VMware Storage Policy SDK
Programming Guide

vSphere 6.5

This document supports the version of each product listed and
supports all subsequent versions until the documentis replaced
by a new edition. To check for more recent editions of this
document, see http://www.vmware.com/support/pubs.

EN-002098-00

vmware

http://www.vmware.com/support/pubs

VMware Storage Policy SDK Programming Guide

You can find the most up-to-date technical documentation on the VMware Web site at:
http://www.vmware.com/support/

The VMware Web site also provides the latest product updates.

If you have comments about this documentation, submit your feedback to:

docfeedback@vmware.com

Copyright © 2013-2016 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and
intellectual property laws. VMware products are covered by one or more patents listed at
http://www.vmware.com/go/patents.

VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions. All other marks
and names mentioned herein may be trademarks of their respective companies.

VMware, Inc.

3401 Hillview Ave.
Palo Alto, CA 94304
www.vmware.com

2 VMware, Inc.

http://www.vmware.com/support/
http://www.vmware.com/support
mailto:docfeedback@vmware.com
http://www.vmware.com/go/patents
http://www.vmware.com/go/patents

Contents

Contents

Contents 3
About This Book 5

VMware Storage Policies 7
Storage Capabilities 7
Virtual Machine Storage 7
Storage Profiles 7
Storage Policy Operations 8
Access to the VMware Storage Policy Server 8
Storage Profile Queries 9
VMware Storage Policy SDK 10
VMware Storage Policy SDK Examples 10

Storage Policy Server Connection 13

Establish a Connection with the VMware Storage Policy Server 13
Server URLs 14
Establish the vCenter Session Connection for the Local Instance 14
Create the Storage Policy Server Connection 15

VSAN-Based Storage Profiles 17

Create a VSAN Requirements Profile 17
Create an Individual Storage Requirement 18
Create a Storage Profile 18

Virtual Machine Storage Profiles 21
Retrieve an Existing Storage Profile from the Storage Policy Server 21
Apply the Storage Profile to a Virtual Machine 22

Tag-Based Storage Profiles 25

Create a Tag-Based Storage Profile 25
Retrieve Tag Metadata 26
Create a Storage Profile 26

Policy Rules 29

Create a Stand-Alone Virtual Disk with an Attached Storage Encryption Policy 29
Prerequisites 29
What to donext 30

Legacy Storage Profiles 31
VASA 1.0 Storage Capability Upgrade 31
vSphere Web Client User Label Conversion 32

vCenter Single Sign-On

Client Example 35
vCenter Single Sign-On Token Request Overview 35

VMware, Inc. 3

VMware Storage Policy SDK Programming Guide

Using Handler Methods for SOAP Headers 36
Sending a Request for a Security Token 38

vCenter LoginByToken Example 41
vCenter Server Single Sign-On Session 41
HTTP and SOAP Header Handlers 41
Sample Code 42
Saving the vCenter Server Session Cookie 43
Using LoginByToken 44
Restoring the vCenter Server Session Cookie 45

Index 47

4 VMware, Inc.

About This Book

About This Book

VMuware Storage Policy Programming Guide describes how to use the VMware® Storage Policy API.

VMware provides different APIs and SDKs for different applications and goals. The VMware Storage Policy
SDK supports the development of vCenter clients that use vCenter storage profiles for virtual machine
configuration.

To view the current version of this book as well as all VMware API and SDK documentation, go to
http://www.vmware.com/support/pubs/sdk_pubs.html.

Intended Audience

This book is intended for anyone who needs to develop applications using the VMware Storage Policy SDK.
An understanding of Web Services technology and some programming background in Java is required.

VMware Technical Publications Glossary

VMware Technical Publications provides a glossary of terms that might be unfamiliar to you. For definitions
of terms as they are used in VMware technical documentation go to http://www.vmware.com/support/pubs.

Document Feedback

VMware welcomes your suggestions for improving our documentation. Send your feedback to
docfeedback@vmware.com.

VMware, Inc. 5

http://www.vmware.com/support/pubs/sdk_pubs.html
mailto:docfeedback@vmware.com
mailto:docfeedback@vmware.com
http://www.vmware.com/support/pubs

VMware Storage Policy SDK Programming Guide

6 VMware, Inc.

Chapter 1 VMware Storage Policies

VMware Storage Policies

A vSphere storage profile defines storage policy information that describes storage requirements for virtual
machines and storage capabilities of storage providers. You use VMware Storage Policies to manage the
association between virtual machines and datastores.

NOTE A Storage Policy API profile consists of a set of subprofiles. A subprofile defines a set of storage
capabilities. A subprofile corresponds to a rule set in the vSphere Web Client.

Storage Capabilities

Storage requirements are based on the storage capabilities available from a storage provider. A Storage Policy
Server obtains storage capability data from VASA 2.0 providers or from tag-based storage policies.

B VASA 2.0 providers - vSphere supports VMware VSAN storage capabilities only.
B Tag-based storage - You use the vSphere Web Client to define storage policy tags.

Virtual Machine Storage

Virtual machine configuration and data are stored in datastores.

B Virtual machine configuration is stored in files with the .vmx file extension. The set of virtual machine
configuration files also includes other system files that support virtual machine operation. Examples of
these system files include log files (.1og), BIOS state files (.nvram), paging files (.vmem), and snapshot data
files (.vmsd).

® Virtual machine data is stored on virtual disks, in files with the .vindk file extension.

VMware Storage Policies allow you to distinguish between virtual machine configuration and data files and
to specify storage locations based on the distinction.

Storage Profiles

To use a storage profile, you define storage requirements and associate the profile with a virtual machine.
When you create a virtual machine, the vCenter Server will use the virtual machine’s storage profile and the
Storage Policy Server to determine a location for the virtual machine files.

VMware, Inc. 7

VMware Storage Policy SDK Programming Guide

Storage Policy Operations

Use Storage Policy API methods to support virtual machine provisioning.

Table 1-1. Storage Policy Operations and Virtual Machine Provisioning
Storage Policy Operation (Storage Policy APl) Virtual Machine Provisioning (vSphere API)

Use the PbmProfileProfileManager methodsto Associate storage profiles with virtual machines and virtual disks.

create and update storage profiles. See the description of the vSphere API data object properties
VirtualMachineConfigSpec.vmProfile and
FileBackedVirtualDiskSpec.profile in the vSphere API
Reference. You can also use the vSphere Web Client to associate a
storage profile with a virtual machine or virtual disk.

Use the PbmPlacementSolver methods to Specify the datastores when you create virtual machines and

identify candidate datastores for storage virtual disks. See the description of the vSphere API data object

locations. properties VirtualMachineFileInfo.vmPathName and
VirtualDeviceFileBackingInfo.datastore in the vSphere
API Reference.

Use the PbmComplianceManager methods to After you associate a storage profile with a virtual machine or

check compliance between storage requirements virtual disk, the Server will identify non-compliance if the datastore

and capabilities. does not satisfy the requirements of the profile.

Access to the VMware Storage Policy Server

The VMware Storage Policy client API is described in the WSDL (Web Service Definition Language) file that
is included in the VMware Storage Policy SDK. This API defines a set of request operations that you use to
manipulate storage profiles. The VMware Storage Policy SDK includes Java bindings for the VMware Storage
Policy WSDL.

To gain access to the Storage Policy Server, your client connects to a vCenter Server and obtains the vCenter
session cookie. Then you can use the vCenter session cookie to establish the connection with the Storage Policy
Server. See “Establish a Connection with the VMware Storage Policy Server” on page 13.

After you establish a Storage Policy Server connection, your client uses language-specific Web Services access
objects and the PbmServiceInstance and PbmServiceInstanceContent objects to access the Storage Policy
managed objects and their methods.

The Storage Policy Web Services access objects are language-specific API binding objects that are generated
from the Storage Policy WSDL. The VMware Storage Policy SDK contains JAXWS bindings to the Storage
Policy API. The JAXWS bindings include the PbmService and PbmPortType Web Services access objects.

B PbmService - Provides access to the PbmPortType object and it provides support for the Storage Policy
Service connection.

B PbmPortType - Provides access to Storage Policy methods.

The following code fragment shows the sequence of calls that you use to obtain access to the Storage Policy
API methods.

Example 1-1. Access to Storage Policy APl Methods

import com.vmware.pbm.PbmService;

import com.vmware.pbm.PbmPortType;

import com.vmware.pbm.PbmServiceInstanceContent;

[...]

PbmService = new PbmService()

PbmPortType pbmPort = PbmService.getPbmPort()

PbmServiceInstanceContent pbmServiceContent = pbmPort.pbmRetrieveServiceContent

The following figure shows the PbmServiceInstanceContent data object and the Storage Policy managed
objects that provide access to Storage Policy services.

8 VMware, Inc.

Chapter 1 VMware Storage Policies

Figure 1-1. Storage Policy Service Instance Content

—— PbmProfileProfileManager
_ PbmPlacementSolver
Legend

Managed Object —— PhmComplianceManager

The PbmServiceInstanceContent object contains managed object references to the Storage Policy services.
The set of Storage Policy services include the profile manager, placement solver, and compliance manager.

