
Local plugin library isolation – vSphere 8.0
Third-party libraries deployed and utilized by the vCenter Server appliance (VCSA) for its own
needs that are currently exposed to partner plugins will be restricted and no longer available,
effective with vSphere 8.0.

In the versions of vSphere up to 7.0, local plugins can import packages from third-party libraries
deployed for the needs of the vSphere Client platform. This is problematic for multiple reasons,
such as:

• Changes to internal vSphere Client APIs could break plugin compatibility.
• Changes to a particular vSphere Client dependency (e.g. to consume security updates)

could impact plugin compatibility.
• Unnecessary 3rd-party dependencies decrease performance of the vSphere Client. (Most

plugins need only libraries related to the Spring framework.)
• Partner plugins can fail when VMware updates third-party libraries in response to

security vulnerabilities.

For these reasons, VMware will require plugin developers to supply their own OSGi Java
dependencies. Any Spring Framework, JSON/XML serialization, Apache utilities, etc. will have
to be provided as part of the plugin: either as separate OSGi bundles or included in an existing
plugin bundle's class path.

The library isolation will be in effect from vSphere 8.0.

Following are detailed guides on how to comply with the new OSGi requirements. A local setup
refers to when a developer runs the vSphere Client process on their developer machine in
contrast to CloudVM setup, where the vSphere Client process runs inside the vCenter Server
Appliance.

Step-by-step guide on how to move to full isolated plugin
(local setup)
Prerequisites:

• zip edit tool
• telnet client
• registered plugin
• knowledge about using the OSGi Console: see Using the OSGi console section

here: https://www.vogella.com/tutorials/OSGi/article.html#access-to-the-osgi-console-for-
your-eclipse-application

Steps:

1. Place osgi.fullIsolation.debug=true in webclient.properties

2. Open the .war archive with zip edit tool: <address of your sdk>/server/webapps/h5-
bridgewebapp.war

3. Remove the XML comments around console in /WEB-INF/web.xml
4. (Re)start server.
5. Open your telnet client and connect to localhost, port 2401
6. The OSGi console opens up

1. Use ss or lb to list currently deployed bundles
2. Search for the bundle symbolic name/bundle id of the plugins bundle (if using

ss command)
7. Use diag <bundle id> to display the missing dependencies of your plugin's bundles.
8. If you're not certain which bundle/jar provides a package missing for your bundles, you

can use the packages <package name> command.
9. Add missing bundle dependencies in your libraries folder (a sibling to the

plugins folder).
10. (Re)start server and repeat the Console procedure until all your bundles successfully

resolve their dependencies.

Step-by-step guide on how to move to full isolated plugin
(VCSA/CloudVM setup)
Prerequisites:

telnet client (Windows: Putty, Mac: use brew [brew install telnet], Linux: use package manager
of choice to install telnet)

scp tool (Windows: WinSCP, Mac: Cyberduck or scp command, Linux: scp command)

basic vi knowledge http://heather.cs.ucdavis.edu/~matloff/UnixAndC/Editors/ViIntro.html

Steps:

Warning: these steps should be undertaken only in a non-production test environment, that
preferably doesn't have outside internet access. Using these steps in a production
environment with Internet access constitutes a security risk.

0. ssh to the test VCSA

1. Place your plugin files in /usr/lib/vmware-vsphere-ui/plugin-packages (we'll use the
simple-plugin-package as an example)

2. Make sure that the files of your plugin are owned by the vsphere-ui OS user and the
directories are secured as shown in the following illustration.

cd /usr/lib/vmware-vsphere-ui/plugin-packages/

chown vsphere-ui simple-plugin-package/ -R

The resulting file permissions and ownership should be as follows:

3. Add osgi.fullIsolation.debug=true in webclient.properties

vi /etc/vmware/vsphere-ui/webclient.properties

4. Enable the OSGi Console, as follows:

4.1: cd /usr/lib/vmware-vsphere-ui/server/webapps

4.2: unzip -j "h5-bridge-webapp.war" "WEB-INF/web.xml" -d "/usr/lib/vmware-
vsphere-ui/server/webapps/WEB-INF" (this will unzip only the /WEB-INF/web.xml file)

4.3. Edit the WEB-INF/web.xml by removing the the XML comments around the init-param
"commandline"

vi WEB-INF/web.xml

The web.xml should look like this:

Save the file.

4.4. Modify the h5-bridge-webapp.war with the modified web.xml

zip -u h5-bridge-webapp.war WEB-INF/web.xml

Be sure that the output of the zip command is "updating", not adding.

