
VMware vCenter Server Management
Programming Guide

15 APR 2020
VMware vSphere 7.0
vCenter Server 7.0
VMware ESXi 7.0

You can find the most up-to-date technical documentation on the VMware website at:

https://docs.vmware.com/

If you have comments about this documentation, submit your feedback to

docfeedback@vmware.com

VMware, Inc.
3401 Hillview Ave.
Palo Alto, CA 94304
www.vmware.com

Copyright © 2016-2020 VMware, Inc. All rights reserved. Copyright and trademark information.

VMware vCenter Server Management Programming Guide

VMware, Inc. 2

https://docs.vmware.com/
mailto:docfeedback@vmware.com
http://pubs.vmware.com/copyright-trademark.html

Contents

About the vCenter Server Management Programming Guide 6

1 Introduction to the vCenter Server APIs 7
About vSphere 7

About ESXi 7

vCenter Server Management Overview 8

Limitations of Programming for vCenter Server 8

API Endpoints for Managing vCenter Server 9

Supplementing the vCenter Server API 9

Direct Console User Interface to vCenter Server 9

vCenter Server Management Interface 9

vCenter Server Appliance Bash Shell 9

vSphere Client and the vCenter Server 10

DCLI and vCenter Server 10

Quick Start with vCenter Server APIs 10

2 Retrieving Service Endpoints 11
Filtering for Predefined Service Endpoints 12

Filter Parameters for Predefined Service Endpoints 13

Connect to the Lookup Service and Retrieve the Service Registration Object 14

Java Example of Connecting to the Lookup Service and Retrieving the Service Registration Object
14

Python Example of Connecting to the Lookup Service and Retrieving a Service Registration Object
15

Retrieve Service Endpoints on vCenter Server Instances 16

Java Example of Retrieving a vSphere Automation Endpoint on a vCenter Server Instance 17

Python Example of Retrieving Service Endpoints on vCenter Server Instances 17

Retrieve a vCenter Server ID by Using the Lookup Service 18

Java Example of Retrieving a vCenter Server ID by Using the Lookup Service 18

Python Example of Retrieving a vCenter Server ID by Using the Lookup Service 19

Retrieve a vSphere Automation API Endpoint on a vCenter Server Instance 20

Java Example of Retrieving a vSphere Automation Endpoint on a vCenter Server Instance 20

Python Example of Retrieving a vSphere Automation Endpoint on a vCenter Server Instance 21

3 Authentication Mechanisms 22
vCenter Single Sign-On User Name and Password Authentication for vCenter Server 22

Authenticate with vCenter Single Sign-On Credentials and Create a Session 22

vCenter Single Sign-On Token Authentication for vCenter Server 26

VMware, Inc. 3

Retrieve a SAML Token 27

Create a vSphere Automation Session with a SAML Token 29

4 Authorization Model for Administration of vCenter Server 32
Authorization Model Mapping to the vCenter Single Sign-On Domain 32

Using the Operator Role 33

Using the Admin Role 33

Using the SuperAdmin Role 33

5 Installing and Upgrading vCenter Server 34
Install Stage 2 34

Setting Up a Newly Installed vCenter Server Instance 34

HTTP Requests for Install Stage 2 36

Use HTTP Requests to Set Up a Newly Deployed vCenter Server Instance 37

Workflows for Install Stage 2 40

Upgrade Stage 2 42

Upgrading a vCenter Server Instance 43

HTTP Requests for Upgrade Stage 2 45

Workflows for Upgrade Stage 2 47

Historical Data Transfer 49

Deferred Import 50

HTTP Status Codes for Deferred Import 52

Historical Data Import Errors 53

Class Diagrams for Deferred Import 53

Use the Deferred Import Sample 54

Python Example of Pausing and Resuming the Deferred Import Process 55

6 Monitoring vCenter Server 56
Health Monitoring of vCenter Server 56

Check Overall System Health of vCenter Server 56

Capacity Monitoring of vCenter Server 58

Frequency and Retention of Statistics Collection in vCenter Server 58

Nature of Statistics in vCenter Server 59

Requesting Statistics from vCenter Server 59

Statistics Collection Times 59

Statistics Interval Adjustment in vCenter Server 60

Empty Data Values 60

Check Database Usage in vCenter Server 61

List Storage Consumption By Data Type in vCenter Server 63

7 Maintenance of vCenter Server 67

VMware vCenter Server Management Programming Guide

VMware, Inc. 4

Backing up vCenter Server 67

Backup and Restore Protocols for vCenter Server 68

Calculate the Size Needed To Store the Backup File 68

Back up a vCenter Server Instance by Using the API 70

Schedule a Backup Job 74

Restoring vCenter Server 76

Authentication When Restoring a vCenter Server Instance 76

Availability of Services While Restoring a vCenter Server Instance 76

Restore a vCenter Server Instance by Using the API 76

Reconcile a vCenter Server Instance with Nodes in Embedded Linked Mode 80

Managing System Logs 81

Configuring Syslog Forwarding 81

Performing Infrastructure Profile Management Operations 86

HTTP Requests for Infrastructure Profile Management Operations 87

8 Planning vCenter Server Updates 88
Performing Discovery and Planning Operations 88

HTTP Requests for Discovery and Planning Operations 90

cURL Examples of Performing Discovery and Planning Operations 91

List Available Products and Manage Associated Products 93

Python Example of Listing Available Products and Managing Associated Products 94

List Available Updates 94

Python Example of Listing Available Updates 95

Retrieve a Report 95

Python Example of Retrieving a Report 96

9 Updating vCenter Server 97
Applying vCenter Server Software Updates 97

vCenter Server Software Update Workflow 100

cURL Examples of Performing vCenter Server Software Update Operations 102

VMware vCenter Server Management Programming Guide

VMware, Inc. 5

About the vCenter Server Management
Programming Guide

The vCenter Server Management Programming Guide provides information about using APIs to work with
vCenter Server, a turnkey solution for managing data centers featuring VMware® vCenter Server and
VMware ESXi.

Intended Audience
This information is intended for anyone who wants to develop software to configure, monitor, and manage
vCenter Server. The information is written for developers who have some experience with REST APIs,
JavaScript, Java, or Python.

VMware, Inc. 6

Introduction to the vCenter
Server APIs 1
vCenter Server provides a fully packaged solution for data center management in a vSphere
environment. You can use the APIs to configure, monitor, and maintain vCenter Server.

This chapter includes the following topics:

n About vSphere

n About ESXi

n vCenter Server Management Overview

n Limitations of Programming for vCenter Server

n API Endpoints for Managing vCenter Server

n Supplementing the vCenter Server API

n Quick Start with vCenter Server APIs

About vSphere
vSphere is the VMware software stack that implements private-cloud data center management and the
on-premises component of hybrid-cloud deployments.

A vSphere installation includes one or more instances of vCenter Server configured to manage one or
more virtual data centers. Each virtual data center includes one or more instances of VMware ESXi.

The vCenter Server Management API gives you programmatic access to manage the management
elements of your data center.

About ESXi
Each instance of ESXi includes management agents and the VMware hypervisor layer, which runs
several virtual machines. Each virtual machine contains a guest operating system, such as Windows or
Linux, capable of running IT or user applications.

vCenter Server runs as a virtual machine on an ESXi host. vCenter Server provides an independent
endpoint capable of handling API requests both for vCenter Server and for the vCenter Server
Management API.

VMware, Inc. 7

vCenter Server Management Overview
vCenter Server runs in a Photon OS™ guest operating system.

vCenter Server is a collection of services designed for managing and monitoring vSphere installations.
vCenter Server responds to CLI commands, requests from the vSphere Client, and API requests from
custom clients. API clients can be written in a choice of several software languages.

vCenter Server is managed by CLI, Web interfaces, or API requests. These requests help you manage
vCenter Server configuration, monitor resource usage, or back up and restore the vCenter Server
instance. You can also use API requests to check the health of vCenter Server. This programming guide
explains how to use the APIs that are available to manage vCenter Server.

Figure 1-1. vCenter Server Management Connections

Shell APIs
(SSH+TTY1)

API/DCLI
Client

vSphere
Client

vCenter Server
Management Interface

DCUI
(Linux Binary UI
on TTY2 console)

HTTPS REST HTTPS REST HTTPS REST

vAPI Endpoint
(443)

Web Server
(5480)

vAPI provider

Management Service

Configuration Service

For more information about the capabilities of vCenter Server, see vCenter Server Configuration.

Limitations of Programming for vCenter Server
vCenter Server supports several programming interfaces for monitoring health and performance,
managing network configuration, security hardening, and other functionalities. vCenter Server also
supports several user interfaces, which offer overlapping sets of functionality.

You can use the vSphere Client to perform common operations. By using the API, you have access to
more specific settings and operations.

However, the API cannot access all the capabilities. A few special features require direct shell access or
special user interfaces. See Supplementing the vCenter Server API.

VMware vCenter Server Management Programming Guide

VMware, Inc. 8

API Endpoints for Managing vCenter Server
vCenter Server integrates with the vSphere Automation API endpoint that provides a common surface for
exposing several vSphere services. When you use the vSphere Automation API endpoint, you establish a
single session that provides access to virtual machine management, search and filter, Content Library,
and other services for working with vSphere objects.

Other endpoints associated with vCenter Server include the Lookup Service and the vCenter Single Sign-
On service. For more information about using the Lookup Service, see Chapter 2 Retrieving Service
Endpoints. For more information about using the vCenter Single Sign-On service, see vCenter Single
Sign-On Token Authentication for vCenter Server.

Supplementing the vCenter Server API
Some less common features of vCenter Server are not accessible by API. These features require direct
shell access or specific user interfaces.

Direct Console User Interface to vCenter Server
The Direct Console User Interface provides access to basic operations for vCenter Server management
and set up.

The DCUI provides access to a subset of management functions. It provides direct access to vCenter
Server if the vSphere Client and the vCenter Server Management Interface become unavailable.

For an illustration showing vCenter Server connections, see the block diagram Figure 1-1. vCenter Server
Management Connections.

After the vCenter Server startup is complete, the DCUI displays basic CPU, memory, and network
information on the operator console. The root user can use the DCUI screen to configure network
interfaces, DNS, and super administrator password.

vCenter Server Management Interface
The vCenter Server Management Interface is an interface for configuring, monitoring, and patching
vCenter Server.

The vCenter Server Management Interface runs in a browser that connects to port 5480 of vCenter
Server. The vCenter Server Management Interface provides access to all the service APIs of vCenter
Server.

For an illustration showing vCenter Server connections, see the block diagram Figure 1-1. vCenter Server
Management Connections.

vCenter Server Appliance Bash Shell
You can use the vCenter Server appliance Bash shell to access all vCenter Server commands and plug-
ins that you use for monitoring, troubleshooting, and configuring the vCenter Server instance through the
API.

VMware vCenter Server Management Programming Guide

VMware, Inc. 9

For an illustration showing vCenter Server connections, see the block diagram Figure 1-1. vCenter Server
Management Connections.

For more information about the appliance Bash shell, see vCenter Server Configuration.

vSphere Client and the vCenter Server
The vSphere Client is a user interface for general management tasks.

For an illustration showing vCenter Server connections, see the block diagram Figure 1-1. vCenter Server
Management Connections.

DCLI and vCenter Server
The Data Center CLI (DCLI) is a CLI client of the VMware vSphere® Automation™ SDK. Almost all
methods that are available in the vSphere Automation SDKs are available as DCLI commands.

For an illustration showing vCenter Server connections, see the block diagram Figure 1-1. vCenter Server
Management Connections.

For more information about DCLI, see DCLI User's Guide.

Quick Start with vCenter Server APIs
You can start using the vCenter Server APIs without accessing the Lookup Service endpoint or the
vCenter Single Sign-On endpoint. In a production environment, you might instead use centralized service
registration and token authentication.

To use the vCenter Server APIs without the Lookup Service or token authentication, see vCenter Single
Sign-On User Name and Password Authentication for vCenter Server.

VMware vCenter Server Management Programming Guide

VMware, Inc. 10

Retrieving Service Endpoints 2
To access services and resources in the virtual environment, client applications that use the vSphere
Automation API must know the endpoints of vSphere Automation and vSphere services. Client
applications retrieve service endpoints from the Lookup Service that runs on vCenter Server.

The Lookup Service provides service registration and discovery by using the vSphere Web Services API.
By using the Lookup Service, you can retrieve endpoints of services on vCenter Server. The following
endpoints are available from the Lookup Service.

n The vCenter Single Sign-On endpoint on vCenter Server. You can use the vCenter Single Sign-On
service to get a SAML token and establish an authenticated session with a vSphere Automation API
endpoint or a vCenter Server endpoint.

n The vSphere Automation API endpoint on vCenter Server. Through the vSphere Automation
endpoint, you can make requests to vSphere Automation API services such as virtual machine
management, Content Library, and Tagging.

n The vCenter Server endpoint. In case you want to retrieve service endpoints on a vCenter Server
instance that is part of a vCenter Enhances Linked Mode group, use the vCenter Server endpoint to
get the node IDs of all linked instances. You can use the node ID of the specific vCenter Server
instance to retrieve service endpoints on that instance.

n The vSphere Web Services API endpoint and endpoints of other vSphere Web services that run on
vCenter Server.

Workflow for Retrieving Service Endpoints
The workflow that you use to retrieve service endpoints from the Lookup Service might vary depending on
the endpoints that you need and their number. Follow this general workflow for retrieving service
endpoints.

1 Connect to the Lookup Service on vCenter Server and service registration object so that you can
query for registered services.

2 Create a service registration filter for the endpoints that you want to retrieve.

3 Use the filter to retrieve the registration information for services from the Lookup Service.

VMware, Inc. 11

4 Extract one or more endpoint URLs from the array of registration information that you receive from
the Lookup Service.

This chapter includes the following topics:

n Filtering for Predefined Service Endpoints

n Filter Parameters for Predefined Service Endpoints

n Connect to the Lookup Service and Retrieve the Service Registration Object

n Retrieve Service Endpoints on vCenter Server Instances

n Retrieve a vCenter Server ID by Using the Lookup Service

n Retrieve a vSphere Automation API Endpoint on a vCenter Server Instance

Filtering for Predefined Service Endpoints
The Lookup Service maintains a registration list of vSphere services. You can use the Lookup Service to
retrieve registration information for any service by setting a registration filter that you pass to the List()
function on the Lookup Service. The functions and objects that you can use with the Lookup Service are
defined in the lookup.wsdl file that is part of the SDK.

Lookup Service Registration Filters
You can query for service endpoints through a service registration object that you obtain from the Lookup
Service. You invoke the List() function on the Lookup Service to list the endpoints that you need by
passing LookupServiceRegistrationFilter. LookupServiceRegistrationFilter identifies the service and
the endpoint type that you can retrieve.

Optionally, you can include the node ID parameter in the filter to identify the vCenter Server instance
where the endpoint is hosted. When the node ID is omitted, the List() function returns the set of
endpoint URLs for all instances of the service that are hosted on different vCenter Server instances in the
environment.

For example, a LookupServiceRegistrationFilter for querying the vSphere Automation service has
these service endpoint elements.

Table 2-1. Service Registration Filter Parameters

Filter Types Value Description

LookupServiceRegistrationServiceType product= "com.vmware.cis" vSphere Automation namespace.

type="cs.vapi" Identifies the vSphere Automation
service.

LookupServiceRegistrationEndpointType type="com.vmware.vapi.endpoint" Specifies the endpoint path for the
service.

protocol=

"vapi.json.https.public"

Identifies the protocol that will be
used for communication with the
endpoint .

VMware vCenter Server Management Programming Guide

VMware, Inc. 12

For information about the filter parameter of the available predefined service endpoints, see Filter
Parameters for Predefined Service Endpoints.

Filter Parameters for Predefined Service Endpoints
Depending on the service endpoint that you want to retrieve, you provide different parameters to the
LookupServiceRegistrationFilter that you pass to the List() function on the Lookup Service. To search
for services on a particular vCenter Server instance, set the node ID parameter to the filter.

Table 2-2. Input Data for URL Retrieval for the Lookup Service Registration Filter

Service Input Data Value

vCenter Single Sign-On product namespace com.vmware.cis

service type cs.identity

protocol wsTrust

endpoint type com.vmware.cis.cs.identity.sso

vSphere Automation Endpoint product namespace com.vmware.cis

service type cs.vapi

protocol vapi.json.https.public

endpoint type com.vmware.vapi.endpoint

vCenter Server product namespace com.vmware.cis

service type vcenterserver

protocol vmomi

endpoint type com.vmware.vim

vCenter Storage Monitoring Service product namespace com.vmware.vim.sms

service type sms

protocol https

endpoint type com.vmware.vim.sms

vCenter Storage Policy-Based
Management

product namespace com.vmware.vim.sms

service type sms

protocol https

endpoint type com.vmware.vim.pbm

vSphere ESX Agent Manager product namespace com.vmware.vim.sms

service type cs.eam

protocol vmomi

endpoint type com.vmware.cis.cs.eam.sdk

VMware vCenter Server Management Programming Guide

VMware, Inc. 13

Connect to the Lookup Service and Retrieve the Service
Registration Object
You must connect to the Lookup Service to gain access to its operations. After you connect to the Lookup
Service, you must retrieve the service registration object to make registration queries.

Procedure

1 Connect to the Lookup Service.

a Configure a connection stub for the Lookup Service endpoint, which uses SOAP bindings, by
using the HTTPS protocol.

b Create a connection object to communicate with the Lookup Service.

2 Retrieve the Service Registration Object.

a Create a managed object reference to the Service Instance.

b Invoke the RetrieveServiceContent() method to retrieve the ServiceContent data object.

c Save the managed object reference to the service registration object.

With the service registration object, you can make registration queries.

Java Example of Connecting to the Lookup Service and Retrieving
the Service Registration Object
The example is based on the code in the LookupServiceHelper.java sample file.

Note For a complete and up-to-date version of the Java sample code, see the vsphere-automation-
sdk-java VMware repository at GitHub.

Note The connection code in the example disables certificate and host name checking for the
connection for simplicity. For a production deployment, supply appropriate handlers. See the SDK sample
file for a more detailed example of connection code.

...

 String lookupServiceUrl;

 LsService lookupService;

 LsPortType lsPort;

 ManagedObjectReference serviceInstanceRef;

 LookupServiceContent lookupServiceContent;

 ManagedObjectReference serviceRegistration;

//1 - Configure Lookup Service stub.

 HostnameVerifier hostVerifier = new HostnameVerifier (){

 public boolean verify(String urlHostName, SSLSession session){

 return true;

 }

 };

VMware vCenter Server Management Programming Guide

VMware, Inc. 14

 HttpsURLConnection.setDefaultHostnameVerifier(hostVerifier);

 SslUtil.trustAllHttpsCertificates();

//2 - Create the Lookup Service stub.

 lookupService = new LsService();

 lsPort = new LsPorType.getLsPort();

 ((BindingProvider)lsProvider).getRequestContext().put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY,

lookupServiceUrl);

//4 - Create a predetermined management object.

 serviceInstanceRef = new ManagedObjectReference();

 serviceInstanceRef.setType("LookupServiceInstance");

 serviceInsanceRefl.setValue("ServiceInstance");

//5 - Retrieve the ServiceContent object.

 lookupServiceContent = lsPort.retrieveServiceContent(serviceInstanceRef);

//6 - Retrieve the service registration

 serviceRegistration = lookupServiceContent.getServiceRegistration();

...

Python Example of Connecting to the Lookup Service and
Retrieving a Service Registration Object
The example is based on the code from the lookup_service_helper.py sample file.

Note For a complete and up-to-date version of the sample code, see the vsphere-automation-sdk-
python VMware repository at GitHub.

...

