vSphere SDK for Perl Programming
Guide

ESXi 5.5
vCenter Server 5.5

This document supports the version of each product listed and
supports all subsequent versions until the documentis replaced
by a new edition. To check for more recent editions of this
document, see http://www.vmware.com/support/pubs.

EN-001147-00

vmware

http://www.vmware.com/support/pubs

vSphere SDK for Perl Programming Guide

You can find the most up-to-date technical documentation on the VMware Web site at:
http://www.vmware.com/support/

The VMware Web site also provides the latest product updates.

If you have comments about this documentation, submit your feedback to:

docfeedback@vmware.com

Copyright © 2007-2015 VMware, Inc. All rights reserved. Copyright and trademark information

VMware, Inc.

3401 Hillview Ave.
Palo Alto, CA 94304
www.vmware.com

2 VMware, Inc.

http://www.vmware.com/support/
http://www.vmware.com/support
mailto:docfeedback@vmware.com
http://pubs.vmware.com/copyright-trademark.html

Contents

About This Book 7
Revision History 7
Intended Audience 7

1 Getting Started with vSphere SDK for Perl 9
vSphere SDK for Perl Architecture 9
Using vSphere SDK for Perl 10
Getting Started 10
Common vSphere SDK for Perl Tasks 11
vSphere SDK for Perl Programming Conventions 12
vSphere SDK for Perl Common Options 12
Specifying Options 13
Using a Session File 13
Passing Parameters at the Command Line 14
Setting Environment Variables 14
Using a Configuration File 14
Using Microsoft Windows Security Support Provider Interface (SSPI) 15
Common Options Reference 15
Hello Host: Running Your First Script 17

2 Writing vSphere SDK for Perl Scripts 19
Basic vSphere SDK for Perl Script 19
Step 1: Import the vSphere SDK for Perl Modules 20
Step 2: (Optional) Define Script-Specific Command-Line Options 20
Step 3: Connect to the Server 22
Step 4: Obtain View Objects of Server-Side Managed Objects 22
Step 5: Process Views and Report Results 22
Step 6: Close the Server Connection 23
Understanding Server-Side Objects 24
Use the Managed Object Browser to Explore Server-Side Objects 24
Types of Managed Objects and the Managed Object Hierarchy 25
Managed Object Hierarchy 26
Managed Entities in the Inventory 26
Accessing Server-Side Inventory Objects 27
Understanding Perl View Objects 28
Working with View Object Property Values 29
Accessing Property Values 29
Accessing Simple Property Values 29
Accessing Enumeration Property Values 29
Modifying Property Values 29
Creating Data Objects with Properties 30
Understanding Operations and Methods 30
Non-Blocking and Blocking Methods 31
Examples of Operations 31
Calling Methods 31
Omitting Optional Arguments in Method Calls 32
Updating View Objects 32

VMware, Inc.

vSphere SDK for Perl Programming Guide

3 Refining vSphere SDK for Perl Scripts 33

Creating and Using Filters 33

Using Filters with Vim::find_entity_view() or Vim::find_entity_views() 33
Filtering Views Selectively Using Properties 35

Using View Subroutines with a Properties Argument 35

Using Filters on the Utility Application Command Line 36
Retrieving the Servicelnstance Object on a vSphere Host 36
Saving and Using Sessions 36

Saving Sessions 36

Loading Sessions 37
Using Multiple Sessions 37
Learning About Object Structure Using Data:Dumper 38
Specifying Untyped Arguments in Scheduled Tasks and Callbacks 39
Using Advanced Subroutines 40

Opts::get_config() 40

4 vSphere SDK for Perl Subroutine Reference 41

Subroutines in the Opts Package 42
add_options 42
get_option 42
option_is_set 43
parse 43
validate 43
usage 43

Subroutines in the Util Package 44
connect 44
disconnect 44
get_inventory_path 44
trace 45

Subroutines in the Vim Package 45
clear_session 45
find_entity_view 45
find_entity_views 46
get_service_instance 47
get_service_content 47
get_session_id 48
get_view 48
get_views 48
load_session 48
login 49
logout 49
save_session 50
update_view_data 50

A Web Services for Management Perl Library 51
Web Services for Management Overview 51
Required Perl Modules 52
Sample Scripts 53
SOAP Message Construction with WSMan::WSBasic 53

WSMan::WSBasic->new 54
register_xml_ns 54
register_class_ns 55
Identify 55

Enumerate 55

PullRelease 56

4 VMware, Inc.

Contents

Get 56
WSMan::WSBasic Examples 56

Generic CIM Operations with WSMan::GenericOps 57
WSMan::GenericOps->new 58
register_xml_ns 58
register_class_ns 58
Identify 59
Enumeratelnstances 59
EnumeratelnstanceNames 59
EnumerateAssociatedInstances 59
EnumerateAssociatedInstanceNames 60
EnumerateAssociationInstances 60
EnumerateAssociationInstanceNames 60
Getlnstance 60

B Credential Store Perl Library 61

Credential Store Overview 61
Credential Store Components 62
Managing the Credential Store 62
Using the Credential Store 62
vSphere Credential Store Subroutine Reference 63
init 63
get_password 63
add_password 64
remove_password 64
clear_passwords 64
get_hosts 64
get_usernames 65
close 65
credstore_admin.pl Utility Application 65

Glossary 67

Index 69

VMware, Inc. 5

vSphere SDK for Perl Programming Guide

6 VMware, Inc.

About This Book

This book, the vSphere SDK for Perl Programming Guide, provides information about writing and running
VMware® vSphere SDK for Perl scripts on ESX/ESXi or vCenter Server systems. Because SDK subroutines
allow you to manage vSphere hosts using vSphere API calls, a brief description of the server-side object model

is included. This guide focuses on explaining how to access and modify server-side objects using the vSphere

SDK for Perl and on discussing some programming techniques.

Revision History

This guide is revised with each release of the product or when necessary. A revised version can contain minor

or major changes. Table 1 summarizes the significant changes in each version of this guide.

Table 1. Revision History

Revision Description

MAY2014 Fix to example: if ($@) instead of (if (@$) in “Using a Session File” on page 13.

19SEP2013 vSphere SDK for Perl 5.5. No changes to the product.

10SEP2012 vSphere SDK for Perl 5.1. No changes to the product.

15MAR2012 The section “Generic Operations with the StubOps.pm Object-Oriented Wrapper” has been removed.
in the vSphere 5.0 Update 1 version of the product. The functionality is no longer supported. Use
WSMan::GenericOps instead.

22AUG2011 Minor bug fixes. Added information about WSMan stub objects being deprecated (use Generic Objects
instead).

13JUL2010 Updated product version and copyright. No content changes.

07MAY2009 Update for vSphere SDK for Perl 4.0. Renamed products.
Added Appendix B, “Credential Store Perl Library,” on page 61.

25JUL2008 Update for VI Perl Toolkit 1.6.
Added information on using multiple sessions.
Added Appendix A, “Web Services for Management Per] Library,” on page 51.

10JAN2008 Update for VI Perl Toolkit 1.5. Documentation bug fixes and some clarifications and additions.

05JAN2007 First version of the documentation for the VI Perl Toolkit 1.0.

Intended Audience

This book is intended for administrators with different levels of Perl scripting experience:

® All administrators can use the utility applications and sample scripts included with the vSphere SDK for

Perl to manage and monitor the hosts in the vSphere environment.

VMware, Inc.

vSphere SDK for Perl Programming Guide

B Experienced Perl programmers can examine the source code for the available scripts. They can then
modify those scripts or write new scripts using the vSphere SDK for Perl subroutines to access the objects
on the vSphere host and manipulate those objects using Perl. This document includes a discussion of the
vSphere object model and explains how you can preview and retrieve the objects and their attributes and
methods.

Document Feedback

VMware welcomes your suggestions for improving our documentation. Send your feedback to
docfeedback@vmware.com.

Technical Support and Education Resources

The following sections describe the technical support resources available to you. To access the current versions
of other VMware books, go to http://www.vmware.com/support/pubs.

Online and Telephone Support

To use online support to submit technical support requests, view your product and contract information, and
register your products, go to http://www.vmware.com/support.

Support Offerings

To find out how VMware support offerings can help meet your business needs, go to
http://www.vmware.com/support/services.

VMware Professional Services

VMware Education Services courses offer extensive hands-on labs, case study examples, and course materials
designed to be used as on-the-job reference tools. Courses are available onsite, in the classroom, and live
online. For onsite pilot programs and implementation best practices, VMware Consulting Services provides
offerings to help you assess, plan, build, and manage your virtual environment. To access information about
education classes, certification programs, and consulting services, go to http://www.vmware.com/services.

8 VMware, Inc.

mailto:docfeedback@vmware.com
mailto:docfeedback@vmware.com
http://www.vmware.com/support/pubs
http://www.vmware.com/support
http://www.vmware.com/support/services
http://www.vmware.com/services/

Getting Started with
vSphere SDK for Perl

The vSphere SDK for Perl lets you automate a wide variety of administrative, provisioning, and monitoring
tasks in the vSphere environment. This chapter introduces the SDK architecture, explains the basic use model,
and gets you started running a simple script.

The chapter includes the following topics:

B “vSphere SDK for Perl Architecture” on page 9

B “Using vSphere SDK for Perl” on page 10

B “vSphere SDK for Perl Common Options” on page 12

“Hello Host: Running Your First Script” on page 17

vSphere SDK for Perl Architecture

The interaction model between the SDK and the vSphere API on the host directly affects how each script is
structured, and is the basis for troubleshooting.

All vSphere SDK for Perl subroutines interact with the host and perform variations of these basic tasks:
B Connect to a remote host using user-supplied connection parameters, and disconnect.
B Find objects on the remote host (server-side objects). For example, find all virtual machines on a host.

B Retrieve or modify server-side objects, for example, manage the virtual machine life cycle (start, stop,
suspend, and so on).

B Collect information from server-side objects.
B Manage sessions.

Most routines retrieve a vSphere API object and make it available as a Perl object (called a view object) that
you can then manipulate with your script.

The vSphere SDK for Perl has these components:
B vSphere SDK for Perl Runtime — Client-side runtime components that include:

B A complete Perl binding of the vSphere API, which makes all server-side operations and data
structures available. The SDK handles the data type mapping between server-side and client-side
objects transparently.

B VMware Perl modules (VIRuntime.pm and VILib.pm) that provide subroutines for basic
functionality.

B vSphere SDK for Perl Utility Applications — Management applications that you can run without
modification in your virtual datacenter. You run each application with connection parameters and other,
application-specific parameters. See the vSphere SDK for Perl Utility Applications Reference.

VMware, Inc. 9

vSphere SDK for Perl Programming Guide

Sample Scripts — Scripts that you can customize for your needs and that illustrate the vSphere SDK for
Perl’s functionality. You must know Perl to customize the scripts. Unlike the utility applications, sample
scripts are not supported by VMware.

A vSphere SDK for Perl installation also includes the following libraries:

Web Services for Management Perl Library and Examples — The WS-Management Perl Library allows
you to write scripts that retrieve CIM data from the ESX/ESXi host using CIMOM, a service that provides
standard CIM management functions over a WBEM (Web-Based Enterprise Management). See “Web
Services for Management Perl Library” on page 51.

Credential Store Library and Examples — Allows vSphere SDK for Perl applications to manage the
vSphere credential store. The credential store allows vSphere SDK for Perl scripts to authenticate
themselves to ESX/ESXi or vCenter Server systems. See “Credential Store Perl Library” on page 61.

Using vSphere SDK for Perl

This section explains how to get started with vSphere SDK for Perl by looking at two typical usage scenarios.
It also lists common vSphere SDK for Perl tasks and discusses programming conventions.

Getting Started

If you want to use the SDK to retrieve performance information for a host, you might perform the following
tasks:

1

Check the vSphere SDK for Perl Utility Applications Reference or the apps directory for a script that retrieves
performance information.

Check /usr/1lib/vmware-vcli/apps on Linux and Program Files\VMware vSphere CLI\Perl\apps
on Windows. All utility applications are fully supported.

The viperformance.pl script retrieves performance counters from the host.

NOTE If you cannot find a utility application, examine the sample scripts. You can use sample scripts as
starting points for your application. On Linux, /usr/share/doc/vmware-vcli/samples, on Windows,
Program Files\VMware\VMware vSphere CLI\Perl\samples.Sample scripts are not supported.

Run the script with the ——help option or without any options to see its online documentation. More
detailed information is in the Utility Applications Reference included in the vSphere SDK for Perl
documentation set and available from the VMware Web site.

Run the viperformance.pl script.

viperformance.pl ——url https://<host>:<port>/sdk/vimService —-username nemo —-password fi\$h
——host Aquarium —--countertype net —-interval 30 --samples 3

Escape characters must precede special characters in passwords. See Table 1-3, “Options Available for all
vSphere SDK for Perl Scripts,” on page 15 for a complete list of connection parameters.

If you want to use the SDK for a task that none of the utility applications can perform, you might perform the
following tasks:

1

10

Check the /samples folder for a sample script that performs a similar task. The scripts in the samples
folder are available for customization.

If a script that performs a similar task is available, modify the script. If none of the scripts is suitable, write
a new script using the vSphere SDK for Perl subroutines.

VMware, Inc.

Chapter 1 Getting Started with vSphere SDK for Perl

The following materials are available for modifying or writing scripts:

Source Description

“Writing vSphere SDK for Perl Scripts” on In-depth discussion of scripts that includes an example.

page 19.

Chapter 4, “vSphere SDK for Perl Reference to vSphere SDK for Perl subroutines.

Subroutine Reference,” on page 41.

“Web Services for Management Perl Allows you to write scripts that retrieve CIM data from the

Library” on page 51. ESX/ESXi host using CIMOM, a service that provides standard CIM
management functions over a WBEM (Web-Based Enterprise
Management).

“Credential Store Perl Library” on page 61. Allows vSphere SDK for Perl applications to manage the vSphere
credential store.

vSphere API Reference documentation. Reference to the server-side object your script interacts with.

3 Follow these programming conventions when you modify or create vSphere SDK for Perl scripts:
® Use parameter names followed by parameter values, as follows:

Vim: :<subroutine>(<parameter_name>=><value>, <parameter_name>=><value>);
Util::<subroutine>(<parameter_name>=><value>, <parameter_name>=><value>);
Opts::<subroutine>(<parameter_name>=><value>, <parameter_name>=><value>);

® Use the options in Table 1-3, “Options Available for all vSphere SDK for Perl Scripts,” on page 15 to
specify connection information.

B Use the mechanism discussed in “Step 2: (Optional) Define Script-Specific Command-Line Options”
on page 20 for specifying additional script-specific options.
Common vSphere SDK for Perl Tasks

The vSphere SDK for Perl includes utility applications and sample scripts for common administration tasks.

Table 1-1. Common Administrative Tasks and SDK Utilities

Task Script Location
Discovery (logging in) connect.pl /apps/general
Performance monitoring viperformance.pl (retrieves /apps/performance

performance counters from host)

Virtual machine power operations vmcontrol.pl /apps/vm

Virtual machine snapshot and restore functionality =~ vmsnapshot.pl, snapshotmanager.pl /apps/vm

Virtual machine migration vmmigrate.pl /apps/vm

Host operations, for example, adding a standalone hostops.pl /apps/host
host to a vCenter Server system, shutting down and
rebooting a host, and so on

Viewing or changing of CPU or memory share sharesmanager.pl /apps/vm
allocation on a virtual machine

Some tasks require additional scripting. See Chapter 2, “Writing vSphere SDK for Perl Scripts,” on page 19.

VMware, Inc. 1"

vSphere SDK for Perl Programming Guide

vSphere SDK for Perl Programming Conventions

Several programming conventions are different than you might expect because the SDK interacts with a server
using SOAP/WSDL.

B Boolean data types — SDK applications send and receive Boolean values as follows:

B Input (sending from the client application):
false: Use 0, '0', or 'false’ (capitalization ignored)

true: Use 1, '1', or 'true' (capitalization ignored)

B Output (receiving from the server):
false: Return value is 0

true: Return value is 1

To match Boolean values in a filter, use the strings true and false. See “Creating and Using Filters” on
page 33.

m Date/Time — The server returns a SOAP dateTime value. You can use the Date: : Parse Perl module to
process these objects.

The vSphere SDK for Perl accepts only native SOAP dateTime values using standard date time format
with or without fractional seconds, and with or without GMT (Z) time zone:

YYYY-MM-DDThh :mm: ssTZD, for example, 1997-07-16T19:20:30+01:00
YYYY-MM-DDThh:mm:ss.sTZD, for example, 1997-07-16T19:20:30.45+01:00

The SDK always returns dateTime values in the standard date time format.

