Guest and HA Application Monitoring
Developer’s Guide

vSphere Guest SDK 9.0 and
vSphere HA Application Monitoring
for vSphere 5.5

This document supports the version of each product listed and
supports all subsequent versions until the documentis replaced
by a new edition. To check for more recent editions of this
document, see http://www.vmware.com/support/pubs.

EN-001156-00

vmware

http://www.vmware.com/support/pubs

Guest and HA Application Monitoring Developer’s Guide

You can find the most up-to-date technical documentation on the VMware Web site at:
http://www.vmware.com/support/

The VMware Web site also provides the latest product updates.

If you have comments about this documentation, submit your feedback to:

docfeedback@vmware.com

Copyright © 2005-2013 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and
intellectual property laws. VMware products are covered by one or more patents listed at
http://www.vmware.com/go/patents.

VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions. All other marks
and names mentioned herein may be trademarks of their respective companies.

VMware, Inc.

3401 Hillview Ave.
Palo Alto, CA 94304
www.vmware.com

2 VMware, Inc.

http://www.vmware.com/support/
http://www.vmware.com/support
mailto:docfeedback@vmware.com
http://www.vmware.com/go/patents
http://www.vmware.com/go/patents

Contents

About This Book 5

1 Installing the Development Kit 7

About the SDK Contents 7

Displaying vSphere Guest Library Statistics 7

Using the HA Application Monitoring SDK 8
Controlling the Application Monitoring Heartbeat 8
Compiling the Sample Program on Linux 8
Compiling Sample Programs on Windows 8
Demonstrating the HA Application Monitoring API 8

2 The Guest Programming API 9
Overview of the vSphere Guest API 9
Supported Guest Operating Systems 9
Virtual Machine Statistics 9
How to Use the vSphere Guest API 10
vSphere Guest API Runtime Components 10
Enabling and Disabling the Runtime Components 10
vSphere Guest API Data Types 11
vSphere Guest API Functions 11
Context Functions 11
Accessor Functions (Virtual Machine) 13
vSphere Guest API Error Codes 15

3 vSphere HA Application Monitoring 17
About vSphere HA 17
Prerequisites for HA Application Monitoring 18
Using the HA Application Monitoring APIs 18
HA Application Monitoring API Functions 19
Code Sample for appmon.cpp 20
Calling the APIs from Your Application 20

HA Application Monitoring API Error Messages 21

Index 23

VMware, Inc.

Guest and HA Application Monitoring Developer’s Guide

4 VMware, Inc.

About This Book

The Guest and HA Application Monitoring Developer’s Guide provides information about developing applications
using the VMware® Guest Application Programming Interface (API).

VMware provides several different software development kit (SDK) products, each of which targets different
developer communities and platforms. This guide is intended for developers who want to retrieve information
about the virtual machine and host hardware in which the application runs. The supported VMware platforms
include ESX/ESXi 4.0, ESX/ESXi 4.1, ESXi 5.0, ESXi 5.1, and ESXi 5.5.

Revision History

This book is revised with each release of the product or when necessary. A revised version can contain minor
or major changes. Table 1 summarizes the significant changes in each version of this book.

Table 1. Revision History

Revision Date Description

19 Sept 2013 Update for ESXi 5.5, with new VMGuestAppMonitor_PostAppState function.

17 May 2012 Added vSphere HA Application Monitoring, changed version number for VMware Tools 9.0.

24 Aug 2011 Added information about compatibility with vSphere 5.0.

13 Jul 2010 No new information, but revised to note support for VMware ESX 4.1.

7 May 2009 Revised manual for VMware ESX version 4.0.

29 Nov 2007 No new information, but revised to note support for VMware ESX 3.5 and ESX 3i version 3.5.

18 Jul 2005 Initial release of the VMware Guest SDK providing support for VMware ESX 3.0.

Intended Audience

This book is intended for developers of software for vSphere high availability (HA) application monitoring, or
for gathering statistics about guest operating systems.

VMware Technical Publications Glossary

VMware Technical Publications provides a glossary of terms that might be unfamiliar to you. For definitions
of terms as they are used in VMware technical documentation go to http://www.vmware.com/support/pubs.

Document Feedback

VMware welcomes your suggestions for improving our documentation. Send your feedback to
docfeedback@vmware.com.