1 - Create SOAP client object to communicate with the Lookup Service.

my_ls_stub = Client(url=wsdl_url, location=ls_url)

2 - Configure service & port type for client transaction.

my_ls_stub.set_options(service='LsService', port='LsPort')

3 - Manufacture a managed object reference.

managed_object_ref = \

 my_ls_stub.factory.create('ns0:ManagedObjectReference')

managed_object_ref._type = 'LookupServiceInstance'

managed_object_ref.value = 'ServiceInstance'

4 - Retrieve the ServiceContent object.

ls_service_content = \

my_ls_stub.service.RetrieveServiceContent(managed_object_ref)

5 - Retrieve the service registration object.

service_registration = ls_service_content.serviceRegistration

VMware vCenter Server Management Programming Guide

VMware, Inc. 15

Retrieve Service Endpoints on vCenter Server Instances
You can create a function that obtains the endpoint URLs of a service on all vCenter Server instances in
the environment. You can modify that function to obtain the endpoint URL of a service on a particular
vCenter Server instance.

Prerequisites

n Establish a connection with the Lookup Service.

n Retrieve a service registration object.

Procedure

1 Create a registration filter object, which contains the following parts:

n A filter criterion for service information

n A filter criterion for endpoint information

Option Description

Omit the node ID parameter Retrieves the endpoint URLs of the service on all vCenter Server instances.

Include the node ID parameter Retrieves the endpoint URL of the service on a particular vCenter Server instance.

2 Retrieve the specified service information by using the List() function.

Results

Depending on whether you included the node ID parameter, the List() function returns one of the
following results:

n A list of endpoint URLs for a service that is hosted on all vCenter Server instances in the
environment.

n An endpoint URL of a service that runs on a particular vCenter Server instance.

What to do next

Call the function that you implemented to retrieve service endpoints. You can pass different filter
parameters depending on the service endpoints that you need. For more information, see Filter
Parameters for Predefined Service Endpoints.

To retrieve a service endpoint on a particular vCenter Server instance, you must retrieve the node ID of
that instance and pass it to the function. For information about how to retrieve the ID of a vCenter Server
instance, see Retrieve a vCenter Server ID by Using the Lookup Service.

VMware vCenter Server Management Programming Guide

VMware, Inc. 16

Java Example of Retrieving a vSphere Automation Endpoint on a
vCenter Server Instance
This example is based on the in the LookupServiceHelper.java sample file.

Note For a complete and up-to-date version of the Java sample code, see the vsphere-automation-
sdk-java VMware repository at GitHub.

...

//1 - Determine management node ID.

String targetNodeId = getMgmtNodeId(targetNodeFqdn);

//2 - List filtered registration info.

List<LookupServiceRegistrationInfo> results =

 lookupSingleServiceUrl(“com.vmware.cis”,

 “cs.vapi”,

 “vapi.json.https.public”,

 “com.vmware.vapi.endpoint”,

 targetNodeId);

//3 - Extract endpoint URL from registration info.

LookupServiceRegistrationInfo registrationInfo = results.get(0);

LookupServiceRegistrationEndpoint serviceEndpoint = registrationInfo.getServiceEndpoints().get(0);

String ssoUrl = serviceEndpoint.getUrl();

...

Python Example of Retrieving Service Endpoints on vCenter
Server Instances
This example provides a common pattern for filtering Lookup Service registration data. This example is
based on the code in the lookup_service_helper.py sample file.

Note For a complete and up-to-date version of the sample code, see the vsphere-automation-sdk-
python VMware repository at GitHub.

def lookup_service_infos(prod, svc_type, proto, ep_type, node_id='*') :

 # 1 - Create a filter criterion for service info.

 filter_service_type = \

 my_ls_stub.factory.create('ns0:LookupServiceRegistrationServiceType')

 filter_service_type.product = prod

 filter_service_type.type = svc_type

 # 2 - Create a filter criterion for endpoint info.

 filter_endpoint_type = \

 my_ls_stub.factory.create('ns0:LookupServiceRegistrationEndpointType')

 filter_endpoint_type.protocol = proto

 filter_endpoint_type.type = ep_type

VMware vCenter Server Management Programming Guide

VMware, Inc. 17

 # 3 - Create the registration filter object.

 filter_criteria = \

 my_ls_stub.factory.create('ns0:LookupServiceRegistrationFilter')

 filter_criteria.serviceType = filter_service_type

 filter_criteria.endpointType = filter_endpoint_type

 if (node_id != '*') :

 filter_criteria.nodeId = node_id

 # 4 - Retrieve specified service info with the List() method.

 service_infos = my_ls_stub.service.List(service_registration,

 filter_criteria)

 return service_infos

Retrieve a vCenter Server ID by Using the Lookup Service
You use the node ID of a vCenter Server instance to retrieve the endpoint URL of a service on that
vCenter Server instance. You specify the node ID in the service registration filter that you pass to the
List() function on the Lookup Service.

Managed services are registered with the instance name of the vCenter Server instance where they run.
The instance name maps to a unique vCenter Server ID. The instance name of a vCenter Server system
is specified during installation and might be an FQDN or an IP address.

Prerequisites

n Establish a connection with the Lookup Service.

n Retrieve a service registration object.

Procedure

1 List the vCenter Server instances.

2 Find the matching node name of the vCenter Server instance and save the ID.

Results

Use the node ID of the vCenter Server instance to filter subsequent endpoint requests. You can use the
node ID in a function that retrieves the endpoint URL of a service on a vCenter Server instance. For
information about implementing such a function, see Retrieve Service Endpoints on vCenter Server
Instances.

Java Example of Retrieving a vCenter Server ID by Using the
Lookup Service
This example is based on the in the LookupServiceHelper.java sample file.

Note For a complete and up-to-date version of the Java sample code, see the vsphere-automation-
sdk-java VMware repository at GitHub.

 ...

VMware vCenter Server Management Programming Guide

VMware, Inc. 18

 getMgmtNodeId(String targetNodeName)

 {

 // 1 - List the vCenter Server instances.

 List<LookupServiceRegistrationInfo> serviceInfos =

 lookupServiceUrls(“com.vmware.cis”,

 “vcenterserver”,

 “vmomi”,

 “com.vmware.vim”);

 // 2 - Find the matching node name and save the ID.

 for (LookupServiceRegistrationInfo serviceInfo : serviceInfos) {

 for (LookupServiceRegistrationAttribute serviceAtttr : serviceInfo.getServiceAttributes()) {

 if (“com.vmware.vim.vcenter.instanceName”.equals(serviceAttr.getKey())) {

 if (serviceAttr.getValue().equals(targetNodeName)) {

 return serviceInfo.getNodeId();

 }

 }

 }

 }

 }

 ...

Python Example of Retrieving a vCenter Server ID by Using the
Lookup Service
This example provides a common pattern for filtering Lookup Service registration data. This example is
based on the code in the lookup_service_helper.py sample file.

Note For a complete and up-to-date version of the sample code, see the vsphere-automation-sdk-
python VMware repository at GitHub.

def get_mgmt_node_id(node_instance_name) :

 # 1 - List the vCenter Server instances.

 mgmt_node_infos = lookup_service_infos(prod='com.vmware.cis',

 svc_type='vcenterserver',

 proto='vmomi', ep_type='com.vmware.vim',

 node_id='*')

 # 2 - Find the matching node name and save the ID.

 for node in mgmt_node_infos :

 for attribute in node.serviceAttributes :

 if attribute.key == 'com.vmware.vim.vcenter.instanceName' :

 if attribute.value == node_instance_name :

 return node.nodeId

VMware vCenter Server Management Programming Guide

VMware, Inc. 19

Retrieve a vSphere Automation API Endpoint on a
vCenter Server Instance
Through the vSphere Automation API Endpoint, you can access other vSphere Automation services that
run on vCenter Server, such as Content Library and Tagging. To use a vSphere Automation service, you
must retrieve the vSphere Automation API Endpoint.

Prerequisites

n Establish a connection with the Lookup Service.

n Retrieve a service registration object.

n Determine the node ID of the vCenter Server instance where the vSphere Automation service runs.

n Implement a function that retrieves the endpoint URL of a service on a vCenter Server instance.

Procedure

1 Invoke the function for retrieving the endpoint URL of a service on a vCenter Server instance by
passing filter strings that are specific to the vSphere Automation API endpoint.

2 Save the URL from the resulting single-element list.

Java Example of Retrieving a vSphere Automation Endpoint on a
vCenter Server Instance
This example is based on the in the LookupServiceHelper.java sample file.

Note For a complete and up-to-date version of the Java sample code, see the vsphere-automation-
sdk-java VMware repository at GitHub.

...

//1 - Determine management node ID.

String targetNodeId = getMgmtNodeId(targetNodeFqdn);

//2 - List filtered registration info.

List<LookupServiceRegistrationInfo> results =

 lookupSingleServiceUrl(“com.vmware.cis”,

 “cs.vapi”,

 “vapi.json.https.public”,

 “com.vmware.vapi.endpoint”,

 targetNodeId);

//3 - Extract endpoint URL from registration info.

LookupServiceRegistrationInfo registrationInfo = results.get(0);

LookupServiceRegistrationEndpoint serviceEndpoint = registrationInfo.getServiceEndpoints().get(0);

String ssoUrl = serviceEndpoint.getUrl();

...

VMware vCenter Server Management Programming Guide

VMware, Inc. 20

Python Example of Retrieving a vSphere Automation Endpoint on
a vCenter Server Instance
This example provides a common pattern for filtering Lookup Service registration data. This example is
based on the code in the lookup_service_helper.py sample file.

Note For a complete and up-to-date version of the sample code, see the vsphere-automation-sdk-
python VMware repository at GitHub.

service_infos = lookup_service_infos(prod='com.vmware.cis',

 svc_type='cs.vapi',

 proto='vapi.json.https.public',

 ep_type='com.vmware.vapi.endpoint',

 node_id=my_mgmt_node_id)

my_vapi_url = service_infos[0].serviceEndpoints[0].url

VMware vCenter Server Management Programming Guide

VMware, Inc. 21

Authentication Mechanisms 3
vCenter Server accepts several authentication methods. The authentication method that you choose
depends on whether you choose token authentication, and on the state of the vCenter Server instance.

During normal operation, vCenter Server enables you to authenticate with vCenter Single Sign-On
credentials. You have the option to use either token authentication or user name and password
authentication. The user name and password must be recognized within the vCenter Single Sign-On
domain.

However, during the process of restoring vCenter Server from a backup image, you must use a different
authentication protocol. For more information, see Restoring vCenter Server.

This chapter includes the following topics:

n vCenter Single Sign-On User Name and Password Authentication for vCenter Server

n vCenter Single Sign-On Token Authentication for vCenter Server

vCenter Single Sign-On User Name and Password
Authentication for vCenter Server
You can authenticate with vCenter Server by using a user name and password known to the vCenter
Single Sign-On service.

If you prefer to delegate the process of requesting a SAML token for your API client, you can present your
vCenter Single Sign-On domain credentials to the vSphere Automation API endpoint and request a
session ID. The endpoint process forwards your credentials to the vCenter Single Sign-On service and
requests a SAML token on your behalf. In this case, you never deal with the token.

Authenticate with vCenter Single Sign-On Credentials and Create
a Session
To establish a session with the vSphere Automation API endpoint in vCenter Server, you create a
connection to the endpoint and authenticate with vCenter Single Sign-On credentials to receive a session
ID.

VMware, Inc. 22

Prerequisites

To perform this task, you must have the following items in place.

n The DNS name or IP address of vCenter Server

n A vCenter Single Sign-On domain account that has the requisite permissions for the operation that
you intend to invoke

Procedure

1 Create a connection context by specifying the vSphere Automation API endpoint URL and the
message protocol to be used for the connection.

2 Create the request options or stub configuration and set the specific security context to be used.

The security context contains the vCenter Single Sign-On user name and password that are used for
authenticating to the vSphere Automation API endpoint.

3 Create an interface stub or a REST path that uses the stub configuration.

The interface stub corresponds to the interface containing the method to be invoked.

4 Invoke the session create method.

The service creates an authenticated session and returns a session identification cookie to the client.

5 Add the cookie to your request headers or to a security context for your client stub configuration.

6 Remove the basic authentication from your request headers or the security context of your client stub
configuration.

Results

Subsequent method calls authenticate with the session cookie instead of the user name and password.

What to do next

Use the updated stub configuration with the session ID to create a stub for the interface that you want to
use. Method calls on the new stub use the session ID to authenticate.

JavaScript Example of Creating a vSphere Automation API Session with
vCenter Single Sign-On Credentials
This example shows the use of JavaScript with the vSphere Automation SDK for REST to send a session
creation request to vCenter Server by using vCenter Single Sign-On credentials.

The example retrieves a session cookie for future authentication. The JavaScript code depends on the
Node.js package, which allows it to run standalone.

This example depends on the following global variables.

n my_host

n my_sso_username

n my_sso_password

VMware vCenter Server Management Programming Guide

VMware, Inc. 23

n my_http_options

For clarity, this example specifies a complete set of HTTP options for the NodeJS request, rather than
retaining and modifying an existing object.

var https = require('https');

var httpPort = 443;

var httpPath = '/rest/com/vmware/cis/session';

var httpMethod = 'POST';

// Prepare the HTTP request.

my_http_options = {

 host: my_host,

 port: httpPort,

 path: httpPath,

 method: httpMethod,

 rejectUnauthorized: false,

 requestCert: true,

 agent: false,

 auth: my_sso_username + ":" + my_sso_password

};

// Define the callbacks.

function callback(res) {

 console.log("STATUS: " + res.statusCode);

 res.on('error', function(err) { console.log("ERROR in SSO authentication: ", err) });

 res.on('data', function(chunk) {});

 res.on('end', function() {

 if (res.statusCode == 200) {

 // Save session ID authentication.

 var cookieValue = res.headers['set-cookie'];

 my_http_options.headers = {'Cookie': cookieValue};

 // Remove username-password authentication.

 my_http_options.auth = {};

 }

 console.log("Session ID:\n" + res.headers['set-cookie']);

};

// Issue the session creation request.

https.request(my_http_options, callback).end();

Java Example of Creating a vSphere Automation API Session with User
Credentials
This example is based on the code in the VapiAuthenticationHelper.java sample.

Note For a complete and up-to-date version of the Java sample code, see the vsphere-automation-
sdk-java VMware repository at GitHub.

...

this.stubFactory = createApiStubFactory(server, httpConfig);

VMware vCenter Server Management Programming Guide

VMware, Inc. 24

// Create a security context for username/password authentication

SecurityContext securityContext =

 SecurityContextFactory.createUserPassSecurityContext(

 username, password.toCharArray());

// Create a stub configuration with username/password security context

StubConfiguration stubConfig = new StubConfiguration(securityContext);

// Create a session stub using the stub configuration.

Session session =

 this.stubFactory.createStub(Session.class, stubConfig);

// Login and create a session

char[] sessionId = session.create();

// Initialize a session security context from the generated session id

SessionSecurityContext sessionSecurityContext =

 new SessionSecurityContext(sessionId);

// Update the stub configuration to use the session id

stubConfig.setSecurityContext(sessionSecurityContext);

/*

 * Create a stub for the session service using the authenticated

 * session

 */

this.sessionSvc =

 this.stubFactory.createStub(Session.class, stubConfig);

VM vmService = this.stubFactory.createStub(VM.class, stubConfig);

Python Example of Creating a vSphere Automation API Session with SSO
Credentials
This example is based on code in the vapiconnect.py sample file.

This example uses the following global variables.

n my_vapi_hostname

n my_sso_username

n my_sso_password

n my_stub_config

Note For a complete and up-to-date version of the sample code, see the vsphere-automation-sdk-
python VMware repository at GitHub.

import requests

from com.vmware.cis_client import Session

from vmware.vapi.lib.connect import get_requests_connector

from vmware.vapi.security.session import create_session_security_context

from vmware.vapi.security.user_password import create_user_password_security_context

from vmware.vapi.stdlib.client.factories import StubConfigurationFactory

VMware vCenter Server Management Programming Guide

VMware, Inc. 25

Create a session object in the client.

session = requests.Session()

For development environment only, suppress server certificate checking.

session.verify = False

Create a connection for the session.

vapi_url = 'https://' + my_vapi_hostname + '/api'

connector = get_requests_connector(session=session, url=vapi_url)

Add username/password security context to the connector.

basic_context = create_user_password_security_context(my_sso_username,

 my_sso_password)

connector.set_security_context(basic_context)

Create a stub configuration by using the username-password security context.

my_stub_config = StubConfigurationFactory.new_std_configuration(connector)

Create a Session stub with username-password security context.

session_stub = Session(my_stub_config)

Use the create operation to create an authenticated session.

session_id = session_stub.create()

Create a session ID security context.

session_id_context = create_session_security_context(session_id)

Update the stub configuration with the session ID security context.

my_stub_config.connector.set_security_context(session_id_context)

vCenter Single Sign-On Token Authentication for vCenter
Server
You can authenticate with vCenter Server by using a SAML token from the vCenter Single Sign-On
service. The token can be either a bearer token or a holder-of-key token.

To use SAML token authentication, you issue a request to the vCenter Single Sign-On service, specifying
the token type (bearer or holder-of-key), expected token lifetime, renewability, and other parameters. You
also supply a user name and password combination that is valid in the vCenter Single Sign-On domain.
These credentials must have an associated role with sufficient privilege for the operations that you intend
to invoke with the Management API.

If the vCenter Single Sign-On service accepts your credentials, it responds with an XML message. The
message contains a SAML assertion that your client can extract and present as an Authorization header
in an HTTP request to the vSphere Automation API endpoint.

VMware vCenter Server Management Programming Guide

VMware, Inc. 26

Retrieve a SAML Token
The vCenter Single Sign-On service provides authentication mechanisms for securing the operations that
your client application performs in the virtual environment. Client applications use SAML security tokens
for authentication.

Client applications use the vCenter Single Sign-On service to retrieve SAML tokens. For more information
about how to acquire a SAML security token, see the vCenter Single Sign-On Programming Guide
documentation.

Prerequisites

Verify that you have the vCenter Single Sign-On URL. You can use the Lookup Service on vCenter Server
to obtain the endpoint URL. For information about retrieving service endpoints, see Chapter 2 Retrieving
Service Endpoints.

Procedure

1 Create a connection object to communicate with the vCenter Single Sign-On service.

Pass the vCenter Single Sign-On endpoint URL, which you can get from the Lookup Service.

2 Issue a security token request by sending valid user credentials to the vCenter Single Sign-On
service on vCenter Server.

Results

The vCenter Single Sign-On service returns a SAML token.

What to do next

You can present the SAML token to the vSphere Automation API endpoint or other endpoints, such as the
vSphere Web Services endpoint. The endpoint returns a session ID and establishes a persistent session
with that endpoint. Each endpoint that you connect to uses your SAML token to create its own session.

JavaScript Example of Retrieving a SAML Token
This example shows the use of JavaScript with the vSphere Automation SDK for REST to send a SAML
token request to the vCenter Single Sign-On endpoint.

The example assumes that you have previously saved certain connection information in global variables.
The JavaScript depends on the Node.js package, which allows it to run standalone.