Table 1-2. Storage Policy Services

Service ManagedObject Usage

Profile Manager PbmProfileProfileManager Create and update VMware storage profiles. Storage profiles
define storage requirements.

Placement Solver PbmPlacementSolver Identify candidate datastores for storage locations.
Compliance Manager PbmComplianceManager Check compliance between storage requirements and
capabilities.

Storage Profile Queries

The Storage Policy API includes several methods that you can use to query for profiles and vSphere entities
(datastores, virtual machines, and virtual disks). The following table provides an overview of these methods.
For more information, see the Storage Policy API Reference.

Table 1-3. Storage Profile APl Query Methods

Method Description
PbmQueryAssociated Entiy Returns references to entities associated with the specified profile.
PbmQueryAssociatedProfile Returns profiles associated with the specified entity. The type of profile is

determined by the type of entity that you specify.

® If you specify a datastore, the method returns one or more capability
(resource) profiles.

m If you specify a virtual machine or virtual disk, the method returns one or
more requirement profiles.

PbmQueryAssociatedProfiles Returns PbmQueryProfileResult objects. Each result object identifies an entity
and one or more profiles. Profile type is determined by entity type.
m If the entity is a datastore, the result object contains one or more capability
(resource) profiles.
B Ifthe entity is a virtual machine or virtual disk, the result object contains one
or more requirement profiles.

PbmQueryMatchingHub Returns datastores and/or datastore clusters that satisfy the specified
requirement profile. To retrieve the profiles associated with a datastore, call
PbmQueryMatchingHub for each profile in the system. In the vSphere Web
Client, datastore clusters are called storage pods.

PbmQueryMatchingHubWithSpec Returns datastores and or datastore clusters that satisfy the criteria in the
capability create specification.

PbmQueryProfile Returns requirement profiles or resource profiles, or both.

VMware, Inc. 9

VMware Storage Policy SDK Programming Guide

VMware Storage Policy SDK

The VMware Storage Policy SDK is distributed as part of the VMware vSphere Management SDK. When you
extract the contents of the distribution kit, the VMware Storage Policy SDK is located in the spbm

sub-directory:

VMware-vSphere-SDK-bui ld-num
eam
sms—sdk
spbm
docs
java
pbm-apiref
java
JAXWS
lib
samples
wsdl
ssoclient
vsphere-ws

The following table shows the locations of the contents of the VMware Storage Policy SDK.
Table 1-4. VMware Storage Policy SDK Contents

VMware Storage Policy SDK Component
JAX-WS VMware Storage Policy client binding

Location

spbm/java/JAXWS/lib

Java Storage Policy samples

spbm/java/JAXWS/samples/com/vmware/spbm/samples/

Java Storage Policy Server connection sample

spbm/java/JAXWS/samples/com/vmware/spbm/connection/

VMware Storage Policy API Reference

spbm/docs/pbm-apiref/index.html

Documentation for example code

spbm/docs/java/JAXWS/samples/javadoc/index.html

WSDL files

spbm/wsdl

VMware Storage Policy SDK Examples

The VMware Storage Policy SDK contains Java examples that show how to create and use VMware storage

policies.

This manual describes examples from the VMware Storage Policy SDK. It also describes examples from the
vCenter Single Sign-On SDK that support the client connection to the Storage Policy Server. This manual
includes the following single sign-on examples:

B “vCenter Single Sign-On Client Example” on page 35. This example shows how to obtain a holder-of-key
token from the vCenter Single Sign-On Server.

B “vCenter LoginByToken Example” on page 41. This example shows how to use the token to login to

vCenter Server.

The following table lists the sample files in the VMware Storage Policy SDK:
Table 1-5. VMware Storage Profile SDK Sample File

Location Examples

Description

SDK/spbm/java/JAXWS/samples/com/vmware/spbm/samples/

10

VMware, Inc.

Table 1-5. VMware Storage Profile SDK Sample File

Location

Examples

AboutInfo.java

Chapter 1 VMware Storage Policies

Description

Obtains identifying data about the Storage Policy
Server.

CheckCompliance java

Checks the compliance of profiles associated with
virtual machines and virtual disks.

CreateProfile java

Creates a requirement profile.

DeleteProfile.java

Deletes a requirement profile.

EditProfile.java

Adds or deletes subprofiles from a tag-based
storage profile.

ListProfiles.java

Retrieves all of the storage profiles known to the
system.

VMClone.java

Deploys mutliple instances of a virtual machine
template to a datacenter. The clone specification
has an associated storage profile.

VMCreate java

Creates a virtual machine. The virtual machine
configuration specification has an associated
storage profile.

ViewProfile java

Prints the contents of a tag-based storage profile.

SDK/spbm/java/JAXWS/samples/com/vmware/spbm/connection/

BasicConnection.java

Establishes an authenticated session with a
VMware SSO Server, vCenter Server, and Storage
Policy Server.

ConnectedServiceBase.java

Connection base class for client application
implementations.

Connection.java

Storage Policy sample support; utility class that
sets up a Storage Policy Server connection.

ConnectionException.java

Base exception class for exceptions thrown by
connection classes.

ConnectionMalformedUrlException.java

URL exception.

KeepAlive.java Keep-alive utility class; maintains the vCenter
Server connection.
VcSessionHandler.java Utility class; inserts vCenter session cookie into

SOAP header.

VMware, Inc.

1"

VMware Storage Policy SDK Programming Guide

12 VMware, Inc.

Chapter 2 Storage Policy Server Connection

Storage Policy Server Connection

The connection between a Storage Policy client and the Storage Policy Server is based on the client’s connection
with a vCenter Server. A vCenter Server client uses an HTTP session cookie to maintain a persistent connection
with the Server. A Storage Policy client uses the vCenter Server session cookie to establish the connection with
the Storage Policy Server.

A client performs the following operations to establish vCenter Server and Storage Policy Server sessions.

B Obtain a SAML token from the VMware SSO Server.
See “vCenter Single Sign-On Client Example” on page 35.

B Use the SAML token to login to the vCenter Server.
See “vCenter LoginByToken Example” on page 41.

B Use the the RetrieveServiceContent method to send the session cookie to the Storage Policy Server
and establish the connection with the Server.

The following figure shows a representation of the server connections and operations involved in establishing
a Storage Policy Server connection.

Figure 2-1. Storage Policy Server Connection

client
application token request
- P> SSO Server
| authentication token
LoginByToken [token]
' >
- vCenter Server
| vCenter session cookie

cookie

| RetrieveServiceContent

[vCenter session cookie] »> Storage Policy Server

Establish a Connection with the VMware Storage Policy Server

Use the session cookie from the vCenter Server session to establish the Storage Policy session. The session
cookie represents the authenticated vCenter Server session, which is based on the SSO token.

The following code fragments establish connections both with the vCenter Server and the Storage Policy
Server. These examples are based on the BasicConnection sample which is located in the Storage Policy SDK
connection sample directory:

SDK/spbm/java/JAXWS/samples/com/vmware/spbm/connection/BasicConnection. java

VMware, Inc. 13

VMware Storage Policy SDK Programming Guide

14

The BasicConnection sample uses an instance of the LoginByTokenSample class. See “vCenter
LoginByToken Example” on page 41. The LoginByToken example saves the HTTP cookie produced during
the intial connection sequence and then restores the cookie after the vCenter Server connection has been
established. Although the LoginByToken example creates a vCenter Server connection, the BasicConnection
sample establishes its own connection with the vCenter Server. A different implementation might integrate
those capabilities to reduce the number of vCenter Server connections.

Server URLs

The BasicConnection sample creates connections to three VMware Servers.
B 5SSO Server

B vCenter Server

B Storage Policy Server

In the example configuration, the SSO and Storage Policy Servers are located on the same system as the
vCenter Server. In other configurations, the SSO Server may be located on a different server.

Table 2-1. VMware Server URLs

VMware Server URL
vCenter Server https://server-name| IPaddress/sdk/vimService
SSO Server https://server-name| IPaddress/sts/STSService

Storage Policy Server https://server-name| IPaddress/pbm

Establish the vCenter Session Connection for the Local Instance

The following code fragment sets up the HTTP connection with the vCenter Server.
1 Retrieve the VimPort interface. This provides access to the vSphere API methods.
2 Retrieve the request context and set the vCenter Server endpoint address in the request context.

3 Set the session cookie in the request context. The cookie (cookieVal) is obtained from the vCenter
LoginByToken Example.

4 Call the RetrieveServiceContent method to establish the HTTP connection with the vCenter Server.

Example 2-1. vCenter Server Connection

// 1. Retrieve the VimPort interface.
vimService = new VimService(Q);
vimPort = vimService.getVimPort();

// 2. Retrieve the request context and set the vCenter Server endpoint.
Map<String, Object> ctxt = ((BindingProvider) vimPort).getRequestContext();
ctxt.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY, vcurl.toString());
ctxt.put(BindingProvider.SESSION_MAINTAIN_PROPERTY, true);

// 3. Put the extracted vCenter session cookie into the VimPortType request header.
Map<String, List<String>> headers =

(Map<String, List<String>>) ctxt.get(MessageContext.HTTP_REQUEST_HEADERS) ;
if (headers == null) {

headers = new HashMap<String, List<String>>Q);
}
headers.put("Cookie", Arrays.asList(cookieval));
ctxt.put(MessageContext.HTTP_REQUEST_HEADERS, headers);

// 4. Retrieve the vCenter Server service content. (Establishes the HTTP connection)
vimServiceContent = vimPort.retrieveServiceContent(this.getVimServiceInstanceReference());

VMware, Inc.

