verify that the server is responding on the expected port. Port 5989 is the default port for
CIM-XML connections, but your installation might be different.

Using a Command-Line Interface

Using a command-line interface allows you to bypass any issues related to the correct invocation of the
interface functions in a programmatic client.

For convenient interactive access to a CIM server, install wbemcli, available from
http://sourceforge.net/project/showfiles.php?group_id=128809. Using wbemcli, you can invoke CIM
operations from a shell.

To access a CIM server using the WS-Management protocol, install the wsmancli package, available from
http://sourceforge.net/projects/openwsman/. Using the wsman command-line interface, you can invoke CIM
operations from a shell.

Troubleshooting Connections 4

http://sourceforge.net/project/showfiles.php?group_id=128809
http://sourceforge.net/projects/openwsman/

CIM SMASH/Server Management API Programming Guide

66 VMware, Inc.

Verifying User Authentication Credentials

If you are certain that the connection parameters are correct, verify the authentication parameters. To complete
a connection, you must authenticate as a user that is known to the managed server.

Connect to the managed server through the console and check that your root password is correct. Then use
that password to authenticate as the root user from your client.

Rebooting the Server

If all your connection parameters are correct and you are certain of your authentication credentials but you
still cannot complete a connection, reboot the managed server or restart the management agents on the server.

Using Correct Client Samples

If you are using sample clients supplied by VMware, check the documentation to be sure that the samples are
intended to work with the CIM server to which you are trying to connect. The samples might hard-code
parameters, such as the port and namespace, that affect the connection.

For example, the C++ code in the CIM Storage Management API Programming Guide connects to the CIM server
included with ESX Server 3.0, but does not connect to the CIM server included with ESX 4 or later.

Using Other CIM Client Libraries

VMware does not test all available CIM client libraries with ESXi. If your CIM client cannot connect to the CIM
server, try writing a test client for a different library. For example, http://.sourceforge.net has a number of CIM
client libraries available.

Using the WS-Management Library

If you are unable to find a satisfactory client library to make a WBEM connection, use WS-Management. ESXi
6.0 includes a WS-Man server to support CIM operations.

VMware recommends using the Web Services for Management Perl Library for WS-Man clients. This library
is included with the VMware vSphere SDK for Perl version 1.6 or higher. See
http://www.vmware.com/support/pubs/sdk_pubs.html for more information about the vSphere SDK for Perl.

Connections from CIM Server to Indication Consumer
If your client can connect to a CIM server and subscribe to indications, but cannot receive indications, use these
suggestions to try to resolve the problem.

Firewall Configuration

ESXi ships with a software firewall that is configured by default to block outgoing connection requests. When
an indication is triggered, the producer cannot open a connection to the consumer unless the target port is
opened in the firewall.

When you create an indication subscription, the CIMOM opens the corresponding port in the firewall for you.
To check the firewall configuration, use these commands:

 esxcli network firewall get

tells you whether the firewall is enabled.

 esxcli network firewall ruleset list

tells you which specific services are enabled.

NOTE If the managed server is in lockdown mode, you must authenticate using a CIM ticket obtained from
vCenter Server. See CIM Authentication for Lockdown Mode for more information about using a CIM ticket to
authenticate.

http://www.vmware.com/support/developer/cim-sdk/4.0/smash/cim_smash_400_ticket_authentication.pdf
http://sourceforge.net
http://www.vmware.com/support/pubs/sdk_pubs.html

VMware, Inc. 67

Chapter 4 Troubleshooting Connections

To disable or enable the firewall, use these commands:

 esxcli network firewall set -e false

disables the firewall.

 esxcli network firewall set -e true

enables the firewall.

It is also possible to create rulesets to open or close firewall ports manually. For information about manual
firewall configuration for ESXi, see the vSphere Security Guide.

For information about the esxcli command set, see the manual Getting Started with vSphere Command-Line
Interfaces.

System Event Log

Alert indications for a managed server rely primarily on the contents of the System Event Log (SEL). If the SEL
is disabled, or if it is full and cannot accept new log entries, you will not receive most alert indications for new
events.

If the SEL is full, system status is shown correctly in response to CIM queries, regardless of indication delivery.
To receive indications when the SEL is not accepting new entries, you have the following options.

 Consult your hardware vendor’s system documentation for instructions to clear the SEL.

 You can clear the SEL from a vSphere Client connected to vCenter Server. On the Hardware tab, choose
System Event Log from the View menu and click Reset event log.