This example depends on the following global variables.

n my_sso_username

n my_sso_password

n my_host

var https = require('https');

var fs = require('fs');

var httpPort = 443;

VMware vCenter Server Management Programming Guide

VMware, Inc. 27

var tokenFilename = './token.xml';

// Create connection settings object.

my_http_options = {

 host: my_host,

 port: httpPort,

 path: '/sts/STSService/vsphere.local',

 method: 'POST',

 rejectUnauthorized: false,

 requestCert: true,

 agent: false,

 headers: {

 'Content-type': 'text/xml; charset="UTF-8"',

 'Content-length': 0,

 'User-Agent': 'VMware/jsSample',

 'Connection': 'keep-alive',

 'SOAPAction': "http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/Issue"

 }

 };

// Set parameters for token lifetime.

var now = new Date();

var created = now.toISOString();

now.setHours(now.getHours() + 1);

var expires = now.toISOString();

// Build SOAP token request.

var requestXml = '<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"> \

 <SOAP-ENV:Header xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"> \

 <ns5:Security \

 xmlns="http://docs.oasis-open.org/ws-sx/ws-trust/200512" \

 xmlns:ns2="http://www.w3.org/2005/08/addressing" \

 xmlns:ns3= \

 "http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd" \

 xmlns:ns4="http://www.rsa.com/names/2009/12/std-ext/WS-Trust1.4/advice" \

 xmlns:ns5= \

 "http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd"> \

 <ns3:Timestamp> \

 <ns3:Created>' + created + '</ns3:Created> \

 <ns3:Expires>' + expires + '</ns3:Expires> \

 </ns3:Timestamp> \

 <ns5:UsernameToken> \

 <ns5:Username>' + my_sso_username + '</ns5:Username> \

 <ns5:Password>' + my_sso_password + '</ns5:Password> \

 </ns5:UsernameToken> \

 </ns5:Security> \

 </SOAP-ENV:Header> \

 <SOAP-ENV:Body xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"> \

 <RequestSecurityToken \

 xmlns="http://docs.oasis-open.org/ws-sx/ws-trust/200512" \

 xmlns:ns2="http://www.w3.org/2005/08/addressing" \

 xmlns:ns3= \

 "http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd" \

 xmlns:ns4="http://www.rsa.com/names/2009/12/std-ext/WS-Trust1.4/advice" \

VMware vCenter Server Management Programming Guide

VMware, Inc. 28

 xmlns:ns5= \

 "http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd"> \

 <TokenType>urn:oasis:names:tc:SAML:2.0:assertion</TokenType> \

 <RequestType>http://docs.oasis-open.org/ws-sx/ws-trust/200512/Issue</RequestType> \

 <Lifetime> \

 <ns3:Created>' + created + '</ns3:Created> \

 <ns3:Expires>' + expires + '</ns3:Expires> \

 </Lifetime> \

 <Renewing Allow="true" OK="false" /> \

 <Delegatable>true</Delegatable> \

 <KeyType>http://docs.oasis-open.org/ws-sx/ws-trust/200512/Bearer</KeyType> \

 <SignatureAlgorithm>http://www.w3.org/2001/04/xmldsig-more#rsa-sha256</SignatureAlgorithm> \

 </RequestSecurityToken> \

 </SOAP-ENV:Body> \

</SOAP-ENV:Envelope>'

// Define callback to extract SAML assertion.

function extractToken(xmlResponse) {

 var token;

token=xmlResponse.toString().match(/\<saml2:Assertion[\s\S]*\<\/saml2:Assertion\>/m).toString();

 return token;

}

// Define request callback functions.

var callback = function(res) {

 str = '';

 res.on('error', function(err) {console.log("ERROR in SSO authentication", err)});

 res.on('data', function(chunk) {str += chunk});

 res.on('end', function() {

 console.log("SSO: Authenticated successfully");

 my_saml_token = extractToken(str);

 fs.writeFile(tokenFilename, my_saml_token, function(err){

 if (err) {

 console.log("Couldn't save SAML token to " tokenFilename)

 } else {

 console.log("Saved SAML token to " + tokenFilename)

 }

 });

 });

}

// Issue security token request.

my_http_options.headers['Content-length'] = requestXml.length;

https.request(my_http_options, callback).end(requestXml);

Create a vSphere Automation Session with a SAML Token
To establish a vSphere Automation session, you create a connection to the vSphere Automation API
endpoint and then you authenticate with a SAML token to create a session for the connection.

Prerequisites

n Retrieve the vSphere Automation endpoint URL from the Lookup Service.

VMware vCenter Server Management Programming Guide

VMware, Inc. 29

n Obtain a SAML token from the vCenter Single Sign-On service.

Procedure

1 Create a connection by specifying the vSphere Automation API endpoint URL and the message
protocol to be used for the connection.

Note To transmit your requests securely, use https for the vSphere Automation API endpoint URL.

2 Create the request options or stub configuration and set the security context to be used.

The security context object contains the SAML token retrieved from the vCenter Single Sign-On
service. Optionally, the security context might contain the private key of the client application.

3 Create an interface stub or a REST path that uses the stub configuration instance.

The interface stub corresponds to the interface containing the method to be invoked.

4 Invoke the session create method.

The service creates an authenticated session and returns a session identification cookie to the client.

5 Create a security context instance and add the session ID to it.

6 Update the stub configuration instance with the session security context.

What to do next

Use the updated stub configuration with the session ID to create a stub for the interface that you want to
use. Method calls on the new stub use the session ID to authenticate.

JavaScript Example of Creating a vSphere Automation API Session with a
SAML Token
This example shows the use of JavaScript with the vSphere Automation SDK for REST to apply a SAML
token to the vSphere Automation API endpoint and exchange it for a vSphere Automation API session ID.

The example assumes that you have previously saved certain connection information in global variables.
The JavaScript depends on the Node.js package, which allows it to run standalone.

This example depends on the following global variables.

n my_vapi_host

n my_vapi_port

n my_saml_token

n my_http_options

// Import required libraries.

var sso = require('./sso');

var https = require('https');

var gzip = require('gzip-js');

// Configure HTTP request.

var sessionPath = '/rest/com/vmware/cis/session';

VMware vCenter Server Management Programming Guide

VMware, Inc. 30

var httpMethod = 'POST';

// Base64 encode the token value for the security context.

var b64Token = new Buffer(gzip.zip(my_saml_token)).toString('base64');

// Build the Authorization header value.

var start = 0;

var bufSize = 3 * 1024;

var prefix = 'SIGN ';

var authArray = [];

while (start < b64Token.length) {

 var end = start + bufSize;

 authArray.push(prefix + 'token="' + b64Token.slice(start, end) + '"');

 start = end;

 prefix = '';

}

// Prepare the HTTP request.

my_http_options = {

 host: my_vapi_host,

 port: my_vapi_port,

 path: sessionPath,

 method: httpMethod,

 rejectUnauthorized: false,

 requestCert: true,

 agent: false,

 headers: {

 'Authorization': authArray

 }

};

// Define the callbacks.

function callback(res) {

 res.on('error', function(err) { console.log('Login error: ', err) });

 res.on('data', function(chunk) {});

 res.on('end', function() {

 var cookieValue = res.headers['set-cookie'];

 my_http_options[headers] = {'Cookie': cookieValue,

 'Content-Type': 'application/json'} // Save the session ID.

 }

}

// Issue the login request.

https.request(my_http_options, callback).end();

VMware vCenter Server Management Programming Guide

VMware, Inc. 31

Authorization Model for
Administration of vCenter Server 4
There are three types of authorization levels in vCenter Server.

Table 4-1. Authorization Levels

Authorization Level Description

operator A user has read access to configuration settings.

administrator A user has read and write access to configuration settings, but cannot manage user
accounts.

super administrator A user has all the capabilities of the other roles, and has the additional capabilities of
creating local user accounts and accessing the local Bash shell.

This model applies to the API and all other interfaces to vCenter Server except when you use SSH and
log in by using a local account.

This chapter includes the following topics:

n Authorization Model Mapping to the vCenter Single Sign-On Domain

n Using the Operator Role

n Using the Admin Role

n Using the SuperAdmin Role

Authorization Model Mapping to the vCenter Single Sign-
On Domain
The three-level authorization model of vCenter Server maps to local roles and to vCenter Single Sign-On
groups, depending on how the user authenticated. This model allows consistent security control
regardless of operational context.

The authorization levels map to group and role.

VMware, Inc. 32

Table 4-2. Authorization Mapping

Authorization Level vCenter Single Sign-On Group vCenter Server Local Role

operator SystemConfiguration.Administrators operator

administrator SystemConfiguration.Administrators admin

superAdministrator SystemConfiguration.BashShellAdministrators superAdmin

When a super administrator adds user accounts, the options available include a choice of the role to
assign to the new user.

Using the Operator Role
The operator role is the most restricted of the authorization levels available to users who work with
vCenter Server.

Operators are allowed to view information about vCenter Server. They are not allowed to alter its
configuration. The operator role is suited for monitoring and reporting functions. For example, the
operator role provides access to the following methods.

n resources.system.health.get

n resources.storage.stats.list

n services.status.get

Using the Admin Role
The administrator role provides an intermediate authorization level for users who manage vCenter
Server.

An administrator role is required for users who alter the vCenter Server configuration, exercise control
functions, or other operations that can affect regular users.

For example, the administrator role provides access the following methods.

n networking.ip4v.renew

n networking.firewall.addr.inbound.add

n services.control

n shutdown.reboot

Using the SuperAdmin Role
The superAdmin role is the most expansive authorization level for users who manage vCenter Server.

The superAdmin role allows unrestricted access to vCenter Server. This role is required for adding or
altering user accounts and for using the Bash shell.

VMware vCenter Server Management Programming Guide

VMware, Inc. 33

Installing and Upgrading vCenter
Server 5
You can use the vCenter Server API to perform operations related to stage 2 of the installation and
upgrade processes. You can also perform historical data transfer operations.

This chapter includes the following topics:

n Install Stage 2

n Upgrade Stage 2

n Historical Data Transfer

Install Stage 2
The vCenter Server API provides methods for performing stage 2 deployment operations on a newly
installed vCenter Server instance.

The vCenter Server instance is deployed in two stages. With stage 1 of the deployment process, you
deploy the OVA file, which is included in the installer. With stage 2 of the deployment process, you set up
and start the services of the newly deployed vCenter Server instance.

To complete stage 1 of the deployment process, you can use the GUI installer or perform a CLI
deployment. For details, see vCenter Server Installation and Setup. Alternatively, you can perform a
deployment by using the VMware OVF Tool. See OVF Tool User's Guide.

Setting Up a Newly Installed vCenter Server Instance
You can use the API to set up a newly deployed vCenter Server instance.

After stage 1 of the deployment process completes successfully, the vCenter Server instance enters in an
INITIALIZED state. If the instance is not initialized, you cannot run stage 2 of the deployment process. You
can get the state of the vCenter Server instance by using the vcenter deployment service. The vCenter
Server instance can enter six states during the deployment process.

VMware, Inc. 34

Figure 5-1. Install Stage 2 State Diagram

NOT_
INITIALIZED

INITIALIZED
CONFIG_

IN_
PROGRESS

QUESTION_
RAISED

CONFIGURED

Start Success

Answer

Question

Error

Install
Stage 1

FAILED

Check spec

Table 5-1. vCenter Server Instance States During Install Stage 2

State Description

NOT_INITIALIZED The install stage 1 phase is in progress, not started, or failed.

INITIALIZED The vCenter Server instance is deployed and ready for setup.

CONFIG_IN_PROGRESS The setup process is in progress.

QUESTION_RAISED You must answer the question to continue the setup process.
The vCenter Server instance stays in the QUESTION_RAISED state
until it receives the correct answer.

FAILED Errors occurred during the setup process. You can check the
errors, warnings, and info data structures.

CONFIGURED The vCenter Server instance is installed and configured
successfully.

FAILED and CONFIGURED are final states.

Table 5-2. User Operations lists operations that you can perform to set up your newly deployed vCenter
Server instance.

VMware vCenter Server Management Programming Guide

VMware, Inc. 35

Table 5-2. User Operations

Operation Description

Get deployment information You can retrieve information about the current deployment status. This operation is useful both
before initiating stage 2 of the deployment and for monitoring the progress of the setup process.

Validate the configuration
document

You can optionally verify whether your install spec is valid before starting the setup process.

Configure the vCenter Server
instance

You can initiate the setup process by providing an install spec that defines the values for the
settings that you want to configure.

Get question You can retrieve a question raised during the setup process.

Answer question You can provide an answer to the question raised during the setup process. The available answer
values are YES, NO, OK, CANCEL, ABORT, RETRY, and IGNORE. The possible answer values depend on
the type of the question.

Note Each question has a default answer value. If you set questions to receive automatic answers
in the install spec and a question is raised during the setup process, the default answer value is
automatically provided as the answer to the question.

For information about the HTTP requests that you can use to perform the user operations, see HTTP
Requests for Install Stage 2.

HTTP Requests for Install Stage 2
You can use HTTP requests to set up a newly deployed vCenter Server instance.

HTTP Requests
After stage 1 of the deployment process completes successfully, you can perform setup by sending HTTP
requests.

Note When you send the requests, you must authenticate with vCenter Server root credentials.

The following HTTP requests show the syntax that you can use to perform the available user operations.

n Get deployment information

GET https://<server>:5480/rest/vcenter/deployment

n Validate the install spec

POST https://<server>:5480/rest/vcenter/deployment/install?action=check

n Configure the vCenter Server instance

POST https://<server>:5480/rest/vcenter/deployment/install?action=start

n Get question

GET https://<server>:5480/rest/vcenter/deployment/question

VMware vCenter Server Management Programming Guide

VMware, Inc. 36

n Answer question

POST https://<server>:5480/rest/vcenter/deployment/question?action=answer

For information about the content and syntax of the HTTP request body, see the API reference
documentation.

HTTP Status Codes and Errors
Table 5-3. HTTP Status Codes and Errors lists the status codes that you can receive when you send
HTTP requests.

Table 5-3. HTTP Status Codes and Errors

HTTP Status Code Description Operations that Return the Status Code

200 The operation is successful. All operations. You can check the returned
data in the results data structure.

400 You cannot perform the operation
because the vCenter Server instance is
in the current state. For information
about the states of the vCenter Server
instance, see Setting Up a Newly
Installed vCenter Server Instance.

n Validate the install spec

n Start the setup

n Get the install spec

n Get the raised question

n Answer the question

n Get the state of the vCenter Server
instance

401 You use an invalid user name or
password, or authentication has failed.

n Validate the install spec

n Start the setup

n Get the install spec

n Get the raised question

n Answer the question

n Get the state of the vCenter Server
instance

404 The state of the vCenter Server instance
cannot be determined .

Get the vCenter Server instance state.

500 There is a vapi std error. For
information about the types of vapi std
errors, see vapi.std.errors in the API
reference documentation.

Get the raised question.

If errors occur during the setup process, you can check the results data structure, the API log file, and
download the vCenter Server instance support bundle from https://<server>:443/appliance/
support-bundle.

Use HTTP Requests to Set Up a Newly Deployed vCenter Server
Instance
You can send HTTP requests to complete stage 2 of the deployment process of a newly deployed
vCenter Server instance.

VMware vCenter Server Management Programming Guide

VMware, Inc. 37

You set up a newly deployed vCenter Server instance by providing configuration settings in the body of
the HTTP request.

Prerequisites

n Verify that the newly deployed vCenter Server instance is reachable.

n Verify that you have the correct credentials for sending HTTP requests.

Procedure

1 Check whether the vCenter Server instance state is set to INITIALIZED.

GET https://<server>:5480/rest/vcenter/deployment

If the vCenter Server instance is in the correct state, you receive a message body that contains the
following line and you can continue with the setup process.

...

 "state": "INITIALIZED",

...

2 (Optional) Validate the configuration settings that you provide in the body of the HTTP request.

POST https://<server>:5480/rest/vcenter/deployment/install?action=check

The following example shows syntax that you can use in the body of the HTTP request.

{

 "spec": {

 "vcsa_embedded": {

 "ceip_enabled": true,

 "standalone": {

 "sso_domain_name": "vsphere.local",

 "sso_admin_password": "<your_password>"

 }

 },

 "auto_answer": true

 }

}

If the input is valid, you receive the following response.

{

 "status": "SUCCESS"

}

3 Initiate the setup process by providing valid input in the body of the HTTP request.

POST https://<server>:5480/rest/vcenter/deployment/install?action=start

VMware vCenter Server Management Programming Guide

VMware, Inc. 38

4 Monitor the progress of the setup process.

GET https://<server>:5480/rest/vcenter/deployment

The following example shows part of the response body when the setup process is ongoing.

{

 "progress": {

 "completed": 2,

 "message": {

 "id": "install.ciscommon.component.starting",

 "args": [

 "VMware Authentication Framework"

],

 "default_message": "Starting VMware Authentication Framework..."

 },

 "total": 3

 },

 "status": "RUNNING",

 "state": "CONFIG_IN_PROGRESS",

 "operation": "INSTALL",

...

The following example shows part of the response body when the setup process has completed
successfully.

{

 "subtask_order": [

 "rpminstall",

 "validate",

 "firstboot"

],

 "cancelable": false,

 "progress": {

 "completed": 3,

 "total": 3,

 "message": {

 "default_message": "Task has completed successfully.",

 "id": "com.vmware.vcenter.deploy.task.complete.success",

 "args": []

 }

 },

 "status": "SUCCEEDED",

 "description": {

 "default_message": "Install vCenter Server.",

 "id": "com.vmware.vcenter.deploy.task.description.op.install",

 "args": []

 },

 "state": "CONFIGURED",

...

Results

You successfully configured the newly deployed vCenter Server instance.

VMware vCenter Server Management Programming Guide

VMware, Inc. 39

Workflows for Install Stage 2
You can use the vcenter deployment API to run the install stage 2 process of your vCenter Server
instance.

Figure 5-2. Install Workflow and Figure 5-3. Install Stage 2 Workflow show example install workflows.

During stage 1, the vCenter Server instance is in a NOT_INITIALIZED state. After a successful deployment,
the vCenter Server instance enters in an INITIALIZED state. If there are errors during stage 1, the vCenter
Server instance stays in a NOT_INITIALIZED state and you must redeploy it.

You can check the state of the vCenter Server instance before, during, and after the setup process. You
can run the install stage 2 process if the vCenter Server instance is initialized. You can check the setup
configuration before you initiate stage 2 by running pre-checks. If errors or warnings appear during the
validation of the install specification, you must remove the causes and correct the specification.

During the setup process, the regular vCenter Server instance state is CONFIG_IN_PROGRESS. The vCenter
Server instance can also enter in a FAILED or QUESTION_RASED state. If a question appears during the
setup, the vCenter Server instance enters in a QUESTION_RAISED state and stays in it until you provide an
answer. You can set questions to receive automatic answers in the install spec and if a question is raised
during the setup process, the default answer value is automatically provided as the answer to the
question.

If errors occur during the setup process, the vCenter Server instance enters in a FAILED state and you
must restart the setup after the causes are removed. If the setup is successful, the vCenter Server
instance enters in a CONFIGURED state.

VMware vCenter Server Management Programming Guide

VMware, Inc. 40

Figure 5-2. Install Workflow

Start

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No

No No

No

No

No

No

No

End

Check the state of the
applianceby using

the vcenter deployment
service

Successful

Run validation of the
install spec by using the

vcenter deployment
install service

State=
CONFIGURED

State=
FAILED

State=
CONFIG_

IN_PROGRESS

State=
QUESTION_

RAISED

Answer
Received?

Deploy the appliance
by using the GUI or CLI

Check the errors
and warnings data

structures and resolve
the issues

State=
INITIALIZED

State=
NOT_

INITIALIZED

Run the appliance
setup by using the vcenter
deployment install service

Receive
Answer

VMware vCenter Server Management Programming Guide

VMware, Inc. 41

For information about the states of the vCenter Server instance and available operations, see Setting Up
a Newly Installed vCenter Server Instance.

Figure 5-3. Install Stage 2 Workflow

Start

End

Create an install spec

Validate the install spec by using
the check method of the install

service and check the result data
structure for errors and warnings

Get the deployment status

Run the setup process by using the
start method of the install service

Check the configuration status by
using the vcenter deployment service

You can run the setup pre-checks and the install stage 2 process by creating and passing an
InstallSpec. In InstallSpec, you define the setup configuration. See Figure 5-3. Install Stage 2
Workflow . You can run the setup in silent mode by setting the InstallSpec.auto_answer to true. The
default value of InstallSpec.auto_answer is false and the setup is in interactive mode, in which you
must provide answers to the raised questions.

For information about the classes, variables, and default values, see the API reference documentation.

Upgrade Stage 2
You can upgrade your vCenter Server instance by using the API, CLI, or GUI.

For information about how to upgrade the vCenter Server instance by using CLI and GUI, see the
vCenter Server Upgrade documentation.

VMware vCenter Server Management Programming Guide

VMware, Inc. 42

Upgrading a vCenter Server Instance
You can use the API during stage 2 of the vCenter Server instance upgrade.

By using the API, you can upgrade your vCenter Server instance. For information about the upgrade
process, its stages, supported configurations, upgrade paths, prerequisites for upgrading, and the
sequence for upgrading a vSphere environment, see the vCenter Server Upgrade documentation.