Chapter 2 Storage Policy Server Connection

Create the Storage Policy Server Connection
The following code fragment uses a vCenter session cookie to create a Storage Policy Server session.

1 Extract the actual cookie value from the name=value expression in the cookie string obtained from the
vCenter session connection.

2 Create a PbmService object.

3 Setup a header handler to support adding the vCenter session cookie to the Storage Policy Server
connection.

4 Retrieve the PbmPort object for access to the Storage Policy API methods.
5 Retreive the request context and set the endpoint to the Storage Policy Server URL.

6 Call the PbmRetrieveServiceContent method to establish the HTTP connection to the Storage Policy
Server.

Example 2-2. Storage Policy Server Connection

// 1. Set the extracted cookie in the PbmPortType
//

// Need to extract only the cookie value
String[] tokens = cookieVal.split(";™);
tokens = tokens[0].split("=");

String extractedCookie = tokens[1];

// 2. Create a PbmService object.
pbmService = new PbmService();

// 3. Setting the header resolver for adding the VC session cookie to the
// requests for authentication

HeaderHandlerResolver headerResolver = new HeaderHandlerResolver();
headerResolver.addHandler (new VcSessionHandler(extractedCookie));
pbmService.setHandlerResolver(headerResolver);

// 4. Retrieve the PbmPort object for access to the Storage Policy API
pbmPort = pbmService.getPbmPort();

// 5. Set the Storage Policy Server endpoint

Map<String, Object> pbmCtxt = ((BindingProvider) pbmPort).getRequestContext();
pbmCtxt.put(BindingProvider.SESSION_MAINTAIN_PROPERTY, true);
pbmCtxt.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY, spbmurl.toString());

// 6. Retrieve the service content (creates the connection)
pbmServiceContent = pbmPort.pbmRetrieveServiceContent(getPbmServiceInstanceReference());

VMware, Inc. 15

VMware Storage Policy SDK Programming Guide

16 VMware, Inc.

Chapter 3 VSAN-Based Storage Profiles

VSAN-Based Storage Profiles

Storage requirements are based on the storage capabilities available from a storage provider. vSphere supports
VMware VSAN storage capabilities. To create a requirements profile based on VSAN capabilities, you retrieve
metadata that describes the VSAN capabilities and create a subprofile that expresses the storage requirements

for virtual machine or virtual disk files. To perform these operations, you use a connection to the Storage Policy
Server.

Create a VSAN Requirements Profile

The following example demonstrates how to create a storage requirements profile based on vSphere VSAN
storage capabilities. The example creates a requirement profile for VSAN stripe width.

The following figure shows the data objects used for a profile specification.

Figure 3-1. Storage Profile Specification

PbmCapabilityProfileCreateSpec
name
description PbmProfileResourceType
rezourceType=STORAGE
resourceType

constraints

PbmCapabilitySubProfileConstraints
subprofiles

Pbm<CapabilitySubProfile
name

farcePravisian

capahility

PbmCapabilityMetadataUniqueld
il
namespace

PbmCapabilityinstance
il
constraint

PbmCapabilityPropertyinstance

i
walue

The following example is based on the Storage Policy SDK sample file CreateVSANProfile.java.This
example is divided into two code fragments:

VMware, Inc.

VMware Storage Policy SDK Programming Guide

18

Create an Individual Storage Requirement — The code fragment is a function that creates a single storage
capability instance for a subprofile (rule).

Create a Storage Profile — The code fragment builds a profile specification and creates the profile.

Create an Individual Storage Requirement

The following example builds a property instance for a capability. The property instance represents a single
storage requirement. The code performs the following steps:

1 Verifies that the capability exists.

2 Creates a property instance for the requirement (PbmCapabilityPropertyInstance).

3 Creates a capability contraint for the property instance (PbmCapabilityConstraintInstance).
4 Create a capability instance for the constraint and add the subprofile (rule) to the capability.
Example 3-1.

PbmCapabilityInstance buildCapability(String capabilityName, Object value,

List<PbmCapabilityMetadataPerCategory> metadata)
throws InvalidArgumentFaultMsg {

// Retrieve the metadata for the capability (stripeWidth)
PbmCapabilityMetadata capabilityMeta = PbmUtil.getCapabilityMeta(capabilityName, metadata) ;
if (capabilityMeta == null)

throw new InvalidArgumentFaultMsg("Specified Capability does not exist", null);

// Create a New Property Instance based on the Stripe Width Capability
PbmCapabilityPropertyInstance prop = new PbmCapabilityPropertyInstance();
prop.setId(capabilityName);

prop.setValue(value);

// Associate Property Instance with a Rule (subprofile)
PbmCapabilityConstraintInstance rule = new PbmCapabilityConstraintInstance();
rule.getPropertyInstance().add(prop);

// Associate Rule (subprofile) with a Capability Instance
PbmCapabilityInstance capability = new PbmCapabilityInstance();
capability.setId(capabilityMeta.getId());
capability.getConstraint().add(rule);

return capability;

Create a Storage Profile

The example performs the following operations.

1

2
3
4
5

[e)}

Retrieve a reference to the Storage Policy Profile Manger.
Verify that there is VSAN Storage Policy support.
Retrieve the VSAN storage capability metadata.

Add capabilities to be used as requirements.

Add the requirement capabilities to a subprofile. A subprofile corresponds to a rule set in the vSphere
Web Client.

Specify the subprofile as capability constraints.
Build a profile specification.

Create the storage profile.

VMware, Inc.

Chapter 3 VSAN-Based Storage Profiles

When you create a storage profile, the PomCreate method returns a profile ID (PbmProfileId). The Profile
Manager maintains a list of profiles. To obtain a profile from the list, use the PbmQueryProfile and
PbmRetrieveContent methods. See “Retrieve an Existing Storage Profile from the Storage Policy Server” on
page 21.

Example 3-2. VSAN Storage Profile Creation

// 1: Get PBM Profile Manager & Associated Capability Metadata
spbmsc = connection.getPbmServiceContent();
ManagedObjectReference profileMgr = spbmsc.getProfileManager();

// 2: Verify that there is vSAN Storage Policy support
Boolean vSanCapabale = false;
List<PbmCapabilityVendorResourceTypeInfo> vendorInfo =
connection.getPbmPort() .pbmFetchVendorInfo(profileMgr, null);
for (PbmCapabilityVendorResourceTypeInfo vendor : vendorInfo)
for (PbmCapabilityVendorNamespaceInfo vnsi : vendor.getVendorNamespaceInfo())
if (vnsi.getNamespaceInfo().getNamespace() .equals("vSan")) {
vSanCapabale = true;
break;

}

if (!vSanCapabale)
throw new RuntimeFaultFaultMsg(
"Cannot create storage profile. vSAN Provider not found.", null);

// 3: Get PBM Supported Capability Metadata
List<PbmCapabilityMetadataPerCategory> metadata =
connection.getPbmPort() .pbmFetchCapabilityMetadata(profileMgr,
PbmUtil.getStorageResourceType(), null);

// 4: Add Provider Specific Capabilities
List<PbmCapabilityInstance> capabilities = new ArraylList<PbmCapabilityInstance>();
capabilities.add(buildCapability("stripeWidth", stripeWidth, metadata));

// 5: Add Capabilities to a RuleSet (subprofile)
PbmCapabilitySubProfile ruleSet = new PbmCapabilitySubProfile();
ruleSet.getCapability () .addAll(capabilities);

// 6: Add Rule-Set (subprofile) to Capability Constraints
PbmCapabilitySubProfileConstraints constraints = new PbmCapabilitySubProfileConstraints();
ruleSet.setName("Rule-Set " + (constraints.getSubProfiles().size() + 1));
constraints.getSubProfiles() .add(ruleSet);

// 7: Build Capability-Based Profile

PbmCapabilityProfileCreateSpec spec = new PbmCapabilityProfileCreateSpec();
spec.setName(profileName) ;

spec.setDescription("Storage Profile Created by SDK Samples. Rule based on vSAN capability™);
spec.setResourceType(PbmUtil.getStorageResourceType());

spec.setConstraints(constraints);

// 8: Create Storage Profile

PbmProfileId profile = connection.getPbmPort().pbmCreate(profileMgr, spec);
System.out.println("Profile " + profileName + " created with ID: " + profile.getUniqueId());

VMware, Inc. 19

VMware Storage Policy SDK Programming Guide

20 VMware, Inc.

Chapter 4 Virtual Machine Storage Profiles

Virtual Machine Storage Profiles

The Storage Policy Server maintains a list of storage profiles. To apply a storage profile to a virtual machine,
perform the following operations:

B Retrieve an Existing Storage Profile from the Storage Policy Server
B Apply the Storage Profile to a Virtual Machine.