B SOAP error message — Most likely indicates an error on the server, not an error with the communication
to the server.

vSphere SDK for Perl Common Options

A number of options are available for any vSphere SDK for Perl script. Most of these options allow you to
specify the host or hosts to connect to. Most options require an option value.

perl <app_name>.pl —--<option_name> <option_value>

For example, to power on a virtual machine using the vmcontrol. p1l utility application, you must specify the
name of the virtual machine to power on, as follows:

perl vmcontrol.pl —--server <myserver> ——username <admin> ——password <mypassword> ——operation
poweron —-vmname <virtual_machine_name>

Run any application or sample without any options or with ——help to see its parameters and execution
examples. Information about common and script-specific options is included.

IMPORTANT If the host you are targeting is in lockdown mode, you cannot execute Perl scripts against the
host.

12 VMware, Inc.

Chapter 1 Getting Started with vSphere SDK for Perl

Specifying Options
You can specify the common options in several ways, discussed in this section.
When you run a vSphere CLI command, authentication happens in the following order of precedence:
Table 1-2. vSphere CLI Authentication Precedence
Authentication Description See

Command line Password (——password), session file “Using a Session File” on page 13
(-—sessionfile), or configuration file
(——config) specified on the command line.

Configuration file Passwords specified in a .visdkrc “Using a Configuration File” on page 14
configuration file.

Environment Password specified in an environment “Setting Environment Variables” on page 14
variable variable.

Credential store Password retrieved from the credential store. ~ “Credential Store Perl Library” on page 61
Current account Current account information used to establish .“Using Microsoft Windows Security Support
(Active Directory) an SSPI connection. Windows only. Provider Interface (SSPI)” on page 15

Prompt the user for a
password.

This order of precedence always applies. That means, for example, that you cannot override an environment
variable setting in a configuration file.

Using a Session File

The save_session.pl script in the apps/session directory illustrates how to create a session file. You can
modify the script and include it in your own application, or create a session file using the script on the
command line, and then pass in that session file when running vSphere SDK for Perl commands. See “Saving
Sessions” on page 36.

The session file does not reveal password information. If a session file is not used for 30 minutes, the session
expires.
To create and use a session file
1 Connect to the directory where the script is located, for example, on Windows:
cd C:\Program Files\VMware\VMware vSphere CLI\Perl\apps\session

2 Runsave_session.pl. You must supply connection parameters and the name of a session file in which
the script can save an authentication cookie.

perl save_session.pl —-savesessionfile <location> —--server <server>

For example:

perl save_session.pl ——savesessionfile C:\Temp\my_session —-server my_server
If you specify a server but no user name or password, the script prompts you.

3 You can now run scripts in the \apps or \samples directory or your own scripts and pass in the session
file using the ——sessionfile parameter as follows:

<command> —-sessionfile <sessionfile_location> <command_options>
For example:

perl hostinfo.pl —-sessionfile C:\Temp\my_session

NOTE If you use a session file, any other connection parameters are ignored.

VMware, Inc. 13

vSphere SDK for Perl Programming Guide

You can use the code in the \apps\session\save_session.pl utility application inside your own vSphere
SDK for Perl application. If a call to the server throws an exception, your application should terminate the
session to avoid session leaks. You could do this with an error handler that runs disconnect () or logout(),
for example:

eval {
... insert program here ...
b
if (5@ {

print "Fatal error: $@";
Util::disconnect();
exit(1);

}

You can also use the _END_ pseudo-signal handler to perform a disconnect, as follows:

$SIG{__END__} = sub { Util::disconnect(); }

Passing Parameters at the Command Line
Pass parameters at the command line using option name and option value pairs (some options have no value).
——<optionname> <optionvalue>

The following example connects to the server as user snow-white with password dwarf$. The first example
(Linux) uses an escape character before each special character, the other examples use single quotes (Linux)
and double quotes (Windows).

Linux

vminfo.pl —-server <server> —-username snow\-white —--password dwarf\$ —--vmname <name>

vminfo.pl --server <server> —-username °‘snow-white’ —-password ‘dwarf$’ —--vmname <name>
Windows
vminfo.pl —--server <server> —-username ‘“snow-white” —-password “dwarf$” —--vmname <name>

Setting Environment Variables

You can set environment variables in a Linux profile, in the Environment properties dialog box of the
Microsoft Windows System control panel, or, for the current session, at the command line. Environment
variables are listed when you run a command with ——help.

The following example shows the contents of a /root/.visdkrc file that uses environment variables:

VI_SERVER = <server>
VI_USERNAME = <usr>
VI_PASSWORD = <root_password>
VI_PROTOCOL = https
VI_PORTNUMBER = 443

Do not escape special characters in the file that specifies environment variables.

If you have set up your system to run this file, you can run scripts on the specified server afterwards.

Using a Configuration File

A configuration file is a text file that contains variable names and settings. Variables corresponding to the
connection options are shown in Table 1-3. Use ——conf1ig if the configuration information is saved in a
different file than . /visdkrc. If you specify ——config, the system ignores the . /visdkrc settings.

W CAUTION Limit read access to a configuration file, especially if it contains user credentials.

You can use the ——config option to run a script with the configuration file, for example:

connect.pl —-config <my_saved_config> —-list

14 VMware, Inc.

Chapter 1 Getting Started with vSphere SDK for Perl

Using a configuration file is useful for repeatedly entering connection details. If you have multiple

vCenter Server or ESX/ESXi systems and you administer each system individually, you can create multiple
configuration files with different names. When you want to run a command or a set of commands on a server,
you pass in the ——config option with the appropriate filename at the command line.

Using Microsoft Windows Security Support Provider Interface (SSPI)

You can use the ——passthroughauth command-line argument to log in to a vCenter Server system (vCenter
Server version 2.5 Update 2 or later). Using ——passthroughauth passes the credentials of the executing user
to the server. If the executing user is known by both the machine from which you access the vCenter Server
system and the machine running the vCenter Server system, no additional authentication is required.

NOTE Using SSPI is supported only when you run commands from Windows, and use a vCenter Server
system as the target server.

If SDK commands and the vCenter Server system run on the same machine, a local account for the executing
user works. If they run on different machines, then the executing user must have an account in a domain
trusted by both machines.

SSPI supports a number of protocols. By default, it selects the Negotiate protocol, which indicates that client
and server attempt to find a mutually supported protocol. Alternatively, you can use
——passthroughauthpackage to specify another protocol supported by SSPI. Kerberos, the Windows
standard for domain-level authentication, is commonly chosen.

If the vCenter Server system is configured to accept only a specific protocol, specifying the protocol to vSphere
SDK for Perl commands with ——passthroughauthpackage might be required for successful authentication
to the server. If you use ——passthroughauth, you do not have to specify authentication information in any
other way. For example, to run connect.pl on the server, you can use the following command at the
command line.

<command> <login_params> —-passthroughauth

See the Microsoft Web site for a detailed discussion of SSPI.

The following example connects to a server that has been set up to use SSPI. When you run the command, the
system calls vminfo.p1 with the ——vmname option. The system does not prompt for a user name and password
because the current user is known to the server.

vminfo.pl --server <vc_server> ——passthroughauth --passthroughauthpackage “Kerberos”
——vihost my_esx —-vmname <name>
Common Options Reference

Table 1-3 lists options that are available for all vSphere SDK for Perl scripts. Use the parameter on the
command line and the variable or the parameter in configuration files.

Table 1-3. Options Available for all vSphere SDK for Perl Scripts

Parameter and Environment

Variable Description

——config <config_file> Uses the vSphere SDK for Perl configuration file at the specified location.
VI_CONFIG=<config_file> Important: You must specify a path that is readable from the current directory.
——Credstore <credstore> Name of a credential store file. Defaults to

VI_CREDSTORE <HOME>/.vmware/credstore/vicredentials.xml on Linux and

<APPDATA>/VMware/credstore/vicredentials.xml on Windows. Commands
for setting up the credential store are included in the vSphere SDK for Perl, which
is installed with the vSphere CLI. The vSphere SDK for Perl Programming Guide
explains how to use the credential store.

——encoding <encoding> Specifies the encoding to be used. One of cp936 (Simplified Chinese), ISO-8859-1
VI_ENCODING=<encoding> (German), or Shift_JIS (Japanese).
You can use ——encoding to specify the encoding vSphere SDK for Perl should map
to when it is run on a foreign language system.

VMware, Inc. 15

vSphere SDK for Perl Programming Guide

16

Table 1-3. Options Available for all vSphere SDK for Perl Scripts (Continued)

Parameter and Environment

Variable Description

——help Prints a brief usage message. The message lists first each command-specific option
and then the common options.

——passthroughauth When the vSphere SDK for Perl runs, the system uses the Microsoft Windows

VI_PASSTHROUGHAUTH

Security Support Provider Interface (SSPI) for authentication. You are not
prompted for a user name and password. See the Microsoft Web site for a detailed
discussion of SSPL

This option is supported only if you are running vSphere SDK for Perl on a
Windows system and connecting to a vCenter Server system.

——passthroughauthpackage
<package>
VI_PASSTHROUGHAUTHPACKAGE=
<package>

When used in conjunction with ——passthroughauth, specifies a domain-level
authentication protocol to be used by Windows. By default, SSPI uses the
Negotiate protocol, which means that client and server attempt to negotiate a
mutually supported protocol.

If the vCenter Server system to which you are connecting is configured to use a
specific protocol, you can specify that protocol using this parameter.

This option is supported only if you are running vSphere SDK for Perl on a
Windows system and connecting to a vCenter Server system.

——password <passwd>
VI_PASSWORD=<passwd>

Password (used in conjunction with ——username) for log in to the server.

m If --server specifies a vCenter Server system, the user name and password
apply to that server. No passwords are then needed to run on the ESX/ESXi
hosts that server manages.

m If --server specifies an ESX/ESXi system, the user name and password apply to
that system.

NOTE: Use the empty string (' ' on Linux and “ “ on Windows) to indicate no

password.

If you do not specify a user name and password on the command line, and

authentication is not set up by other means, you are prompted.

——portnumber <number>
VI_PORTNUMBER=<number>

Port to connect to the ESX/ESXi host. Default is 443.

——protocol <HTTP|HTTPS>
VI_PROTOCOL=<HTTP|HTTPS>

Protocol to connect to the ESX/ESXi host. Default is HTTPS.

--savesessionfile <file>
VI_SAVESESSIONFILE=<file>

Saves a session to the specified file. The session expires if it has been unused for
thirty minutes.

—-server <server>
VI_SERVER=<server>

vSphere server to use. Default is localhost.

—-servicepath <path>
VI_SERVICEPATH=<path>

Service path to use to connect to the ESX/ESXi host. Default is /sdk/webService.

--sessionfile <file>
VI_SESSIONFILE=<file>

Session file to use to load a previously saved session. The session must be
unexpired.

—url <url>
VI_URL=<url>

vSphere Web Services SDK URL to connect to.

——username <u_name>
VI_USERNAME=<u_name>

User name to use to log in.

B [f ——server specifies a vCenter Server system, the user name and password
apply to that server. No passwords are then needed to run on the ESX/ESXi
hosts that server manages.

m If —server specifies an ESX/ESXi system, the user name and password apply
to that system.

If you do not specify a user name and password on the command line, you are

prompted.

—-verbose

Displays additional debugging information.

—-version

Displays version information.

VMware, Inc.

Chapter 1 Getting Started with vSphere SDK for Perl

Hello Host: Running Your First Script

Before you run your first script, you need the following;:
B Successful vSphere SDK for Perl installation. See the vSphere SDK for Perl Installation Guide for information.

B Access to one of the supported vSphere hosts. Perform a connection check using the process described in
“Use the Managed Object Browser to Explore Server-Side Objects” on page 24.

To run the connect.pl script
1 Atacommand prompt, change to the /apps/general directory.

C:\Program Files\VMware\VMware vSphere CLI\Perl\apps\general
/usr/lib/vmware-vcli/apps

2 Run connect.pl as follows:
connect.pl ——url https://<host>:<port>/sdk/vimService —-username myuser ——password mypassword
The script returns an information message and the host time.

You are now ready to run other scripts, or create new scripts.

NOTE You can run any utility application with ——help to display information about its parameters.

VMware, Inc. 17

vSphere SDK for Perl Programming Guide

18 VMware, Inc.

Writing vSphere SDK for Perl Scripts

This chapter uses a simple example script to illustrate how to write a vSphere SDK for Perl script. The chapter
also explores the basics of the vSphere API object model.

NOTE This chapter does not discuss Perl basics. You are expected to know Per] and to understand its
programming conventions. When you develop a vSphere SDK for Perl script, follow Perl standards for
filenames, imports, and general processing flow. Use the appropriate filename extension for the type of script
or application you are creating (.pl on Windows and . p1 or no suffix on UNIX-like systems).

The chapter includes these topics:

® “Basic vSphere SDK for Perl Script” on page 19

B “Understanding Server-Side Objects” on page 24

B “Understanding Perl View Objects” on page 28

® “Working with View Object Property Values” on page 29
B “Understanding Operations and Methods” on page 30

® “Updating View Objects” on page 32

Basic vSphere SDK for Perl Script

vSphere SDK for Perl scripts retrieve objects, such as virtual machines, from the server and work with these
objects. vSphere SDK for Perl scripts follow the basic pattern shown in Table 2-1.

IMPORTANT The sample script does not use filters or property filters for efficiency. See “Refining vSphere SDK
for Perl Scripts” on page 33 for information about those topics.

Table 2-1. Basic vSphere SDK for Perl Script (simpleclient.pl)

Code element Discussed in

#1/usr/bin/perl “Step 1: Import the vSphere SDK for Perl

use strict; Modules” on page 20.
use warnings;

use VMware::VIRuntime;

VMware, Inc. 19

vSphere SDK for Perl Programming Guide

20

Table 2-1. Basic vSphere SDK for Perl Script (simpleclient.pl) (Continued)

Code element

my %opts = (
entity => {
type => "=s",
variable => "VI_ENTITY",
help => "ManagedEntity type: HostSystem, etc",
required => 1,
1
)

Opts::add_options(%opts);
Opts::parse();
Opts::validate(Q);

Discussed in

“Step 2: (Optional) Define Script-Specific
Command-Line Options” on page 20.

Util::connect(Q);

“Step 3: Connect to the Server” on page 22.

Obtain all inventory objects of the specified type
my $entity_type = Opts::get_option('entity');
my $entity_views = Vim::find_entity_views(

view_type => $entity_type);

“Step 4: Obtain View Objects of Server-Side
Managed Objects” on page 22.

Process the findings and output to the console

foreach my $entity_view (@$entity_views) {
my $entity_name = $entity_view->name;
Util::trace(0, "Found $entity_type:
$entity_name\n");

}

“Step 5: Process Views and Report Results”
on page 22.

Disconnect from the server
Util::disconnect();

“Step 6: Close the Server Connection” on
page 23.

Step 1: Import the vSphere SDK for Perl Modules

All vSphere SDK for Perl scripts must use the VMware: : VIRuntime module:

use VMware::VIRuntime;

This module handles all client-side infrastructure details. For example, it transparently maps data types and
provides local Perl interfaces to server-side objects. The module also loads subroutines that you can use to
connect to a vCenter Server or ESX/ESXi system and to retrieve views. Views are the client-side Perl objects
that encapsulate the properties and operations of server-side managed objects. The subroutines are organized

into different packages:

B The Opts package subroutines handle built-in options and creating custom options.

B The Util package subroutines facilitate routine tasks, such as setting up and closing connections to the

server.

B The Vim package subroutines access server-side managed objects, instantiate local proxy objects (views),
update properties, and run local methods that result in operations on remote servers.

See “vSphere SDK for Perl Subroutine Reference” on page 41.

Step 2: (Optional) Define Script-Specific Command-Line Options

When you run a script from the command line, you usually specify connection information and might also
specify other information such as a virtual machine that you want to power off or a host for which you need
status information. vSphere SDK for Perl lets you specify these options in a variety of ways. See “Specifying

Options” on page 13.

A number of common command-line options, most of them connection options, are already defined for all
utility applications (see Table 1-3, “Options Available for all vSphere SDK for Perl Scripts,” on page 15). In
addition, most applications have application-specific options you pass to the script at execution time.

VMware, Inc.