After you deploy the vCenter Server instance on stage 1 by using the GUI or CLI, the instance enters in
an INITIALIZED state. If the vCenter Server instance is not initialized, you cannot run stage 2 of the
upgrade process. You can get the state of the vCenter Server instance by using the vcenter deployment
service. There are six states during the upgrade process.

Figure 5-4. Upgrade Stage 2 State Diagram

NOT_
INITIALIZED

INITIALIZED
CONFIG_

IN_
PROGRESS

QUESTION_
RAISED

CONFIGURED

Start Success

Answer

Question

Error

Upgrade
Stage 1

FAILED

Check spec

Table 5-4. vCenter Server Instance States During Upgrade Stage 2

State Description

NOT_INITIALIZED The upgrade stage 1 phase is in progress, not started, or failed.

INITIALIZED The vCenter Server instance is deployed and ready for
upgrading.

CONFIG_IN_PROGRESS The upgrade process is in progress.

QUESTION_RAISED You must answer the question to continue the upgrade process.
The vCenter Server instance stays in the QUESTION_RAISED state
until it receives the correct answer.

VMware vCenter Server Management Programming Guide

VMware, Inc. 43

Table 5-4. vCenter Server Instance States During Upgrade Stage 2 (continued)

State Description

FAILED Errors appeared during the upgrade process. You can check the
errors, warnings, and info data structures.

CONFIGURED The vCenter Server instance is upgraded or configured
successfully.

FAILED and CONFIGURED are final states.

You can roll back a vCenter Server instance upgrade by using the GUI. For information about how to roll
back a vCenter Server instance, see the vCenter Server Upgrade documentation.

After the upgrade you can check the vCenter Server instance type, domain registration, services, their
state and health status by using the API. For information about how to verify whether the upgrade of your
vCenter Server instance is successful, see the vCenter Server Upgrade documentation.

Table 5-5. User Operations shows operations that you can perform to upgrade your vCenter Server
instance.

Table 5-5. User Operations

Operation Description

Operations for upgrading

Get the state of the vCenter Server instance You can get the state of the vCenter Serverinstance before,
during and after the upgrade process.

For information about the HTTP requests for diagnostic and
deferring the transfer of historical data, see HTTP Requests for
Upgrade Stage 2.

Check You can validate the upgrade spec before you run the upgrade
process. If the vCenter Server instance is in the INITIALIZED
state, you can run the validation. The operation runs upgrade
pre-checks. You can check the errors, warnings, and status data
structures before you run the upgrade process.

For information about the HTTP requests for upgrading, see
HTTP Requests for Upgrade Stage 2.

Start If the vCenter Server instance is in an INITIALIZED state, you
can run the upgrade process. If errors appear during the
upgrade, you can download the vCenter Server support bundle.

For information about the HTTP requests for upgrading, see
HTTP Requests for Upgrade Stage 2.

Get If the vCenter Server instance is in a CONFIGURED state, you can
get the spec that is used for upgrading.

For information about the HTTP requests for upgrading, see
HTTP Requests for Upgrade Stage 2.

Operations for getting and answering a question

VMware vCenter Server Management Programming Guide

VMware, Inc. 44

Table 5-5. User Operations (continued)

Operation Description

Get You can get the raised question. If you set the
Upgrade.auto_answer to true, the upgrade process will be in a
silent mode and the vCenter Serverinstance does not generate
questions. It uses default answers and you should not provide
an answer.

For information about the HTTP requests for getting and
answering a question, see HTTP Requests for Upgrade Stage 2.

Answer You can provide an answer to the raised question. The available
answers for the upgrading are OK, CANCEL, YES,NO, ABORT, RETRY,
and IGNORE. The answer depends on the type of the question. If
you set the Upgrade.auto_answer to true, the upgrade process
will be in a silent mode and the vCenter Serverinstance does
not generate questions. It uses default answers and you should
not provide an answer.

For information about the HTTP requests for getting and
answering a question, see HTTP Requests for Upgrade Stage 2.

For information about the available operations in the API, see the vcenter deployment, vcenter
deployment upgrade, vcenter services, and vcenter system-config deployment type services in the
API reference documentation.

You can upgrade your vCenter Server instance by using HTTP requests. For information about the HTTP
requests, see HTTP Requests for Upgrade Stage 2.

HTTP Requests for Upgrade Stage 2
You can use HTTP requests or the API to upgrade your vCenter Server instance.

HTTP Requests
HTTP requests for upgrading

n Get the state of the vCenter Server instance

GET https://<IP_address_upgraded_or_target_instance>:5480/rest/vcenter/deployment

n Validate the upgrade spec

POST https://<IP_address_target_instance>:5480/rest/vcenter/deployment/upgrade?action=check

n Run the upgrading

POST https://<IP_address_target_instance>:5480/rest/vcenter/deployment/upgrade?action=start

n Get the upgrade spec used for upgrading

GET https:// https://<IP_address_upgraded_instance>:5480/rest/vcenter/deployment/upgrade

VMware vCenter Server Management Programming Guide

VMware, Inc. 45

HTTP requests for getting and answering a question

n Get the raised question

GET https://<IP_address_upgraded_or_target_instance>:5480/rest/vcenter/deployment/question

n Answer to the question

POST https://<IP_address_upgraded_or_target_instance>:5480/rest/vcenter/deployment/question?

action=answer

For information about the content and syntax of the HTTP request body, see the API reference
documentation.

Note When you send the requests, you must authenticate with vCenter Server root credentials.

HTTP Status Codes and Errors
Table 5-6. HTTP Status Codes and Errors

HTTP Status Code Description
Operations That Return the Status
Code

200 The operation is successful. All operations. You can check the returned
data in the results data structure.

400 You cannot perform the operation
because the vCenter Server instance is
in the current state. For information
about the states of the vCenter
Serverinstance, see the Upgrading a
vCenter Server Instance topic.

n Get the state of the vCenter Server
instance

n Validate the upgrade spec

n Run the upgrade

n Get the upgrade spec

n Get the raised question

n Answer the question

401 You use invalid user name or password,
or authentication is failed.

n Get the state of the vCenter Server
instance

n Validate the upgrade spec

n Run the upgrade

n Get the upgrade spec

n Get the raised question

n Answer the question

404 The state of the vCenter Server instance
cannot be determined

Get the state of the vCenter Server
instance.

500 There is a vapi std error. For
information about the types of vapi std
errors, see the vapi.std.errors API in
the API reference documentation.

Get the raised question.

If errors appear during the upgrade process, you can check the results data structure, the API log file,
and download the vCenter Server support bundle from https://<server>:443/appliance/support-
bundle.

VMware vCenter Server Management Programming Guide

VMware, Inc. 46

Workflows for Upgrade Stage 2
You can use the vcenter deployment API to run the upgrade stage 2 process of your vCenter Server
instance.

Figure 5-5. Upgrade Workflow and Figure 5-6. Upgrade Stage 2 Workflow show example upgrade
workflows.

During stage 1, the vCenter Server instance is in a NOT_INITIALIZED state. After a successful deployment,
the vCenter Server instance enters in an INITIALIZED state. If there are errors during stage 1, the vCenter
Server instance stays in a NOT_INITIALIZED state and you must redeploy it.

You can check the state of the vCenter Server instance before, during, and after the upgrade process.
You can run the upgrade stage 2 process if the vCenter Server instance is initialized. You can check the
upgrade configuration before you run the upgrade by running pre-checks. If errors or warnings appear
during the validation of the upgrade specification, you must remove the causes and correct the
specification.

During the upgrade process, the vCenter Server instance can enter in a FAILED or QUESTION_RASED state.
If a question appears during the upgrade, the vCenter Server instance enters in a QUESTION_RAISED state
and stays in it until you provide an answer. You can run the upgrade in silent mode, in which the vCenter
Server instance does not generate questions, and uses default answers.

If errors appear during the upgrade, the vCenter Server instance enters in a FAILED state and you must
remove the causes, redeploy the instance and restart the upgrade. If stage 2 of the upgrade process is
successful, the vCenter Server instance enters in a CONFIGURED state. If the vCenter Server instance is
configured, you can check its services and pause the historical data transfer.

VMware vCenter Server Management Programming Guide

VMware, Inc. 47

Figure 5-5. Upgrade Workflow

Start

Yes

Yes

Yes

Yes

Yes

No

No

No

No
No

1

1

End

Check the state of the appliance by
using vcenter deployment service

Successful

Run validation of the upgrade spec by using
the vcenter deployment upgrade service

State=
CONFIGURED

State=
FAILED

State=
QUESTION_

RAISED

Answer
Received?

Deploy the appliance by using
the User Interface or CLI

Check the errors and
warnings data

structures and resolve
the issues

State=
INITIALIZED

State=
NOT_

INITIALIZED

Run the appliance upgrade by using the
vcenter deployment upgrade service

Receive
Answer

No

Yes

Yes

1

No

VMware vCenter Server Management Programming Guide

VMware, Inc. 48

For information about the states of the vCenter Server instance and available operations, see Upgrading
a vCenter Server Instance.

Figure 5-6. Upgrade Stage 2 Workflow

Start

End

Create a source appliance spec,
source location spec, and an

upgrade spec

Validate the upgrade spec by using
the check method of the upgrade
service and check the result data
structure for errors and warnings

Get the deployment status

Run the upgrade by using the start
method of the upgrade service

Check the configuration status by
using the vcenter deployment service

You can run the upgrade pre-checks and the upgrade stage 2 process by creating and passing an
UpgradeSpec. In UpgradeSpec, you define the upgrade configuration and specify the source vCenter Server
instance and the source ESXi host in SourceApplianceSpec and LocationSpec. See Figure 5-6. Upgrade
Stage 2 Workflow . You can run the upgrading in silent mode by setting the UpgradeSpec.auto_answer to
true. The default value of UpgradeSpec.auto_answer is false and the upgrading is in interactive mode, in
which you must provide answers to the raised questions.

For information about the classes, variables, and default values, see the API reference documentation.

Historical Data Transfer
If you migrate vCenter Server for Windows, you can transfer the historical data of your source vCenter
Server instance together with the core configuration data.

VMware vCenter Server Management Programming Guide

VMware, Inc. 49

Deferred Import
The deferred import is a process of historical data transfer after the successful migration of a vCenter
Server instance with an external database. The historical data includes statistics, events, and tasks.

By using the deferred import feature, you can postpone the historical data transfer after the migration
process completes, so that you manage the downtime of your environment. You can select whether all
historical data, or only events and tasks, will be migrated with the core data during the migration. The
historical data transfer and deferred import of historical data are disabled by default. You can enable and
configure the historical data transfer by using the API, vCenter Server Management Interface, vCenter
Server installer, or CLI installer. A vCenter Server super administrator can run and control the migration
and deferred import processes.

If you use the deferred import feature, the historical data is migrated with the core data and the historical
data import process starts automatically after a successful migration and when the vCenter Server
instance is running. You can pause the historical data import and resume it later.

For information about how to configure and run the migration and deferred import processes by using the
vCenter Server Management Interface, see the vCenter Server Upgrade documentation.

By using the API, you can configure, control, and monitor the data transfer process. If you use the API to
enable the deferred import feature, you must create a history migration spec and set defer_import to
true. For information about how to configure the deferred import by using the API, see Class Diagrams
for Deferred Import and the API reference.

The data import process has five states that you can check. If the historical data migration and the
deferred import are configured, the historical data import starts automatically after a successful migration.

VMware vCenter Server Management Programming Guide

VMware, Inc. 50

Figure 5-7. Deferred Import State Diagram

PENDING

Start

Pause/error

Resume

CancelCancel

Success

FAILED
SUCCЕEDED

BLOCKED
RUNNING

Table 5-7. User Operations

Operation Description

Pause You can pause the running data transfer process. If the data transfer is paused, you can resume or
cancel it.

Cancel You can cancel the data transfer process if it is in a RUNNING or BLOCKED state.

Note If you cancel the data transfer, the process enters in a final FAILED state and you cannot
resume the transfer.

Resume You can resume the stopped data transfer.

Get status You can retrieve the status of the data transfer process. There are five states.

PENDING The transfer is not started.

RUNNING The transfer is started or resumed.

BLOCKED The transfer is paused or there was a recoverable error, such as not
enough disk space, during the import.

SUCCEEDED The transfer is successful.

FAILED The transfer is canceled.

You can run the deferred import operations by using the API or sending an HTTP request.

Note When you send the requests, you must use an authentication.

VMware vCenter Server Management Programming Guide

VMware, Inc. 51

If you send requests to port 5480, you must authenticate with vCenter Server root credentials. If you send
requests to the vCenter Server reverse proxy port, you must authenticate with vCenter Single Sign-On
credentials.

The following HTTP requests show the syntax that you can use to perform the available user operations.

https://<IP_of_migrated_instance>:5480/rest/vcenter/deployment/history?action=pause

https://<IP_of_migrated_instance>:5480/rest/vcenter/deployment/history?action=cancel

https://<IP_of_migrated_instance>:5480/rest/vcenter/deployment/history?action=resume

https://<IP_of_migrated_instance>:5480/rest/vcenter/deployment/history

https://<IP_of_migrated_instance>/rest/vcenter/deployment/history?action=pause

https://<IP_of_migrated_instance>/rest/vcenter/deployment/history?action=cancel

https://<IP_of_migrated_instance>/rest/vcenter/deployment/history?action=resume

https://<IP_of_migrated_instance>/rest/vcenter/deployment/history

For information about the status codes and historical data transfer errors, see HTTP Status Codes for
Deferred Import and Historical Data Import Errors.

If you pause the data transfer by using the API or an HTTP request, you can resume or cancel the
process by using the API or the vCenter Server Management Interface.

Important If you cancel the transfer process, and want to transfer the historical data later, you must
restart the migration process.

HTTP Status Codes for Deferred Import
Each deferred import operation returns an HTTP status code.

The following table lists the HTTP status codes that you can receive and the operations which can trigger
each status code.

Table 5-8. HTTP Status Codes

HTTP Status Code Description Operations that return the status code

200 The operation is successful. n pause

n cancel

n resume

400 You cannot perform the operation because the data import is
in the current state. For information about the data import
states and transitions between the states, see the Figure 5-7.
Deferred Import State Diagram figure.

n pause

n cancel

n resume

VMware vCenter Server Management Programming Guide

VMware, Inc. 52

Table 5-8. HTTP Status Codes (continued)

HTTP Status Code Description Operations that return the status code

401 You use invalid user name or password, or the authentication
has failed.

n pause

n cancel

n resume

n getstatus

403 You do not have permissions to perform the operation. The
vCenter Server super administrator has permissions to run
the operation.

n pause

n cancel

n resume

n getstatus

500 There is a vapi std error. For information about the types of
vapi std errors, see vapi.std.errors in the API reference.

n pause

n cancel

n resume

n getstatus

Historical Data Import Errors
If an error appears during the data import, the import stops and the process enters in a BLOCKED state. You
can resume the data import after you eliminate the cause.

You can check the errors, warnings, and info messages by reading the info, status, and notifications
data structures.

If the information in the data structures is not enough, you can download the vCenter Server support-
bundle from <server>:443/appliance/support-bundle and check the log files.

Table 5-9. Log Files

Log File Path

API log file /var/log/vmware/applmgmt/applmgmt.log

Backend log file /var/log/vmware/upgrade/upgrade-post-import.log

Upgrade Runner log file /var/log/vmware/upgrade/deferredimport-upgrade-runner.log

Deferred import log file /var/log/vmware/upgrade/DeferredImport_com.vmware.vcdb_<date_time>.log

Class Diagrams for Deferred Import
The vcenter deployment API provides classes and interfaces that you can use for configuring and
controlling the historical data import.

The historical data transfer during the vCenter Server migration is disabled by default and only the core
data is migrated. You can enable the historical data transfer and the deferred import by creating a history
migration spec and setting defer_import to true. For example, see Figure 5-8. Python Class Diagrams
for Deferred Import . You can change the historical data scope by using the HistoryMigrationOption
enumeration. By default, the data_set is set to EVENTS_TASKS.

VMware vCenter Server Management Programming Guide

VMware, Inc. 53

You can control the deferred import by creating an import history spec and calling the methods of the
ImportHistory class. Figure 5-8. Python Class Diagrams for Deferred Import shows the classes that you
can use to configure and control the deferred import.

Figure 5-8. Python Class Diagrams for Deferred Import

ImportHistory

ImportHistory.CreateSpec

ImportHistory.Info

HistoryMigrationSpec

com.vmware.vcenter.deployment_client

ImportHistory.CreateSpec
ImportHistory.Info

ImportHistory.cancel()
ImportHistory.get():ImportHistory.Info
ImportHistory.pause()
ImportHistory.resume()

data_set:HistoryMigrationOption
defer_import:bool or None

<<Enumeration>>
HistoryMigrationOption

name: str
description:str

progress:Progress
result:Notifications
description:LocalizableMessage
service:str
operation:str
parent:str
target:DynamicID
status:Status
cancelable:bool
error:Exception
start_time:datetime
end_time:datetime
user:str
memberName

ALL
EVENTS_TASKS

Use the Deferred Import Sample
You can use the vCenter Server Management Interface to migrate your vCenter Server instance and to
run the vc_import_history_sample.py sample to pause and resume the historical data import.

Prerequisites

n Verify that you cloned or downloaded the vSphere Automation SDK for Python from https://
github.com/vmware/vsphere-automation-sdk-python.

n Verify that you set up a test environment. For information about the prerequisites and how to set up a
test environment, see the README.md file in the deferhistoryimport directory and the Quick Start
guide for vSphere Automation SDK for Python at https://github.com/vmware/vsphere-automation-sdk-
python.

n Verify that you have vCenter Server root credentials.

VMware vCenter Server Management Programming Guide

VMware, Inc. 54

https://github.com/vmware/vsphere-automation-sdk-python
https://github.com/vmware/vsphere-automation-sdk-python
https://github.com/vmware/vsphere-automation-sdk-python
https://github.com/vmware/vsphere-automation-sdk-python

n Verify that you opened the vCenter Server Management Interface of your target vCenter Server
instance.

Procedure

1 From the getting started page, run the Migrate wizard.

2 Select one of the options for Configuration and historical data.

You can import only events and tasks or import all historical data.

3 Select Import historical data in the background and complete all steps from the wizard.

4 Run the vc_import_history_sample.py sample after successful migration.

Use the IP address of your source vCenter Server instance and the vCenter Server administrator
credentials when you run the sample. You can use or skip the verification of the vCenter Server
certificate. For example, you can use the following command.

vc_import_history_sample.py --server <IP_of_migrated_instance> --username <admin_username> --

password <admin_password> --skipverification

Python Example of Pausing and Resuming the Deferred Import
Process
The example shows how you can pause and resume the deferred import process by using the API. The
example is based on the vc_import_history_sample.py sample.

Note For a complete and up-to-date version of the sample code, see the vsphere-automation-sdk-
python VMware repository at GitHub.

 ...

 self.service_manager = ServiceManager(args.server,

 args.username,

 args.password,

 args.skipverification)

 self.service_manager.connect()

 ...

 # Using REST API service

 import_history = ImportHistory(self.service_manager.stub_config)

 ...

 # Change the status - either pause or resume it

 start_status = get_defer_history_import_status(import_history)

 if start_status == Status.RUNNING:

 print('Pausing Defer History Data Import.')

 import_history.pause()

 ...

 elif start_status == Status.PAUSED:

 print('Resuming Defer History Data Import.')

 import_history.resume()

 ...

VMware vCenter Server Management Programming Guide

VMware, Inc. 55

Monitoring vCenter Server 6
vCenter Server provides interfaces to check the current health of its components, and to report the
system's history of resource consumption. You can use these interfaces to spot potential trouble areas or
predict future shortages.

This chapter includes the following topics:

n Health Monitoring of vCenter Server

n Capacity Monitoring of vCenter Server

Health Monitoring of vCenter Server
The vCenter Server API offers health status indicators for several key components of the system. These
indicators can be polled periodically to monitor the components for problems.

The health status indicators report graded values from green to red. The general meanings of the grades
are as follows.

green The component is healthy.

yellow The component is healthy, but may have some problems.

orange The component is degraded, and may have serious problems.

red The component is unavailable, or will stop functioning soon.

gray No health data is available.