The code fragments in this chapter are based on the Storage Policy SDK sample file VMCreate. java.

Retrieve an Existing Storage Profile from the Storage Policy Server

The following code fragment shows the example function getPbmProfileSpec that uses the
PbmQueryProfile and PbmRetrieveContent methods to retrieve storage profiles. In the context of the
Storage Policy SDK example VMCreate. java, the function returns a VirtualMachineDefinedProfileSpec
to be used to configure storage for a virtual machine.

The function performs the following operations:

1 Uses the connection to the Storage Policy Server to retrieve a reference to the Profile Manager.
Calls the PbmQueryProfile method to obtain the list of storage profile identifiers.

Calls the PbmRetrieveContent method to obtain the list of storage profiles.

Finds the profile that matches the specified profile name.

(62 B N CS B]

Creates aVirtualMachineDefinedProfileSpec and assigns the identifier from the named profile to the
VirtualMachineDefinedProfileSpec. You use the VirtualMachineDefinedProfileSpec when you
configure the virtual machine. See “Apply the Storage Profile to a Virtual Machine” on page 22.

Example 4-1. Retrieving a Storage Profile

VirtualMachineDefinedProfileSpec getPbmProfileSpec(String name)
throws InvalidArgumentFaultMsg, com.vmware.pbm.RuntimeFaultFaultMsg,
RuntimeFaultFaultMsg {

// 1 Get PBM Profile Manager
PbmServiceInstanceContent spbmsc = connection.getPbmServiceContent();
ManagedObjectReference profileMgr = spbmsc.getProfileManager();

// 2 Retrieve the 1list of profile identifiers.
List<PbmProfileId> profilelds =
connection.getPbmPort().pbmQueryProfile(profileMgr,
PbmUtil.getStorageResourceType(),
null);

if (profileIds == null || profilelds.isEmpty())
throw new RuntimeFaultFaultMsg("No storage Profiles exist.", null);

// 3 Retrieve the 1list of storage profiles.
List<PbmProfile> pbmProfiles =

VMware, Inc. 21

VMware Storage Policy SDK Programming Guide

connection.getPbmPort().pbmRetrieveContent(profileMgr, profilelds);

// 4,5 Find the named profile and create a VirtualMachineDefinedProfileSpec
// that will use the same profile identifier.
for (PbmProfile pbmProfile : pbmProfiles) {
if (pbmProfile.getName().equals(name)) {
PbmCapabilityProfile profile = (PbmCapabilityProfile) pbmProfile;
VirtualMachineDefinedProfileSpec spbmProfile =
new VirtualMachineDefinedProfileSpec();

spbmProfile.setProfileId(profile.getProfileId().getUniqueId());
return spbmProfile;

3

// Throw exception if none found

throw new InvalidArgumentFaultMsg(
"Specified storage profile name does not exist.", null);

Apply the Storage Profile to a Virtual Machine

22

To use a storage profile for a virtual machine, specify a VirtualMachineDefinedProfileSpec object for the
VirtualMachineConfigSpec.vmProfile property.

The following code fragment sets the storage profile and creates the virtual machine. The profile
(spbmProfile)is a VirtualMachineDefinedProfileSpec. See “Retrieve an Existing Storage Profile from
the Storage Policy Server” on page 21.

Example 4-2. Associating a Storage Profile with a Virtual Machine

[...]1
VirtualMachineConfigSpec configSpec = new VirtualMachineConfigSpec();
// Set SPBM profile
configSpec.getVmProfile() .add(spbmProfile);
[...]
ManagedObjectReference taskmor =
connection.getVimPort().createVMTask(vmFolderMor, vmConfigSpec, resourcepoolmor, hostmor);

The following figure shows how a storage profile is integrated into a virtual machine configuration
specification. Your client establishes the link between the storage profile (PbmCapabilityProfile) and the
VirtualMachineDefinedProfileSpec by setting the profileld property in the
VirtualMachineDefinedProfileSpec. The Server sets the profileData property when it configures the
virtual machine.

VMware, Inc.

Chapter 4 Virtual Machine Storage Profiles

Figure 4-1. Using a Storage Profile for Virtual Machine Provisioning

VirtualMachineConfigSpec

PbmCapabilityProfile VirtualMachineDefinedProfileSpec | <@—— vmProfile
. profileData .
profile -| — —|— — — — — — - profileld
Storage Profile access Virtual Machine provisioning
Storage Policy Server Connection vCenter Server Connection
(PbmQueryProfile, (CreateVM_Task,
PbmRetrieveContent) CreateChildVM_Task,

ReconfigVM_Task)

VMware, Inc. 23

VMware Storage Policy SDK Programming Guide

24 VMware, Inc.

Chapter 5 Tag-Based Storage Profiles

Tag-Based Storage Profiles

To use a tag-based storage profile, you assign a storage policy tag to a datacenter, define a storage requirement
profile based on the tag, and associate the profile with a virtual machine. When you create the virtual machine,
the vCenter Server will use the Storage Policy Server to resolve the tag reference in the profile and determine
a datastore for virtual machine storage.

B To associate a storage policy tag with a datacenter, use the vSphere Web Client.

B To create a tag-based storage requirements profile, you retrieve metadata associated with a storage policy
tag and create a storage profile that contains identifiers from the tag metadata.

B To associate the storage profile with a virtual machine, see “Apply the Storage Profile to a Virtual
Machine” on page 22.

Create a Tag-Based Storage Profile

The following figure shows a storage profile specification and the associated tag metadata.

B Thesubprofile capability instance identifier (PbmCapabilityInstance.id)is setto the storage policy tag
metadata identifier (PbmCapabilityMetadata.id).

B The capability property instance (PbmCapabilityPropertyInstance) specifies both an identifier and a
value. Both properties are set to the tag metadata id and allowedValue properties.

Figure 5-1. Tag-Based Storage Profile Specification

PbmCapabilityProfileCreateSpec

constraints. PbmCapabilitySubProfileConstraints
subProf|IeS—|

PbmCapabilitySubProfile
capability —

PbmCapabilitylnstance
d- — — — — —|— — — — — — — — - id

PbmCapabilityMetadata

propertyMetadata constraint

PbmCapabilityConstraintinstance
propertylnstance———

PbmCapabilityPropertyMetadata PbmCapabilityPropertylnstance
d - — — — 41— - — 4 L _id
allowedvVayee - — — — |/ — — — — — — — — — — — value

VMware, Inc. 25

VMware Storage Policy SDK Programming Guide

The following example demonstrates how to create a storage requirements profile based on a storage policy
tag. The example is divided into two sections:

B Retrieve Tag Metadata

B Create a Storage Profile

Retrieve Tag Metadata

The following example shows a code fragment that retrieves metadata for a tag category. Given the list of
metadata obtained from the Storage Policy Server, the function traverses the list and returns the metadata
associated with the specified category. This function is defined in the PbmUti1l package in the Storage Policy
SDK.

Example 5-1. getTagCategoryMeta (PbmUtil Package)

public static PbmCapabilityMetadata getTagCategoryMeta(
String tagCategoryName, List<PbmCapabilityMetadataPerCategory> schema) {
for (PbmCapabilityMetadataPerCategory cat : schema)
if (cat.getSubCategory().equals("tag"))
for (PbmCapabilityMetadata cap : cat.getCapabilityMetadata())
if (cap.getId().getId() .equals(tagCategoryName))
return cap;
return null;

Create a Storage Profile
The example performs the following operations.
1 Create a property instance with tags from the specified tag category.
Associate the property instance with a constraint (rule).

Associate the constraint with a capability instance.

2
3
4 Add the capability instance to a subprofile (rule set).
5 Add the subprofile to the list of subprofile constraints.
6 Build a profile specification.

7 Create the storage profile.

The following example is based on the Storage Policy SDK sample file CreateProfile. java.

Example 5-2. Tag-Based Storage Profile Creation

// Get PBM Profile Manager and PBM Capability Metadata
spbmsc = connection.getPbmServiceContent();
ManagedObjectReference profileMgr = spbmsc.getProfileManager();

List<PbmCapabilityMetadataPerCategory> metadata =
connection.getPbmPort() .pbmFetchCapabilityMetadata(
profileMgr,PbmUtil.getStorageResourceType(), null);

// Step 1: Create Property Instance with tags from the specified Category
PbmCapabilityMetadata tagCategoryInfo = PbmUtil.getTagCategoryMeta(tagCategoryName, metadata);

// Fetch Property Metadata of the Tag Category
List<PbmCapabilityPropertyMetadata> propMetalList = tagCategoryInfo.getPropertyMetadata();
PbmCapabilityPropertyMetadata propMeta = propMetalList.get(0);

// Create a New Property Instance based on the Tag Category ID

PbmCapabilityPropertyInstance prop = new PbmCapabilityPropertyInstance();
prop.setId(propMeta.getId());

26 VMware, Inc.

Chapter 5 Tag-Based Storage Profiles

// Fetch Allowed Tag Values Metadata; cast the xsd:any property (allowedValue) to a discrete set
PbmCapabilityDiscreteSet tagSetMeta = (PbmCapabilityDiscreteSet) propMeta.getAllowedValue();