VMware, Inc. 5

http://www.vmware.com/support/pubs
mailto:docfeedback@vmware.com
mailto:docfeedback@vmware.com

Guest and HA Application Monitoring Developer’s Guide

6 VMware, Inc.

Installing the Development Kit

Welcome to the VMware Guest and High Availability (HA) Application Monitoring software development kit.
This chapter covers the following topics:

® “About the SDK Contents” on page 7

® “Displaying vSphere Guest Library Statistics” on page 7

B “Using the HA Application Monitoring SDK” on page 8

About the SDK Contents

The Guest and HA Application Monitoring SDK is available as a tarball for Linux or a ZIP file for Windows.
Both have a similar directory structure, shown in Table 1-1, with minor differences for compilation.

Table 1-1. Components of the SDK

Directory or Folder

bin/bin32 or bin/win32
bin/bin64 or bin/win64

Explanation of Contents

Contains the vmware—appmonitor program, which controls the HA application
monitoring heartbeat from the command line.

docs/

Contains the Guest SDK terms and conditions, and text of related Open Source licenses.
Also contains sample code for HA application monitoring.

docs/VMGuestAppMonitor/
samples/C or
samples/visualstudio
samples/java

The samples/C subdirectory (or samples/visualstudio subfolder) contains the
sample.c (or appmon.cpp) program to demonstrate HA application monitoring APL
Follow instructions in the README file to compile with make or with Visual Studio.
The samples/java directory contains a Java native interface (JNI) implementation that
builds on the C implementation. Again, see the README file.

include/

Header files for include, basic types, the GuestAppMonitor library, the Guest library,
and session ID.

include/vmGuestLibTest.c

Sample C program to run all the Guest library functions and return statistics. On Linux,
use gcc to compile this program, and run it on an ESXi hosted virtual machine.

1ib/1ib32 or 1ib/win32
1ib/1ib64 or 1ib/win64

Shared objects or DLL files and libraries for the Guest library, the Guest library for Java,
and the HA application monitoring library.

vmGuestLibJava
vmGuestLibJava/doc

JAR file and standard Javadoc for a prepackaged Java implementation of the Guest APIL.
For a list of methods, browse index.html and see the VMGuestLibInterface page.

Displaying vSphere Guest Library Statistics

On a Linux virtual machine hosted by ESX/ESXi 3.5 or later, go to the include directory and compile the
vmGuestlLibTest.c program. Then run the output program vmguestlibtest.

gcc —g -o vmguestlibtest -1dl vmGuestLibTest.c

./vmguestlibtest

Guest statistics appear repeatedly until you interrupt the program.

VMware, Inc.

Guest and HA Application Monitoring Developer’s Guide

Using the HA Application Monitoring SDK

This section provides a short introduction to the HA Application Monitoring SDK. You need the information
in Chapter 3, “vSphere HA Application Monitoring,” on page 17 to proceed further.

SDK function definitions and simple documentation are in the vmGuestAppMonitorLib.h include file.

Controlling the Application Monitoring Heartbeat

To run HA application monitoring programs, the virtual machine’s host must be running ESX/ESXi 4.1 or later,
and application monitoring must have been enabled when configuring HA.

You can enable heartbeats with the precompiled vmware-appmonitor program. Usage is as follows:
vmware—appmonitor { enable | disable | markActive | isEnabled | getAppStatus }

B enable-Enable application heartbeat so vSphere HA starts listening and monitoring the heartbeat count
from this guest virtual machine. The heartbeats should be sent at least once every 30 seconds.

B disable - Disable the application heartbeat so vSphere HA stos listening to heartbeats from this guest.
® markActive — This starts senting the actual heartbeat every 30 seconds or less.

B isEnabled - Indicates whether the heartbeating was enabled.

B getAppStatus — Gets the status of the application, either Green, Red, or Gray.

On Linux, set your LD_LIBRARY_PATH environment to the install location of GuestSDK/1ib/1ib32 or 1ib64.
On Windows, you can set your PATH environment, but it is probably easier to copy vmware—appmonitor to
the same folder as the DLL files.

Compiling the Sample Program on Linux
You need a C compiler and the make program.
1 Go to the docs/VMGuestAppMonitor/samples/C directory.
2 Run the make command.
On a 64-bit machine you might want to change 11b32 to 1ib64 in the makefile.
3 Set LD_LIBRARY_PATH as described above.
4 Run the sample program. See below for program usage.

./sample

Compiling Sample Programs on Windows
You need Visual Studio 2008 or later.
1 Go to the docs/VMGuestAppMonitor/samples/visualstudio folder.
2 Open the appmon.vcproj file and build the solution.