Check Overall System Health of vCenter Server
vCenter Server provides a composite health indicator that enables you to test a single value that
represents the health of all system components. This procedure shows how to test the composite health
indicator.

VMware, Inc. 56

The value of the overall system health indicator reflects the strongest trouble indication among the
vCenter Server components. If any component has a red indicator, the overall system health indicator is
red, else if any component has an orange indicator, the overall system health indicator is orange, and so
on.

A gray value for any component indicates that data for the subsystem is unknown. If one or more
components have a gray value, but all other subsystems are green, then the overall system health
indicator is gray rather than green. However, if any component has a definite trouble indication, the overall
system health indicator reflects the strongest trouble indication among the components.

Prerequisites

Verify that you have an active authenticated session with vCenter Server. This procedure assumes that
the session ID is present in the security context of a stub configuration.

Procedure

1 Create an interface stub or REST path that uses the stub configuration.

2 Invoke the health.system method.

3 Format and display the resulting value.

JavaScript Example of Checking Overall System Health of vCenter Server
This example shows the use of JavaScript with the vSphere Automation SDK for REST to request the
overall system health indicator for vCenter Server.

The example assumes a previously existing session with the vSphere Automation API endpoint. The
JavaScript code depends on the Node.js package.

This example depends on the following global variables.

n my_http_options

var https = require('https');

var httpPort = 443;

var httpPath = '/rest/appliance/health/system';

var httpMethod = 'GET';

// Prepare the HTTP request.

my_http_options = session.my_http_options;

my_http_options.method = httpMethod;

my_http_options.path = httpPath;

// Define the callbacks.

function callback(res) {

 res.on('error',

 function(err) {console.log('ERROR checking system health: ', err)});

 res.on('data', function(chunk) {data = chunk.toString();});

 res.on('end', function() {

 if (res.statusCode == 200) {

 console.log('Overall system health status: ', JSON.parse(data).value);

 }

VMware vCenter Server Management Programming Guide

VMware, Inc. 57

 })

};

// Issue the request.

https.request(my_http_options, callback).end();

Python Example of Checking the Overall System Health of vCenter Server
This example shows the use of Python with the vSphere Automation SDK for Python to request the
overall system health indicator for vCenter Server and the overall health indicator for management
services. The example assumes a previously existing session with the vSphere Automation API endpoint.

This example depends on the following global variables.

n my_stub_config

from com.vmware.appliance import health_client

This example assumes you have previously created a session

and stored the session ID in my_stub_config.

Issue request for overall system health.

System_stub = health_client.System(my_stub_config)

health = System_stub.get()

print('Overall system health: %s' % health)

Issue request for applmgmt services health.

Applmgmt_stub = health_client.Applmgmt(my_stub_config)

health = Applmgmt_stub.get()

print('Applmgmt services health: %s' % health)

Capacity Monitoring of vCenter Server
vCenter Server keeps a history of statistics that you can use to monitor resources used by the vCenter
Server instance.

You can use the statistics to spot peak usage demands or to monitor trends for advance warning of
potential resource exhaustion.

Frequency and Retention of Statistics Collection in vCenter Server
vCenter Server collects statistics from the guest operating system at regular intervals and stores them in
a database. Users can query the statistics in the database by selecting a time period and a roll-up
function that vCenter Server applies to the statistics before returning them to the client.

After the monitoring service starts up, it begins requesting statistics from the guest operating system
periodically, at a frequency that depends on the type of statistic. The service requests storage statistics
once every 10 minutes, while it requests memory, CPU, and networking statistics once per minute. The
collection times are fixed relative to the startup time of the monitoring service, rather than to clock time.

VMware vCenter Server Management Programming Guide

VMware, Inc. 58

The monitoring service retains statistics approximately 13 months, by default. Older statistics are deleted
by the service, creating a 13-month moving window within which you can query statistics. You can choose
to delete statistics as needed to conserve storage resources.

Nature of Statistics in vCenter Server
vCenter Server supplies statistics of several types.

The guest operating system computes statistics either as rates, such as CPU cycles per second, or as
snapshots of size, such as KB used for storage. Statistics stored as size snapshots are collected at the
end of their sample periods. Statistics stored as rates are computed as averages of values sampled
frequently during each sample period.

When you query the statistics database, the units are not returned with the data, but you can determine
the units for any metric by requesting metadata for the metric with the get() method.

Requesting Statistics from vCenter Server
To request statistics, you must construct an appropriate request structure to filter statistics from the
database.

To request data or metadata for a metric, you must supply the ID of the metric. You can get a list of metric
IDs by using the list() method, which returns information on all available metrics.

When you query statistics, you provide a list of IDs to specify the metrics in which you are interested. You
also supply a start time, an end time, a roll-up interval, and a roll-up function. These values interact as
follows to determine the data returned to you.

n The response contains a list of data points for each metric ID you specified in the request.

n The start time and end time control the limits for the data you want in the response. The response
contains data points only for statistics that have timestamps between those limits, inclusive of the
endpoints. However, the start time is adjusted to a round number, in some cases. For more
information, see Statistics Interval Adjustment in vCenter Server.

n The roll-up interval enables you to control the granularity of the data points in the response. Rather
than a response with a data point for every statistic between the start time and end time, you get a
response with a number of data points equal to the number of intervals between the start and end
times. Generally, you should specify a time period that is an even multiple of the interval, so that each
data point in the response represents the same number of statistics.

n The roll-up function specifies how the response summarizes the statistics that fall within each interval.
The resulting data point can be the maximum statistic value within collection interval, or the mean of
the statistics values within the interval, and so on.

Statistics Collection Times
The actual time that a statistic was collected is not readily predictable.

VMware vCenter Server Management Programming Guide

VMware, Inc. 59

The API does not enable you to determine the exact time that a statistic was collected. Furthermore,
some statistics, such as those for storage metrics, might take seconds or minutes to collect, so that they
are not available immediately at the time a request is made to the guest operating system.

However, because statistics are collected at regular intervals, and roll-up intervals for a request generally
all have the same size, each data point in the response represents the same number of statistics as the
others. See Statistics Interval Adjustment in vCenter Server for more information.

Statistics Interval Adjustment in vCenter Server
When you make a request for statistics, the monitoring service might adjust the specified roll-up interval
times to improve the appearance of statistics graphs in a graphical interface.

The monitoring service adjusts the start time of a data collection request when it is not an exact multiple
of the interval length. In these instances, the start time is rounded downward to the previous UTC time
that is a multiple of the interval. All subsequent intervals of the data collection are also adjusted to align
with the new start time.

For example, if the start time is 10:31 and the interval length is 1 hour, the monitoring service adjusts the
start time to 10:00 and the roll-up intervals have the following continuous pattern.

n 10:00 to 10:59:59.999

n 11:00 to 11:59:59.999

n 12:00 to 12:59:59.999

The monitoring service does not adjust the end time of a data collection. Consequently, the response to a
statistics query might contain one more data value than expected, or an incomplete final interval might be
lengthened.

Empty Data Values
In some instances, you might encounter a response that reports an empty data value, or even a series of
empty data values. This might manifest as a list of data values containing some numeric values
alternating with empty values.

n Empty data values can happen when the report time period is too short to be certain of containing any
statistics. For instance, a time period of 30 seconds is half the length of the sample period for network
metrics, so you have only a 50% chance of finding a network statistic during any 30-second reporting
period.

n Empty data values can also happen when the interval is shorter than the sample period for a metric
you have requested. In this case, some data points are present in the list, while others are empty
because no statistic was collected during those intervals. For instance, an interval of 5 minutes is only
half the length of the sample period for storage metrics, so every second data value is empty.

VMware vCenter Server Management Programming Guide

VMware, Inc. 60

n Empty data values can also happen when the monitoring service has not finished collecting and
writing the last sample to the database, even if the nominal sample timestamp falls within the report
time period. For example, calculation of storage used can delay writing a storage statistic to the
database. A request for the statistic during that delay time produces an empty data point in the
response.

When a response contains an empty data value, this indicates that no statistics were collected during a
collection interval. An appropriate action for the client in such a case depends on how the client is using
the data. For example, if you are graphing a resource usage trend, you might choose to interpolate for the
missing value to produce a smooth line.

Check Database Usage in vCenter Server
vCenter Server contains a database of all objects managed by the vCenter Server instance. In addition to
inventory objects, the database includes vCenter Server statistics, events, alarms, and tasks. You can
calculate the database storage consumption by adding the sizes of all data categories.

You need to monitor storage consumption in vCenter Server.

Prerequisites

This task assumes you have previously authenticated and created a client session.

Procedure

1 Prepare a request for database usage statistics.

Include metric IDs both for vcdb_core_inventory and vcdb_seat. The name vcdb_seat refers to
Statistics, Events, and Tasks in the vCenter Server database.

2 Issue the request to the API endpoint.

3 Process the resulting data points as needed.

4 Format and print the results.

Results

The result of this procedure shows the storage used in the vCenter Server database, which includes
storage overhead used for indexes and other optimizations beyond the actual size of the data.

JavaScript Example of Checking Database Usage in vCenter Server
This example shows the use of JavaScript with the vSphere Automation SDK for REST to view recent
statistics for the vCenter database usage in vCenter Server.

The example assumes a previously existing session with the vSphere Automation API endpoint. The
JavaScript code depends on the Node.js package.

VMware vCenter Server Management Programming Guide

VMware, Inc. 61

This example requests statistics at 30-minute intervals for a recent 2-hour report period. The example
requests the storage used by the inventory component and the storage used by the combination of
statistics, events, alarms, and tasks. The example adds the two values to calculate the vCenter Server
database usage in each 30-minute roll-up interval, and then reports the maximum size found over the 2-
hour report period.

This example depends on the following global variables.

n my_http_options

var https = require('https');

var httpPort = 443;

var httpPath = '/rest/appliance/monitoring/query';

var httpMethod = 'GET';

 // Prepare the HTTP request.

 my_http_options = session.my_http_options;

 my_http_options.method = httpMethod;

 var query = '?item.names.1=storage.used.filesystem.vcdb_core_inventory';

 query += '&item.names.2=storage.used.filesystem.vcdb_seat';

 query += '&item.function=MAX&item.interval=MINUTES30';

 var d_now = new Date();

 var ms = d_now.getTime();

 var min_15 = 15*60*1000;

 var endTime = new Date(d_now - min_15).toISOString();

 var startTime = new Date(d_now - 9*min_15).toISOString();

 query += '&item.start_time=' + startTime;

 query += '&item.end_time=' + endTime;

 my_http_options.path = httpPath + query;

 // Define the callbacks.

 function callback(res) {

 res.on('error', function(err) {console.log('ERROR querying database size: ', err)});

 res.on('data', function(chunk) {data = chunk.toString();});

 res.on('end', function() {

 if (res.statusCode === 200) {

 var results = JSON.parse(data).value;

 var coreSizes = results[0].data;

 var seatSizes = results[1].data;

 // Eliminate empty data points and process remaining data.

 var highest = coreSizes.filter(function(s){return s !== ''}).

 map(function(n,i){return parseInt(n) + parseInt(seatSizes[i])}).

 reduce(function(t,n){return Math.max(t,parseInt(n))});

 console.log('vCenter database inventory + stats, events, alarms, tasks: (max) size = ',

 highest);

 }

 })

 };

 // Issue the request.

 https.request(my_http_options, callback).end();

VMware vCenter Server Management Programming Guide

VMware, Inc. 62

Python Example of Checking Database Usage in vCenter Server
This example shows the use of Python with the vSphere Automation SDK for Python to view recent
statistics for the vCenter database usage in vCenter Server. The example assumes a previously existing
session with the vSphere Automation API endpoint.

This example requests statistics at 30-minute intervals for a recent 2-hour report period. The example
requests the storage used by the inventory component and the storage used by the combination of
statistics, events, alarms, and tasks. The example adds the two values to calculate the vCenter Server
database usage in each 30-minute roll-up interval, and then reports the maximum size found over the 2-
hour report period.

from com.vmware import appliance_client

import datetime

This example assumes you have previously created a session

and stored the session ID in my_stub_config.

Issue request for core inventory and 'SEAT' (stats, events, & alarms) usage.

req = appliance_client.Monitoring.MonitoredItemDataRequest()

req.names = ['storage.used.filesystem.vcdb_core_inventory',

 'storage.used.filesystem.vcdb_seat']

req.interval = appliance_client.Monitoring.IntervalType.MINUTES30

req.function = appliance_client.Monitoring.FunctionType.MAX

d_now = datetime.datetime.utcnow()

 req.start_time = d_now - datetime.timedelta(minutes=135)

 req.end_time = d_now - datetime.timedelta(minutes=15)

 Monitoring_stub = appliance_client.Monitoring(my_stub_config)

 resp = Monitoring_stub.query(req)

 # Extract resulting arrays.

 core_sizes = resp[0].data

 seat_sizes = resp[1].data

 # Remove empty data points:

 core_sizes = filter((lambda x: x != ''), core_sizes)

 seat_sizes = filter((lambda x: x != ''), seat_sizes)

 # Add the usage stats for each interval, and display maximum usage.

 highest = max(map((lambda a,b: int(a) + int(b)),

 core_sizes, seat_sizes))

 print('vCenter database inventory + stats, events, alarms, tasks:' +

 ' (max) size = {0} KB'.format(highest))

List Storage Consumption By Data Type in vCenter Server
vCenter Server provides statistics on several types of storage.

For example, you can query statistics about inventory storage, transaction log, and vCenter Server tasks.
Many of these statistics are available both for storage consumed and storage available.

This task provides data for system administrators who need to monitor storage consumption in the guest
operating system ofvCenter Server.

VMware vCenter Server Management Programming Guide

VMware, Inc. 63

Prerequisites

Verify that you have authenticated and created a client session.

Procedure

1 Prepare a request for database usage statistics.

Include metric IDs for each data type you wish to monitor.

2 Issue the request to the API endpoint.

3 Process the resulting data points as needed.

4 Format and print the results.

JavaScript Example of Listing Storage Consumption By Data Type in vCenter
Server
This example shows the use of JavaScript with the vSphere Automation SDK for REST to break down
storage consumption by type in vCenter Server.

The example assumes a previously existing session with the vSphere Automation API endpoint. The
JavaScript code depends on the Node.js package.

This example requests the most recent statistics for several categories of storage. The example requests
both current usage and total storage available for each category, then calculates the percentage used in
each category.

This example depends on the following global variables.

n my_http_options

var https = require('https');

var httpPort = 443;

var httpPath = '/rest/appliance/monitoring/query';

var httpMethod = 'GET';

 // Prepare the HTTP request.

 my_http_options = session.my_http_options;

 my_http_options.method = httpMethod;

 var query = '?item.function=MAX&item.interval=MINUTES30';

 var d_now = new Date();

 var ms = d_now.getTime();

 var min_30 = 30*60*1000;

 var startTime = new Date(d_now - min_30).toISOString();

 var endTime = d_now.toISOString();

 query += '&item.start_time=' + startTime;

 query += '&item.end_time=' + endTime;

 // Array of monitoring points with output labels:

 var mon = [['VCDB core: ',

 'storage.used.filesystem.vcdb_core_inventory',

 'storage.totalsize.filesystem.vcdb_core_inventory'],

 ['VCDB SEAT: ',

 'storage.used.filesystem.vcdb_seat',

 'storage.totalsize.filesystem.vcdb_seat'],

 ['Log: ',

VMware vCenter Server Management Programming Guide

VMware, Inc. 64

 'storage.used.filesystem.log',

 'storage.totalsize.filesystem.log']];

 for (var i=0, j=0; i<mon.length; i++) {

 query += '&item.names.' + (++j).toString() + '=' + mon[i][1];

 query += '&item.names.' + (++j).toString() + '=' + mon[i][2];

 }

 my_http_options.path = httpPath + query;

 // Define the callbacks.

 function callback(res) {

 res.on('error', function(err) {

 console.log('ERROR retrieving storage sizes: ', err)});

 res.on('data', function(chunk) {data = chunk.toString();});

 res.on('end', function() {

 if (res.statusCode == 200) {

 var results = JSON.parse(data).value;

 console.log(results);

 for (var i=0, j=0; i<mon.length; i++) {

 // Discard empty data points:

 var u='', t;

 while (u == '') {

 u = results[j].data.pop();

 t = results[j+1].data.pop();

 }

 j += 2;

 mon[i].push(u, t, (u == 0 ? 0 : Math.floor(10000 * u / t)) / 100);

 }

 for (i=0; i<mon.length; i++) {

 console.log(mon[i][0], mon[i][3], '/', mon[i][4], ' (', mon[i][5], '%)');

 }

 }

 })

 };

 // Issue the request.

 https.request(my_http_options, callback).end();

Python Example of Listing Storage Consumption By Data Type in vCenter
Server
This example shows how to use the Monitoring interface to break down database usage by data type.
The example requests the individual data types that you can also query as a composite metric for all
storage used by Alarms, Statistics, Events, and Tasks in the vCenter Server instance.

from com.vmware import appliance_client

import datetime

This example assumes you have previously created a session

and stored the session ID in my_stub_config.

Prepare request for chosen data types.

req = appliance_client.Monitoring.MonitoredItemDataRequest()

req.interval = appliance_client.Monitoring.IntervalType.MINUTES30

req.function = appliance_client.Monitoring.FunctionType.MAX

d_now = datetime.datetime.utcnow()

req.start_time = d_now - datetime.timedelta(minutes=30)

VMware vCenter Server Management Programming Guide

VMware, Inc. 65

req.end_time = d_now

mon = {'storage.totalsize.directory.vcdb_hourly_stats' :

 'Hourly stats',

 'storage.totalsize.directory.vcdb_daily_stats' :

 'Daily stats',

 'storage.totalsize.directory.vcdb_monthly_stats' :

 'Monthly stats',

 'storage.totalsize.directory.vcdb_yearly_stats' :

 'Yearly stats',

 'storage.totalsize.directory.vcdb_events' :

 'Events',

 'storage.totalsize.directory.vcdb_alarms' :

 'Alarms',

 'storage.totalsize.directory.vcdb_tasks' :

 'Tasks'}

req.names = []

for item in mon.keys() :

 req.names.append(item)

Issue request.

Monitoring_stub = appliance_client.Monitoring(my_stub_config)

resp = Monitoring_stub.query(req)

Assemble data from response.

out = {}

for metric in resp :

 # Discard empty data points:

 stat = ''

 while (stat == '') :

 stat = metric.data.pop()

 stat = int(stat)

 out[mon[metric.name]] = stat

Format and print statistics.

for label in sorted(out.keys()) :

 print('{0:15s}: {1:8d} KB'.format(label, out[label]))

VMware vCenter Server Management Programming Guide

VMware, Inc. 66

Maintenance of vCenter Server 7
The vCenter Server Management API facilitates backup and restore operations.

You can create a backup file that includes the database and configuration of the vCenter Server instance.
You can also use the API to restore the backup file into a freshly deployed vCenter Server instance.

This chapter includes the following topics:

n Backing up vCenter Server

n Restoring vCenter Server

n Reconcile a vCenter Server Instance with Nodes in Embedded Linked Mode

n Managing System Logs

n Performing Infrastructure Profile Management Operations

Backing up vCenter Server
The vCenter Server Management API supports backing up key parts of the vCenter Server instance. This
allows you to protect vCenter Server data and to minimize the time required to restore data center
operations.

The backup process collects key files into a tar bundle and compresses the bundle to reduce network
load. To minimize storage impact, the transmission is streamed without caching in the vCenter Server
instance. To reduce total time required to complete the backup operation, the backup process handles the
different components in parallel.

You have the option to encrypt the compressed file before transmission to the backup storage location.
When you choose encryption, you must supply a password which can be used to decrypt the file during
restoration.

The backup operation always includes the vCenter Server database and system configuration files, so
that a restore operation has all the data needed to re-create an operational vCenter Server instance.
Current Alarms are included as well. You also have the option to specify additional data sets, called parts.
In this release, you can specify a data set that includes Statistics, Events, and Tasks.

VMware, Inc. 67

Backup and Restore Protocols for vCenter Server
The vCenter Server backup and restore feature supports a number of plug-in communication protocols.