// Create a New Discrete Set for holding Tag Values
PbmCapabilityDiscreteSet tagSet = new PbmCapabilityDiscreteSet();
for (Object obj : tagSetMeta.getValues()) {

tagSet.getValues() .add(((PbmCapabilityDescription) obj).getValue());
}
prop.setValue(tagSet);

// Step 2: Associate Property Instance with a Rule
PbmCapabilityConstraintInstance rule = new PbmCapabilityConstraintInstance();
rule.getPropertyInstance() .add(prop);

// Step 3: Associate Rule with a Capability Instance
PbmCapabilityInstance capability = new PbmCapabilityInstance();
capability.setId(tagCategoryInfo.getId());
capability.getConstraint().add(rule);

// Step 4: Add Rule to a RuleSet
PbmCapabilitySubProfile ruleSet = new PbmCapabilitySubProfile();
ruleSet.getCapability().add(capability);

// Step 5: Add Rule-Set to Capability Constraints

PbmCapabilitySubProfileConstraints constraints = new PbmCapabilitySubProfileConstraints();
ruleSet.setName("Rule-Set " + (constraints.getSubProfiles().size() + 1));
constraints.getSubProfiles() .add(ruleSet);

// Step 6: Build Capability-Based Profile
PbmCapabilityProfileCreateSpec spec = new PbmCapabilityProfileCreateSpec();
spec.setName(profileName) ;
spec.setDescription("Tag Based Storage Profile Created by SDK Samples. Rule based on tags from
Category "
+ tagCategoryName) ;
spec.setResourceType(PbmUtil.getStorageResourceType());
spec.setConstraints(constraints);

// Step 7: Create Storage Profile
PbmProfileId profile = connection.getPbmPort().pbmCreate(profileMgr, spec);

VMware, Inc. 27

VMware Storage Policy SDK Programming Guide

28 VMware, Inc.

Chapter 6 Policy Rules

Policy Rules

You can create custom storage policy strings to specify policy rules.

Create a Stand-Alone Virtual Disk with an Attached Storage Encryption Policy
The following example shows how to format an XML string to specify an I/O filter policy for a virtual disk.

The format is specific to the current version of the VMware Web Services API. This format might not be
compatible with other API versions.

Prerequisites
B Verify that the name for the policy is user-friendly.

B Verify that the ID string to identify the policy is unique. The ID must be unique among the set of policies
known to SPBM.

Procedure

1 Build the policy <capability> element, which specifies the filter.

<capability>
<capabilityId>
<id>vmwarevmcrypt@encryption</id>
<namespace>I0FILTERS</namespace>
<constraint></constraint>
</capabilityId>
</capability>

2 Wrap the <capability> element singly in a <subProfiles> element, adding the rule name.

<subProfiles>
<capability>
<capabilityId>
<id>vmwarevmcrypt@encryption</id>
<namespace>I0OFILTERS</namespace>
<constraint></constraint>

</capabilityId>
</capability>
<name>Rule-Set 1: IOFILTERS</name>
</subProfiles>

3 Wrap the <subProfiles> element singly in a <constraints> element.

<constraints>
<subProfiles>
<capability>
<capabilityId>
<id>vmwarevmcrypt@encryption</id>
<namespace>I0OFILTERS</namespace>
<constraint></constraint>
</capabilityId>
</capability>

VMware, Inc. 29

VMware Storage Policy SDK Programming Guide

<name>Rule-Set 1: IOFILTERS</name>
</subProfiles>
</constraints>

4 Append profile metadata, such as name and creation date.

<constraints>
<subProfiles>
<capability>
<capabilityId>
<id>vmwarevmcrypt@encryption</id>
<namespace>I0OFILTERS</namespace>
<constraint></constraint>
</capabilityId>
</capability>
<name>Rule-Set 1: IOFILTERS</name>
</subProfiles>
</constraints>
<createdBy>client</createdBy>
<creationTime>1999-12-31T23:59:597</creationTime>
<lastUpdatedTime>1999-12-31T23:59:59Z</1lastUpdatedTime>
<generationId>1l</generationId>
<name>I0filter-Encrypt</name>

5 Wrap the <constraints> element and metadata in a <storageProfile> element, and prefix an XML
header.

<?xml version='1.0"' encoding="UTF-8'?>
<storageProfile xsi:type='StorageProfile'>
<constraints>
<subProfiles>
<capability>
<capabilityId>
<id>vmwarevmcrypt@encryption</id>
<namespace>IOFILTERS</namespace>
<constraint></constraint>
</capabilityId>
</capability>
<name>Rule-Set 1: IOFILTERS</name>
</subProfiles>
</constraints>
<createdBy>client</createdBy>
<creationTime>1999-12-31T23:59:597</creationTime>
<lastUpdatedTime>1999-12-31T23:59:59Z</lastUpdatedTime>
<generationId>1</generationId>
<name>I0filter-Encrypt</name>
<profileId>I am Unique</profileld>
</storageProfile>

What to do next

You can create a ProfileSpec to contain the XML data. See the vSphere Web Services SDK Programming Guide.

30 VMware, Inc.

Chapter 7 Legacy Storage Profiles

Legacy Storage Profiles

vSphere 5.0/5.1 systems support limited storage capability and requirement profiles. In vsphere 5.5, the
Storage Policy Server supports more complex storage profiles. vSphere 5.5 will upgrade legacy capability and
requirement profiles for Storage Policy Server operations.

B “VASA 1.0 Storage Capability Upgrade” on page 31.

B “vSphere Web Client User Label Conversion” on page 32

VASA 1.0 Storage Capability Upgrade

A Storage Policy Server can obtain storage capability data from VASA providers. In vSphere 2013, this
generally implies VMware VSAN storage capabilities. A Storage Policy Server can also obtain capability data
from a VASA provider that was implemented for the vSphere 5.0/5.1 environment.

The early architecture (vSphere 5.0/5.1) supports a simple expression of storage capability. A VASA 1.0
provider can advertise one system label per datastore. A system label has an associated description.

The Storage Policy Server performs a runtime conversion of VASA 1.0 system labels. The Storage Policy API
presents the system label as a storage capability profile. The Server also generates a capability schema for the
storage label. The generated storage capability profile references the generated schema.

The following figure shows the Storage Policy data objects that are generated from a vSphere 5.0/5.1 legacy
profile.

VMware, Inc. 31

VMware Storage Policy SDK Programming Guide

Figure 7-1. Converted Legacy Capability Profile

5.5 update
conversion
Vendor1Gold / This is our best storage | pm| PbmCapabilitySchema

5.0/5.1 system label / description

. namespacelnfo
5.5 runtime

conversion vendorinfo

capabilityMetadataPerCategory

PbmCapabilityProfile
name = “Vendor1Gold”

-] -
constraints PbmCapabilityMetadataPerCategory

subCategory = “legacy”

PbmCapabilitySubProfileConstraints capabilityMetadata ——
subProfiles

PbmCapabilitySubProfile
name = “SystemLabel”

PbmCapabilityMetadata

[--]
propertyMetadata —‘

PbmCapabilityPropertyMetadata

capability ——

PbmCapabilitylnstance

id ——
type = XSD_STRING
summary.description =
PbmCapabilityMetadataUniqueld “This is our best storage”
id - — — — — L 1 _id

vSphere Web Client User Label Conversion

A vSphere 5.0/5.1 storage profile can reference user labels displayed in the vSphere Web Client. Users can
associate a datastore with a user label. When you upgrade to vSphere 5.5, any existing 5.0/5.1 user labels will
be converted into datastore tags.

A converted policy profile contains one subprofile for each label referenced by the original vSphere 5.0/5.1
profile.

B A system label reference is converted to a reference to the appropriate vendor-specific “legacy system
label” capability generated from that label.

B A user label reference is converted to a reference to the appropriate datastore tag generated from that
label.

The following figure shows the conversion of a vSphere 5.0/5.1 profile that references a system label
“Vendor1Gold” and a user label “MyDatastores”. When you upgrade to vSphere 5.5, the system converts the
profile into Storage Policy API elements.

B The legacy system label identifies the original source as a VASA 1.0 provider.

B The legacy user label identifies the original source as a 5.0/5.1 user label in the vSphere Web Client.

32 VMware, Inc.

Figure 7-2. Converted Legacy Requirement Profile

5.0/5.1
system label = “Vendor1Gold”

user label = “MyDatastore”

5.5 update
conversion

PbmCapabilityProfile
L]

constraints ——

PbmCapabilitySubProfileConstraints

Chapter 7 Legacy Storage Profiles

subProfiles
PbmCapabilitySubProfile PbmCapabilitySubProfile
[-] [-]
capability — capability ——

PbmCapabilitylnstance
constraint

PbmCapabilityConstraintinstance
propertylnstance 7]

PbmCapabilitylnstance

constraint

PbmCapabilityPropertytinstance
id = “vendor1 legacy system label”
value = “Vendor1Gold”

VMware, Inc.