CIM SMASH/Server Management API Programming Guide

68 VMware, Inc.

VMware, Inc. 69

5

Offline bundles contain a combination of VIBs and metadata used to update ESXi host software. Offline
bundles are similar to depots, with the difference that offline bundles are available from a local file system
rather than from a web server.

You can create an offline bundle from a depot using VMware vSphere PowerCLI.

Creating an Offline Bundle With VMware vSphere PowerCLI
Before you can create an offline bundle, you must install the PowerCLI software. vSphere PowerCLI 5.0
requires:

 .NET 2.0 Service Pack 1

 Windows PowerShell 1.0 or Windows PowerShell 2.0 RTM

You can download vSphere PowerCLI 5.0 from the VMware vSphere 5.0 web site.

To create an offline bundle using vSphere PowerCLI

1 Run vSphere PowerCLI.

Choose Start > Programs > VMware > VMware vSphere PowerCLI > VMware vSphere PowerCLI.

2 Select a software depot from which to create an offline bundle.

Add-ESXSoftwareDepot http://depot-server/build-123456/ESX

NOTE If you previously added a different software depot during this session, first remove it from the array
of default software depots. Repeat the following commands until the $DefaultSoftwareDepots array
is empty. Then select a software depot using the Add-ESXSoftwareDepot command.

Remove-ESXSoftwareDepot $DefaultSoftwareDepots[0]
$DefaultSoftwareDepots

3 Display a list of the array image profiles in the depot.

$profiles=Get-ESXImageProfile
$profiles

4 Find the array index of the Standard image profile and export it to an offline bundle.

Export-ESXImageProfile -ImageProfile $profiles[index] ‘
-ExportToBundle -FilePath “C:\ESX_bundle.zip”

For information about using the offline bundle to upgrade ESXi host software, see “Creating an Offline Bundle
With VMware vSphere PowerCLI” on page 69.

For more information about using vSphere PowerCLI with image profiles, see vSphere Installation and Setup.