Chapter 2 Writing vSphere SDK for Perl Scripts

The vSphere SDK for Perl has defined all common options using attributes and subroutines specified in the
VILib::0pts package. You can similarly use the VILib: :Opts package to create custom options for your own
applications and scripts, to simplify use of your script, or to allow users to specify other information.

Example 2-1 defines an entity option that must be made available to the script at runtime. The option
specifies which of the available entity types is passed as a parameter to the Vim:: find_entity_views()
subroutine for further processing. Any direct or indirect subclass of ManagedEntity is a valid option (for
example HostSystem, ResourcePool, or VirtualMachine). The example creates and parses a new
command-line option.

1 The example declares the option as a hash. The hash key is the option name, and the value is a hashref
containing Getopt: : Long-style option attributes. See Table 2-2 for attribute details.

Example 2-1 creates a required command-line option that accepts a string value, as follows:

my %opts = (
entity => {
type => "=s",

variable => "VI_ENTITY",

help => "ManagedEntity type: HostSystem, etc",

required => 1,

1,

b
Table 2-2 lists all attributes you can use to define command-line options. The code fragment in “Step 1:
Import the vSphere SDK for Perl Modules” on page 20 above uses only type, variable, help, and
required. For related information, see the documentation for the Getopt: : Long module.

Table 2-2. Attributes for Defining New Options
Attribute Description

default Default value used if the option is not explicitly set. An unset option with no default returns undef
to the calling script.

func Enables creating derived options. Set func to an external code reference to run the code when the
SDK queries the value of the option.

help Descriptive text explaining the option, displayed in the script’s help message.

required If this attribute is set to 1, users must provide a value for this option or the script exits and display
the help message. Set to 1 to require a value. Set to 0 if the value is optional.

variable Allows you to specify the option in an environment variable or a configuration file. See “Specifying
Options” on page 13.

type Uses Perl Getopt-style syntax to specify option type and whether the option is required or optional.

Use double quotes to indicate that option doesn’t accept a value. The default numeric value is 0. The
default string value is " " (empty string). You can use one of the following:

® Equal sign (=) — mandatory

® Colon (:) — optional
B s — string

B i — integer

m f— float

2 The example adds the option to the default options using the Opts: :add_options () subroutine:
Opts::add_options(%opts);
3 The example parses and validates the options before connecting to the server, as follows:

Opts::parse();
Opts::validate(Q);

In Example 2-1, the entity option is required, so the script cannot run unless the user passes in the option
name and value (see “Specifying Options” on page 13).

VMware, Inc. 21

vSphere SDK for Perl Programming Guide

22

The Vim: :find_entity_views () subroutine uses the value the user passes in later in the script. The value
must be one of the managed-entity types listed as view_type parameter supported by
Vim::find_entity_views ().

NOTE Your script must call Opts: :parse() and Opts: :validate() to process the options available for all
scripts, even if you do not define script-specific command-line options.

When you attempt to run a script and do not supply all necessary options, the vSphere SDK for Perl displays
usage help for the script, as in the following example:

perl simpleclient.pl
Required command option 'entity' not specified
Common VI options:

Command-specific options:

——entity (required)

ManagedEntity type: ClusterComputeResource, ComputeResource, Datacenter,
Folder, HostSystem, ResourcePool, VirtualMachine...

Step 3: Connect to the Server

The vSphere AP is hosted as a secure Web service on a vCenter Server and ESX/ESXi system. By default, the
Web service is available over HTTPS. Clients must provide valid credentials to connect to the service.
Depending on the specifics of your server, you might have to enter only a user name and password. You might
need other information. See Table 1-3, “Options Available for all vSphere SDK for Perl Scripts,” on page 15.

A call to Util: :connect() connects to the server.

When a script reaches the call to Util: : connect (), the vSphere SDK for Perl runtime checks the environment
variables, configuration file contents, and command-line entries (in this order) for connection options. If the
options are not defined, the runtime uses the defaults (Localhost and no user name and password) to set up
the connection.

Step 4: Obtain View Objects of Server-Side Managed Objects

When you call the subroutines in the Vim package to retrieve entities from the host, the vSphere SDK for Perl
runtime creates the corresponding Perl objects (view objects) locally.

Example 2-1 uses the Opts: :get_option() subroutine to assign to $entity_type the string value of the
parameter that the user passes in when executing the script. Example 2-1 then uses $entity_type as the
view_type parameter in the subsequent call to Vim: : find_entity_views().

get all inventory objects of the specified type

my $entity_type = Opts::get_option('entity');

my S$entity_views = Vim::find_entity_views(view_type => $entity_type);

The Vim: : find_entity_views () subroutine creates a local Perl object (an array of references) from the
server-side managed object of the specified entity type.

IMPORTANT This object is static and must be explicitly updated when the corresponding server-side object
changes.

Step 5: Process Views and Report Results

The last part of the script processes the views. For this step, you must know the view objects’ properties and
methods, so you must understand the server-side objects. See “Understanding Server-Side Objects” on page 24
for an introduction. For in-depth information about server-side objects, see the vSphere API Reference Guide
which is included on the vSphere SDK for Perl documentation page.

Because views are Perl objects, you use Perl object-oriented syntax to process the views. Example 2-1 loops
through the array of entities returned (@$entity_views) and accesses the name property of each entity by
calling $entity_view—>name. The example then prints the name of each entity to the console.

VMware, Inc.

Chapter 2 Writing vSphere SDK for Perl Scripts
See “Understanding Server-Side Objects” on page 24.

Step 6: Close the Server Connection

To log out and exit, use the Util: :disconnect() subroutine. Example 2-1 shows the complete listing for
simpleclient.pl.

Example 2-1. Sample Script (Commented Version)

#!/usr/bin/perl

The simpleclient.pl script outputs a list of all the entities of the specified managed-entity

type (ClusterComputeResource, ComputeResource, Datacenter, Datastore, Folder, HostSystem,

Network, ResourcePool, VirtualMachine, or VirtualService) found on the target vCenter Server or
ESX system. Script users must provide logon credentials and the managed entity type. The script
leverages the Util::trace() subroutine to display the found entities of the specified type.

use strict;
use warnings;
use VMware: :VIRuntime;

Defining attributes for a required option named 'entity' that
accepts a string.

#
my %opts = (
entity => {
type => "=s",
variable => "VI_ENTITY",
help => "ManagedEntity type: HostSystem, etc",
required => 1,
1
DN

Opts::add_options (%opts);

Parse all connection options (both built-in and custom), and then
connect to the server

Opts::parse();

Opts::validateQ);

Util::connect();

Obtain all inventory objects of the specified type
my $entity_type = Opts::get_option('entity');
my S$entity_views = Vim::find_entity_views(view_type => $entity_type);

Process the findings and output to the console

foreach my $entity_view (@$entity_views) {

my $entity_name = $entity_view->name;

Util::trace(0, "Found $entity_type: $entity_name\n");
}

Disconnect from the server
Util::disconnect();

To run the simpleclient.pl script
1 Open acommand prompt or console.
2 Change to the directory that contains the simpleclient.pl script.
3 Run the script using the following syntax:
perl simpleclient.pl <conn_params> ——entity <EntityType>
For example:
perl simpleclient.pl --server aquarium.mycomp.com —-username abalone —-password tank ——entity

HostSystem

VMware, Inc. 23

vSphere SDK for Perl Programming Guide

Found HostSystem: abcd-42.shellfish.vmware.com

Understanding Server-Side Objects

24

When you run a vSphere SDK for Perl script, your goal is to access and potentially analyze or modify
server-side objects. You need the name of the vSphere API objects and often their properties and method
names. For example, if you want to power off a virtual machine, you must know how to find the corresponding
object, what the name of the power off method is, and how to run that method.

The vSphere API Reference Guide gives reference documentation for all vSphere API objects. Some users might
also find the vSphere Web Services SDK Programmer’s Guide helpful for understanding how the vSphere API
objects interact. The guides are available from the VMware APIs and SDKs Documentation page.

This section first introduces the Managed Object Browser (MOB), which allows you to browse all objects on a
remote host. The rest of the section discusses how to work with these server-side objects. You learn how to find
the objects, access and modify properties, and how to run a method on the server.

Use the Managed Object Browser to Explore Server-Side Objects

The MOB is a Web-based server application hosted on all ESX/ESXi and vCenter Server systems. The MOB lets
you explore the objects on the system and obtain information about available properties and methods. It is a
useful tool for investigating server-side objects and for learning about the vSphere object model.

To access the MOB on any ESX/ESXi or vCenter Server system
1 Start a Web browser.

2 Connect to the MOB using the fully-qualified domain name (or the IP address) of the ESX/ESXi or vCenter
Server system, as follows:

https://<hostname.yourcompany.com>/mob
The browser prompts you for a user name and password for the host.
3 Enter the user name and password.

After you enter the user name and password, the host might display warning messages regarding the SSL
certificate authority, such as Website Certified by an Unknown Authority.If VMware is the
certificate authority, you can disregard such warnings and continue to log in to the MOB.

When you are successfully connected to the MOB, the browser displays the managed object reference for the
service (ManagedObjectReference:ServiceInstance), available properties (with values), and methods, as
shown in Figure 2-1.

VMware, Inc.

Chapter 2 Writing vSphere SDK for Perl Scripts

Figure 2-1. Managed Object Browser

/J Managed Object Browser - Microsoft Internet Explorer 10l =|

J File Edit Miew Favorites Tools Help | .4:

(@ - © - [x) (2] (] oo feromam @[3 2 3 B

JAgdressl https: ff <y _esx_server =) vmware, comfmob j Go |JLinks 2 J @ -
Home —

Managed Object Type: ManagedObjectReference:ServiceInstance
Managed Object ID: Servicelnstance

Properties
NAME TYPE VALUE
capahility Capability | capability

content | ServiceContent | content

serverClock dateTime | "2007-11-26T21:49:47.2018122"

Methods

RETURN TYPE NAME

dateTime | CurrentTime

HostwMotionCompatibility[] | QuerywMotionCormpatibility

ServiceContent | RetrieveServiceContent

ProductComponentinfol] | RetrieveProductComponents

Event[] | “alidateMigration —

|@ Daone ’_ ’_ ’_ ’_ E |‘ﬂ Local intranet: 4

Types of Managed Objects and the Managed Object Hierarchy

A managed object is the primary type of object in the vSphere object model. A managed object is a data type
available on the server that consists of properties and operations. Each managed object has properties and
provides various services (operations or methods). Figure 2-2 shows the ExtensibleManagedObject
hierarchy as an example. See “Managed Entities in the Inventory” on page 26.

Figure 2-2. ExtensibleManagedObject Hierarchy

ExtensibleManagedObject
<<ManagedEntity>>
ResourcePool Ci R ce Host Datacenter Folder VirtualMachine Datastore Dls‘trlhuteﬂ Network
VirtualSwitch
Cluster T
VirtualApp Compute
Resource

DistributedVirtualPortgroup

Managed objects define the entities in the inventory and also common administrative and management
services such as managing performance (PerformanceManager), finding entities that exist in the inventory
(SearchIndex), disseminating and controlling licenses (LicenseManager), and configuring alarms to
respond to certain events (AlarmManager). See the vSphere API Reference.

A managed object reference (represented by a ManagedObjectReference) identifies a specific managed
object on the server, encapsulates the state and methods of that server-side object, and makes the state and
methods available to client applications. Clients run methods (operations) on the server by passing the
appropriate managed object reference to the server as part of the method invocation.

VMware, Inc. 25

vSphere SDK for Perl Programming Guide

26

Managed Object Hierarchy

The ServiceContent server-side object provides access to all other server-side objects. Each property of the
ServiceContent object is a reference to a specific managed object. You must know those property names to
access the other objects. You can use the MOB (see “Use the Managed Object Browser to Explore Server-Side
Objects” on page 24) or use the API Reference documentation.

The vSphere API Reference Guide contains definitions of all server-side objects and their properties and methods.
You can therefore use the vSphere API Reference Guide to identify the list of parameters and operations that you
can use with specific vSphere SDK for Perl views that you create and manipulate in your code.

To view documentation for server-side objects

1 Find the vSphere API Reference Guide, available from the VMware APIs and SDKs Documentation page.
2 Click All Types to see a list of all managed object types.

3 Find the ServiceContent object.

ServiceContent provides access services, such as PerformanceManager, and to inventory objects,
which allow you to access the entities in the virtual datacenter such as hosts (HostSystem) and virtual
machines (VirtualMachine). ServiceContent properties also allow access to other managed objects,
for example:

® The rootFolder property is a ManagedObjectReference to a Folder managed object type.

® The perfManager property is a ManagedObjectReference to a specific instance of a
PerformanceManager managed object type, and so on.

The vSphere Client displays the hierarchy of inventory objects. The vSphere Client uses the information about
the objects (the properties and the relationships among them) for the display. For information about the
vSphere Client and how to work with its display, see the documents in the vSphere online library
Managed Entities in the Inventory

The inventory consists of the managed entities on the server. A managed entity is a managed object that
extends the ManagedEntity managed object type. ManagedEntity is an abstract class that defines the base
properties and operations for vSphere managed objects such as datacenters and hosts. See Figure 2-2 for an
overview. The following managed object types extend the ManagedEntity superclass:

® Datacenter — Contains other managed entities, including folders, virtual machines, and host systems. A
vCenter Server instance can support multiple datacenters, but an ESX/ESXi host supports only one
datacenter.

B Datastore —Represents logical storage volumes on which to store virtual machine files and other data.
B Distributed Virtual Switch - Interface for the VMware distributed virtual switch (DVS).

B Folder - Contains references to other entities, for example, other folders (Folder) or hosts (HostSystem).
B HostSystem - Provides access to a virtualization host platform.

® Network — Abstraction for a physical or virtual network (VLAN).

B VirtualMachine — Represents a single virtual machine.

B ResourcePool - Allows you to combine CPU and memory resources from multiple hosts and to establish
rules for dividing those resources among all virtual machines associated with these hosts.

m (ClusterComputeResource — Represents a cluster of HostSystem objects. Administrators create clusters
to combine the CPU and memory resources of hosts and to set up VMware HA or VMware DRS for those
clusters. See the Resource Management Guide, which is part of the vSphere documentation set.

m ComputeResource — Abstracts a host system’s physical resources and allows you to associate those
resources with the virtual machines that run on the host.

B VirtualService - Container for one or more virtual machines an associated object package using open
virtual format (OVF).

VMware, Inc.

Chapter 2 Writing vSphere SDK for Perl Scripts

Managed entities offer specific operations that vary depending on the entity type. For example, a
VirtualMachine managed entity provides operations for creating, monitoring, and controlling virtual
machines. You can power a virtual machine on or off (PowerOnVM, PowerOffVM) and you can capture state
(Snapshot). A HostSystem entity provides operations for entering and exiting maintenance mode
(EnterMaintenanceMode_Task, ExitMaintenanceMode_Task) and for rebooting the server
(RebootHost_Task).

The ManagedEntity base class includes several properties that are inherited by each subclass, such as a name
property, whose data type is a string. ManagedEntity also includes a few operations that are inherited by each
subclass (Destroy_Task, and Reload, for example). VirtualMachine and HostSystem extend the
ManagedEntity class, so each subclass has a name property inherited from ManagedEntity.

Accessing Server-Side Inventory Objects

The vSphere SDK for Perl provides subroutines for accessing server-side inventory objects and other managed
objects that provide functionality to the server as a whole.

Example 2-1 obtains all entities of a specific type from the inventory. The entity type is passed as a parameter
totheVim::find_entity_views () subroutine, which returns an array of references to view objects that map
to the corresponding server-side entities.

Example 2-2 starts at the level of the entire service and uses the Vim: :get_service_content() subroutine
to obtain an instance of the ServiceContent object:

my $content = Vim::get_service_content();

You can use the ServiceContent object to retrieve a local view of the services provided by the server, as in
this example:

my $diagMgr = Vim::get_view(mo_ref => $content->diagnosticManager);

Example 2-2 shows how these two calls form the basis of a script that follows changes in the log file, which can
be accessed as the logfile property of the diagnosticManager.

Example 2-2. Following Changes in a Log File

#!/usr/bin/perl

#

Copyright 2007 VMware, Inc. All rights reserved.