PbmCapabilityConstraintinstance

propertylnstance

PbmCapabilityPropertytinstance
id = “legacy user label”
value = “MyDatastore”

33

VMware Storage Policy SDK Programming Guide

34 VMware, Inc.

Chapter A vCenter Single Sign-On Client Example

vCenter Single Sign-On
Client Example

This chapter describes a Java example of acquiring a vCenter Single Sign-On security token.
B “vCenter Single Sign-On Token Request Overview” on page 35
B “Using Handler Methods for SOAP Headers” on page 36

B “Sending a Request for a Security Token” on page 38

vCenter Single Sign-On Token Request Overview

The code examples in the following sections show how to use the Issue method to acquire a holder-of-key
security token. To see an example of using the token to login to a vCenter Server, see “vCenter LoginByToken
Example” on page 41. The code examples in this chapter are based on the following sample file located in the
vCenter Single Sign-On SDK JAX-WS client samples directory:

.. ./JAXWS/samples/com/vmware/sso/client/samples/AcquireHoKTokenByUserCredentialSample. java

The AcquireHoKTokenByUserCredentialSample program creates a token request and calls the issue
method to send the request to a vCenter Single Sign-On Server. The program uses a sample implementation
of Web services message handlers to modify the SOAP security header for the request message.

This example uses the username-password security policy (STSSecPolicy_UserPwd). This policy requires
that the SOAP security header include a timestamp, username and password, and a digital signature and
certificate. The sample message handlers embed these elements in the message.

The example performs the following operations:

1 Create a security token service client object (STSService_Service). This object manages the vCenter
Single Sign-On header handlers and it provides access to the vCenter Single Sign-On client API methods.
This example uses the issue method.

2 Create a vCenter Single Sign-On header handler resolver object (HeaderHandlerResolver). This object
acts as a container for the different handlers.

Add the handlers for timestamp, user credentials, certificate, and token extraction to the handler resolver.
Add the handler resolver to the security token service.

Retrieve the STS port (STS_Service) from the security token service object.

Create a security token request.

Set the request fields.

Set the endpoint in the request context. The endpoint identifies the vCenter Single Sign-On Server.

O 0 NN o U o W

Call the issue method, passing the token request.

10 Handle the response from the vCenter Single Sign-On server.

VMware, Inc. 35

VMware Storage Policy SDK Programming Guide

Using Handler Methods for SOAP Headers

The VMware vCenter Single Sign-On SDK provides sample code that is an extension of the JAX-WS XML Web
services message handler (javax.xml.ws.handler). The sample code consists of a set of SOAP header
handler methods and a header handler resolver, to which you add the handler methods. The handler methods
insert timestamp, user credential, and message signature data into the SOAP security header for the request.
A handler method extracts the SAML token from the vCenter Single Sign-On Server response.

The VMware vCenter Single Sign-On client SOAP header handler files are located in the soaphandlers
directory:

SDK/sso/java/JAXWS/samples/com/vmware/sso/client/soaphandlers
To access the SOAP handler implementation, the example code contains the following import statements:

import com.vmware.sso.client.soaphandlers.HeaderHandlerResolver;

import com.vmware.sso.client.soaphandlers.SSOHeaderHandler;

import com.vmware.sso.client.soaphandlers.SamlTokenExtractionHandler

import com.vmware.sso.client.soaphandlers.TimeStampHandler;

import com.vmware.sso.client.soaphandlers.UserCredentialHandler;

import com.vmware.sso.client.soaphandlers.WsSecurityUserCertificateSignatureHandler;

This example uses the following handler elements:

m HeaderHandlerResolver

SamlTokenExtractionHandler

B TimestampHandler

UserCredentialHandler
B WsSecurityUserCertificateSignatureHandler (SSOHeaderHandler)
The following sequence shows the operations and corresponding Java elements for message security.

1 Create an STS service object
(STSService_Service). This object will bind - -
the handlers to the request and provide access | STSService_Service ‘
to the issue method.

2 Create a handler resolver object
(HeaderHandlerResolver). This object acts as ‘ HeaderHandlerResolver |
a receptacle for the handlers.

3 Add the header handlers:

] Tlmestamp - lele handler will use system HeaderHandler Resolver
time to set the timestamp values.
®m User credential — The handler requires a — TimestampHandler
username and a password; it will create a
username token for the supplied values. — UserCredentialHandler
m User certificate signature — The handler
requires a private key and an x509 — WsSecurityUserCertificateSignatureHandler
certificate. The handler will use the private (SSOHeaderHandler)
key to sign the body of the SOAP message)
(the token request), and it will embed the — SamliTokenExtractionHandler
certificate in the SOAP security header.

® SAML token extraction — The handler
extracts the SAML token directly from
vCenter Single Sign-On Server response to
avoid token modification by the JAX-WS
bindings.

4 Add the handler resolver to the STS service.

STSService_Service

handlerResolver —{ HeaderHandler Resolver

36 VMware, Inc.

Chapter A vCenter Single Sign-On Client Example

The following code fragment creates a handler resolver and adds the handler methods to the handler resolver.
After the handlers have been established, the client creates a token request and calls the Issue method. See
“Sending a Request for a Security Token” on page 38.

IMPORTANT You must perform these steps for message security before retrieving the STS service port. An
example of retrieving the STS service port is shown in “Sending a Request for a Security Token” on page 38.

Example A-1. Acquiring a vCenter Single Sign-On Token — Soap Handlers

/%
* Instantiate the STS Service
*/

STSService_Service stsService = new STSService_Service();

/%
* Instantiate the HeaderHandlerResolver.
:’:/

HeaderHandlerResolver headerResolver = new HeaderHandlerResolver();

* Add handlers to insert a timestamp and username token into the SOAP security header
* and sign the message.

* —— Timestamp contains the creation and expiration time for the request
* —— UsernameToken contains the username/password
* —— Sign the SOAP message using the combination of private key and user certificate.

* Add the TimeStampHandler
:’:/
headerResolver.addHandler (new TimeStampHandler());

/:’:

* Add the UserCredentialHandler. arg[1l] is the username; arg[2] is the password.
*/

UserCredentialHandler ucHandler = new UserCredentialHandler(args[1],args[2]);
headerResolver.addHandler (ucHandler);

/:’:
* Add the message signature handler (WsSecurityUserCertificateSignatureHandler);
* The client is responsible for supplying the private key and certificate.
:’:/
SSOHeaderHandler ssoHandler =
new WsSecurityUserCertificateSignatureHandler(privateKey, userCert);
headerResolver.addHandler (ssoHandler);

/7“:

* Add the token extraction handler (SamlTokenExtractionHandler).

%/

SamlTokenExtractionHandler sbHandler = new SamlTokenExtractionHandler;
headerResolver.addHandler (sbHandler);

/7“:
* Set the handlerResolver for the STSService to the HeaderHandlerResolver created above.
3'(/

stsService.setHandlerResolver(headerResolver);

VMware, Inc. 37

VMware Storage Policy SDK Programming Guide

Sending a Request for a Security Token

38

After setting up the SOAP header handlers, the example creates a token request and calls the issue method.

The following sequence shows the operations and corresponding Java elements.

5 Retrieve the STS service port (STSService). The service port

provides access to the vCenter Single Sign-On client API methods.
The vCenter Single Sign-On handler resolver must be associated

STSService_Service }7

with the STS service before you retrieve the service port. See “Using
Handler Methods for SOAP Headers” on page 36.

6 Create a token request (RequestSecurityTokenType). Your
vCenter Single Sign-On client will pass the token request to the

STSService

Issue method. The Issue method will send the token request in RequestSecurityTokenType

the body of the SOAP message. This example sets the token request
fields as appropriate for a holder-of-key token request.

7 Set the token request fields.

m lifetime — Creation and expiration times.
B token type — urn:oasis:names:tc:SAML:2.0:assertion

® request type — tokenType
http://docs.oasis-open.org/ws-sx/ws-trust/200512/Issue requestType

B key type - lifetime
http://docs.oasis-open.org/ws-sx/ws-trust/200512/PublicKey keyType

(for holder-of-key token type)
B signature algorithm —

http://www.w3.0rg/2001/04/xmldsig-more#rsa-sha256 renewing

RequestSecurityTokenType

signatureAlgorithm

® renewable status

8 Set the endpoint address for the token request.

STSService if Request Context

9 Call the Issue method.

STSService

Issue(RequestSecurityTokenType)

10 Handle the response from the vCenter Single Sign-On Server.

RequestSecurityTokenResponseType

The following example shows Java code that performs these operations.

Example A-2. Acquiring a vCenter Single Sign-On Token — Sending the Request

/:’:

* Retrieve the STSServicePort from the STSService_Service object.
*/

STSService stsPort = stsService.getSTSServicePort();

/%

* Create a token request object.

3':/

RequestSecurityTokenType tokenType = new RequestSecurityTokenType();
/3’:

* Create a LifetimeType object.

:’:/

LifetimeType lifetime = new LifetimeType(Q);

/:’:
* Derive the token creation date and time.
* Use a GregorianCalendar to establish the current time,

VMware, Inc.

Chapter A vCenter Single Sign-On Client Example

* then use a DatatypeFactory to map the time data to XML.