Choose one of these protocols as the backup location type when you invoke the operation.

n FTP

n FTPS

n SCP

n HTTP

n HTTPS

n NFS

n SMB

The value PATH for the location type field indicates a locally mounted volume.

Note If you specify the SCP protocol, you must specify an absolute path as the value of the location type
field when you create the backup job.

Calculate the Size Needed To Store the Backup File
When you prepare to do a backup of a vCenter Server instance, you can use the API to calculate the
storage space needed for the backup file.

You can do this task when you are choosing a backup storage location or whenever your existing storage
location may be approaching full capacity.

Prerequisites

n Verify that you have a vCenter Server instance running.

n Verify that you are familiar with authentication methods. See Chapter 3 Authentication Mechanisms.

Procedure

1 Authenticate to the vSphere Automation API endpoint and establish a session.

2 Request a list of backup parts available.

3 For each available backup part, request the size of the backup file.

The backup process calculates the compressed size of each backup part.

4 Choose which parts to include in the backup, and sum their sizes.

The backup storage server must have sufficient space to contain the chosen parts.

VMware vCenter Server Management Programming Guide

VMware, Inc. 68

What to do next

After you choose which backup parts you will store, and verify that the backup storage server has
sufficient free space, you can launch a backup job. For information, see Back up a vCenter Server
Instance by Using the API.

Bash Example of Calculating the Size Needed To Store the Backup File
This example shows how to invoke curl from a bash script to collect the information you use to calculate
the size needed to store a backup file of the vCenter Server instance.

This example depends on certain variables that specify the address of the vCenter Server instance and
credentials to access the appliance.recovery API. For simplicity, the variables are hard-coded at the start
of the bash script.

#!/bin/bash

 ##### EDITABLE BY USER to specify vCenter Server instance and credentials. #####

 VC_ADDRESS=vcsa_ip

 VC_USER=sso_user

 VC_PASSWORD=sso_pass

 ############################

 # Authenticate with basic credentials.

 curl -u "$VC_USER:$VC_PASSWORD" \

 -X POST \

 -k --cookie-jar cookies.txt \

 "https://$VC_ADDRESS/rest/com/vmware/cis/session"

 echo ''

 # Issue a request to list the backup file parts.

 curl -k -s --cookie cookies.txt \

 -H 'Accept:application/json' \

 "https://$VC_ADDRESS/rest/appliance/recovery/backup/parts" \

 >response.txt

 # Extract IDs of backup file parts.

 IDs=$(awk '{for (s=$0; match(s,/"id":"\w+"/); s=substr(s,RSTART+RLENGTH)) \

 print substr(s,RSTART+6,RLENGTH-7);}' \

 response.txt)

 # Request sizes of parts.

 echo Backup space required, by part ID:

 let "total=0"

 for ID in $IDs ; do

 curl -k -s --cookie cookies.txt \

 -H 'Accept:application/json' \

 "https://$VC_ADDRESS/rest/appliance/recovery/backup/parts/$ID" \

 >response.txt

 size=$(awk '{if (match($0,/"value":\w+/)) \

 print substr($0,RSTART+8,RLENGTH-8);}' \

 response.txt)

 printf " %-8s - %5dMB\n" "$ID" "$size"

 let "total += $size"

 done

VMware vCenter Server Management Programming Guide

VMware, Inc. 69

 echo ''

 echo "Complete backup file size: ${total}MB"

 # Clean up temporary files.

 echo ''

 rm -f response.txt

 rm -f cookies.txt

Python Example of Calculating the Size Needed To Store the Backup Image
This example shows how to use Python to collect the information you need to calculate the size needed
to store a backup image of the vCenter Server instance.

from com.vmware.appliance.recovery.backup_client import Parts

 # This example assumes you have previously created a session

 # and stored the session ID in my_stub_config.

 # Issue a request to list the backup image parts.

 Parts_stub = Parts(my_stub_config)

 parts = Parts_stub.list()

 # Extract IDs of backup image parts.

 sizes = {}

 total = 0

 for part in parts :

 size = Parts_stub.get(part.id)

 sizes[part.id] = size

 total += size

 # Show the result.

 print('Backup image parts:')

 for part_id in sizes.keys() :

 print(' part {0} = {1}KB'.format(part_id, sizes[part_id]))

 print('Total size: {0}KB'.format(total))

Back up a vCenter Server Instance by Using the API
You can use the Management API to create a backup of the vCenter Server database and key
components of the vCenter Server instance.

This procedure explains the sequence of operations you use to create a backup file of the vCenter Server
instance. You can do this as part of a regular maintenance schedule.

Prerequisites

n Verify that the vCenter Server instance is in a ready state. All processes with start-up type automatic
must be running.

n Verify that no other backup or restore jobs are running.

n Verify that the destination storage location is accessible to the backup process.

n Verify that the path to the destination directory already exists, as far as the parent directory.

VMware vCenter Server Management Programming Guide

VMware, Inc. 70

n If the destination directory does not exist, the backup process will create it. If the directory does exist,
verify that it is empty.

n Verify that the destination storage device has sufficient space for the backup file. For information
about how to calculate the space needed for the backup file, see Calculate the Size Needed To Store
the Backup File.

Procedure

1 Authenticate to the vSphere Automation API endpoint and establish a session.

2 Create a backup request object to describe the backup operation.

The request specifies several attributes, especially the backup location, the protocol used to
communicate with the storage server, the necessary authorization, and which optional parts of the
database you want to back up. The core inventory data and Alarms are always backed up, but you
can choose whether or not to back up Statistics, Events, and Tasks. Collectively, this optional part of
the backup is referred to as seat.

3 Issue a request to start the backup operation.

4 From the response, save the unique job identifier of the backup operation.

5 Monitor progress of the job until it is complete.

6 Report job completion.

Bash Example of Backing up a vCenter Server Instance
This example shows how to invoke curl from a bash script to back up the vCenter Server instance. A
bash script can be invoked regularly as a cron job in the vCenter Server instance.

This example depends on certain variables that specify the source and destination for the backup
operation. For simplicity, the variables are hard-coded at the start of the bash script.

This script does not encrypt the backup file.

#!/bin/bash

EDITABLE BY USER to specify vCenter Server instance and backup destination.

VC_ADDRESS=vc_server_ip

VC_USER=sso_user

VC_PASSWORD=sso_pass

FTP_ADDRESS=storage_server

FTP_USER=ftpuser

FTP_PASSWORD=ftpuser

BACKUP_FOLDER=backup

############################

Authenticate with basic credentials.

curl -u "$VC_USER:$VC_PASSWORD" \

 -X POST \

 -k --cookie-jar cookies.txt \

 "https://$VC_ADDRESS/rest/com/vmware/cis/session"

Create a message body for the backup request.

VMware vCenter Server Management Programming Guide

VMware, Inc. 71

TIME=$(date +%Y-%m-%d-%H-%M-%S)

cat << EOF >task.json

{ "piece":

 {

 "location_type":"FTP",

 "comment":"Automatic backup",

 "parts":["seat"],

 "location":"ftp://$FTP_ADDRESS/$BACKUP_FOLDER/$TIME",

 "location_user":"$FTP_USER",

 "location_password":"$FTP_PASSWORD"

 }

}

EOF

Issue a request to start the backup operation.

echo Starting backup $TIME >>backup.log

curl -k --cookie cookies.txt \

 -H 'Accept:application/json' \

 -H 'Content-Type:application/json' \

 -X POST \

 --data @task.json 2>>backup.log >response.txt \

 "https://$VC_ADDRESS/rest/appliance/recovery/backup/job"

cat response.txt >>backup.log

echo '' >>backup.log

Parse the response to locate the unique identifier of the backup operation.

ID=$(awk '{if (match($0,/"id":"\w+-\w+-\w+"/)) \

 print substr($0, RSTART+6, RLENGTH-7);}' \

 response.txt)

echo 'Backup job id: '$ID

Monitor progress of the operation until it is complete.

PROGRESS=INPROGRESS

until ["$PROGRESS" != "INPROGRESS"]

do

 sleep 10s

 curl -k --cookie cookies.txt \

 -H 'Accept:application/json' \

 --globoff \

 "https://$VC_ADDRESS/rest/appliance/recovery/backup/job/$ID" \

 >response.txt

 cat response.txt >>backup.log

 echo '' >>backup.log

 PROGRESS=$(awk '{if (match($0,/"state":"\w+"/)) \

 print substr($0, RSTART+9, RLENGTH-10);}' \

 response.txt)

 echo 'Backup job state: '$PROGRESS

done

Report job completion and clean up temporary files.

echo ''

echo "Backup job completion status: $PROGRESS"

rm -f task.json

rm -f response.txt

VMware vCenter Server Management Programming Guide

VMware, Inc. 72

rm -f cookies.txt

echo '' >>backup.log

Python Example of Backing Up a vCenter Server Instance
This example specifies that the backup image should include Statistics, Events, and Tasks as well as the
core inventory and alarm data. The value for req.parts indicates the optional data part for Statistics,
Events, and Tasks.

This example uses the following global variables.

n my_storage_server

n my_backup_folder

n my_scp_user

n my_scp_password

n my_stub_config

When you back up the vCenter Server instance, you need two sets of authentication credentials. The API
client needs to authenticate to the vCenter Server instance, and the backup service needs to authenticate
to the backup storage server.

The example assumes that your API client has already authenticated the connection to the vCenter
Server instance, and the security context is stored in my_stub_config.

In the backup request, you need to specify the folder that will contain the backup image. The folder name
must be specified as a path name relative to the home directory of the user that authenticates with the
storage server.

from com.vmware.appliance.recovery.backup_client import Job

import time

This example assumes you have previously created a session

and stored the session ID in my_stub_config.

Create a backup request object.

req = Job.BackupRequest()

Include optional backup part for Statistics, Events, and Tasks.

req.parts = ['seat']

req.location_type = Job.LocationType.SCP

req.comment = 'On-demand backup'

req.location = my_storage_server + ':/home/scpuser/' + my_backup_folder \

 + '/' + time.strftime('%Y-%m-%d-%H-%M-%S')

req.location_user = my_scp_user

req.location_password = my_scp_password

Issue a request to start the backup operation.

backup_job = Job(my_stub_config)

job_status = backup_job.create(req)

job_id = job_status.id

Monitor progress of the job until it is complete.

VMware vCenter Server Management Programming Guide

VMware, Inc. 73

while (job_status.state == Job.BackupRestoreProcessState.INPROGRESS) :

 print('Backup job state: {} ({}%)'.format(job_status.state, \

 job_status.progress))

 time.sleep(10)

 job_status = backup_job.get(job_id)

Report job completion.

print('Backup job completion status: {}'.format(job_status.state))

Schedule a Backup Job
You can automate the backup process by creating a schedule that runs backup jobs at specific times.

You can keep existing backups on the backup server. The retention policy defines the maximum number
of backups that the server keeps. You can also specify whether the backup job should run once, or on a
recurring basis. The recurrence policy defines the days of the week and specific times at which the
backup job is scheduled to run.

Prerequisites

n Verify that you can access the backup server and you have read and write permissions.

n Verify that you have established a connection to the vAPI services.

Procedure

1 Create a Schedules object.

2 Specify the retention and recurrence information.

3 Create a schedule by passing the backup location, user credentials to access the location, retention,
and recurrence information.

4 Create an UpdateSpec and pass the updated information.

5 Get a backup schedule by passing a schedule ID.

What to do next

Run the backup job by using the schedule.

Python Example of Scheduling a Backup Job
This example shows how you can schedule a backup job, update the schedule, and get a schedule. The
example is based on the backup_schedule.py sample.

Note For a complete and up-to-date version of the sample code, see the vsphere-automation-sdk-
python VMware repository at GitHub.

...

 # Connect to vAPI services

 self.stub_config = vapiconnect.connect(

 host=args.server,

 user=args.username,

VMware vCenter Server Management Programming Guide

VMware, Inc. 74

 pwd=args.password,

 skip_verification=args.skipverification)

 self.schedule_client = Schedules(self.stub_config)

...

 def create_schedule(self):

 retention_info = Schedules.RetentionInfo(self.max_count)

 recurrence_info = Schedules.RecurrenceInfo(

 days=self.days,

 hour=self.hour,

 minute=self.minute)

 create_spec = Schedules.CreateSpec(

 location=self.location,

 location_user=self.location_user,

 location_password=self.location_password,

 recurrence_info=recurrence_info,

 retention_info=retention_info)

 self.schedule_client.create(self._schedule_id, create_spec)

 def update_schedule(self):

 retention_info = Schedules.RetentionInfo(self.max_count)

 recurrence_info = Schedules.RecurrenceInfo(

 days=self.days,

 hour=self.hour,

 minute=self.minute)

 update_spec = Schedules.UpdateSpec(

 location=self.location,

 location_user=self.location_user,

 location_password=self.location_password,

 recurrence_info=recurrence_info,

 retention_info=retention_info)

 self.schedule_client.update(self._schedule_id, update_spec)

 def get_schedule(self):

 self.schedule_client = Schedules(self.stub_config)

 schedule_spec = self.schedule_client.get(self._schedule_id)

 recurrence_info = schedule_spec.recurrence_info

 retention_info = schedule_spec.retention_info

 table = []

 data = [self._schedule_id,

 "{}:{}".format(recurrence_info.hour, recurrence_info.minute),

 " ".join(recurrence_info.days),

 retention_info.max_count]

 table.append(data)

 headers = ["Schedule ID", "Time", "Days", "Retention"]

 print(tabulate(table, headers))

...

VMware vCenter Server Management Programming Guide

VMware, Inc. 75

Restoring vCenter Server
The vCenter Server Management API supports restoring a vCenter Server instance from a backup copy.
The API simplifies the process by unifying the handling of various components of vCenter Server in a
single operation.

The process of restoring a vCenter Server instance from a backup has two phases.

1 Deploy a new vCenter Server instance. OVF deployment is described in the vSphere Automation
SDKs Programming Guide.

2 Invoke the restore operation from the Management API to apply configuration settings and load the
vCenter Server database from the backup file.

Note You cannot specify optional parts for the restore operation. The restore operation includes all
optional parts, such as Events and Tasks, that were specified at the time when the backup file was
created.

Authentication When Restoring a vCenter Server Instance
During the process of restoring a vCenter Server instance from a backup image, you cannot use vCenter
Single Sign-On authentication. You must use local authentication until the vCenter Server instance is fully
configured.

When you restore your vCenter Server instance from a backup file, it begins in an unconfigured state.
During this time, you must use local authentication to access the Management API. When you use local
authentication, do not use the vSphere Automation API endpoint. Instead, you must connect your client to
port 5480 of the vCenter Server instance.

When you use local authentication you must pass user name and password credentials with each method
invocation. Use credentials that are known to the guest operating system of the vCenter Server instance.

Availability of Services While Restoring a vCenter Server Instance
During the process of restoring the vCenter Server backup file, services in the vCenter Server instance
must restart. While they are restarting, your API client receives an error message.

You can write your client to trap the error, but you have no way to know when the vCenter Server services
are running again. To determine when the restore process is complete, you must retry the API connection
until it succeeds, then request the status of the job.

Restore a vCenter Server Instance by Using the API
You can use the Management API of to restore a vCenter Server instance from a backup file containing
the vCenter Server database and key components of the vCenter Server instance.

Prerequisites

n Verify that the backed up vCenter Server instance is powered off.

VMware vCenter Server Management Programming Guide

VMware, Inc. 76

n A new vCenter Server instance must be deployed in an unconfigured state, except that it must have a
fully qualified domain name or IP address that matches the old one.

n Verify that the new vCenter Server instance has the same build number as the one in the backup file.

n Verify that the new vCenter Server instance has a size equal to or greater than the old one. If the old
vCenter Server instance was customized to exceed the largest template size, the new one must be
customized to the same size.

n Verify that no other backup or restore jobs are running.

n Verify that the destination storage location is accessible to the vCenter Server restore process.

Procedure

1 Create a restore request object to describe the restore operation.

2 Issue a request to start the restore operation.

3 Monitor progress of the job until it is complete.

4 Report job completion.

What to do next

After the vCenter Server instance is fully configured by the restore operation, you can resume using the
vSphere Automation API endpoint for subsequent operations.

Bash Example of Restoring a vCenter Server Instance
This example shows how to invoke curl from a bash script to restore a vCenter Server instance. This
operation is the second phase of restoring the vCenter Server instance from a backup file.

The example uses local user name and password authentication because the vSphere Automation API
endpoint is not yet running when you restore the vCenter Server instance. The client must connect to port
5480 for this operation.

This example depends on certain variables that specify the source and destination for the restore
operation. For simplicity, the variables are hard-coded at the start of the bash script.

This example assumes the backup image is not encrypted.

#!/bin/bash

EDITABLE BY USER to specify vCenter Server instance and backup location.

VC_ADDRESS=vc_server_ip

VC_USER=sso_user

VC_PASSWORD=sso_pass

FTP_ADDRESS=storage_server

FTP_USER=ftpuser

FTP_PASSWORD=ftpuser

BACKUP_FOLDER=backup

BACKUP_SUBFOLDER=2016-07-08-09-10-11

############################

Create a message body for the restore request.

cat << EOF > task.json

VMware vCenter Server Management Programming Guide

VMware, Inc. 77

{ "piece":

 {

 "location_type":"FTP",

 "location":"ftp://$FTP_ADDRESS/$BACKUP_FOLDER/$BACKUP_SUBFOLDER",

 "location_user":"$FTP_USER",

 "location_password":"$FTP_PASSWORD"

 }

}

EOF

Issue a request to start the restore operation.

TIME=$(date +%Y-%m-%d-%H-%M-%S)

echo Starting restore $TIME $VC_B64_PASS >> restore.log

curl -k -u "$VC_USER:$VC_PASSWORD" \

 -H 'Accept:application/json' \

 -H 'Content-Type:application/json' \

 -X POST \

 "https://$VC_ADDRESS:5480/rest/com/vmware/appliance/recovery/restore/job" \

 --data @task.json 2>restore.log >response.txt

cat response.txt >> restore.log

echo '' >> restore.log

Monitor progress of the operation until it is complete.

STATE=INPROGRESS

PROGRESS=0

until ["$STATE" != "INPROGRESS"]

do

 echo "Restore job state: $STATE ($PROGRESS%)"

 sleep 10s

 curl -s -k -u "$VC_USER:$VC_PASSWORD" \

 -H 'Accept:application/json' \

 -H 'Content-Type:application/json' \

 -X POST -d '' \

 "https://$VC_ADDRESS:5480/rest/com/vmware/appliance/recovery/restore/job?~action=get" \

 >response.txt

 cat response.txt >> restore.log

 echo '' >> restore.log

 PROGRESS=$(awk \

 '{if (match($0,/"progress":\w+/)) print substr($0, RSTART+11,RLENGTH-11);}' \

 response.txt)

 STATE=$(awk \

 '{if (match($0,/"state":"\w+"/)) print substr($0, RSTART+9, RLENGTH-10);}' \

 response.txt)

done

Report job completion and clean up temporary files.

echo ''

echo Restore job completed.

rm -f task.json

rm -f response.txt

echo '' >> restore.log

VMware vCenter Server Management Programming Guide

VMware, Inc. 78

Python Example of Restoring a vCenter Server Instance
This example shows how to use Python to restore a vCenter Server instance. This operation is the
second phase of restoring the vCenter Server instance from a backup image.

This example uses the following global variables.

n my_vcsa_hostname

n my_vcsa_username

n my_vcsa_password

n my_backup_name

n my_storage_server

n my_scp_user

n my_scp_password

n my_backup_folder

When you restore the vCenter Server instance from a backup image, you need two sets of authentication
credentials. The API client needs to authenticate to the vCenter Server instance, and the vCenter Server
backup service needs to authenticate to the backup storage server.

The example uses local user name and password authentication for the connection to the vCenter Server
instance because the vSphere Automation API endpoint is not yet running when you restore the vCenter
Server instance. The client must connect to port 5480 for this operation.

In the restore request, you need to specify the folder that contains the backup image. The folder name is
the same name that was specified in the backup request. It must be specified as a path name relative to
the home directory of the user that authenticates with the storage server.