#

This script creates a Perl object reference to the ServiceContent data

object, and then creates a reference to the diagnosticManager. The script
follows ('tails') the log as it changes.

use strict;

use warnings;

use VMware::VIRuntime;

read/validate options and connect to the server
Opts::parse();

Opts::validateQ);

Util::connect();

get ServiceContent
my $content = Vim::get_service_content();
my $diagMgr = Vim::get_view(mo_ref => $content->diagnosticManager);
Obtain the last line of the logfile by setting an arbitrarily large
line number as the starting point
my $log = $diagMgr->BrowseDiagnosticlLog(
key => "hostd",
start => "999999999");
my $lineEnd = $log->1lineEnd;

Get the last 5 lines of the log first, and then check every 2 seconds

to see if the log size has increased.
my $start = $lineEnd - 5;

VMware, Inc. 27

vSphere SDK for Perl Programming Guide

Disconnect on receipt of an interrupt signal while in the infinite loop below.
$SIG{INT} = sub { Util::disconnect();
exit;

1

while (1) {
$1log = $diagMgr->BrowseDiagnosticlLog(
key => "hostd",
start => $start);
if ($log->1lineStart !'= 0) {
foreach my $line (@{$log->lineText}) {
next if ($1line =~ /verbose\]l/);
print "$1line\n";
}
}
$start = $log->lineEnd + 1;
sleep 2;
}

Understanding Perl View Objects

28

A view is a client-side Perl object populated with the state of one or more server-side managed objects by the
vSphere SDK for Perl. A view object has the following characteristics:

B [s a static copy of a server-side managed object and includes properties and methods that correspond to
the properties and operations of the server-side managed object.

B Must be explicitly updated when the object on the server changes. See “Updating View Objects” on
page 32.

B Has properties that correspond to properties of server-side managed objects as follows:

B For each simple property (string, Boolean, numeric data type), including inherited simple properties,
the SDK creates an accessor method. The accessor method name is the same as the property name.

B Arrays of properties become arrays of properties of the same name.
B Includes these methods:

B Anaccessor method for each managed object property. The vSphere SDK for Perl provides accessors
for any property, regardless of its depth inside a composite object structure.

B Ablocking and a non-blocking method for each (non-blocking) operation provided by the server-side
managed object. See “Non-Blocking and Blocking Methods” on page 31.

B A method that updates the state of any client-side view object with current data from the server. See
“Updating View Objects” on page 32.

The vSphere SDK for Perl simplifies programming as follows:
B Provides a _this parameter to reference the object on which a method is run, if needed.

B Allows you to pass a view object as a parameter to methods that take managed object references as
required parameter. The SDK converts the view object to the corresponding managed object.

VMware, Inc.

Chapter 2 Writing vSphere SDK for Perl Scripts

Working with View Object Property Values

vSphere SDK for Perl view objects are Perl objects. You can retrieve a view, access and manipulate its
properties, and call its methods using Perl’s object-oriented syntax.

Accessing Property Values

Each property is defined as a specific data type and can be one of the following;:

Table 2-3. Property Overview

Property Example

Simple data type, such as a string, Boolean, numeric, or The ManagedEntity managed object has a name property

dateTime. of type string.

Array of simple data types or data objects. A HostSystemmanaged object contains an array of virtual
machines that are hosted by the corresponding physical
machine.

Enumeration (enum) of predefined values. The values can A virtual machine’s power state can be a poweredOn,
be a collection of simple data types or data objects. poweredOff, or suspended string value.

Complex data type called data object (part of the vSphere ~ AboutInfo, Action, and ServiceContent are all data
object model). objects.

Accessing Simple Property Values

To access a simple property from a view, call the property’s accessor on the view object. The accessor has the
same name as the property itself, as follows:

$view_name—>property_name

As shown in Example 2-1, you can access the name property of entity_view by calling its name method, as
follows:

my $entity_name = $entity_view->name;

Accessing Enumeration Property Values

To retrieve the value of a property defined as an enumeration, you must dereference its value from within the
containing object by qualifying the property with —>val. For example, the power state of a virtual machine
(powerState) is a member of the runtime data object.

To retrieve the value of powerState, you must dereference the two containing objects (the view object and the
runtime data object) and the value itself (val), as follows:

$vm_view—>runtime->powerState->val
Because powerState is an enumeration, you use runtime—>powerState—>val to retrieve its string value.

foreach my $vm (@$vm_views) {
if ($vm—>runtime->powerState->val eq 'poweredOn') {

print "Virtual machine " . $vm->name . " is powered on.\n";
}
else {
print "Virtual machine " . $vm->name . " is not powered on.\n";

Modifying Property Values
You can modify a data object’s property value by passing the new value, as follows:
$data_object-> <property> (<new value>);
$data_objectis ablessed reference to a Perl object or class name, and property is a method call on the object.
For example, you can change the force property to false, as follows:

$host_connect_spec—>force ('false');

VMware, Inc. 29

vSphere SDK for Perl Programming Guide

To create an enumeration data object, use a string value as the argument to the enumeration type’s constructor.
my $power_state = VirtualMachinePowerState->new('poweredOff');
Typically, enumerations are used as arguments to methods:

$vm—>MigratevM(
host => $target_host,
priority => VirtualMachineMovePriority->new('defaultPriority'),
state => VirtualMachinePowerState->new('poweredOff'),

)H

Creating Data Objects with Properties

You create data objects with constructors that have names corresponding to the classes of the data objects in
the vSphere API. The constructor syntax follows common Perl conventions. The arguments supplied to the
constructor are key-value pairs, where each key is the name of an object property, and the corresponding value
is the value with which the property is initialized.

For example, creating a virtual machine requires the creation of a data structure that includes a number of
nested data objects. One of those objects is a VirtualMachineFieldInfo data object, which can be
constructed as follows:

my $files = VirtualMachineFileInfo->new

(
logDirectory => undef,
snapshotDirectory => undef,
suspendDirectory => undef,
vmPathName => $ds_path

);

The VirtualMachineFileInfo object is then contained within a VirtualMachineConfigSpec object:

my $vm_config_spec = VirtualMachineConfigSpec—->new(
name => $args{vmname},
memoryMB => $args{memory},
files => $files, # <—— here
numCPUs => $args{num_cpus},
guestId => $args{guestid},
deviceChange => \@vm_devices

)H

This code is taken from the apps/vm/vmcreate. p1 utility application. See the scripts in the apps and samples
directories for examples of simple and complex uses of data objects.

To set the value of a property that is defined as an enumeration, you must pass the new value to the data object
as follows:

$<ref> = new <enum_type> ('<val>');
For example, you can change the power state as follows:

$power_state = new VirtualMachinePowerState ('poweredOff');

Understanding Operations and Methods

The vSphere SDK for Perl runtime maps server-side operations to client-side Perl view object methods. For
each operation defined on a server managed object, the vSphere SDK for Perl creates a corresponding view
method when it creates the view object.

VMware, Inc.

Chapter 2 Writing vSphere SDK for Perl Scripts

Non-Blocking and Blocking Methods

All server-side operations available in the vSphere API are non-blocking operations listed in the vSphere API
Reference Guide. The vSphere SDK for Perl provides a non-blocking method corresponding to the server-side
operation, and also provides a blocking (synchronous) method (<opname> () method).

B Non-blocking methods — Asynchronous methods that return control to the client immediately after
invocation and return a task object to the calling program. Non-blocking methods allow you to monitor
progress (of the *_Task object) outside the main processing logic of the script. This monitoring can be
useful during long-running operations. These methods also allow you to interleave local (client-side)
processing and server-side processing.

B Blocking methods — Synchronous methods that fully process the operation before returning control to the
client script. Does not return a reference to a task object.If you use a blocking method, you do not have to
handle a task object with additional code.

Examples of Operations

The following table lists some of the operations available for a VirtualMachine managed object.

Table 2-4. Examples for Asynchronous and Synchronous Methods

vSphere API vSphere SDK for Perl vSphere SDK for Perl Only
Non-blocking (asynchronous) Non-blocking (asynchronous) Blocking (synchronous)
PowerOnVM_Task () PowerOnVM_Task () PowerOnVM()
CloneVM_Task () CloneVM_Task() CloneVM()
SuspendVM_Task () SuspendVM_Task () SuspendVM()

See the vSphere API Reference Guide for lists of all operations for each managed object.

Calling Methods

After you have retrieved the view object that corresponds to a managed object, you can run methods on that
view to make use of the managed object’s services. You run a method by specifying the method’s name
parameter, for example:

$vm—>MigrateVM (name => 'productionVM');

The type of parameter required by the method depends on the operation defined in the vSphere API. It might
be a simple type, data object, or managed object reference. For information about specific parameters and data
types, see the vSphere API Reference Guide.

Blocking operations are run as methods on a view object. For example, to suspend a virtual machine, call:
$vm_view—>SuspendVM(Q);

You can execute any operation that is defined for a managed object as a method on a corresponding view
object. Because the vSphere SDK for Perl creates an accessor and a mutator method (getter and setter method)
for each property defined in the managed object, you can reference the name of any property as a method call
of the view, for example:

my $network_name = $network_view->name

The vSphere SDK for Perl allows you to pass a view object to a method that requires a
ManagedObjectReference. For example, if you have the view that represents a host ($host), you can pass the
view to the powerOn () method as follows:

my $host = Vim::find_entity_view (view_type => 'HostSystem', name => 'my host');
my $vm = Vim::find_entity_view (view_type => 'VirtualMachine', name => 'my virtual machine');
$vm->powerOn (host => $host)

NOTE “Specifying Untyped Arguments in Scheduled Tasks and Callbacks” on page 39 discusses using the
vSphere SDK for Perl PrimType structure in some calls.

VMware, Inc. 31

vSphere SDK for Perl Programming Guide

Omitting Optional Arguments in Method Calls

When you call a vSphere API method using vSphere SDK for Perl, and want to omit an optional argument,
you can do one of two things:

You can omit the argument:

$vm—>PowerOnVM(host => $host); # with the optional host argument

$vm—>PowerOnVM(); # without the optional host argument

You can supply undef as the value of the optional argument:

$vm—>PowerOnVM(host => undef);

Supplying undef as the value of the optional argument is useful when the value of an argument, which might

or might not be undef, is contained in a variable, as in the following example:

my $host = Vim::find_entity_view(

)H

view_type => 'HostSystem',
filter => { name => 'preferredHost' }

$vm—>PowerOnVM(host => $host);

You cannot use the empty string or the value 0 to represent undef or an unset parameter.

Updating View Objects

32

In any view, the values of the view properties represent the state of the server-side objects at the time the view
was created. These property values are not updated automatically. In a production environment, the state of
managed objects on the server is likely to change frequently. If your client script depends on the server being
in a particular state (poweredOn or poweredOff, for example), then you can refresh the view object’s state. You
can use the vSphere SDK for Perl Vim: :update_view_data() subroutine to refresh the values of client-side
views with server-side values. Example 2-3 uses Vim: :update_view_data() to refresh view data.

Example 2-3. Updating the State of View Objects

#!/usr/bin/perl

use strict;

use warnings;

use VMware::VIRuntime;

Get all VirtualMachine objects

my $vm_views = Vim::find_entity_views(view_type => 'VirtualMachine');

Power off virtual machines.
foreach my $vm (@$vm_views) {

Refresh the state of each view

$vm->update_view_data();

if ($vm—>runtime->powerState->val eq 'poweredOn') {
$vm—>PowerOffVvM() ;

print " Stopped virtual machine: " . $vm->name .
} else {
print " Virtual machine " . $vm->name .

}

power state 1is:

. $vm->runtime->powerState->val .

"\n";

"\n";

VMware, Inc.

Refining vSphere SDK for Perl Scripts

This chapter discusses some programming techniques for your vSphere SDK for Perl scripts.
The chapter includes these topics:

B “Creating and Using Filters” on page 33

m “Filtering Views Selectively Using Properties” on page 35

B “Retrieving the Servicelnstance Object on a vSphere Host” on page 36

B “Saving and Using Sessions” on page 36

B “Using Multiple Sessions” on page 37

B “Learning About Object Structure Using Data:Dumper” on page 38

B “Specifying Untyped Arguments in Scheduled Tasks and Callbacks” on page 39

B “Using Advanced Subroutines” on page 40

Creating and Using Filters

You can use the vSphere SDK for Perl to define and use filters that select objects based on property values.
Filters can reduce a large result set to only those objects with characteristics of interest to you.

Using Filters with Vim::find_entity_view() or Vim::find_entity_views()

You can call Vim: : find_entity_view() or Vim::find_entity_views() to retrieve objects from the
ESX/ESXi host. Vim: : find_entity_view() returns the first object it finds that matches the search criteria.
Vim: :find_entity_views () returns all objects.

Whenyou call Vim: : find_entity_view() the first object found might not be the one you are looking for. For
example, you might want to retrieve only those virtual machine objects whose names begin with a certain
prefix. When you call Vim: : find_entity_views (), the command might return more objects than you want
to work with, for example all virtual machines in a datacenter. You can apply one or more filters to
Vim::find_entity_view() and Vim::find_entity_views() toselecta subset of objects based on property
values.

To apply afilter to the results of Vim: : find_entity_view() orVim::find_entity_views (), yousupply an
optional filter parameter. The value of the parameter is an anonymous hash reference containing one or
more pairs of filter criteria. Each of the criteria is a property path and a match value. The match value can be
either a string or a regular expression object. If the match value is a string, the value of the property must match
the string exactly (including case). To match Boolean values, use the strings true and false.

The following filter parameter matches a virtual machine power state of poweredOff:

filter => { 'runtime.powerState' => 'poweredOff' }

VMware, Inc. 33

vSphere SDK for Perl Programming Guide

34

You can also match using a regular expression object, generally known as a qr// (quoted regular expression)
object. In this case, the value of the property must match the regular expression.

The following filter matches objects whose names begin with Test:

filter => { 'name' => qr/ATest/ }
filter => { 'name' => qr/Atest/i } # make the match case-insensitive with the i option

For more information about the qr// operator, see the perlre (perl regular expressions) and perlop man
pages in the standard Perl documentation.

The following example illustrates how you might use Vim: : find_entity_views() in combination with a
filter. It prints a list of virtual machine objects whose guest operating system names contain the string
Windows.

Example 3-1. Filter that Creates Views of Windows-Based Virtual Machines Only

my $vm_views = Vim::find_entity_views(
view_type => 'VirtualMachine',
filter => {
True if string 'Windows' appears anywhere in guestFullName
'config.guestFullName' => qr/Windows/
}
)5
Print VM names
foreach my $vm (@$vm_views) {
print "Name: " . $vm->name . "\n";

}

If you pass multiple filter criteria to Vim: : find_entity_view() or Vim::find_entity_views(), the
method returns only the managed objects for which all criteria match. The filter parameter specified in
Example 3-2 includes two criteria. The example returns only virtual machines that fulfill both requirements:

B Guest operating system is Windows — the config property’s guestFullName property includes the
string Windows.

B Virtual machine is running. The power state is poweredOn.

Example 3-2. Example of Multiple Filter Specification

my $vm_views = Vim::find_entity_views(
view_type => 'VirtualMachine',
filter => {
'config.guestFullName' => qr/Windows/,
'runtime.powerState' => 'poweredOn'
}
);
Print VM names
foreach my $vm (@$vm_views) {
print "Name: " . $vm->name . "\n";

}

IMPORTANT You can match only properties that have simple types like strings and numbers. Specifying a
property with a complex type as an argument to a filter results in a fatal runtime error. For example, you
cannot specify the runtime property of a VirtualMachine object, which is a complex object, not a string.

VMware, Inc.

Chapter 3 Refining vSphere SDK for Perl Scripts

Filtering Views Selectively Using Properties

Each Perl view object has properties that correspond to properties of server-side managed objects as follows:

B Foreach simple property (string, Boolean, numeric data type), including inherited simple properties,
the SDK creates an accessor method. The accessor method name is the same as the property name.

B Arrays of properties become arrays of properties of the same name.

Because many of the server-side managed objects have a large number of properties, accessing only a small
number of objects can potentially result in noticeable performance degradation. You use a properties filter to
populate the view object only with properties you are interested in to avoid that problem.

Using View Subroutines with a Properties Argument

The view subroutines—get_view(), get_views(), find_entity_view(), and find_entity_views ()
—can accept a properties argument that consists of a list of property paths for retrieval from the server. Go
to the vSphere Web Services SDK Reference for a list of properties for each server-side managed object. Property
paths can be full paths, and can include nested properties. Properties do not have to be top-level managed
object properties.