*/

DatatypeFactory dtFactory = DatatypeFactory.newInstance();
GregorianCalendar cal = new GregorianCalendar(TimeZone.getTimeZone("GMT"));
XMLGregorianCalendar xmlCalendar = dtFactory.newXMLGregorianCalendar(cal);
AttributedDateTime created = new AttributedDateTime();
created.setValue(xmlCalendar.toXMLFormat());

/%
* Specify a time interval for token expiration (specified in milliseconds).
*/

AttributedDateTime expires = new AttributedDateTime();

xmlCalendar.add(dtFactory.newDuration(30 * 60 * 1000));

expires.setValue(xmlCalendar.toXMLFormat());

/:’:

* Set the created and expires fields in the lifetime object.
*/

lifetime.setCreated(created);

lifetime.setExpires(expires);

/:’:
* Set the token request fields.

%/

tokenType.setTokenType("urn:oasis:names:tc:SAML:2.0:assertion");
tokenType.setRequestType("http://docs.oasis-open.org/ws-sx/ws—trust/200512/Issue");
tokenType.setLifetime(lifetime);
tokenType.setKeyType("http://docs.oasis-open.org/ws—-sx/ws—-trust/200512/PublicKey");
tokenType.setSignatureAlgorithm("http://www.w3.0rg/2001/04/xmldsig-more#rsa-sha256");

/:’:

* Specify a token that can be renewed.

*/

RenewingType renewing = new RenewingType();
renewing.setAllow(Boolean.TRUE);

renewing.setOK(Boolean.FALSE); // WS-Trust Profile: MUST be set to false
tokenType.setRenewing(renewing);

/* Get the request context and set the endpoint address. */
Map<String, Object> reqContext = ((BindingProvider) stsPort).getRequestContext();
regqContext.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY, args([0]);

/7“:
* Use the STS port to invoke the "issue" method to acquire the token
* from the vCenter Single Sign-On Server.
%/

RequestSecurityTokenResponseCollectionType issueResponse = stsPort.issue(tokenType);

/7“:

* Handle the response - extract the SAML token from the response. The response type

* contains the token type (SAML token type urn:oasis:names:tc:SAML:2.0:assertion).

%/

RequestSecurityTokenResponseType rstResponse = issueResponse.getRequestSecurityTokenResponse();
RequestedSecurityTokenType requestedSecurityToken = rstResponse.getRequestedSecurityToken();

/:’:
* Extract the SAML token from the RequestedSecurityTokenType object.
* The generic token type (Element) corresponds to the type required
* for the SAML token handler that supports the call to LoginByToken.
3'(/

Element token = requestedSecurityToken.getAny(Q);

VMware, Inc. 39

VMware Storage Policy SDK Programming Guide

40 VMware, Inc.

Chapter B vCenter LoginByToken Example

vCenter LoginByToken Example

This chapter describes a Java example of using the LoginByToken method.
B “vCenter Server Single Sign-On Session” on page 41

B “Saving the vCenter Server Session Cookie” on page 43

B “Using LoginByToken” on page 44

B “Restoring the vCenter Server Session Cookie” on page 45

vCenter Server Single Sign-On Session

After you obtain a SAML token from the vCenter Single Sign-On Server, you can use the vSphere API method
LoginByToken to establish a single sign-on session with a vCenter Server. See “vCenter Single Sign-On Client
Example” on page 35 for an example of obtaining a vCenter Single Sign-On token.

At the beginning of a vCenter Single Sign-On session, your client is responsible for the following tasks:

B Maintain the vCenter session cookie. The vSphere architecture uses an HTTP cookie to support a
persistent connection between a vSphere client and a vCenter Server. During the initial connection, the
Server produces a session cookie. Operations during the login sequence will reset the request context so
your client must save this cookie and re-introduce it at the appropriate times.

B Insert the vCenter Single Sign-On token and a timestamp into the SOAP header of the LoginByToken
message.

The example program uses these general steps:

1 CalltheRetrieveServiceContent method to establish an HTTP connection with the vCenter Server and
save the HTTP session cookie. The client uses an HITP header handler method to extract the cookie from
the vCenter Server response.

2 Call the LoginByToken method to authenticate the vCenter session. To send the token to the vCenter
Server, the client uses a handler to embed the token and a time stamp in the SOAP header for the message.
To identify the session started with the RetrieveServiceContent method, the client uses a handler to
embed the session cookie in the HTTP header.

3 Restore the session cookie.

HTTP and SOAP Header Handlers

To use a vCenter Single Sign-On token to login to a vCenter Server, the example uses header handlers to
manipulates the HTTP and SOAP header elements of the login request. After establishing a handler,
subsequent requests automatically invoke the handler.

B Anextraction handler obtains the HTTP session cookie provided by the vCenter Server. After setting up
the handler, a call to the RetrieveServiceContent method will invoke the handler to extract the cookie
from the Server response.

VMware, Inc. 41

VMware Storage Policy SDK Programming Guide

42

B Insertion handlers put the vCenter Single Sign-On token and a timestamp into the SOAP header and the
session cookie into the HTTP header of the login request.

The following figure shows the use of handlers to manipulate header elements when establishing a vCenter
Single Sign-On session with a vCenter Server.

Figure B-1. Starting a vCenter Session

vCenter vCenter

client Server
RetrieveServiceContent() >
v extraction handler
session cookie
| insertion handler »| HTTP header:
LoginByToken() >
. - timestamp
timestamp nsertion handl >
insertion handier SOAP header: :
. vCenter Single
vCenter Single > Sign On token

Sign On token insertion handler

IMPORTANT Every call to the vCenter Server will invoke any message handlers that have been established.
The overhead involved in using the SOAP and HTTP message handlers is not necessary after the session has
been established. The example saves the default message handler before setting up the SOAP and HTTP
handlers. After establishing the session, the example will reset the handler chain and restore the default
handler.

The example code also uses multiple calls to the VimPortType.getVimPort method to manage the request
context. The getVimPort method clears the HTTP request context. After each call to the getVimPort method,
the client resets the request context endpoint address to the vCenter Server URL. After the client has obtained
the session cookie, it will restore the cookie in subsequent requests.

Sample Code

The code examples in the following sections show how to use the LoginByToken method with a holder-of-key
security token. The code examples are based on the sample code contained in the vCenter Single Sign-On SDK.
The files are located in the Java samples directory (SDK/ssoclient/java/JAXWS/samples):

® LoginByToken sample:
samples/com/vmware/vsphere/samples/LoginByTokenSample.java
m Header cookie handlers:

samples/com/vmware/vsphere/soaphandlers/HeaderCookieHandler. java
samples/com/vmware/vsphere/soaphandlers/HeaderCookieExtractionHandler.java

B SOAP header handlers. These are the same handlers that are used in “vCenter LoginByToken Example”
on page 41. The SOAP handler files are located in the vCenter Single Sign-On client soaphandlers
directory:

samples/com/vmware/sso/client/soaphandlers

VMware, Inc.

Chapter B vCenter LoginByToken Example

Saving the vCenter Server Session Cookie

The code fragment in this section establishes an HTTP session with the vCenter Server and saves the HTTP
session cookie.

The following sequence describes these steps and shows the corresponding objects and methods.

1 Use the getHandlerResolver method to
save the default message handler. To use the - -
HTTP and SOAP message handlers, you VimService.getHandlerResolver()
must first save the default message handler
so that you can restore it after login. The
HTTP and SOAP message handlers impose
overhead that is unneccessary after login.

2 Set the cookie handler. The
HeaderCookieExtractionHandler
method retrieves the HTTP cookie.

VimService

\—(HeaderHandler Resolver |

L HeaderCookieExtractionHandler

3 Get the VIM port. The VIM port provides
access to the vSphere API methods, VimService VimPortT
including the LoginByToken method. imrortiype

4 Set the request context endpoint address to
the vCenter Server URL.

VimService Request Context

5 Retrieve the ServiceContent. This method
estal.olishes tbe HTTP connection and sets the VimPortType
session cookie.

ServiceContent

6 Extract the cookie and save it for later use.

HeaderCookieExtractionHandler.getCookie ()

The following example shows Java code that saves the session cookie.

Example B-1. Saving the vCenter Server Session Cookie

The example uses a SAML token (obtained from a vCenter Single Sign-On Server)

* and the vCenter Server URL.

* The following declarations indicate the datatypes; the token datatype (Element) corresponds
to the token datatype returned by the vCenter Single Sign-On Server.

* Element token; —— from vCenter Single Sign-On Server
String vcServerUrl; -- identifies vCenter Server

* First, save the default message handler.

HandlerResolver defaultHandler = vimService.getHandlerResolver();

/:’:
* Create a VIM service object.
*/

vimService = new VimService(Q);

/7“:

* Construct a managed object reference for the Servicelnstance.

VMware, Inc. 43

VMware Storage Policy SDK Programming Guide

:’:/

ManagedObjectReference SVC_INST_REF = new ManagedObjectReference();

SVC_INST_REF.setType("Servicelnstance");

SVC_INST_REF.setValue("ServiceInstance");

/7“:

* Create a handler resolver.
* Create a cookie extraction handler and add it to the handler resolver.

* Set the VIM service handler resolver.