Offline Bundles 5

CIM SMASH/Server Management API Programming Guide

70 VMware, Inc.

VMware, Inc. 71

Index

A
Active Directory 16

associations

CIM_ComputerSystemPackage 27

CIM_ConcreteComponent 44, 45

CIM_ControlledBy 51, 52

CIM_DeviceSAPImplementation 56, 57

CIM_ElementConformsToProfile 20, 54

CIM_ElementSoftwareIdentity 29, 31, 33

CIM_HostedAccessPoint 59

CIM_HostedService 33, 35

CIM_IndicationFilter 64

CIM_IndicationSubscription 64

CIM_InstalledSoftwareIdentity 29, 31

CIM_LogicalIdentity 54

CIM_LogManagesRecord 61

CIM_MediaPresent 59

CIM_MemberOfCollection 42, 52, 56, 57

CIM_SAPAvailableForElement 59

CIM_SCSIInitiatortargetLogicalUnitPath 56, 58

CIM_ServiceAffectsElement 33

CIM_SystemDevice 39, 42, 44, 56, 57

PCIPortGroup 49

authentication 16

CIM ticket 16

credentials 16, 66

PAM 16

password 16

B
Base Server profile 15, 20

BIOS version 29, 31

C
CIM provider VIBs 11

CIM server 65

CIM ticket 16

CIM version 9

CIMOM 10, 15

CIM-XML 9

client libraries, CIM 21, 66

connection object, client 17, 21

connections

CIM client to CIM server 65

CIM server to indication consumer 66

network 65

PCI devices 49, 52

troubleshooting 65

console access, managed server 66

controllers, RAID 53, 55

cores

See processor cores

CPU cores

See processor cores

D
device IDs

PCI devices 46

diagnosing connections 65

DMTF 9, 11

E
extents

storage 57, 58, 59, 60

F
fans

instances 42

redundancy 40

firewall

ports 13, 66

software 66

H
hardware threads 42, 43

I
image profiles 69

Implementation namespace 14, 18, 19, 28

indication consumer 63, 66

indication producer 66

indications 62, 63

OMC_BatteryIpmiAlertIndication 62

OMC_BIOSIpmiAlertIndication 62

OMC_ChassisIpmiAlertIndication 62

OMC_CoolingUnitIpmiAlertIndication 62

OMC_DiskIpmiAlertIndication 62

OMC_IpmiAlertIndication 62

OMC_MemoryIpmiAlertIndication 62

OMC_PowerIpmiAlertIndication 62

VMware_ConcreteJobCreation 62

VMware_ConcreteJobDeletion 62

VMware_ConcreteJobModification 62

CIM SMASH/Server Management API Programming Guide

72 VMware, Inc.

VMware_KernelIPChangedIndication 62

initiators 55, 57, 59

instances

ACME_Controller (fictitious) 57

ACME_HBA (fictitious) 53, 55, 56, 59

CIM_AlertIndication 64

CIM_Chassis 27

CIM_ComputerSystem 39, 42, 44, 53, 54, 55,
57, 59

CIM_ConcreteJob 33

CIM_ConnectivityCollection 56, 57, 58

CIM_DiskDrive 59

CIM_Fan 42

CIM_HardwareThread 42, 45

CIM_LogicalPort 56, 57

CIM_NumericSensor 38, 39, 40

CIM_PCIBridge 52

CIM_PCIDevice 47, 51

CIM_PCIeSwitch 52

CIM_PCIPort 51, 52

CIM_PCIPortGroup 52

CIM_PhysicalPackage 27, 28

CIM_PortController 53, 54

CIM_Processor 44

CIM_ProcessorCapabilities 42

CIM_ProcessorCore 42, 44, 45

CIM_RecordLog 61

CIM_RedundancySet 40, 42

CIM_RegisteredProfile 14, 15, 19

CIM_SCSIProtocolEndpoint 56, 57, 59

CIM_Sensor 38, 40

CIM_SoftwareIdentity 29, 30, 31, 32, 33

CIM_SoftwareInstallationService 33, 35

CIM_SoftwareInstallationServiceCapabilities 3
4

CIM_StorageExtent 59

OMC_MemorySlot 45, 46

OMC_PhysicalMemory 45, 46

VMware_ComponentSoftwareIdentity 31

VMware_ConcreteJob 62

VMware_HypervisorSoftwareIdentity 31

VMware_HypervisorStorageExtent 60

Interop namespace 14, 15, 18

inventory, datacenter 25

L
lockdown mode 16

M
managed server 14, 19, 25, 27

management agents 66

manufacturer 25, 27

memory 45

metadata, software installation 69

methods, extrinsic

ClearLog 62

InstallFromSoftwareIdentity 33

InstallFromURI 33, 35

model number 25, 27

N
namespace, XML 15

namespaces, CIM 13

Implementation 14, 18, 19, 28

Interop 14, 15, 18

O
offline bundles 33, 69

OMC 9

online resources, CIM and SMASH 11

P
PAM

see Pluggable Authentication Module

PCI

bridge 52

bus 49, 52

devices 46, 49, 50, 51

port 52

ports 49, 51

switch 52

topology 46

platform product support 9

Pluggable Authentication Module 16

portgroups, PCI 49, 52

ports

CIM server 13, 15, 65

device controller 53, 54

firewall 66

indication 66

PCI 49, 51, 52

processor cores 42

profiles

Base Server 10, 15, 20

CPU 10

Ethernet Port 10

Fan 10

IP Interface 10

PCI Device 10, 47, 49

Power State Management 10

Power Supply 10

Profile Registration 10

Record Log 10

registered 14, 18

Sensors 10

SMASH 10, 14

VMware, Inc. 73

Index

Software Inventory 10, 31

Software Update 33

System Memory 10

versions 10

properties

BlockSize 59

BusNumber 48, 51, 52

ConectivityStatus 57

CoreEnabledState 44

CurrentClockSpeed 44

CurrentState 39, 40

DeviceID 42, 47, 48, 51, 52, 59

DeviceNumber 48, 51, 52

ElementName 33, 39, 40, 42, 44, 45, 46, 48, 51,