The following example illustrates filtering by property.
1 Populate a virtual machine view with power-state information only, as follows:

my $vm_view = Vim::find_entity_view(
view_type => 'VirtualMachine',
filter => { 'name' => 'foo' 1},
properties => ['runtime.powerState']

);
2 Use the view object’s get_property () method. Note that $vm_view is an array reference, not a scalar.
my $state = $vm_view->get_property('runtime.powerState');
3 If you are interested in subproperties of the retrieved properties, you can retrieve them like this:

my $vm_view = Vim::find_entity_view(
view_type => 'VirtualMachine',
filter => { 'name' => 'foo' },
properties => ['config.hardware' 1);
my $memsize = $vm_view->get_property('config.hardware.memoryMB');

get_property() works with fully-populated views as well. The following code fragments uses
get_property to retrieve a property from a virtual machine.

my $vm_view = Vim::find_entity_view(
view_type => 'VirtualMachine',
filter => { 'name' => 'foo' });
my $memsize = $vm_view->get_property('config.hardware.memoryMB');

The following code fragment, which retrieves the same property by traversing the tree, has the same result.

my $vm_view = Vim::find_entity_view(
view_type => 'VirtualMachine',
filter => { 'name' => 'foo' });
my $memsize = $vm_view->config->hardware->memoryMB;

When you use a filtered view and attempt to read a property that was not retrieved from the server, the result
is the same as if the property were unset.

VMware, Inc. 35

vSphere SDK for Perl Programming Guide

Using Filters on the Utility Application Command Line

When you run a utility application that takes arguments specifying names for virtual machines, host systems,
and so on, you must supply the exact name on the command line. Regular expressions are not accepted.

When you run a utility application, there are some restrictions on special characters:

B In virtual machine names, you must represent the character forward slash (/) as %2f, backward slash (\)
as %5¢, and percent (%) as %25 when they appear in virtual machine names.

B On UNIX-like command lines, surround names that contain special characters with single-quotes, and use
percent (%) as the escape character.

For example, to search for the virtual machine San Jose, run this command:
perl vminfo.pl ——username Administrator ——password 'secret' —--server myserver ——vmname 'San Jose'
To search for the virtual machine San-Jose/5, run this command:

perl vminfo.pl --username Administrator —--password 'secret' --server myserver —-vmname
'San-Jose%2f5'

Retrieving the Servicelnstance Object on a vSphere Host

You can retrieve the ServiceInstance object to access the ServiceContent or to retrieve the current time on
an ESX/ESXi or vCenter Server system.

If you want to retrieve the current time, you must retrieve a ServiceInstance object and call its
CurrentTime () method. You can use the Vim: :get_service_instance() subroutine to retrieve the object.

To retrieve the current VMware host time
1 Connect to the VMware host:
Util::connect();
2 Retrieve the ServiceInstance object:
my $service_instance = Vim::get_service_instance(Q);
3 Retrieve the current host time:

$service_instance->CurrentTime();

Saving and Using Sessions

36

The vSphere SDK for Perl library includes several subroutines that save and reuse sessions, so you can
maintain sessions across scripts. Using sessions can enhance security: Instead of storing passwords in scripts,
you can run the Vim: :login() subroutine in your script using the name of the session file. The session file
does not expose password information.

Saving Sessions

You can save a session using the subroutine call syntax as follows:

Vim: :save_session():

usual login procedure with connect()
Util::connect();

save the global session in file .mysession
Vim::save_session(session_file => '.mysession');

VMware, Inc.

Chapter 3 Refining vSphere SDK for Perl Scripts

Alternatively, you can use save_session() with the object-oriented syntax (see “Using Multiple Sessions” on
page 37):

object-oriented login

my $service_url = "https://$server/sdk/vimService";

my $vim = Vim->new(service_url => $service_url);
$vim->login(user_name => $username, password => $password);
save session $vim in file .mysession
$vim->save_session(session_file => '.mysession');

The session remains active until the program runs alog out or disconnect operation, or until the program times
out. Time out is 30 minutes after the last operation was performed.

Loading Sessions
You can use load_session() to load a saved session into the global session as follows:
Vim::load_session(session_file => '.visession');
Alternatively, you can load a session using the object-oriented syntax as follows:

my $service_url = "https://$server/sdk/vimService";
my $vim = Vim->new(service_url => $service_url);
$vim = $vim—>load_session(session_file => '.visession');

Using Multiple Sessions

In some cases, you might want to create sessions on several vSphere servers at once, or create more than one
session on the same server.

Each time an application connects to a server in the vSphere environment, a session between the application
and the server is created. The vSphere SDK for Perl represents the session as a vSphere SDK for Perl object.
When you use single sessions, one global object is implicit for the sessions.

For multiple objects, you cannot use the implicit global vSphere object. Instead, you must create and use
vSphere objects explicitly, and use the object-oriented syntax for calling vSphere SDK for Perl methods.

You create an open session in two stages.
1 Create a vSphere object using the new() constructor.

2 Log in by calling the object-oriented 1ogin() method. The arguments to the object-oriented login()
method are the same as for the procedural Vim: : login() subroutine.

Most procedural Vim: : methods have an object-oriented counterpart. The procedural methods operate on an
implicitly specified global vSphere object. Object-oriented methods operate on the explicitly supplied vSphere
object.

The following code fragment from /samples/sessions/multisession.pl illustrates how to use multiple
sessions, using the object-oriented programming style in vSphere SDK for Perl.

Example 3-3. Using Multiple Sessions

use VMware::VIRuntime;

create object for each host

my @vim_objs;

my $url;

$url = Opts::get_option('url');;

push @vim_objs, Vim->new(service_url => $url);
$url = Opts::get_option('url2');

push @vim_objs, Vim->new(service_url => $url);

login to all hosts

my $username = Opts::get_option('username');

my $password = Opts::get_option('password');
$vim_objs[0]->login(user_name => $username, password => $password);

VMware, Inc. 37

vSphere SDK for Perl Programming Guide

if

}
if

}

(Opts::option_is_set('username2')) {
$username = Opts::get_option('username2');

(Opts::option_is_set('password2')) {
$password = Opts::get_option('password2');

$vim_objs[1]->1login(user_name => $username, password => $password);

list VWM's for all hosts
foreach my $vim_obj (@vim_objs) {

print "List of virtual machines:\n";
my $vm_views = $vim_obj—>find_entity_views(view_type => 'VirtualMachine');
foreach my $vm (@$vm_views) {

print $vm->name . "\n";
}
print "\n";
}
logout

foreach my $vim_obj (@vim_objs) {

}

$vim_obj—>logout();

Learning About Object Structure Using Data::Dumper

38

The vSphere SDK for Perl transparently uses the Data: : Dumper Perl module (a standard library) to create the
client-side view objects. Example 3-4 illustrates how you can use Data: : Dumper to explore view objects and
corresponding vSphere objects.

Lines 12 through 14 set several parameters of Data: :Dumper, as follows:

Sortkeys orders the name-value pairs alphabetically by name.

Deepcopy enables deep copying of structures. Deep copying ensures that the output is straightforward
and tree-like.

Indent set to 2 causes Data: :Dumper to take hash key length into account in the output. The indent
results in a more readable format.

Example 3-4. Using Data::Dumper to Output Perl Object Structures

01
02
03
04
05
06
07

08
09
10
11
12
13
14
15
16
17
18
19
20
21
22

use strict;
use warnings;

use VMware: :VIRuntime;
use VMware::VILib;

Parse connection options and connect to the server

Opts::parse();
Opts::validate(Q);
Util::connect();

$Data: :Dumper: :Sortkeys = 1; #Sort the keys in the output
$Data: :Dumper: :Deepcopy = 1; #Enable deep copies of structures
$Data: :Dumper::Indent = 2; #Output in a reasonable style (but no array indexes)

Get the view for the target host
my $host_view = Vim::find_entity_view(view_type => 'HostSystem');

print "The name of this host is ", $host_view->name . "\n\n";

VMware, Inc.

Chapter 3 Refining vSphere SDK for Perl Scripts

23 print Dumper ($host_view->summary->config->product) . "\n\n\n";
24

25 print Dumper ($host_view->summary->config) . "\n\n\n";

26

27 print Dumper ($host_view->summary) . "\n\n\n";

28

29 # logout

30 Vim::logout(Q);

When you run the entire program, it produces detailed output. The output from line 23 looks as follows:

$VAR1 = bless({
'apiType' => 'HostAgent',
'apiVersion' => '4.0.0',
'build' => '31178',
'fullName' => 'VMware ESX Server 3.0.1 build-31178',
'localeBuild' => '000',
'localeVersion' => "INTL',
'name' => 'VMware ESX Server',
'osType' => 'vmnix-x86',
'productLineId’' => 'esx',
'vendor' => 'VMware, Inc.',
'version' => '3.0.1'
}, '"AboutInfo');

The output above shows the content of the summary.config.product property of a HostSystem managed
object. The type (or more properly class) of summary.config.product property is AboutInfo. Perl’s

Data: :Dumper module writes the object in a form that can be used with eval to get back a copy of the original
structure. The bless keyword indicates the data is a Perl object, and the last argument to bless is the class of
the object, AboutInfo.

Line 19 (in Example 3-4) retrieves the HostSystem view object and line 21 prints the name associated with the
corresponding host.

The config property has more values than those printed by line 23. Line 25 prints the entire config object.
Inside the config object printed by line 25 (in Example 3-4), the product property is an object. The bless
function returns a reference to the product object, which is itself nested inside the config object.

$VAR1 = bless({

'name' => 'test-system.eng.vmware.com',

'port' => "'nnn',

'product' => bless({
'apiType' => 'HostAgent',
'apiVersion' => '4.0.0',
'build' => '31178',
'fullName' => 'VMware ESX Server 3.0.1 build-31178',
'localeBuild' => '000',
'localeVersion' => "INTL',
'name' => 'VMware ESX Server',
'osType' => 'vmnix-x86",
'productLineId' => 'esx',
'vendor' => 'VMware, Inc.',
'version' => '3.0.1'
}, '"AboutInfo'),

'vmotionEnabled' => 'false'

}, 'HostConfigSummary');

The output from line 27 of Example 3-4 prints the structure of the entire summary object of the host view. The
output shows a number of nested objects, including two objects that are nested two levels deep. The product
object is nested inside the config object, and the connectionState object is nested inside the runtime object.

Specifying Untyped Arguments in Scheduled Tasks and Callbacks

Because of the way vSphere SDK for Perl maps the vSphere API into Perl, you have to specify arguments to
callback methods differently from the way you specify arguments to other methods. You can use PrimType to
specify untyped arguments in scheduled tasks and callbacks.

VMware, Inc. 39

vSphere SDK for Perl Programming Guide

B You must specify the arguments positionally, in the order defined in the bindings for other languages like
Java.

B You must indicate the type of each argument using the PrimType constructor.

For example, consider a scheduled task that periodically creates a snapshot. The CreateSnapshot () method
takes four arguments, name, description, memory, and quiesce.

You must define the arguments before you use them by creating four MethodActionArgument objects with
PrimType values, as follows:

my $name = MethodActionArgument—>new(

value => PrimType->new('Sample snapshot task', 'string')
)5
my $description = MethodActionArgument—>new(

value => PrimType->new('Created from a sample script', 'string')
)5

my $memory = MethodActionArgument->new(
value => PrimType->new(0, 'boolean')
DN
my $quiesce = MethodActionArgument—>new(
value => PrimType->new(0, 'boolean')
DN
You use the MethodActionArgument objects in the order defined in the positional API, not with the usual
name => $value syntax. You can then supply the four values defined above as arguments to
CreateSnapshot().

my $snapshot_action = MethodAction->new(
name => "CreateSnapshot",
argument => [
$name,
$description,
$memory,
$quiesce
]
)5

The complete example isin /samples/scheduled_task/vm_snapshot_schedule.pl (Linux) and in
VMware vSphere CLI\Perl\samples\scheduled_task\vm_snapshot_schedule.pl (Windows).

Using Advanced Subroutines

vSphere SDK for Perl includes one subroutine, Opts: :get_configQ).

Opts::get_config()
Determines whether a configuration file was read when vSphere SDK for Perl executed Opts: :parse().
This subroutine has no parameters.

Returns

If a configuration file was successfully opened, Opts: :get_config() returns the path to it. If no
configuration file was found, or if it could not be opened, Opts: :get_config() returns undef.

40 VMware, Inc.

vSphere SDK for Perl Subroutine
Reference

The vSphere SDK for Perl are available in three packages:

® The Opts package includes subroutines for handling built-in options and creating custom options. See
“Subroutines in the Opts Package” on page 42.

® The Util package includes subroutines for facilitating routine tasks such as setting up and closing
connections to the server. See “Subroutines in the Util Package” on page 44.

B The Vim package includes subroutines for accessing server-side managed objects, instantiating local view

objects, updating properties, and running local methods to run operations on remote servers.

Table 4-1. Subroutines in the Opts Package

Subroutine

add_options

Description

Enables custom options to be parsed and validated for execution in the context of the script to which the
options have been added.

get_option

Retrieves the value of a specified built-in or custom option.

option_is_set

Checks whether an option has been explicitly set by a script or from the command line or whether the
option has a default or computed value (that is, the return value of a func).

parse Reads options from the command line, an environment variable, or a configuration file and transforms
them into appropriate data structures for validation.

validate Ensures that input values are complete, consistent, and valid.

usage Displays a help text message.

Table 4-2. Subroutines in the Vim Package

Subroutine

clear_session

Description

Terminates the current session loaded by the load_session() subroutine.

find_entity_view

Searches the inventory tree for a managed object that matches the specified entity type.

find_entity_views

Searches the inventory tree for managed objects that match the specified entity type.

get_service_instance

Retrieves a ServiceInstance object, which can be used to query the server time or to retrieve the
ServiceContent object.

get_service_content

Retrieves properties of the service instance, enabling access to the service’s managed objects.

get_session_id

Retrieves a session ID.

get_view

Retrieves the properties of a single managed object.

get_views

Retrieves the properties of a set of managed objects.

load_session

Uses a saved session file for connecting to a server.

login

Establishes a session with the Web service running on the vSphere host.

VMware, Inc.

41

vSphere SDK for Perl Programming Guide

Table 4-2. Subroutines in the Vim Package (Continued)

Subroutine Description

logout Disconnects the client from the server and closes the connection to the Web service.
save_session Saves a session cookie, which is a text file.

update_view_data Refreshes the property values of a view object.

Table 4-3. Subroutines in the Util Package
Subroutine Description

connect Establishes a session by using the token provided in a previously-saved session file, or by using the user
name and password provided on the command line, in environment variables, or in a configuration file.

disconnect If used in conjunction with connect (and a session file), does nothing. If used in conjunction with a user
name and password, logs out and closes the session.

get_inventory_path Returns the inventory path for the specified managed entity.

trace General-purpose logging function used in conjunction with the ——verbose command-line option.

Subroutines in the Opts Package

The Opts package includes the following subroutines:

“add_options” on page 42
“get_option” on page 42
“option_is_set” on page 43
“parse” on page 43

“validate” on page 43

“usage” on page 43

add_options

Adds custom options so that they can be submitted to parsing and validation. After the script has validated
the options, the script can use them at run time.

Parameters

Parameter Description

%opts Name of the hash variable that consists of the option name and its attributes.
Returns

Returns nothing.

get_option

Retrieves the value of the specified built-in or custom option.

Parameters
Parameter Description
option_name String value of the built-in or custom option.

42 VMware, Inc.

Chapter 4 vSphere SDK for Perl Subroutine Reference

Returns
Returns one of the following, depending upon the attributes defined for the option:

Return value of func (after execution) if a function is associated with the option
Default value, if one is specified for the option

Value of the option, as passed to the script

Undef if none of the above are specified

option_is_set

Checks whether an option has been explicitly set by a script or from the command line or whether the option
has a default value or computed value (return value of a func).

Parameters

Parameter Description

option_name String value of the built-in or custom option.
Returns

Boolean. Returns 1 (true) if the option value has been explicitly set. Returns 0 (false) if the option value is a
default value, is null, or has not been explicitly set. For a discussion of Boolean, see “vSphere SDK for Perl
Programming Conventions” on page 12.

parse

Reads options from the command line, an environment variable, or a configuration file and transforms the
option into appropriate data structures for validation.

Parameters

No parameters.

Returns

Returns nothing. Displays an error message and quits if the parse operation is not successful. If you want to
use a configuration file, call Opts::get_config() to make sure the file can be opened. See
“Opts::get_config()” on page 40.

validate

Ensures that input values (from the command line, an environment variable, or a configuration file) are
complete, consistent, and valid.

Parameters

No parameters.

Returns

Returns nothing. It displays an error message and quits if the parse operation is not successful.

usage

Displays the help text message.

Parameters

No parameters.

Returns

Returns nothing.