This example assumes the backup image is not encrypted.

import requests

 from vmware.vapi.lib.connect import get_requests_connector

 from vmware.vapi.security.user_password import create_user_password_security_context

 from vmware.vapi.stdlib.client.factories import StubConfigurationFactory

 from com.vmware.appliance.recovery.restore_client import (Job)

 import time

 # Create a session object in the client.

 session = requests.Session()

 # For development environment only, suppress server certificate checking.

 session.verify = False

 from requests.packages.urllib3 import disable_warnings

 from requests.packages.urllib3.exceptions import InsecureRequestWarning

 disable_warnings(InsecureRequestWarning)

 # Create a connection to port 5480.

 local_url = 'https://%s:5480/api' % my_vcsa_hostname

 connector = get_requests_connector(session=session, url=local_url)

VMware vCenter Server Management Programming Guide

VMware, Inc. 79

 # Add username/password security context to the connector.

 basic_context = create_user_password_security_context(my_vcsa_username, my_vcsa_password)

 connector.set_security_context(basic_context)

 # Create a stub configuration by using the username-password security context.

 local_stub_config = StubConfigurationFactory.new_std_configuration(connector)

 # Create a restore request object.

 req = Job.RestoreRequest()

 req.location_type = Job.LocationType.SCP

 req.location = my_storage_server + ':/home/scpuser/' + my_backup_folder + '/' + my_backup_name

 req.location_user = my_scp_user

 req.location_password = my_scp_password

 # Issue a request to start the restore operation.

 restore_job = Job(local_stub_config)

 job_status = restore_job.create(req)

 # Monitor progress of the job until it is complete.

 while (job_status.state == Job.BackupRestoreProcessState.INPROGRESS) :

 print('Restore job state: {} ({}%)'.format(job_status.state,

 job_status.progress))

 time.sleep(10)

 job_status = restore_job.get()

 # Report job completion.

 print('Restore job completion status: {}'.format(job_status.state))

Reconcile a vCenter Server Instance with Nodes in
Embedded Linked Mode
You can run the reconciliation process after you successfully restored your vCenter Server instance. By
using the API or HTTP requests, you can reconcile vCenter Server nodes that work in an embedded
linked mode and are connected in a ring or daisy-chain.

Reconciliation is a post-restore process that checks whether the vCenter Server partners in embedded
linked mode are available, synchronizes the vCenter Server data and services with the partners, and runs
the vCenter Server services. The processes of restore and reconciliation depend on the topology and if
there are changes in the topology between the backup and restore, you cannot restore the embedded
linked mode. If the replication partners are not available and you try to restore the first node, you must
ignore the warnings. In this case, any changes that are made in the topology or infrastructure after the
backup will be lost. If you restore a node different from the first one, you must add it to the domain of the
first node. If you use a daisy-chain topology, you must first restore the first node, and after that to restore
the second, link it to the first one, and apply the same to the following nodes.

You can use the reconciliation API after a file-based and an image-based restore. After an image-based
restore, you can run the reconciliation process by using the API or UI. After a file-based restore, you can
monitor the reconciliation process by using the GET https://<server>:5480/rest/appliance/recovery/
reconciliation/job HTTP request. For information about how to restore a vCenter Server instance from
an image or a file by using the UI, see the vCenter Server Installation and Setup documentation.

VMware vCenter Server Management Programming Guide

VMware, Inc. 80

Prerequisites

n Verify that you successfully restored your node from an image.

n Verify that the replication partners are available.

n Verify that you restored your nodes in the correct order, if you use a daisy-chain topology.

n Verify that you have administrator's credentials to your Single Sign-On domain.

n Verify that there is no running or failed reconciliation job.

Procedure

1 Create a Job.CreateSpec object, specify user name and password of Single Sign-On administrator,
and set the ignore_warnings field to true.

The default value of ignore_warnings is false. If you do not set ignore_warnings to true, the
reconciliation fails due to the validation warnings.

2 Run a reconciliation job by using the create(Job.CreateSpec) method.

You can check the result of the operation by reading the Job.Info object. Job.Info contains
information about the job such as description, status, progress, error, start and end time.

3 Get the status of the job by calling the get() method.

The possible states are NONE, RUNNING, FAILED, and SUCCEEDED.

Managing System Logs
You can automate the forwarding of vCenter Server system log messages to remote logging servers by
using the vCenter Server Management API.

You can configure the syslog forwarding by using the API or user interface. For information about how to
manage the syslog by using the user interface, see the vSphere Monitoring and Performance
documentation.

Configuring Syslog Forwarding
You can use the vCenter Server Management API or HTTP requests to configure the forwarding of
vCenter Server syslog messages and test the connection between the vCenter Server instance and
remote servers.

Table 7-1. User Operations lists operations that you can perform to manage the forwarding of syslog
messages to remote logging servers.

VMware vCenter Server Management Programming Guide

VMware, Inc. 81

Table 7-1. User Operations

Operation Description

Get forwarding configuration You can retrieve information about the log forwarding configuration. See Figure 7-1. Forwarding
Class Diagram for Python and HTTP Requests for Configuring Syslog Forwarding.

Test forwarding configuration You can validate the current log forwarding configuration. Optionally, you can send a test diagnostic
log message from the vCenter Server instance to all configured logging servers to allow manual
end-to-end validation. See Figure 7-1. Forwarding Class Diagram for Python and HTTP Requests
for Configuring Syslog Forwarding.

Set forwarding configuration You can change the log forwarding configuration. See Figure 7-1. Forwarding Class Diagram for
Python and HTTP Requests for Configuring Syslog Forwarding.

The forwarding configuration includes the IP or FQDN of the remote server, the remote port for receiving
syslog information, and the communication protocol. The remote server must be a server with running
rsyslog, for example, another vCenter Server instance. The API supports the TCP, UDP, TLS, and RELP
protocols. For information about the supported TLS versions, see KB article 2147469. By creating a
Forwarding.Config object, you specify the connection with a remote server. For information about the
Forwarding class and its methods, see the API Reference documentation, Figure 7-1. Forwarding Class
Diagram for Python, and Figure 7-2. Example Configuration Workflow.

You can use several remote servers by creating a list with Forwarding.Config objects and passing it to
the set method. The maximum number of remote servers is three. You can validate the forwarding
configuration by using the test method. The returned Forwarding.ConnectionStatus object shows the
status of the connection between the vCenter Server instance and a remote server. The State
enumeration shows whether the vCenter Server instance can reach the remote server. State can be UP,
DOWN, or UNKNOWN. If the state is DOWN or UNKNOWN, the vCenter Server instance cannot access the remote
server and you must check the remote server and its settings such as network ports, firewall, supported
protocols, and syslog configuration.

Note If you use UDP, the connection status is always UNKNOWN.

VMware vCenter Server Management Programming Guide

VMware, Inc. 82

https://kb.vmware.com/s/article/2147469

Figure 7-1. Forwarding Class Diagram for Python

com.vmware.appliance.logging_client

Forwarding(config)

+Config:Forwarding.Config
+ConnectionStatus:ConnectionStatus

+get(): list
+set(cfg_list)
+test(send_test_message): list

<<Enumeration>> Protocol

+TCP
+TLS
+UDP
+RELP

<<Enumeration>> State

+DOWN
+UP
+UNKNOWN

Forwarding.Config

+hostname:str
+port:long
+protocol:Protocol

Forwarding.ConnectionStatus

+hostname:str
+state:State
+message:LocalizableMessage or None

VMware vCenter Server Management Programming Guide

VMware, Inc. 83

Figure 7-2. Example Configuration Workflow

Start

Set the log forwarding configuration by
creating a Config object and using the set

method

Get the log forwarding configuration
by using the get method

Validate the log forwarding by calling the test
method and passing a default test message

Update the log forwarding configuration
by modifying the Config object and

using the set method

End

For a code example of configuring the syslog forwarding, see Python Example of Configuring Syslog
Forwarding.

HTTP Requests for Configuring Syslog Forwarding
By using the API or HTTP requests, you can set and get the forwarding configuration, check the
connection with the remote server or servers, and exchange test messages with them.

VMware vCenter Server Management Programming Guide

VMware, Inc. 84

The following HTTP requests show the syntax that you can use to perform the available user operations.

Note When you send the requests, you must authenticate with vCenter Server root credentials.

GET https://<server>:5480/rest/appliance/logging/forwarding

POST https://<server>:5480/rest/appliance/logging/forwarding?action=test

PUT https://<server>:5480/rest/appliance/logging/forwarding

For information about the body of each HTTP request, see the REST API Reference documentation.

Table 7-2. HTTP Status Codes

HTTP Status Code Description
Operations That Return the Status
Code

200 The operation is successful. All available operations. You can check
the returned data in the results data
structure.

400 You use an invalid argument. For
example, a protocol that it is not
supported, invalid port number, or the
number of configurations is greater than
3.

Set forwarding configuration.

401 You use invalid user name or password,
or authentication is failed.

All available operations.

500 There is a vapi std error. For
information about the types of vapi std
errors, see the vapi.std.errors API in
the API reference documentation.

Set forwarding configuration.

Python Example of Configuring Syslog Forwarding
This example shows how you can configure and test the forwarding of a vCenter Server syslog by using
the API. The example is based on the log_forwarding.py sample.

Note For a complete and up-to-date version of the sample code, see the vsphere-automation-sdk-
python VMware repository at GitHub.

...

 self.log_forwarding_client = Forwarding(self.stub_config)

...

 def set_log_forwarding(self):

 log_forwarding_config = [Forwarding.Config(hostname=self.loghost,

 port=self.port,

 protocol=self.protocol)]

 self.log_forwarding_client.set(log_forwarding_config)

VMware vCenter Server Management Programming Guide

VMware, Inc. 85

 def get_log_forwarding(self):

 configs = self.log_forwarding_client.get()

 print("\nLog forwarding configurations:")

 table = [[cfg.hostname, cfg.port, cfg.protocol] for cfg in configs]

 headers = ["Loghost", "Port", "Protocol"]

 print(tabulate(table, headers))

 def test_log_forwarding(self):

 test_response = self.log_forwarding_client.test(True)

 print("\nLog forwarding test response:")

 table = [[resp.hostname,

 resp.state,

 resp.message.default_message if resp.message else None]

 for resp in test_response]

 headers = ["Loghost", "State", "Message"]

 print(tabulate(table, headers))

 def update_log_forwarding(self):

 # Read log forwarding configuration

 log_forwarding_config = self.log_forwarding_client.get()

 # Delete the newly added configuration

 log_forwarding_config = list(filter(

 lambda cfg: cfg.hostname != self.loghost,

 log_forwarding_config))

 # Apply the modified log forwarding configuration

 self.log_forwarding_client.set(log_forwarding_config)

...

Performing Infrastructure Profile Management Operations
You can export an existing vCenter Server configuration and import it to other vCenter Server instances.

You can export multiple configuration profiles at once. The exported data can contain general
configuration settings and user content. You can replicate the same configuration across all vCenter
Server instances in your environment by importing the same data package. You can also use the
exported data as a backup if you need to revert to the last known good configuration. To avoid
configuration issues, you can validate the exported data before importing it to a vCenter Server instance.

The following table lists the operations that you can perform to manage the configuration profiles in your
infrastructure.

Table 7-3. User Operations

Operation Description

List configuration profiles You can retrieve a list of all configuration profiles that are registered with vCenter Server.

Export configuration profiles You can export specific vCenter Server configuration profiles.

VMware vCenter Server Management Programming Guide

VMware, Inc. 86

Table 7-3. User Operations (continued)

Operation Description

Validate configuration
profiles

You can validate the exported vCenter Server configuration profiles. The validation process
examines the configuration file for possible errors and conflicts and returns output. This operation
can help avoid configuration issues or loading the wrong configuration file.

Import configuration profiles You can import specific vCenter Server configuration profiles into another vCenter Server instance.

You can run infrastructure profile management operations by using the API or sending an HTTP request.
For information about the HTTP requests that you can use to perform the user operations, see HTTP
Requests for Infrastructure Profile Management Operations.

HTTP Requests for Infrastructure Profile Management Operations
You can use HTTP requests to perform infrastructure profile management operations such as exporting,
validating, and importing vCenter Server configuration profiles.

The following HTTP requests show the syntax that you can use to perform the available user operations.

n List configuration profiles

GET https://<server>:443/api/appliance/infraprofile/configs

n Export configuration profiles

POST https://<server>:443/api/appliance/infraprofile/configs?action=export

n Validate configuration profiles

POST https://<server>:443/api/appliance/infraprofile/configs?vmw-task=true&action=validate

n Import configuration profiles

POST https://<server>:443/api/appliance/infraprofile/configs?vmw-task=true&action=import

For information about the content and syntax of the HTTP request body for each operation, see the API
reference documentation.

VMware vCenter Server Management Programming Guide

VMware, Inc. 87

Planning vCenter Server Updates 8
The vCenter Server API provides operations that can help you plan the life cycle of vCenter Server
instances in your environment.

You can use the operations to discover VMware products that can be associated with vCenter Server, list
associated products, and manage product associations. You can also get details about available vCenter
Server updates, perform pre-checks, and produce reports. The reports can contain interoperability or pre-
check information. Interoperability reports contain information about the interoperability between the
associated products and a specific vCenter Server version. Pre-check reports contain information about
the compatibility of the current vCenter Server version with a pending update version. You can plan to
perform vCenter Server updates based on the information gathered in the produced reports.

This chapter includes the following topics:

n Performing Discovery and Planning Operations

n List Available Products and Manage Associated Products

n List Available Updates

n Retrieve a Report

Performing Discovery and Planning Operations
You can retrieve information about VMware products associated with vCenter Server, list available
vCenter Server updates, and produce reports. The findings can help you plan vCenter Server updates in
your environment.

The life cycle management API provides operations that are grouped in the discovery, update, and
reports categories. The discovery functionality of the API consists of the operations in the discovery
category. The planning functionality of the API consists of the operations in the update category. Both
functionalities can produce reports that you can download by using the reports category.

The discovery category provides operations for listing VMware products that can be associated with
vCenter Server, managing products associations, and creating interoperability reports. The update
category provides operations for listing all available updates and upgrades for vCenter Server and
generating a pre-check compatibility report. The reports category provides an operation for downloading
reports generated by interoperability and pre-check operations. By using the retrieved information, you
can select one of the available patches and can plan an actual patch or upgrade for a specific vCenter
Server version.

VMware, Inc. 88

The following table lists the operations that are available in the discovery category.

Table 8-1. Discovery User Operations

Operation Description

Get product catalog You can retrieve a list of all VMware products that can be associated with vCenter Server.

List associated products You can retrieve a list of all VMware product deployments in the environment that are associated
with vCenter Server.

Note The list contains both product deployments discovered automatically and deployments
registered manually through the API.

Get associated product
information

You can retrieve detailed information about a product associated with vCenter Server.

Create product association You can manually associate a VMware product with vCenter Server.

Update product association You can modify a manually added VMware product that is associated with vCenter Server.

Note You cannot modify VMware products that are discovered automatically.

Delete product association You can delete or dissociate a manually added VMware product that is associated with vCenter
Server.

Note You cannot delete or dissociate VMware products that are discovered automatically.

Create interoperability report You can create an interoperability report between a vCenter Server release version and all products
registered with the vCenter Server instance.

The following table lists the operations that are available in the update category.

Table 8-2. Update User Operations

Operation Description

List updates You can retrieve a list of all available vCenter Server updates. The list can contain minor, in-place,
updates and major, migration-based, upgrades.

Get update info You can retrieve detailed vCenter Server information about a specific update or upgrade.

Create pre-check report You can create a vCenter Server pre-update compatibility check report for a pending update
version.

Note You can export and download the report in CSV format.

The following table lists the operations that are available in the reports category.

Table 8-3. Reports User Operations

Operation Description

Get report You can download the report generated by the interoperability and pre-check operations. For
information about downloading the report, see the API reference documentation.

You can run life cycle management operations by using the API or sending an HTTP request. For
information about the HTTP requests that you can use to perform the user operations, see HTTP
Requests for Discovery and Planning Operations. In addition to sending HTTP requests, you can also run
cURL commands to perform operations. See cURL Examples of Performing Discovery and Planning
Operations.

VMware vCenter Server Management Programming Guide

VMware, Inc. 89

HTTP Requests for Discovery and Planning Operations
You can use HTTP requests to perform discovery and planning operations and download reports.

The following HTTP requests show the syntax that you can use to perform the available user operations.

Note The default port for sending HTTP requests is 443. If the vCenter Server instance is configured to
use a custom port, you must replace 443 with the custom port number when sending HTTP requests.

Discovery Operations
n Get product catalog

GET https://<server>:443/api/vcenter/lcm/discovery/product-catalog

n List associated products

GET https://<server>:443/api/vcenter/lcm/discovery/associated-products

n Get associated product information

GET https://<server>:443/api/vcenter/lcm/discovery/associated-products/<product>

n Create product association

POST https://<server>:443/api/vcenter/lcm/discovery/associated-products

n Update product association

PATCH https://<server>:443/api/vcenter/lcm/discovery/associated-products/<product>

n Delete product association

DELETE https://<server>:443/api/vcenter/lcm/discovery/associated-products/<product>

n Create interoperability report

POST https://<server>:443/api/vcenter/lcm/discovery/interop-report

Update Operations
n List updates

GET https://<server>:443/api/vcenter/lcm/update/pending

n Get update info

GET https://<server>:443/api/vcenter/lcm/update/pending/<version>

n Create pre-check report

POST https://<server>:443/api/vcenter/lcm/update/pending/<version>/precheck-report

VMware vCenter Server Management Programming Guide

VMware, Inc. 90

Reports Operations
n Get report

GET https://<server>:443/api/vcenter/lcm/reports/<report>

For information about the content and syntax of the HTTP request body for each operation, see the API
reference documentation.

cURL Examples of Performing Discovery and Planning Operations
The following cURL command examples show the syntax for performing life cycle operations such as
discovering and managing product associations, listing updates, performing pre-checks, and retrieving
reports.