:’:/

HeaderCookieExtractionHandler cookieExtractor = new HeaderCookieExtractionHandler();

HeaderHandlerResolver handlerResolver = new HeaderHandlerResolver();
handlerResolver.addHandler (cookieExtractor);
vimService.setHandlerResolver(handlerResolver);

/:’:

* Get the VIM port for access to vSphere API methods. This call clears the request context.

*/

vimPort = vimService.getVimPort(Q);

/7“:

* Get the request context and set the connection endpoint.

*/

Map<String, Object> ctxt = ((BindingProvider) vimPort).getRequestContext();
ctxt.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY, vcServerUrl);
ctxt.put(BindingProvider.SESSION_MAINTAIN_PROPERTY, true);

/:’:

* Retrieve the ServiceContent. This call establishes the HTTP connection.

*/

serviceContent = vimPort.retrieveServiceContent(SVC_INST_REF);

/7“:

* Save the HTTP cookie.

3'(/

String cookie = cookieExtractor.getCookie();

Using LoginByToken

44

The code fragment in this section sets up the message handlers and calls the LoginByToken method. The

following sequence describes the steps and shows the corresponding objects and methods.

1

Create anew HeaderHandlerResolver.
Then set the message security handlers for
cookie insertion and for inserting the
SAML token and credentials in the SOAP
header.

Get the VIM port.

Set the connection endpoint in the HTTP
request context.

Call the LoginByToken method. The
method invocation executes the handlers
to insert the elements into the message
headers. The method authenticates the
session referenced by the session cookie.

HeaderHandler Resolver
— HeaderCookieHandler (session cookie)

— TimestampHandler

— SamlTokenHandler (SAML token)

— WsSecurityUserCertificateSignatureHandler (key, certificate, ID)

VimService VimPortType
VimService Request Context

VimPortType.LoginByToken ()

VMware, Inc.

Chapter B vCenter LoginByToken Example

The following examples shows Java code that calls the LoginByToken method.

Example B-2. Using LoginByToken
/:’:

* Create a handler resolver and add the handlers.
%/
HeaderHandlerResolver handlerResolver = new HeaderHandlerResolver();
handlerResolver.addHandler(new TimeStampHandler());
handlerResolver.addHandler(new SamlTokenHandler(token));
handlerResolver.addHandler(new HeaderCookieHandler(cookie));
handlerResolver.addHandler (new WsSecuritySignatureAssertionHandler(
userCert.getPrivateKey(Q),
userCert.getUserCert(),
Utils.getNodeProperty(token, "ID")));
vimService.setHandlerResolver(handlerResolver);

/%
:':/

vimPort = vimService.getVimPort(Q);

Get the Vim port; this call clears the request context.

/:’:

* Retrieve the request context and set the server URL.

*/

Map<String, Object> ctxt = ((BindingProvider) vimPort).getRequestContext();
ctxt.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY, vcServerUrl);
ctxt.put(BindingProvider.SESSION_MAINTAIN_PROPERTY, true);

/*
* Call LoginByToken.
:':/

UserSession us = vimPort.loginByToken(serviceContent.getSessionManager(), null);

Restoring the vCenter Server Session Cookie

After you log in, you must restore the standard vCenter session context. The code fragment in this section
restores the default message handler and the session cookie. As the cookie handler has been replaced by the
default handler, the client resets the session cookie by calling request context methods to access the context
fields directly. The following sequence describes these steps and shows the corresponding objects and
methods.

1 Restore the default message handler. The

handlers used for LoginByToken are not VimService.setHandlerResolver ()
used in subsequent calls to the vSphere
APL
2 Get the VIM port.
VimService VimPortType
3 Setthe connection endpoint in the HTTP
request context. VimService Request Context

4 Set the HTTP request header (vCenter
session cookie). RequestContext.get ()
RequestContext.put ()

The following example shows Java code that restores the vCenter session. This code requires the vCenter URL
and the cookie and default handler that were retrieved before login. See “Sample Code” on page 42.

VMware, Inc. 45

VMware Storage Policy SDK Programming Guide

48

Example B-3. Restoring the vCenter Server Session

/%

*/
vimService.setHandlerResolver(defaultHandler);
vimPort = vimService.getVimPort(Q);

/%

*/
// Set the validated session cookie and set it in the header for once,
// JAXWS will maintain that cookie for all the subsequent requests

Restore the connection endpoint in the request context.

Map<String, Object> ctxt = ((BindingProvider) vimPort).getRequestContext();
ctxt.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY, vcServerUrl);
ctxt.put(BindingProvider.SESSION_MAINTAIN_PROPERTY, true);

/:’:

* Reset the cookie in the request context.

*/
Map<String, List<String>> headers = (Map<String, List<String>>)

ctxt.get(MessageContext.HTTP_REQUEST_HEADERS) ;
if (headers == null) {
headers = new HashMap<String, List<String>>Q);

}

headers.put("Cookie", Arrays.asList(cookie));
ctxt.put(MessageContext.HTTP_REQUEST_HEADERS, headers);

Reset the default handler. This overwrites the existing handlers, effectively removing them.

VMware, Inc.

Index

Index

Symbols LoginByToken 41
vmdk file 7 JAX-WS
.vmx file 7 SDK

contents 10

A
SOAP header methods
access to methods 9 1
acquire a token example 36
Java example 35 L
C legacy storage profile 31

LoginByToken method
Java example 41

capabilities, storage 7, 17, 25
capability metadata 17

certificate M
X509 36 tadata 17
client SDK 10 metadata
. . retrieving 19
client-server connection
Storage Policy Server 13 P

vCenter Server 13, 41
VMware Single Sign-On server 35
create a storage profile 17, 26

PbmComplianceManager 9
PbmPlacementSolver 9
PbmPortType 8

E PbmProfileProfileManager 8, 9
PbmService 8

example PbmServicelnstanceContent 9
access to Storage Policy APl methods 8 erviceinstancet.onte
acquire a token (Java) 35 Q

create a storage profile 18, 26
create an individual storage requirement 18, 29
LoginByToken (Java) 41 R

queries, storage profile 9

requirements, storage 7, 17, 25
retrieving metadata 19

F
FileBackedVirtualDiskSpec 8

S
SDK
examples 10
SDK contents 10
SDK, VMware Storage Policy 10
server URLs 14
session cookie 42, 43, 45
| SOAP header methods
example 36
LoginByToken (Java) 41
SSO Server URL 14
J storage capabilities and requirements 7, 17, 25
storage policy managed objects
PbmComplianceManager 8
PbmPlacementSolver 8

H

holder-of-key token
example 35

HTTP header methods
Java example 45
LoginByToken (Java) 41

Issue method
Java example 35

Java
sample project
acquire token 35

VMware, Inc. 47

VMware Storage Policy SDK Programming Guide

PbmProfileProfileManager 8
storage policy operations 8
Storage Policy Server

connection 13

URL 14
storage policy tag 25
storage profile

creation 17, 26

legacy 31

queries 9

T
tag, storage policy 25
tag-based storage 7, 25
token
holder-of-key example 35
LoginByToken example (Java) 41

U

URLSs for SSO, vCenter, and Storage Policy
servers 14

\'

VASA

1.0 providers 31
2.0 providers 7
vCenter Server session 41
vCenter Server URL 14
virtual machine files 7
VirtualDeviceFileBackinginfo 8
VirtualMachineConfigSpec 8
VirtualMachineFileInfo 8
VMware Storage Policy
client SDK 10
VMware Storage Policy API
client methods 8
VMware Storage Policy SDK 10
VSAN 7,17
vSphere Web Client 25

w

Web Service access object 8

X
X509 certificate 36

48 VMware, Inc.

	VMware Storage Policy SDK Programming Guide
	Contents
	About This Book
	VMware Storage Policies
	Storage Capabilities
	Virtual Machine Storage
	Storage Profiles
	Storage Policy Operations
	Access to the VMware Storage Policy Server
	Storage Profile Queries
	VMware Storage Policy SDK
	VMware Storage Policy SDK Examples

	Storage Policy Server Connection
	Establish a Connection with the VMware Storage Policy Server
	Server URLs
	Establish the vCenter Session Connection for the Local Instance
	Create the Storage Policy Server Connection

	VSAN-Based Storage Profiles
	Create a VSAN Requirements Profile
	Create an Individual Storage Requirement
	Create a Storage Profile

	Virtual Machine Storage Profiles
	Retrieve an Existing Storage Profile from the Storage Policy Server
	Apply the Storage Profile to a Virtual Machine

	Tag-Based Storage Profiles
	Create a Tag-Based Storage Profile
	Retrieve Tag Metadata
	Create a Storage Profile

	Policy Rules
	Create a Stand-Alone Virtual Disk with an Attached Storage Encryption Policy

	Legacy Storage Profiles
	VASA 1.0 Storage Capability Upgrade
	vSphere Web Client User Label Conversion

	vCenter Single Sign-On Client Example
	vCenter Single Sign-On Token Request Overview
	Using Handler Methods for SOAP Headers
	Sending a Request for a Security Token

	vCenter LoginByToken Example
	vCenter Server Single Sign-On Session
	HTTP and SOAP Header Handlers
	Sample Code

	Saving the vCenter Server Session Cookie
	Using LoginByToken
	Restoring the vCenter Server Session Cookie

	Index