VMware, Inc. 43

vSphere SDK for Perl Programming Guide

Subroutines in the Util Package

44

The Util package includes the following subroutines:

B “connect” on page 44
B “disconnect” on page 44
B “get_inventory_path” on page 44
B “trace” on page 45
connect

Establishes a session with the vCenter Server or ESX/ESXi Web service by using the token provided in a
previously saved session file, or by using the user name and password provided using the command line,
environment variables, or a configuration file.

Parameters

Parameter Description

user_name User account on the ESX/ESXi or vCenter Server system.

password Password for the user account.

session_file Full path and filename for the token saved from a previous successful connection. Use
session_f1ile (instead of user_name and password) to reestablish a session to the same server
or to establish a new connection to a different server.

Returns

Returns nothing.

disconnect

If used in conjunction with connect and a session file, does nothing. If used in conjunction with a user name
and password, logs out and closes the session.

Parameters

No parameters.

Returns

Returns nothing.

get_inventory_path

Returns the inventory path for the specified managed entity, for example, Folder, Datacenter, HostSystem,
VirtualMachine, ComputeResource, ClusterComputeResource, or ResourcePool. The resulting
inventory path can later be passed to the SOAP operation FindByInventory path to retrieve the
ManagedObjectReference for a managed entity (from which a view can be created).

Parameters

Parameter Description

view Managed entity view.
vim_instance Managed object.
Returns

Returns a string that identifies the inventory path of the managed entity.

VMware, Inc.

Chapter 4 vSphere SDK for Perl Subroutine Reference

trace

General-purpose logging function used in conjunction with the ——verbose command-line option. Default log
level is 0. Passing the ——verbose flag without a value sets the level to 1.

Parameters

Parameter Description

loglevel Numeric value that specifies the log level. Default is 0.
message String that specifies the associated loglevel value.
Returns

Returns nothing.

Subroutines in the Vim Package

The Vim package includes the following subroutines:

“clear_session” on page 45
“find_entity_view” on page 45
“find_entity_views” on page 46
“get_service_instance” on page 47
“get_service_content” on page 47
“get_session_id” on page 48
“get_view” on page 48
“get_views” on page 48
“load_session” on page 48
“login” on page 49

“logout” on page 49

“save_session” on page 50

“update_view_data” on page 50

clear_session
Terminates the current session loaded by the load_session() subroutine.

Parameters

No parameters.

Returns

Returns nothing.

find_entity_view

Searches the inventory tree for a managed entity that matches the specified entity type. The search begins with
the root folder unless the begin_entity parameter is specified.

In most cases, you specify a filter or property when using this command to avoid performance problems. See
“Creating and Using Filters” on page 33 and “Filtering Views Selectively Using Properties” on page 35.

VMware, Inc. 45

vSphere SDK for Perl Programming Guide

Parameters

Parameter

view_type

Description

Managed entity type specified as one of these strings:
“ClusterComputeResource”
“ComputeResource”

“Datacenter”

“Folder”

“HostSystem”

“ResourcePool”

“VirtualMachine”

begin_entity

Managed object reference that specifies the starting point for the search in the inventory. This

(optional) parameter helps you narrow the scope.

filter Hash of one or more name-value pairs. The name represents the property value to test and the value
represents a pattern that the property must match. If more than one pair is specified, all the patterns
must match.
Use filters to avoid performance problems. See “Creating and Using Filters” on page 33 and
“Filtering Views Selectively Using Properties” on page 35.

Returns

Reference to a view object containing the same properties as the managed entity. If more than one managed
entity matches the specified entity type, the subroutine returns only the first managed entity found. If no
matching managed entities are found, the subroutine returns undef.

find_entity_views

Searches the inventory tree for managed objects that match the specified entity type.

To avoid performance problems, use this command with a filter or specify the properties argument. By

default, this subroutine retrieves all properties of an entity. See “Creating and Using Filters” on page 33 and
“Filtering Views Selectively Using Properties” on page 35.

See the vSphere SDK for Perl API Reference for a list of properties. You can specify properties inherited from
ManagedEntity or local to a specific entity type.

Parameters

Parameter

view_type

Description

Managed entity type specified as one of these strings:
“ClusterComputeResource”
“ComputeResource”

“Datacenter”

“Folder”

“HostSystem”

“ResourcePool”

“VirtualMachine”

begin_entity
(optional)

Managed object reference that specifies the starting point for search in the inventory. This parameter
helps you narrow the scope.

filter (optional)

Hash of one or more name-value pairs. The name represents the property value to test and the value
represents a pattern that the property must match. If more than one pair is specified, all the patterns
must match.

properties

Properties to retrieve. Default is all properties. Use a filter or properties to avoid performance
problems. See “Filtering Views Selectively Using Properties” on page 35.

48

VMware, Inc.

Chapter 4 vSphere SDK for Perl Subroutine Reference

Returns

Reference to an array of view objects containing static copies of property values for the matching inventory
objects. If no matching entities are found, the array is empty.

Example

The following example, originally published in VMware Communities in post #1272780, retrieves the name
property from each inventory object. Note that $entity_views extracted from the server-side managed object
is an array reference, not a scalar.

my %opts = (

entity => {
type => "=s",

variable => "VI_ENTITY",
help => "ManagedEntity type: HostSystem, etc",
required => 1, },

);

Opts::add_options(%opts);

Opts::parse();

Opts::validate();

Util::connect();

Obtain all inventory objects of the specified type
my $entity_type = Opts::get_option('entity');
my $entity_views = Vim::find_entity_views();
view_type => $entity_type,
properties => ['name']1);

get_service_instance

Retrieves a ServiceInstance object, which can be used to query the server time or to retrieve the
ServiceContent object.

Parameters

No parameters.

Returns

Returns a ServiceInstance object.

get_service_content

Retrieves properties of the service instance enabling access to the managed objects of the service. Alternatively,
you can use get_views (), get_view(), and other subroutines to access the objects more directly. If you start
with the service content to work with the Web service, you can navigate to the object of interest.

Parameters

No parameters.

Returns

Reference to ServiceContent object, which contains managed object references to all inventory content,
including the root folder.

VMware, Inc. 47

vSphere SDK for Perl Programming Guide

get_session_id
Retrieves the session ID corresponding to the current session.

Parameters

No parameters.

Returns

Session ID cookie for use by load_session().

get_view

Retrieves the properties of a single managed object.

Parameters
Parameter Description
mo_ref Managed object reference obtained from a property of another managed object or a view.

view_type(optional) Type of view to construct from the managed object. If the parameter is absent, the subroutine
constructs a view with a type that matches the managed object type name.

Returns

View object containing static copies of a managed object’s property values.

get_views

Retrieves the properties of a set of managed objects.

Parameters
Parameter Description
mo_ref_array Reference to an array of managed object references.

view_type (optional) Type of view to construct from the managed object. If the parameter is absent, the subroutine
constructs a view with a type that matches the name of the managed object type.

Returns

Reference to an array of view objects containing copies of property values for multiple managed objects.

Notes

The Vim: :get_views () subroutine takes a reference to an array of managed object references and returns a
reference to an array of view objects. Although the array can contain multiple managed object types, objects
of only one type can be obtained at the same time.

load_session

Uses a saved session file or session cookie for connecting to a server. Use Util::connect() instead of
Vim::login() after loading the session.

You can use save_session() to get a session file or get_session_id() to get a session ID.

48 VMware, Inc.

Chapter 4 vSphere SDK for Perl Subroutine Reference

Parameters

Parameter Description

service_url URL of the server to which the client connects (optional if using session_file).

session_file Full path and filename for a session file returned by save_session(). You must specify either
session_file or session_id. You must pass in the filename as a hash.

session_id Session ID returned by get_session_id(). You must specify either session_file or
session_id.

Returns

Returns the vSphere object instance.

Example
To load a session using a session file: load_session(session_file => $filename);

To load a session using a session ID: load_session(service_url => $url, session_id =>
$sessionid);

login

Establishes a session with the Web service running on the vCenter Server or ESX/ESXi system using the user
name and password credentials provided using the command-line, environment variables, or configuration
file.

NOTE In most cases, you use Util: :connect() instead to establish a connection.

Parameters

Parameter Description

service_url URL of the server to which the client connects.
user_name User account on the ESX/ESXi or vCenter Server system.
password Password for the user account.

Returns

Returns the vSphere object instance.

logout

Disconnects the client from the server and closes the connection to the Web service. Use this subroutine if you
connected using Vim: : login (). Otherwise, use Util: :disconnect().

Parameters

No parameters.

Returns

Returns nothing.

VMware, Inc. 49

vSphere SDK for Perl Programming Guide

50

save_session

Saves a session cookie, which is a text file. See “Using a Session File” on page 13.

Parameter

Parameter Description

session_file Full path and filename where the token should be saved. The session times out after 30 minutes.
You pass in the filename as a hash.

Returns

Returns nothing.

Example

save_session (session_file => $filename);

update_view_data

Refreshes the property values of a view object.

Parameters

No parameters.

Returns

Returns nothing.

VMware, Inc.

Web Services for Management Perl
Library

Web Services for Management (WS-Management) provides a common way for systems to access and exchange
management information across the IT infrastructure.

ESX/ESX version 3.5 and later supports WS-Management by implementing over a dozen CIM (Common
Information Model) profiles. CIM profiles are a set of object-oriented schemas defined by the DTMF
(Distributed Management Task Force). CIM defines how managed elements in a networked environment are
represented as a common set of objects and relationships that users can view, share, and control. For example,
system management client applications might be able to check the status of server components such as CPU,
fans, power supplies, and so on.

The WS-Management Perl library allows you to write scripts that retrieve CIM data from the ESX/ESXi host
using CIMOM, a service that provides standard CIM management functions over a WBEM (Web-Based
Enterprise Management). WBEM is a standard protocol for passing CIM-XML messages over HTTP.

Although you can use the WS-Management library with other available WS-Management-enabled CIMOM:s,
this appendix limits discussion to using the library with the CIMOM available on ESX/ESXi version 3.5 and
later and VirtualCenter 2.5 and later.

This appendix includes these topics:

B “Web Services for Management Overview” on page 51

B “Required Perl Modules” on page 52

B “Sample Scripts” on page 53

B “SOAP Message Construction with WSMan::WSBasic” on page 53

B “Generic CIM Operations with WSMan::GenericOps” on page 57

Web Services for Management Overview

The SMASH (Systems Management Architecture for Server Hardware) initiative is one of several related
standards initiatives of the DMTF. The SMASH profiles build on other DMTF standards, including the
Common Information Model (CIM), an object-oriented approach to modeling managed resources throughout
the distributed computing environment. CIM Schemas define classes and associations among the classes in
several key areas. CIM Schemas build around a core schema, including devices, applications, network, and the
system itself. A CIM object manager brokers requests for data from any of the managed elements.

Clients can use the CIM-XML protocol for CIMOM access. Clients can also use Web Services for Management
(WS-Management), a SOAP-based protocol for accessing CIM data. The Perl library discussed in this appendix
is an implementation of WS-Management client artifacts (stubs, bindings) for connecting to a
WS-Management server and obtaining CIM data.

For information about CIM, SMASH, and WS-Management, visit the dmtf.org Web site. See the CIM
SMASH/Server Management API Programming Guide for information on CIM/SMASH and ESX/ESXi.

VMware, Inc. 51

vSphere SDK for Perl Programming Guide

Required Perl Modules
The WS-Management Perl library requires these Perl modules:

B SOAP::Lite - Version 0.67 - version 0.69 are supported. Versions before 0.67 or 0.7 or later are not
supported.

m UUID - Version 0.02 and later.
B Data: :Dump — Version 1.07 and later.

If the system you are using is behind a firewall, make sure that the http_proxy and ftp_proxy environment
variables are set to match your Proxy server before you proceed with the following instructions for Windows
or Linux.

NOTE If you use one of the supported Linux distributions, the required modules are included with the
vSphere SDK for Perl and you do not have to install them.

To install required Perl modules on a Windows system
1 Determine which version of Perl you are using by running the perl -v command.
m For version 5.6, type the following at the command prompt:
C:\>ppm install http://theoryx5.uwinnipeg.ca/ppmpackages/SOAP-Lite.ppd
® For version 5.8, type the following at the command prompt:
C:\>ppm install http://theoryx5.uwinnipeg.ca/ppms/SOAP-Lite.ppd
2 Run the following command to install UUID:
C:>ppm install UUID
3 Run the following command to install Data: : Dump:

C:>ppm install Data-Dump

To install required Perl modules on a Linux system

1 Enter the following commands for remote access to CPAN (comprehensive Perl archive network) in a
terminal window:

$ sudo -s
perl -MCPAN -e shell

2 Run the following command at the CPAN prompt to install SOAP: :Lite:
cpan> install SOAP::Lite
3 Respond to the questions that appear.
The module installs.
4 Go to the cpan.org Web site, search for UUID, and download the latest source.
5 Untar the downloaded file, open a terminal window.
6 Go to the untarred directory and run the following commands to install UUID:

make
make test
make install

If running make results in errors about missing items, install uuid-dev with apt-get on Debian-based
systems or e2fsprogs-dev[el] on other systems.

7 Enter run the following commands to install Data: : Dump:

perl -MCPAN -e shell
cpan> install Data::Dump

52 VMware, Inc.

Appendix A Web Services for Management Perl Library

After you have installed vSphere SDK for Perl, the following artifacts and samples are in the vSphere SDK for
Perl installation directory:

Table A-1. Components and Locations

Path Description

Perl/samples/WSMan Sample Perl scripts that use the WS-Management library to obtain information through the
CIMOM of an ESX/ESXi or vCenter Server system. Sample programs let you check sensor
health, obtain firmware revision levels, list field-replaceable units, and list power supply
details. See Table A-2, “WSMan Sample Scripts,” on page 53.

Perl/1ib/WSMan WS-Management interface Perl modules.

Sample Scripts

You can run the sample scripts as is. You can also use the scripts as the starting point for writing your own Perl
scripts to obtain CIM data from the server. If you accepted the defaults during vSphere SDK for Perl
installation, the samples are in the following location on a Windows system:

C:\Program Files\VMware\VMware VI CLI\Perl\samples\WSMan

When you run the samples, you must specify connection options. See “vSphere SDK for Perl Common
Options” on page 12. For example, you can specify connection options on the command line as follows:

perl <scriptname.pl> --server <servername> —-username <username> —-password <password>
For example:
perl firmwarerevisions.pl --server my.FQDN.esx35server.com —-username root ——password root_pass

If ——server is not specified, it defaults to localhost. If you are connecting to a remote host and do not specify
a user name and password, you are prompted.

The CIMOM service listens for requests on port 80.

Table A-2. WSMan Sample Scripts

Script Description

checksensorhealth.pl Returns a list of sensors associated with all system devices.
firmwarerevisions.pl Obtains a list of firmware revisions on the system.

listfrus.pl Returns a list of all field-replaceable units on the system.

listpowersupplies.pl Obtains status of discrete sensors associated with all power supplies. Demonstrates

traversing associations and using GetInstance.

The WS-Management library consists of the WSMan: :Basic and WSMan: : GenericOps classes, and the
StubOps . pm object-oriented wrapper for generic operations. The following sections discuss each library
component.

SOAP Message Construction with WSMan::WSBasic

You can use the WSMan: :WSBas1ic class to construct SOAP messages for communicating with the
WS-Management server. The Perl module is located in Per1l/1ib/WSMan/WSBasic.pm. All operations in this
class return deserialized SOAP: : SOM objects from which you can extract the fault code or the SOAP replies.

You usually do not use this module directly. Instead, you use the GenericOps module built on top of WSBasic.
GenericOps supports generic operations as defined by the DMTF standards. See “Generic CIM Operations
with WSMan::GenericOps” on page 57. If you want to use the SOAP: : SOM library directly, see the CPAN
documentation for SOAP: : SOM.

The WSMan: :WSBasic module requires the following Perl modules:

B SOAP::Lite—WSMan: :WSBasic requires Version 0.65 or later to form SOAP messages and to parse XML
replies that are received from the WS-Management server.

VMware, Inc. 53

vSphere SDK for Perl Programming Guide

B UUID - Generates UUIDs for the SOAP messages.

Table A-3 lists the methods the WSBasic class provides, which are discussed in more detail below.

Table A-3. Methods in WSMan::WSBasic

Method Description

WSMan::WSBasic->new Constructor.

register_xml_ns Registers extra XML namespaces that might be required for proprietary tags in the SOAP
message

register_class_ns Registers extra CIM namespaces that the WS-Management server might require.