52, 55, 60

ElementSoftwareStatus 31, 33

EnabledState 55

Family 44

FunctionNumber 48, 51, 52

HealthState 55, 62

InstanceID 57

LogicalUnit 58

MajorVersion 30, 32

Manufacturer 27, 29, 31

MinorVersion 30, 32

Model 27, 29

Name 55

NumberOfBlocks 59

OperationalStatus 55, 59, 60

OtherIdentifyingInfo 60

ParentDeviceID 47, 49

PhysicalSlot 51, 52

PortType 51, 52

PossibleStates 39

RegisteredName 19

RegisteredVersion 19

Role 59

SecondaryBusNumber 52

SecondaryBusNumbers 52

SerialNumber 27, 29

VersionString 30, 31, 32, 33

VMware_PCIBridge 48

VMware_PCIDevice 48

VMware_PCIeSwitch 48

protocol and version support 9

R
RAID controllers 53, 55

rebooting 66

redundancy, fans 40

registered profiles 14, 18

listing 18

resource URIs 15

S
sample clients 66

schema definitions 15

Scoping Instance, Base Server 15, 19, 20, 38

SEL

See System Event Log

sensors 38, 39

serial number 25, 27

server, managed 14, 19, 25, 27

Service URL 15

sessionId

see CIM ticket

shell operations 65

SLP 9, 15, 65

SMASH profiles 10

SMASH version 9

SMI-S 11, 55, 58

SMWG 9, 10

SNIA 11, 55, 58

SOAP protocol 21

software depot 33, 69

software installation

metadata 69

offline bundles 69

vSphere Installation Bundles 34, 69

software version 31

software, installed 33, 36

state

RAID connections 55

RAID controller 53

sensors 38, 39

storage extents 57, 58, 59, 60

subnetwork 65

subscribing to indications 62

System Event Log 62

T
targets 55, 57, 58, 59

technical support resources 6

threads

See hardware threads

troubleshooting connections 65

U
upgrading ESX 69

URIs

offline bundle 33, 35

resource 15

URL

CIM server 14, 15, 65

indication consumer 63

Service 15

CIM SMASH/Server Management API Programming Guide

74 VMware, Inc.

V
vCenter Server 16

version

BIOS 29

CIM 9

profiles 10

VIBs

see vSphere Installation Bundles

VMware vSphere PowerCLI 69

vSphere Client 16

vSphere Installation Bundles 31, 33, 36

vSphere SDK for Perl 21, 66

vSphere SDK for Perl Programming Guide 21

W
WBEM 15

wbemcli utility 65

Web Services for Management Perl Library 66

Web Services SDK 16

Windows PowerShell 69

WS-Management 9, 21

X
XML namespace 15

	CIM SMASH/Server Management API Programming Guide
	Contents
	About This Book
	Revision History
	Intended Audience
	VMware Technical Publications Glossary
	Document Feedback
	Technical Support and Education Resources
	Online Support
	Support Offerings
	VMware Professional Services

	Introduction
	Platform Product Support
	Supported Protocols and Versions
	CIM Version
	SMASH Version
	Supported Profiles
	CIM and SMASH Resources Online

	Installing CIM Provider VIBs
	Downloading CIM Provider VIBs
	Adding a CIM Provider VIB to your ESXi Image
	Adjusting the Resource Pool Allocation

	Developing Client Applications
	CIM Server Ports
	CIM Object Namespaces
	Crossing Between Namespaces
	Determining the Namespaces in Your Installation

	WS-Management Resource URIs
	Locating a Server with SLP
	CIM Ticket Authentication
	Active Directory Authentication
	Making a Connection to the CIMOM
	Listing Registered Profiles
	Identifying the Base Server Scoping Instance
	Mapping Integer Property Values to Strings
	Using the Web Services for Management Perl Library

	Using the CIM Object Space
	Reporting Manufacturer, Model, and Serial Number
	Reporting Manufacturer, Model, and Serial Number By Using Only the Implementation Namespace
	Reporting the BIOS Version
	Reporting Installed VIBs
	Installing VIBs
	Monitoring VIB Installation
	Monitoring State of All Sensors
	Monitoring State of All Sensors By Using Only the Implementation Namespace
	Reporting Fan Redundancy
	Reporting CPU Cores and Threads
	Reporting Empty Memory Slots By Using Only the Implementation Namespace
	Reporting the PCI Device Hierarchy By Using Parent DeviceIDs
	Reporting the Path to a PCI Device By Using PortGroups
	Monitoring RAID Controller State
	Monitoring State of RAID Connections
	Reporting Accessible Storage Extents
	Reporting Storage Extents Without Third-Party Storage Provider
	Working with the System Event Log
	Subscribing to Indications

	Troubleshooting Connections
	Connections from Client to CIM Server
	Using SLP
	Using a Web Browser
	Using a Command-Line Interface
	Verifying User Authentication Credentials
	Rebooting the Server
	Using Correct Client Samples
	Using Other CIM Client Libraries
	Using the WS-Management Library

	Connections from CIM Server to Indication Consumer
	Firewall Configuration
	System Event Log

	Offline Bundles
	Creating an Offline Bundle With VMware vSphere PowerCLI

	Index