4.5. Make sure that the files of the archive are owned by the vsphere-ui OS user

chown vsphere-ui h5-bridge-webapp.war

Check filesystem permissions, using ls -lah

5. Open ports on the VCSA:

iptables -A INPUT --dport 2401 -j ACCEPT

6. Restart the vsphere-ui:

service-control --restart vsphere-ui

7. Telnet to <VCSA IP/hostname> port 2401

telnet <vc_ip> 2401

8. Use the ss command to list all bundles and look for the bundles belonging to your plugin.
(You can make them out by their symbolic names)

We can observe that the bundles of your plugin are in the INSTALLED state, meaning they
weren't resolved and could not be started.

9. Use diag <bundle id> to diagnose missing dependencies

The command will list all unresolved Import-Package/Require-Bundle requirements.

10. If you're not sure which bundle/jar provides a package that your plugin requires you can use
the following OSGi console command:

packages <required package>

Typically, the bundle-symbolic-name is going to be a good orientation point to bundle that
provides a required package. Use the bundle-symbolic-name to search maven.org for a matching
jar name. For instance, if we make a search for "jackson-core", we'll likely hit the jar that is
required. https://search.maven.org/search?q=jackson-core

11. Add missing OSGi dependencies

Dependencies should be placed in a new folder "libraries", a sibling to the "plugins"
folder. These dependencies in the "libraries" folder are going to be skipped in 6.7 and 7.0,
but picked up in 8.0, making it possible to run the same plugin release in 6.7, 7.0 and 8.0
without any changes to the plugin.

A note about Spring MVC:

If you use Spring MVC controllers in your plugin the following list provides a latest picture (at
time of writing) of the bundles required to resolve Spring MVC dependencies:

• org.apache.servicemix.bundles.aopalliance-1.0_6
• org.apache.servicemix.bundles.spring-aop-5.2.22.RELEASE_1
• org.apache.servicemix.bundles.spring-beans-5.2.22.RELEASE_1
• org.apache.servicemix.bundles.spring-context-5.2.22.RELEASE_1
• org.apache.servicemix.bundles.spring-context-support-5.2.22.RELEASE_1
• org.apache.servicemix.bundles.spring-core-5.2.22.RELEASE_1
• org.apache.servicemix.bundles.spring-expression-5.2.22.RELEASE_1
• org.apache.servicemix.bundles.spring-web-5.2.22.RELEASE_1
• org.apache.servicemix.bundles.spring-webmvc-5.2.22.RELEASE_1

The"plugins" and "libraries" folders will look like:

12. Restart vsphere-ui, so we can make another iteration and see any other missing dependencies

service-control --restart vsphere-ui

13. Telnet will disconnect. Connect again to the OSGi console:

telnet <vc_ip> 2401

This time our plugin looks like the following:

We can observe that only one war is not resolved. We'll repeat steps 9-12

14. Use diag <bundle id> to diagnose remaining missing dependencies

Note: that the id of the simple-front-end bundle is now different after the last restart of the
vsphere-ui. That is due to the random nature in which plugin bundles are installed in the OSGi
runtime.

16. Continue adding required bundles in your "libraries” directory until all your plugin bundles
are resolved.

17. Make the necessary changes to your build to include the OSGi bundles identified as missing
dependencies in the “libraries” folder of your plugin package.

Note 1:

Troubleshooting

If runtime requests to your plugin endpoints fail
with: "org.springframework.http.converter.HttpMessageNotWritableException: No
converter found for return value of type: class XXX", then your plugin code is probably
expecting HTTP responses with Content-Type: application/json. Spring Framework supports
application/json serialization if you include the following jars in your libraries folder:

https://mvnrepository.com/artifact/com.fasterxml.jackson.core/jackson-annotations/2.13.2
https://mvnrepository.com/artifact/com.fasterxml.jackson.core/jackson-databind/2.13.2
https://mvnrepository.com/artifact/com.fasterxml.jackson.core/jackson-annotations/2.13.2

These are the latest versions at the time of writing of this document. Always use the latest
versions to consume the latest security fixes.

Note 2:

Some jars posted in the Maven Central repository are not OSGi bundles. If you happen to require
such a jar, use Spring's bundlor or BND to convert the jar to an OSGi bundle:

https://docs.spring.io/s2-bundlor/1.0.x/user-guide/htmlsingle/user-guide.html

https://github.com/bndtools/bnd/tree/master/maven/bnd-maven-plugin

Some jars have different artifact IDs to denote that they are OSGi bundles. For instance,
Apache's http client:

https://search.maven.org/artifact/org.apache.httpcomponents/httpclient-osgi

is an OSGI bundle, but

https://search.maven.org/artifact/org.apache.httpcomponents/httpclient

is not an OSGi bundle.

Note 3:

If your plugins require the following packages:

com.vmware.vise.messaging.endpoints
com.vmware.vise.messaging.remoting

you should remove them. Those packages are not exported in full isolation mode and are no
longer needed.

Note 4:

Apache ServiceMix provides OSGi versions of Spring and other popular libraries. See:
https://mvnrepository.com/artifact/org.apache.servicemix.bundles