Identify Performs the wsmid:Identify operation, which causes the WS-Management server to
identify itself.

Enumerate Filters results differently depending on the arguments you pass in.

PullRelease Performs a Pull or a Release operation (overloaded method).

Get Retrieves an instance of a class.

WSMan::WSBasic->new

Constructor that takes a hash argument containing key-value pairs.

Arguments

The constructor takes the following arguments:

Argument Description

address WS-Management server URL. Specify the transport protocol by adding http (basic
user-password authentication) or https (HTTP with SSL encryption).

port Port on which the WS-Management server listens for requests.

path Path to the WS-Management server. The path is combined with the address and port arguments

to form the complete URL of the WS-Management server. The resulting URL is
http://address:port/path.

username User name for the WS-Management server.
password Password for the WS-Management server.
namespace CIM namespace. Default is root/cimv2.If the namespace is not root/cimv2, you must pass in

the namespace of the class in this argument.

timeout (optional) Timeout for the HTTP request.

Example

$client = WSMan: :WSBasic—>new(address => 'http://www.abc.com/',
port => '80',
path => 'wsman',
username => 'wsman',
password => 'secret',
namespace => 'root/cimv2', #optional
timeout => '60' #optional

register_xml_ns

Registers extra XML namespaces that might be required for proprietary tags in the SOAP message. Calling
register_xml_ns is not usually required.

Arguments

A hash. Keys are the prefixes, values are the relative URLs as values.

54 VMware, Inc.

Appendix A Web Services for Management Perl Library

Example
$client—>register_xml_ns((wsen => 'http://www.dmtf.org/wsen'));

Declares a prefix wsen with the URL http://www.dmtf.org/wsen in the global XML namespace.

register_class_ns

Registers extra ResourceURIs that the WS-Management server might require. By default, the constructor
provides a set of ResourceURIs only for classes in the CIM schema. Classes with other schema names, such as
VMware_* classes, require a different ResourceURI when enumerated using the vSphere SDK for Perl.

You can find the ResourceURIs corresponding to other supported schemas in the OpenWSMan configuration
file, which is located in the server's file system at /etc/openwsman/openwsman. conf. The ResourceURIs are
listed in the value of the vendor_namespaces configuration parameter.

Arguments

A hash. Keys are the prefixes, values are the relative URLs as values.

Example

$client—>register_class_ns((OMC => 'http://schema.omc-project.org/wbem/wscim/1/cim-schema/2"',
VMware => 'http://schemas.vmware.com/wbem/wscim/1/cim-schema/2'));

Registers the ResourceURIs needed to enumerate classes in the OMC and VMware schemas.

Identify

Performs the wsmid: Identify operation, which causes the WS-Management server to identify itself. Helps
you determine whether the server is up and running.

Arguments

No arguments.

Returns

Returns a SOAP: : SOM object, which you can use to parse the results or do error correction.

Enumerate

Filters results depending on the arguments you pass in. Several arguments perform generic operations that
are implemented in another class, as described in “Generic CIM Operations with WSMan::GenericOps” on
page 57. Other arguments implement enumeration for non-standard-compliant servers. This document
discusses the most common arguments. Look at the Perl code for information on other arguments.

Arguments

Accepts the following arguments:

Argument Description
class_name Specifies the class that you want to enumerate. This argument is passed as a string.
namespace Default CIM namespace. Default is root/cimv2.
If the namespace is not root/cimv2, you must pass in the namespace of the class in this
argument.
enummode (optional) Specifies an enumeration mode such as EnumerateEPR or EnumerateEPRandObject.

This argument is passed as a string.

polymorphism (optional) Specifies polymorphism modes, passed in as a string. For example
IncludeSubClassProperties, ExcludeSubClassProperties, and None.

VMware, Inc. 55

vSphere SDK for Perl Programming Guide

56

Returns

Returns a SOAP: : SOM object that can be used to either check for errors ($result—>fault) or to parse the
results ($result->result). The SOAP object includes a header and data in XML format.

PullRelease

An overloaded method that performs a Pull operation or a Release operation.
Arguments

Accepts the following arguments:

Argument Description

enumid Enumeration ID that the Pull or Release operation should use. This argument is passed as a string.

action Specifies the operation to perform, Pull or Release. This argument is passed as a string.

namespace Default CIM namespace. Default is root/cimv2.
If the namespace is not root/cimv2, you must pass in the namespace of the class in this argument.

Get

Retrieves an instance of a class.

Arguments

Accepts the following named arguments:

Argument Description
class_name The class whose instance you want to retrieve. This argument is passed as a string.
options Passes keys for the particular instance on which you want to perform a Get operation. Passed as a

reference to a hash containing the keys in name-value pairs.

namespace Default CIM namespace. Default is root/cimv2.
If the namespace is not root/cimv2, you must pass in the namespace of the class in this argument.

WSMan::WSBasic Examples

This section shows a few code examples for WSMan: :WSBasic.

Using Enumeration Modes

To use one of the enumeration modes like EnumerateEPR or EnumerateEPRandObject, call the Enumerate
operation with EnumerationMode enabled. You can also specify the enumeration mode in the constructor.

$result = $client—>Enumerate(class_name => 'CIM_Processor',
#namespace => 'root/cimv2', #if needed.
enummode => 'EnumerateEPR'

)3
Registering Classes

To perform operations on vendor-specific classes, you must register them first with the client. The actual URL
depends on your WS-Management software.

$client—>register_class_ns(Linux => 'http://www.dmtf.org/linux');

Using Enumerate and Pull Operations

#!/usr/bin/perl -w
use strict;
use WSMan: :WSBasic; #Import the module.

my ($enumid, result, $client); #declaring variables.

VMware, Inc.

Appendix A Web Services for Management Perl Library

#Construct the client.
$client = WSMan: :WSBasic—>new(
path => 'wsman',
username => 'wsman',
password => 'secret',
port => '8889',
address => 'http://something.somewhere.com’
);
#Execute the Enumerate method.
$result = $client—>Enumerate(class_name => 'CIM_Processor',
#namespace => 'root/cimv2’'
N
if($result—>fault){
#If a fault occurred, then print the faultstring
die $result->faultstring;

}

else{
#If no fault occurred then get the enumid.
$enumid = $result->result;

}

$result = $client—>PullRelease(
class_name => 'CIM_Processor',
enumid => $enumid,
action => 'Pull',
#namespace => 'root/cimv2’'
);
if($result—>fault){
#If a fault occurred, then print the faultstring
die $result—>faultstring;
}
else{
Do stuff with $result, which is a SOAP::SOM object containing a deserialized XML reply.
It is better to use the Generic Operations module, built on top of this module.

}

Generic CIM Operations with WSMan::GenericOps

The GenericOps module implements some of the generic operations specified in the WS-Management CIM
bindings published by the DMTEF. Not all generic operations are implemented. The Perl module is located at
Perl/1ib/WSMan/GenericOps.pm.

The WSBasic module discussed in “SOAP Message Construction with WSMan::WSBasic” on page 53 provides
more primitive intrinsic WS-Management operations. The GenericOps module requires the WSMan : :WSBasic
module.

Table A-4 lists the methods the GenericOps class provides, which are discussed in more detail below.

Table A-4. Methods in WSMan::GenericOps

Method

WSMan::GenericOps->new

Description

Constructor.

register_xml_ns

Registers extra XML namespaces that might be required for proprietary tags in the
SOAP message.

register_class_ns

Registers extra CIM namespaces that the WS-Management server might require.

Identify Performs the wsmid:Identify operation, which causes the WS-Management server
to identify itself.
Enumeratelnstances Enumerates the instances of a given class.

EnumeratelnstanceNames

Enumerates only the key values of the instances of a given class.

EnumerateAssociatedInstances

Returns the instances related to the source object through an association.

EnumerateAssociatedInstanceNames

Returns objects with only the key values of the associated instance populated.

EnumerateAssociationInstances

Returns objects containing association instances of which the class is a part.

VMware, Inc.

57

vSphere SDK for Perl Programming Guide

Table A-4. Methods in WSMan::GenericOps (Continued)

Method Description

EnumerateAssociationInstanceNames Returns objects containing key values of the association instances of which the class is
a part.

GetInstance Retrieves a particular instance of a class.

58

WSMan::GenericOps->new
Constructor that takes a hash argument containing key-value pairs in the following form:

$client = WSMan: :GenericOps—>new((address => 'http://www.abc.com/',
port => '80',
path => 'wsman',
username => 'wsman',
password => 'secret',

namespace => 'root/cimv2', #optional
timeout => ‘60’ #optional
)

Arguments

The constructor has the following arguments:

Argument Description

address URL of the WS-Management server. Specify the transport protocol by adding the http prefix for
HTTP (basic user-password authentication) or the https prefix for HTTP with SSL encryption.

port Port on which WS-Management listens for requests.

path Path to the WS-Management server. The path is combined with the address and port arguments to
form the complete URL of the WS-Management server in http://address:port/path order.

username User name for the WS-Management server.

password Password for the WS-Management server.

namespace Default CIM namespace. Default is root/cimv2.

If the namespace is not root/cimv2, you must pass in the namespace of the class in this argument.

timeout Timeout for the HTTP request, in case of slow servers.
(optional)

register_xml_ns

Registers extra XML namespaces that might be required for proprietary tags in the SOAP message. Calling
register_xml_ns is not required unless you are trying to extend the class itself.

Arguments
A hash. Keys are the prefixes, values are the relative URLs as values.
Example

$client—>register_xml_ns((wsen => 'http://www.dmtf.org/wsen'));

Declares a prefix wsen with the URL http://www.dmtf.org/wsen in the global XML namespace.

register_class_ns

Registers extra ResourceURIs that the WS-Management server might require. By default, the constructor
provides a set of ResourceURIs only for classes in the CIM schema. Classes with other schema names, such as
VMware_* classes, require a different ResourceURI when enumerated using the vSphere SDK for Perl.

You can find the ResourceURIs corresponding to other supported schemas in the OpenWSMan configuration
file, which is located in the server's file system at /etc/openwsman/openwsman. conf. The ResourceURIs are
listed in the value of the vendor_namespaces configuration parameter.

VMware, Inc.

Appendix A Web Services for Management Perl Library

Arguments

A hash. Keys are the prefixes, values are the relative URLs as values.

Example

$client->register_class_ns((OMC => 'http://schema.omc-project.org/wbem/wscim/1/cim-schema/2"',
VMware => 'http://schemas.vmware.com/wbem/wscim/1/cim-schema/2'));

Registers the ResourceURIs needed to enumerate classes in the OMC and VMware schemas.

Identify

Performs the wsmid: Identify operation, which causes the WS-Management server to identify itself. Helps
you determine whether the server is running.

Arguments
No arguments.
Returns

Prints a fault string if a fault occurs, or returns the reply sent by the server. The reply is a hash reference
containing the parsed reply in key-value pairs.

Enumeratelnstances

Enumerates the instances of a given class.

Returns

Returns a list of hashes containing the parsed reply from the server, or prints a fault string from the server if
an error occurs.

Example

$client—>EnumerateInstances(
class_name => 'CIM_Processor',
namespace => 'root/cimv2' #optional
)
EnumeratelnstanceNames

Enumerates only the key values of the instances of a given class. Similar to EnumerateInstances.

Returns

Like EnumerateInstances, either returns a list of hashes containing the parsed reply from the server (keys
only), or prints a fault string if an error occurs.

EnumerateAssociatedinstances

Returns the instances related to the source object through an association. Results are filtered based on the
argument you pass in.

Arguments

Accepts the following arguments:

Argument Description
class_name Name of the class for which you want to get the associated instances.
selectors Set keys as a reference to a hash. Used to identify the instance of the class

mentioned in the class_name argument.

associationclassname Name of the association class for the instance.
(optional)

VMware, Inc. 59

vSphere SDK for Perl Programming Guide

Argument Description

role (optional) Role that the object plays in the association class. The method filters the results
according to the role.

resultclassname (optional) Result class name, which must be present in the association. The method
returns only those instances.

resultrole (optional) Role that the result class plays in this instance. The method returns the results
based on resultrole.

includeresult (optional) Further filters query results based on properties of the instances. You can pass
in properties as a name-value hash, then pass in a reference to this hash in the
includeresult named argument.

namespace Default CIM namespace. Default is root/cimv2.

If the namespace is not root/cimv2, you must pass in the namespace of the
class in this argument.

Example

$client—>EnumerateAssociatedInstances(
class_name => 'CIM_Foo',
selectors => \%hash;

associationclassname => 'CIM_Bar', #optional
role => 'CIM_Baz', #optional
resultclassname => 'CIM_Bat', #optional
resultrole => 'CIM_Quux', #optional
includeresult => \%hash, #optional
namespace => 'root/cimv2' #optional

EnumerateAssociatedinstanceNames

Returns objects with only the key values of the associated instance populated. The usage is the same as for
EnumerateAssociatedInstances.

EnumerateAssociationinstances

Returns objects containing association instances of which the class is a part. The usage is the same as for
EnumerateAssociatedInstances.

EnumerateAssociationinstanceNames

Returns objects containing key values of the association instances of which the class is a part. The usage is the
same as for EnumerateAssociatedInstances.

Getinstance

Retrieves a particular instance of a class.
Arguments

Accepts the following named arguments:

Argument Description

class_name Name of the class whose instance you want to retrieve, passed as a string

options Keys for the instance on which you want to perform the GetInstance operation. The argument is
passed as a reference to a hash containing the keys in name-value pairs.

namespace Default CIM namespace. Default is root/cimv2.
If the namespace is not root/cimv2, you must pass in the namespace of the class in this argument.

Returns

Prints a fault string or returns the result in a hash.

60 VMware, Inc.

Credential Store Perl Library

The vSphere SDK for Perl credential store library can be used to automate the logon process for non-interactive
client applications by storing the password in a secured local credential cache that the application can access
at runtime. You can manage the vSphere credential store using the credential store library included in the
vSphere SDK for Perl and discussed in this appendix.

If an application authenticates itself to a vCenter Server system, it requires no additional authentication to
access any of the ESX/ESXi systems managed by that vCenter Server system.

Authentication can occur as follows:

B Specifying the authentication information explicitly using one of the command-line parameters (user
name and password, url, and so on) or configuration file parameters. See “vSphere SDK for Perl Common
Options” on page 12.

B Using a session file. See “Using a Session File” on page 13.

B Using Microsoft SSPI, discussed in “Using Microsoft Windows Security Support Provider Interface
(SSPI)” on page 15.

B Using the credential store Perl Library, which is included in the vSphere SDK for Perl and discussed in
this appendix.

See “vSphere SDK for Perl Common Options” on page 12 for a discussion of the order of precedence.

This appendix explains how to set up and use the credential store and includes a reference to credential store
subroutines. The appendix includes the following topics:

B “Credential Store Overview” on page 61

B “Credential Store Components” on page 62

B “Managing the Credential Store” on page 62

B “Using the Credential Store” on page 62

B “vSphere Credential Store Subroutine Reference” on page 63

B “credstore_admin.pl Utility Application” on page 65

Credential Store Overview

Client applications that launch automatically for unattended operations, such as cron jobs and software
agents, must be able to log in to the ESX/ESXi hosts without user assistance. The vSphere Web Services SDK
provides client-side credential store libraries and tools for automating the login process in a more secure
manner. After the credential store has been set up, system administrators are no longer required to keep
passwords in local scripts. The credential store can be set up for an ESX/ESXi system, or for a vCenter Server
system. If an application authenticates itself to a vCenter Server system, it requires no additional
authentication to access any of the ESX/ESXi systems managed by that vCenter Server system.

VMware, Inc. 61

vSphere SDK for Perl Programming Guide

The credential store consists of:

A persistence file used to store authentication credentials. Currently, only passwords are supported. The
persistence file maps a remote user account from an ESX/ESXi host to that user’s password on the host.

IMPORTANT The passwords in the file are obfuscated but not encrypted. You must protect the file by other
means and carefully control who can access it.

vSphere Web Services SDK (C# and Java) and vSphere SDK for Perl libraries for programmatically
managing the file. vSphere Web Services SDK and vSphere SDK for Perl access the same credential store.

Credential Store Components

The vSphere SDK for Perl includes two credential store files in its installation package:

VICredStore.pm— The Perl package for the credential store library located in:

Windows: \Program Files\VMware\VMware vSphere CLI\Perl\lib\VMware\VICredStore.pm
Linux: /usr/lib/perl5/site_perl/5.8.8/VMware/VICredStore.pm

Perl applications can use this package to add, retrieve, delete, update, and list the entries stored in the
credential store. The apps/general/credstore_admin.pl file is an example for credential store use.