Example: List Product Catalog
This example lists all compatible versions of VMware products that can be associated with vCenter
Server.

curl -X GET -u administrator@vsphere.local:<password> 'https://<server>:443/api/vcenter/lcm/discovery/

product-catalog'

Example: List Products Registered with vCenter Server
This example lists all VMware products associated with vCenter Server including manually added
products.

curl -X GET -u administrator@vsphere.local:<password> 'https://<server>:443/api/vcenter/lcm/discovery/

associated-products'

Example: Add a New Product
This example associates a VMware product with vCenter Server.

curl -H "Content-Type: application/json" -X POST -d '{"name" :"vRealize Automation", "version":

"6.8.9"}' -u administrator@vsphere.local:<password> 'https://<server>:443/api/vcenter/lcm/discovery/

associated-products' -k -i

Example: Get Product Details
This example retrieves details about a product associated with vCenter Server.

curl -X GET -u administrator@vsphere.local:<password> 'https://<server>:443/api/vcenter/lcm/discovery/

products/com.vmware.vRA-6.8.9'

VMware vCenter Server Management Programming Guide

VMware, Inc. 91

Example: Modify a Product
This example updates a VMware product associated with vCenter Server. You can modify only manually
added products.

curl -H "Content-Type: application/json" -X PATCH -u administrator@vsphere.local:<password> 'https://

<server>:443/api/vcenter/lcm/discovery/associated-products/com.vmware.vRealOrche_7.3.1' -k -d

'{"spec":{"deployments": ["<ip_address>"]}}'

Example: Delete a Product
This example delete or dissociates a VMware product associated with vCenter Server. You can delete or
dissociate only manually added products.

curl -X DELETE -u administrator@vsphere.local:<password> 'https://<server>:443/api/vcenter/lcm/

discovery/products/com.vmware.vRA-6.8.9'

Example: Create an Interoperability Report
This example generates an interoperability report for all VMware products associated with vCenter Server
against a specific vCenter Server version.

curl -X POST -u administrator@vsphere.local:<password> 'https://<server>:443/api/vcenter/lcm/

discovery/interop-report?vmw-task=true' -k -d '{"spec":{"target_version":"6.7.0.2000"}}' -H "Content-

Type: application/json"

Example: List Available Updates
This example lists all available and applicable updates for vCenter Server versions discovered in your
environment. The list can contain minor, in-place, updates and major, migration-based, upgrades. The
operation calculates which updates or upgrades are applicable based on the current vCenter Server
version.

curl -X GET -u administrator@vsphere.local:<password> 'https://<server>:443/api/vcenter/lcm/update/

pending'

Example: Get Update Details
This example retrieves details about a specific vCenter Server update. The update is identified by the ID
provided in the URL. The update can be either a minor, in-place, update or a major, migration-based,
upgrade.

curl -X GET -u administrator@vsphere.local:<password> 'https://<server>:443/api/vcenter/lcm/update/

pending/7.0.0.20000'

VMware vCenter Server Management Programming Guide

VMware, Inc. 92

Example: Run Update Pre-Checks
This example performs source update pre-checks and identifies whether the provided update ID
corresponds to a minor update or a major upgrade. In case of a minor update, the operation invokes the
appropriate update API. In case of a major upgrade, the operation downloads and installs the
requirements.rpm file for the upgrade. The pre-check can be a long-running task, which you can
monitor by using the task ID that the operation returns.

curl -X POST -u administrator@vsphere.local:<password> 'https://<server>:443/api/vcenter/lcm/update/

pending/7.0.0.50000/precheck-report?vmw-task=true' -k

Example: Monitor the Pre-Check Task
This example tracks the status, progress, and retrieves the final result of the pre-check operation.

curl -X GET -u administrator@vsphere.local:<password> 'https://<server>:5480/rest/cis/tasks/

3f77223f-1edb-4992-9c48-2d75d7b3b91d:com.vmware.vcenter.lcm.update.precheck_report' -k

Example: Get Report
This example retrieves information about the location of the actual report for downloading.

curl -X GET -u administrator@vsphere.local:<password> 'https://<server>:443/api/vcenter/lcm/reports/

abcd123_report.csv'

List Available Products and Manage Associated Products
You can automate the management of VMware products associated with vCenter Server by using the
API.

This procedure includes the operations that you can use to manage the product catalog and associated
products.

Prerequisites

n Verify that you have an active authenticated session with vCenter Server.

Procedure

1 Create a stub configuration.

2 Retrieve the product catalog.

3 Retrieve a list of VMware products associated with vCenter Server.

4 Associate a VMware product with vCenter Server.

5 Update a VMware product associated with vCenter Server.

6 Delete a product form the list of VMware products associated with vCenter Server.

VMware vCenter Server Management Programming Guide

VMware, Inc. 93

Python Example of Listing Available Products and Managing
Associated Products
This example shows how you can retrieve the product catalog, list the associated products, add, update,
and delete products associations. The example is based on the discovery_sample.py sample.

Note For a complete and up-to-date version of the sample code, see the vsphere-automation-sdk-
python VMware repository at GitHub.

...

 # Create a stub configuration

 stub_config = StubConfigurationFactory.new_std_configuration(connector)

 self.product_client = ProductCatalog(stub_config)

 self.associated_products_client = AssociatedProducts(stub_config)

 def run(self):

 # Product catalog

 product_catalog = self.product_client.list()

 print("Product catalog list: \n", product_catalog)

 # Associated products

 associated_products = self.associated_products_client.list()

 print("Associated products list : \n", associated_products)

 # Add product

 spec = {'product_name': 'VMware Identity Manager', 'version': '3.3', 'deployments': '3'}

 add_associated_product = self.associated_products_client.create(spec)

 print('Added new product. \n', add_associated_product)

 associated_products = self.associated_products_client.list()

 print("Associated products after adding the product: \n", associated_products)

 # Update product

 update_spec = {'deployments': '9'}

 update_associated_product = self.associated_products_client.update(add_associated_product,

update_spec)

 associated_products = self.associated_products_client.list()

 print("Associated products after updating the product: \n", associated_products)

 # Delete product

 delete_associated_product = self.associated_products_client.delete(add_associated_product)

 associated_products = self.associated_products_client.list()

 print("Associated products after deleting the product: \n{0}", associated_products)

...

List Available Updates
You can retrieve a list of available vCenter Server updates, details about the updates, and pre-check
information by using the API.

VMware vCenter Server Management Programming Guide

VMware, Inc. 94

Prerequisites

n Verify that you have an active authenticated session with vCenter Server.

Procedure

1 Create a stub configuration.

2 Retrieve a list of available vCenter Server updates.

If there are available updates, you can retrieve details about the updates.

3 Retrieve pre-check information.

Python Example of Listing Available Updates
This example shows how you can retrieve a list of available vCenter Server updates, details about the
updates, and pre-check information. The example is based on the update_sample.py sample.

Note For a complete and up-to-date version of the sample code, see the vsphere-automation-sdk-
python VMware repository at GitHub.

...

 # Create a stub configuration

 stub_config = StubConfigurationFactory.new_std_configuration(connector)

 self.pending_client = Pending(stub_config)

 self.precheck_client = PrecheckReport(stub_config)

 def run(self):

 # List updates

 available_updates = self.pending_client.list()

 print("vCenter Server available updates - ", available_updates)

 if available_updates.updates:

 target_version = available_updates.updates[0].version

 update_details = self.pending_client.get(target_version)

 print("vCenter Server available update details - ", update_details)

 # Get pre-check result

 precheck_result = self.precheck_client.create_task(target_version)

 print("Pre-upgrade checks task id started with:

\n{0}".format(precheck_result.get_task_id()))

...

Retrieve a Report
You can retrieve a report generated by the interoperability and pre-check operations by using the API.

Prerequisites

n Verify that you have an active authenticated session with vCenter Server.

VMware vCenter Server Management Programming Guide

VMware, Inc. 95

Procedure

1 Create a stub configuration.

2 Retrieve the report details.

Python Example of Retrieving a Report
This example shows how you can retrieve a report. The example is based on the lcm_sample.py
sample.

Note For a complete and up-to-date version of the sample code, see the vsphere-automation-sdk-
python VMware repository at GitHub.

...

 # Create a stub configuration

 stub_config = StubConfigurationFactory.new_std_configuration(connector)

 self.report_client = Reports(stub_config)

 def run(self):

 # Retrieve report

 report_details = self.report_client.retrieve('com.vmware.vcenter.lcm.report')

 print("Report details - ", report_details)

 ...

VMware vCenter Server Management Programming Guide

VMware, Inc. 96

Updating vCenter Server 9
vCenter Server provides interfaces to perform software updates.

Before applying updates, you must make sure that your environment is prepared for the vCenter Server
software update process.

This chapter includes the following topics:

n Applying vCenter Server Software Updates

Applying vCenter Server Software Updates
You can automate the installation of vCenter Server software updates to ensure that your system is stable
and protected. Software updates can include security fixes, performance optimizations, and new features.

Security patches usually address vulnerabilities in third-party components and do not affect the vCenter
Server functionality. vCenter Server bug fixes can introduce changes to the functionality without affecting
the data format or database schema of the system.

Each update contains metadata with information about the updated content, for example, whether high-
priority OS updates are included. The update metadata includes a list of components to be updated, the
release date of the update, a list of fixed issues, time and disk space requirements, and information
whether a reboot is required. The metadata can also contain a new vCenter Server version number,
including a build number. In addition to the metadata, an update can contain optional components such
as update scripts, new versions of vCenter Server software components, and new versions of OS
components.

vCenter Server can obtain software updates from either a URL or an ISO image. The URL can either
point to the VMware Web repository or to a custom repository in which you upload the updates in ZIP
format. To perform an update by using an ISO image, attach the image to the CD/DVD drive of the
vCenter Server instance.

There are multiple phases of the update process. For details, see vCenter Server Software Update
Workflow.

If you want to prevent issues related to the possibility of update installation failures, you should create a
backup or take a snapshot of your vCenter Server instance before you start the update process. A
backup can also be useful when an update is successfully installed. For example, you might decide to
revert to the previous version if you encounter any undesired system behavior related to functional
changes in the new software version.

VMware, Inc. 97

Table 9-1. User Operations

Operation Description

Get state information You can retrieve information about the update state.

Check for update You can check whether a new update is available.

Get update information You can retrieve information about the available updates.

Get update requirements You can retrieve information about the update requirements.

Stage You can initiate the download of the update.

Note The check phase must have completed successfully before you can stage the update.

Get staging status You can retrieve information about the status of the stage operation.

Note You must provide the task ID value that you received as a response when you initiated the
stage operation.

Install You can initiate the installation of the update.

Note The update must be staged before you can install it.

Get installation status You can retrieve information about the status of the install operation.

Note You must provide the task ID value that you received as a response when you initiated the
install operation.

Stage and install You can initiate the download of the update and the installation starts when the download
completes.

You can run software update operations by using the API or sending an HTTP request.

Note When you send the requests, you must use an authentication.

If you send requests to port 5480, you must authenticate with vCenter Server root credentials. If you send
requests to the vCenter Server reverse proxy port, you must authenticate with vCenter Single Sign-On
credentials.

VMware vCenter Server Management Programming Guide

VMware, Inc. 98

The following HTTP requests show the syntax that you can use to perform the available user operations.

https://<server>:5480/rest/appliance/update

https://<server>:5480/rest/appliance/update/pending?source_type=DEFAULT

https://<server>:5480/rest/appliance/update/pending/<target_version>

https://<server>:5480/rest/appliance/update/pending/<target_version>/requirements

https://<server>:5480/rest/appliance/update/pending/<target_version>?action=stage

https://<server>:5480/rest/appliance/task/<update_stage_task_id>

https://<server>:5480/rest/appliance/update/pending/<target_version>?action=install

https://<server>:5480/rest/appliance/task/<update_install_task_id>

https://<server>:5480/rest/appliance/update/pending/<target_version>?action=stage-and-install

https://<server>/rest/appliance/update

https://<server>/rest/appliance/update/pending?source_type=DEFAULT

https://<server>/rest/appliance/update/pending/<target_version>

https://<server>/rest/appliance/update/pending/<target_version>/requirements

https://<server>/rest/appliance/update/pending/<target_version>?action=stage

https://<server>/rest/appliance/task/<update_stage_task_id>

https://<server>/rest/appliance/update/pending/<target_version>?action=install

https://<server>/rest/appliance/task/<update_install_task_id>

https://<server>/rest/appliance/update/pending/<target_version>?action=stage-and-install

In addition to sending HTTP requests, you can also run cURL commands to perform update operations.
See cURL Examples of Performing vCenter Server Software Update Operations.

VMware vCenter Server Management Programming Guide

VMware, Inc. 99

vCenter Server Software Update Workflow
The vCenter Server software update process consists of three major phases. In the first phase, the
vCenter Server instance performs various checks, in the second phase it stages the update, and applies
the update in the final phase.

To initiate the update process, you must choose whether the vCenter Server instance should obtain
software updates from a URL or an ISO image. If you use an ISO image to update the vCenter Server
instance, the image must remain attached to the CD/DVD drive of the instance during the stage and
install operations.

The workflow in Figure 9-1. Update Process Workflow describes the standard steps of the update
process.

VMware vCenter Server Management Programming Guide

VMware, Inc. 100

Figure 9-1. Update Process Workflow

Start

End

Point the vCenter Server instance to the update location.

• URL that contains the update
• ISO image attached to the virtual CD/DVD drive

The vCenter Server instance downloads the metadata and scripts.

The vCenter Server instance runs a subset of scripts to determine if the
update is applicable and define a subset of the components to be
updated.

The vCenter Server instance downloads the data for the components
to be updated.

If applicable, vCenter Server instance runs a subset of scripts to
prepare the system for update, for example, to resolve conflicts.

The vCenter Server instance stops the running programs to prevent
API or data incompatibility issues.

The vCenter Server instance starts the programs and resumes
operation.

The vCenter Server instance installs the update data.

Check phase

Stage phase

Update phase

VMware vCenter Server Management Programming Guide

VMware, Inc. 101

You can automate checks for new updates and staging of updates by using an update policy. For
example, you can set an update policy to make the vCenter Server instance perform automatic checks for
new updates at midnight every day. If there are new updates available, the vCenter Server instance can
stage them automatically. Using an update policy reduces the waiting time by automating the first two
phases and giving you the option to initiate only the update phase manually.

cURL Examples of Performing vCenter Server Software Update
Operations
The following cURL command examples show the syntax for performing update operations such as
checking for, staging, and installing updates, as well as retrieving information about update status, and
setting update policies.

Example: Check for an Update
This example queries a custom URL for a new update.

curl -X GET -k -u root:<root_password> "https://<server>:5480/rest/appliance/update/pending?

source_type=LOCAL_AND_ONLINE&url=https://<custom_url>"

Example: Stage an Update
This example initiates the staging of the update.

curl -X POST -k -u root:<root_password> -H "Content-Type: application/json" -d

'{"version":"<target_version>"}' https://<server>:5480/rest/appliance/update/pending/<target_version>?

action=stage

Example: Install an Update
This example initiates the installation of the update.

curl -X POST -k -u root:<root_password> -H "Content-Type: application/json" -d

'{"version":"<target_version>","user_data":[{"key":"vmdir.password","value":"<sso_password>"}]}'

https://<server>/rest/appliance/update/pending/<target_version>?action=install

Example: Stage and Install an Update
This example downloads the update and installs it when the download completes.

curl -X POST -k -u root:<root_password> -H "Content-Type: application/json" -d

'{"version":"<target_version>","user_data":[{"key":"vmdir.password","value":"<sso_password>"}]}'

https://<server>/rest/appliance/update/pending/<target_version>?action=stage-and-install

Example: Retrieve Update Status
This example retrieves information about the update state.

curl -X GET -k -u root:<root_password> https://<server>:5480/rest/appliance/update

VMware vCenter Server Management Programming Guide

VMware, Inc. 102

Example: Set an Update Policy
This example sets an update policy to check a custom URL for new updates at specific times every Friday
and Saturday, and if a new update is available, it is staged automatically.

curl -X PUT -k -u root:<root_password> -H "Content-Type: application/json" -d '{"policy":

{"auto_stage": true,"check_schedule": [{"day": "FRIDAY","hour": 23,"minute": 30},{"day":

"SATURDAY","hour": 12,"minute": 30}],"custom_URL":"https://123.com"}}'

VMware vCenter Server Management Programming Guide

VMware, Inc. 103

	VMware vCenter Server Management Programming Guide
	Contents
	About the vCenter Server Management Programming Guide
	Introduction to the vCenter Server APIs
	About vSphere
	About ESXi
	vCenter Server Management Overview
	Limitations of Programming for vCenter Server
	API Endpoints for Managing vCenter Server
	Supplementing the vCenter Server API
	Direct Console User Interface to vCenter Server
	vCenter Server Management Interface
	vCenter Server Appliance Bash Shell
	vSphere Client and the vCenter Server
	DCLI and vCenter Server

	Quick Start with vCenter Server APIs

	Retrieving Service Endpoints
	Filtering for Predefined Service Endpoints
	Filter Parameters for Predefined Service Endpoints
	Connect to the Lookup Service and Retrieve the Service Registration Object
	Java Example of Connecting to the Lookup Service and Retrieving the Service Registration Object
	Python Example of Connecting to the Lookup Service and Retrieving a Service Registration Object

	Retrieve Service Endpoints on vCenter Server Instances
	Java Example of Retrieving a vSphere Automation Endpoint on a vCenter Server Instance
	Python Example of Retrieving Service Endpoints on vCenter Server Instances

	Retrieve a vCenter Server ID by Using the Lookup Service
	Java Example of Retrieving a vCenter Server ID by Using the Lookup Service
	Python Example of Retrieving a vCenter Server ID by Using the Lookup Service

	Retrieve a vSphere Automation API Endpoint on a vCenter Server Instance
	Java Example of Retrieving a vSphere Automation Endpoint on a vCenter Server Instance
	Python Example of Retrieving a vSphere Automation Endpoint on a vCenter Server Instance

	Authentication Mechanisms
	vCenter Single Sign-On User Name and Password Authentication for vCenter Server
	Authenticate with vCenter Single Sign-On Credentials and Create a Session
	JavaScript Example of Creating a vSphere Automation API Session with vCenter Single Sign-On Credentials
	Java Example of Creating a vSphere Automation API Session with User Credentials
	Python Example of Creating a vSphere Automation API Session with SSO Credentials

	vCenter Single Sign-On Token Authentication for vCenter Server
	Retrieve a SAML Token
	JavaScript Example of Retrieving a SAML Token

	Create a vSphere Automation Session with a SAML Token
	JavaScript Example of Creating a vSphere Automation API Session with a SAML Token

	Authorization Model for Administration of vCenter Server
	Authorization Model Mapping to the vCenter Single Sign-On Domain
	Using the Operator Role
	Using the Admin Role
	Using the SuperAdmin Role

	Installing and Upgrading vCenter Server
	Install Stage 2
	Setting Up a Newly Installed vCenter Server Instance
	HTTP Requests for Install Stage 2
	Use HTTP Requests to Set Up a Newly Deployed vCenter Server Instance
	Workflows for Install Stage 2

	Upgrade Stage 2
	Upgrading a vCenter Server Instance
	HTTP Requests for Upgrade Stage 2
	Workflows for Upgrade Stage 2

	Historical Data Transfer
	Deferred Import
	HTTP Status Codes for Deferred Import
	Historical Data Import Errors
	Class Diagrams for Deferred Import
	Use the Deferred Import Sample
	Python Example of Pausing and Resuming the Deferred Import Process

	Monitoring vCenter Server
	Health Monitoring of vCenter Server
	Check Overall System Health of vCenter Server
	JavaScript Example of Checking Overall System Health of vCenter Server
	Python Example of Checking the Overall System Health of vCenter Server

	Capacity Monitoring of vCenter Server
	Frequency and Retention of Statistics Collection in vCenter Server
	Nature of Statistics in vCenter Server
	Requesting Statistics from vCenter Server
	Statistics Collection Times
	Statistics Interval Adjustment in vCenter Server
	Empty Data Values
	Check Database Usage in vCenter Server
	JavaScript Example of Checking Database Usage in vCenter Server
	Python Example of Checking Database Usage in vCenter Server

	List Storage Consumption By Data Type in vCenter Server
	JavaScript Example of Listing Storage Consumption By Data Type in vCenter Server
	Python Example of Listing Storage Consumption By Data Type in vCenter Server

	Maintenance of vCenter Server
	Backing up vCenter Server
	Backup and Restore Protocols for vCenter Server
	Calculate the Size Needed To Store the Backup File
	Bash Example of Calculating the Size Needed To Store the Backup File
	Python Example of Calculating the Size Needed To Store the Backup Image

	Back up a vCenter Server Instance by Using the API
	Bash Example of Backing up a vCenter Server Instance
	Python Example of Backing Up a vCenter Server Instance

	Schedule a Backup Job
	Python Example of Scheduling a Backup Job

	Restoring vCenter Server
	Authentication When Restoring a vCenter Server Instance
	Availability of Services While Restoring a vCenter Server Instance
	Restore a vCenter Server Instance by Using the API
	Bash Example of Restoring a vCenter Server Instance
	Python Example of Restoring a vCenter Server Instance

	Reconcile a vCenter Server Instance with Nodes in Embedded Linked Mode
	Managing System Logs
	Configuring Syslog Forwarding
	HTTP Requests for Configuring Syslog Forwarding
	Python Example of Configuring Syslog Forwarding

	Performing Infrastructure Profile Management Operations
	HTTP Requests for Infrastructure Profile Management Operations

	Planning vCenter Server Updates
	Performing Discovery and Planning Operations
	HTTP Requests for Discovery and Planning Operations
	cURL Examples of Performing Discovery and Planning Operations

	List Available Products and Manage Associated Products
	Python Example of Listing Available Products and Managing Associated Products

	List Available Updates
	Python Example of Listing Available Updates

	Retrieve a Report
	Python Example of Retrieving a Report

	Updating vCenter Server
	Applying vCenter Server Software Updates
	vCenter Server Software Update Workflow
	cURL Examples of Performing vCenter Server Software Update Operations