Each entry in the credential store is a tuple of host name, user name, and password. The password is
stored in an obfuscated manner in the credential store.

credstore_admin.pl — A Perl application that uses VICredStore. pm for accessing the credential store.
You can use credstore_admin.pl, which is an example, as a command-line interface to the credential
store. credstore_admin.pl is located in:

Windows: \Program Files\VMware\VMware vSphere CLI\Perl\apps\general\credstore_admin.pl
Linux: /usr/lib/vmware-viperl/apps/general/credstore_admin.pl

Managing the Credential Store

You can use Perl to manage the credential store in one of two ways:

Use the subroutines in VICredStore. pm in your Perl script. See “vSphere Credential Store Subroutine
Reference” on page 63 for reference documentation. The credstore_admin.p1 script illustrates how to
use the subroutines.

Use the \apps\general\credstore_admin.pl commands to manage the store interactively.

IMPORTANT Create a user with appropriate privileges and store the corresponding user name and password

in the credential store. Do not use the root or administrator user and the corresponding password.

Using the Credential Store

62

After you have set up the credential store with users and passwords, you can use the credentials as follows:

In your own Perl scripts, you can retrieve passwords or other information as needed using the library
subroutine.

When you run an existing vSphere SDK for Perl or vSphere CLI script, you can specify the host and user
name either from the command line or in an environment variable. When that host and user name has an
entry with a valid password in the credential store, the script is run.

If you run a script that includes a host name but no user, and if the credential store contains exactly one
entry for that host, the script takes the user from that credential store entry and not prompt for a user.

When you call an existing vSphere SDK for Perl or vSphere CLI script, and you specify only the host name,
the authentication mechanism prompts for a user name. If no entry exists for that user, the authentication
mechanism also prompts for a password.

VMware, Inc.

Appendix B Credential Store Perl Library

vSphere Credential Store Subroutine Reference

The ViCredStore package includes the following subroutines:

“init” on page 63
“get_password” on page 63
“add_password” on page 64
“remove_password” on page 64
“clear_passwords” on page 64
“get_hosts” on page 64

“get_usernames” on page 65

“close” on page 65

init
Initializes the credential store. Call this subroutine once, before any of the other credential store subroutines.

The credential store is not created until your program calls add_password.

This subroutine accepts the location of the credential store file. If you do not provide a credential store filename
VICredStore: :init () looks in the default location.

B Linux: $HOME/.vmware/credstore/vicredentials.xml

B Windows: APPDATA%\VMware\credstore\vicredentials.xml

If no credential store exists at the default location, the initialization process:

B Checks that the credstore directory exists, and creates one if it does not.
B Creates the vicredentials.xml file and parent directory.

If you provide a non-default credential store filename to VICredStore::init(), the credential store at that
location is used. If there is no credential store at that location and the directory you specify exists, the
initialization process creates the file. If the directory you specify does not exist, the initialization process fails.

Parameters

Parameter Description

filename Name of credential store file.
Returns

Returns 1 if initialization is successful; otherwise, returns 0.

get_password

Retrieves the password for a specified server and user name.

Parameters

Parameter Description

server Server for which you want to retrieve the password for the specified user. Can be an ESX/ESXi
or vCenter Server system.

username User for whom you want to retrieve the password.

Returns

Returns the password, or undef if no password is found.

VMware, Inc. 63

vSphere SDK for Perl Programming Guide

add_password
Creates a credential store file if none exists and stores the password for a given server and user name.

If a password already exists for that server and user name, add_password overwrites that password.

Parameters

Parameter Description

server Server for the new entry. Can be an ESX/ESXi or vCenter Server system.

username User name for the new entry. VMware recommends that you create a user with appropriate
privileges and store the corresponding user name and password in the credential store. Do not
use the root or administrator user and the corresponding password.

password Password for the new entry.

Returns

Returns 1 if a password for this server and user does not exists; otherwise, returns zero.

remove_password

Removes the password for a given server and user name. If no password exists, this method has no effect.

Parameters

Parameter Description

server Server from which the password for the specified user is removed. Can be an ESX/ESXi or
vCenter Server system.

username User name for which the associated password is removed.

Returns

Returns 1 if the password existed and was successfully removed; otherwise, returns zero.

clear_passwords

Removes all passwords.

Parameters

No parameters.

Returns

Returns nothing.

get_hosts

Returns a list of all servers that have entries in the credential store.

Parameters

No parameters.

Returns

Returns a list of all servers in the credential store.

64 VMware, Inc.

Appendix B Credential Store Perl Library

get_usernames
For a given server, returns all user names that have an associated password stored in the credential store.
Parameters
server — Server for which all user names are listed.

Returns

Returns a list of all users belonging to the specified server.

close

Closes the credential store, and frees all resources associated with it. If you want to run additional credential
store subroutines, you must run init again to reinitialize the credential store.

Call close only once for each credential store initialized by a call to init.

Parameters

No parameters.

Returns

Returns nothing.

credstore_admin.pl Utility Application

credstore_admin.plisa utility application you can use for credential store administration. At the same time,
the utility serves as sample code if you want to write your own script.

In addition to the options listed in “Common Options Reference” on page 15, the utility supports the following
options:

Table B-1. Command-line Options for credstore_admin.pl

Option Description
add Adds a new user name and password entry into the credential store
-s|-—server <server> for the specified user.

-u|--username <username>
-p|--password <password>

get Retrieves the password for the specified user from the credential
-s|-—server <server> store.
-u|username <username>

remove Removes an existing entry for the specified user to the credential
-s|-—server <server> store.
-u|--username <username>

list Lists existing entries.
[-s|-—server <server>]

clear Deletes all entries from the credential store.

VMware, Inc. 65

vSphere SDK for Perl Programming Guide

66 VMware, Inc.

Glossary

A appliance

See virtual appliance.

C CIM (Common Information Model)

A set of object-oriented schemas defined by the DMTF (Distributed Management Task Force), that is not
bound to any particular implementation. CIM defines how managed elements in a networked
environment are represented as a common set of objects and relationships that multiple users can view,
share, and control.

CIMON (CIM Object Manager)

A component that stores class definitions and populates requests for CIM operations with information
returned from specific data providers. See also CIM (Common Information Model).

H hash

One or more key-value pairs that define attributes and their values.

| inventory

The collection of all managed entities on the server, that is, of all instances of HostSystem, Datacenter,
VirtualMachine, ResourcePool, ComputeResource, ClusterComputeResource, and Folder.

M managed entity

One of the managed object types that extends the ManagedEntity managed object.

TheManagedEntity managed object type is an abstract class that defines the base properties and methods
for vSphere objects, the same kinds of manageable components found in a physical IT infrastructure, such
as datacenters and hosts.

managed object

A server-side type that encapsulates properties and operations available on the server. Different managed
objects offer different services (operations, methods). From the highest level, the various managed object
types on the server define common administrative and management services one would expect to use in
a typical datacenter, services such as managing performance (PerformanceManager), finding entities
that exist in the inventory (SearchIndex), disseminating and controlling licenses (LicenseManager), and
configuring alarms to respond to certain events (AlarmManager).

managed object reference

VMware, Inc.

A type of data object that enables distributed computing for the vSphere environment. A managed object
reference identifies a specific managed object on the server, and encapsulates the state and methods of
server-side objects, making them available to client applications. Clients run methods (operations) on the
server by passing the appropriate managed object reference (mo_ref) to the server, in the method
invocation.

67

vSphere SDK for Perl Programming Guide

68

MOB (Managed Object Browser)
A Web-based application hosted on all VMware ESX/ESXi and vCenter Server systems. The MOB lets you
explore the objects on the system and obtain information about each object’s properties and methods.

vSphere API
A set of Web services, hosted on ESX/ESXi and vCenter Server systems, that provides interfaces to
vSphere components such as hosts, virtual machines, and datacenters and operations on these
components.

view
A client-side Perl object that the vSphere SDK for Perl has populated with the state of one or more
server-side managed objects. Client applications and scripts work with view objects rather than with the
managed entities that exist on the server. To create a view, call the appropriate vSphere SDK for Perl
subroutine (Vim: :get_view, Vim: :get_views, and so on) with the managed object reference for the
entity of interest.

virtual appliance
A virtual machine that is prepackaged with an operating system and a set of applications.

virtualization
Separation of a resource- or service-request from the underlying physical delivery of that service.
Virtualization provides an abstraction layer between computing resources, physical storage, networking
hardware and the applications that use these resources. Virtualization can greatly enhance the computing
environment, optimizing the use of available physical components. For example, virtual memory enables
computer software to use more memory than is physically installed, via the background swapping of data
to disk storage. Virtualization techniques can be applied to all layers of an IT infrastructure such as
networks, storage, laptop or server hardware, operating systems, and applications.

vSphere Web Services SDK
The package of components (WSDL, sample code, and other artifacts) required for developing Java, C#,
or other Web-services-enabled client applications that invoke operations on the Web-services-based
vSphere APL

VMware, Inc.

Index

A

AlarmManager managed object 25
architecture 9
authentication 61

B

blocking methods 28, 30
Boolean data types 12
Boolean values, filter 33

C
CIM 51
CIM profiles 51
CIMOM 51
CIMON 51
ClusterComputeResource managed entity 26
command-line

connection parameters 14

defining options 20

filters 36

parameters 14
Common Information Model 51
components 9
ComputeResource managed entity 26
configuration files 14
connecting to server 22
cp936 encoding 16
credential store example 62
credential store library 61
credential store precedence 13
credstore_admin.pl 62, 65
current time 36

D

Data::Dumper 38

Datacenter managed entity 26
Datastore managed entity 26

dateTime objects 12

dateTime values 12

defining command-line options 20
Distributed Management Task Force 51
Distributed Virtual Switch managed entity 26
DMTF 51

DTMF 51

VMware, Inc.

E

encodings
cp936 16
ISO-8859-1 16
Shift_JIS 16

enumeration property values, accessing 29
environment variables 14
error messages 12
examples
credential store 62
session file 14
simple script 19
executing subroutines 11

F

filters
Boolean values 12
command-line 36
in script 33
multiple filter example 34
Folder managed entity 26

H

--help option 10
HostSystem managed entity 26

importing modules 20
inventory objects 25
ISO-8859-1 encoding 16

L

LicenseManager managed object 25

Managed Object Browser 24
managed objects

hierarchy 25

retrieving 22
ManagedObjectReference 24
methods

blocking 30

calling 31

introduction 30

non-blocking 30

omitting optional arguments 31

Microsoft Security Support Provider Interface 15

69

vSphere SDK for Perl Programming Guide

MOB 24

modules
importing 20
required 52

VMware Perl modules 9
WS-Management Perl modules 53
multiple sessions 37

N
new options

attribute list 21

type attribute 21
non-blocking methods 28, 30
non-blocking operations 30

(o)

operations 30
optional method arguments 31
options

parsing 21

validating 21
Opts package 20
Opts::get_option() 22
Opts::parse() 21
Opts::validate() 21

P
parsing options 21
Passing 14
passthroughauth 16
passthroughauthpackage 16
passwords 63, 64
PerformanceManager managed object 25
programming conventions 12
property values
accessing 29
modifying 29
property values, accessing 29

R

ResourcePool managed entity 26
runtime engine 9

S

samples 10
save_session.pl 13
--savesessionfile 13
Searchindex managed object 25
servers
checking status 51
connecting 22
server-side objects 24
server-side operations 30

70

ServiceContent object 26
Servicelnstance object 36
session files 13
expiration 13
using 13
--sessionfile 13
sessions
expiration 37
multiple 37
saving 36
using 36
Shift_JIS 16
Shift_JIS encoding 16
simple property values, accessing 29
SOAP 52
SOAP error messages 12
SSL certificate authority warning 24
SSPI 15
subroutines
executing 11
reference 41

T
technical support resources 8
time 36

type attribute 21

U

undef method argument 32
update_view_data() 32
Util package 20
Util::connect() 22

utility application 9

\"

validating options 21
view objects 22
accessor 28
blocking method 28
characteristics 28
updating 32
VIM package 20
Vim::find_entity_view() 33
Vim::find_entity_views() 22, 27
Vim::get_service_content() 27
Vim::update_view_data 32
viperformance.pl 10
virtual machines, powering on 12
VirtualMachine managed entity 26
vSphere API 9
vSphere SDK for Perl
architecture 9
components 9

VMware, Inc.

Index

runtime 9

W

WBEM 51

web services for management 51
ws-management 51

VMware, Inc. 7

vSphere SDK for Perl Programming Guide

72 VMware, Inc.

	vSphere SDK for Perl Programming Guide
	Contents
	Revision History
	Intended Audience
	Document Feedback
	Technical Support and Education Resources
	Online and Telephone Support
	Support Offerings
	VMware Professional Services

	Getting Started with vSphere SDK for Perl
	vSphere SDK for Perl Architecture
	Using vSphere SDK for Perl
	Getting Started
	Common vSphere SDK for Perl Tasks
	vSphere SDK for Perl Programming Conventions

	vSphere SDK for Perl Common Options
	Specifying Options
	Using a Session File
	Passing Parameters at the Command Line
	Setting Environment Variables
	Using a Configuration File
	Using Microsoft Windows Security Support Provider Interface (SSPI)

	Common Options Reference

	Hello Host: Running Your First Script

	Writing vSphere SDK for Perl Scripts
	Basic vSphere SDK for Perl Script
	Step 1: Import the vSphere SDK for Perl Modules
	Step 2: (Optional) Define Script-Specific Command-Line Options
	Step 3: Connect to the Server
	Step 4: Obtain View Objects of Server-Side Managed Objects
	Step 5: Process Views and Report Results
	Step 6: Close the Server Connection

	Understanding Server-Side Objects
	Use the Managed Object Browser to Explore Server-Side Objects
	Types of Managed Objects and the Managed Object Hierarchy
	Managed Object Hierarchy
	Managed Entities in the Inventory

	Accessing Server-Side Inventory Objects

	Understanding Perl View Objects
	Working with View Object Property Values
	Accessing Property Values
	Accessing Simple Property Values
	Accessing Enumeration Property Values

	Modifying Property Values
	Creating Data Objects with Properties

	Understanding Operations and Methods
	Non-Blocking and Blocking Methods
	Examples of Operations
	Calling Methods
	Omitting Optional Arguments in Method Calls

	Updating View Objects

	Refining vSphere SDK for Perl Scripts
	Creating and Using Filters
	Using Filters with Vim::find_entity_view() or Vim::find_entity_views()

	Filtering Views Selectively Using Properties
	Using View Subroutines with a Properties Argument
	Using Filters on the Utility Application Command Line

	Retrieving the ServiceInstance Object on a vSphere Host
	Saving and Using Sessions
	Saving Sessions
	Loading Sessions

	Using Multiple Sessions
	Learning About Object Structure Using Data::Dumper
	Specifying Untyped Arguments in Scheduled Tasks and Callbacks
	Using Advanced Subroutines
	Opts::get_config()

	vSphere SDK for Perl Subroutine Reference
	Subroutines in the Opts Package
	add_options
	get_option
	option_is_set
	parse
	validate
	usage

	Subroutines in the Util Package
	connect
	disconnect
	get_inventory_path
	trace

	Subroutines in the Vim Package
	clear_session
	find_entity_view
	find_entity_views
	get_service_instance
	get_service_content
	get_session_id
	get_view
	get_views
	load_session
	login
	logout
	save_session
	update_view_data

	Web Services for Management Perl Library
	Web Services for Management Overview
	Required Perl Modules
	Sample Scripts
	SOAP Message Construction with WSMan::WSBasic
	WSMan::WSBasic->new
	register_xml_ns
	register_class_ns
	Identify
	Enumerate
	PullRelease
	Get
	WSMan::WSBasic Examples

	Generic CIM Operations with WSMan::GenericOps
	WSMan::GenericOps->new
	register_xml_ns
	register_class_ns
	Identify
	EnumerateInstances
	EnumerateInstanceNames
	EnumerateAssociatedInstances
	EnumerateAssociatedInstanceNames
	EnumerateAssociationInstances
	EnumerateAssociationInstanceNames
	GetInstance

	Credential Store Perl Library
	Credential Store Overview
	Credential Store Components
	Managing the Credential Store
	Using the Credential Store
	vSphere Credential Store Subroutine Reference
	init
	get_password
	add_password
	remove_password
	clear_passwords
	get_hosts
	get_usernames
	close

	credstore_admin.pl Utility Application