3 Click Debug > Start Debugging to run appmon. exe. See below for program usage.

Demonstrating the HA Application Monitoring API

The sample program enables HA application monitoring and sends a heartbeat every 15 seconds. Once the
program is running, typing Ctrl+C displays three choices:

B s-—stop sending heartbeats and exit the program. This should cause a reset of the virtual machine.
B d-disable application monitoring and exit the program. This does not cause a reset.

B c - continue sending heartbeats.

8 VMware, Inc.

The Guest Programming API

The VMware Guest API provides functions that you can use in a program that runs in the guest operating
system environment on a VMware ESX/ESXi host. This guide includes the following topics:

B “Overview of the vSphere Guest API” on page 9
® “How to Use the vSphere Guest API” on page 10

Overview of the vSphere Guest API

The vSphere Guest API provides functions that management agents and other software can use to collect data
about the state and performance of a VMware virtual machine. The Guest API provides fast access to resource
management information, without the need for authentication.

The Guest API provides read-only access. You can read data using the API, but you cannot send control
commands. To issue control commands, use the vSphere Web Services SDK. For more information, see the
VMuware vSphere Web Services SDK Programming Guide and the VMuware vSphere API Reference, which are
available on the VMware developer support Web site.

The version number of this Guest API release is 9.0 to match the version number of VMware Tools.

Supported Guest Operating Systems

The vSphere Guest API software runs on most Windows or Linux guest operating systems supported by the
various versions of ESX and ESXi.

See the VMuware Compatibility Guide for a list of supported guest operating system versions. This guide is now
located at http://www.vmware.com/resources/compatibility in Web format.

The Guest API does not support the following guest operating system environments:

B Windows 95 and Windows 98.

® Windows NT 4.0. For Windows NT 4.0 you must use Guest SDK 3.5, which you can find by going to
http://www.vmware.com/support/developer/guest-sdk and selecting an old release.

Virtual Machine Statistics

With the Guest API, you can monitor various statistics about the virtual machine. You can use this information
to retrieve scheduling and resource usage information about the environment. With the help of these statistics,
a virtual machine can immediately react to changes in its virtual environment at the application layer.

The following list shows some of the information that you can retrieve through the vSphere Guest API:
B Amount of memory reserved for the virtual machine.
B Amount of memory being used by the virtual machine.

® Upper limit of memory available to the virtual machine.

VMware, Inc. 9

http://www.vmware.com/resources/compatibility/search.php?action=base&deviceCategory=software

Guest and HA Application Monitoring Developer’s Guide

B Number of memory shares assigned to the virtual machine.
B Maximum speed to which the virtual machine’s CPU is limited.

B Reserved rate at which the virtual machine is allowed to execute. An idling virtual machine might
consume CPU cycles at a much lower rate.

® Number of CPU shares assigned to the virtual machine.
®m Elapsed time since the virtual machine was last powered on or reset.

® CPU time consumed by a particular virtual machine. When combined with other measurements, you can
estimate how fast the virtual machine’s CPUs are running compared to the host CPUs.

IMPORTANT The API uses a handle that provides access to the statistics. The handle also is a mechanism to
determine whether the API can provide accurate information. (Certain events, such a migrating a virtual
machine with VMotion™, temporarily make it impossible to provide accurate information.)

How to Use the vSphere Guest API

10

The vSphere Guest API defines functions and data types that you use to extract virtual machine data. This
section covers the following topics:

B “vSphere Guest API Runtime Components” on page 10
® “vSphere Guest API Data Types ” on page 11
B “vSphere Guest API Functions” on page 11

® “vSphere Guest API Error Codes ” on page 15

vSphere Guest APl Runtime Components

To use the vSphere Guest API, the runtime components must be installed in the guest operating system. The
runtime components are dynamically loaded binary modules for 32-bit and 64-bit guests. When you install
VMware Tools, the vSphere Guest API runtime components are installed automatically. You can also
download them from http://www.vmware.com/download/sdk/guest_sdk.html.

To make the vSphere Guest API functions available to your program, use your program'’s standard methods
to load the library.

B In a Windows guest operating system, the library file is vmGuestLib.d11. The import library file is
vmGuestLib.1lib.

B In a Linux guest operating system, the library file is 1ibvmGuestLib. so.

IMPORTANT If you are using a Security-Enhanced Linux (SELinux) guest operating system, the security
policies might interfere with dynamic loading of 1ibvmGuestLib. so. Refer to documentation about SELinux
policy configuration.

The vSphere Guest SDK includes the test program vmGuestlibTest. c. If you are using a Windows
environment, you must rebuild the test program. The vmGuestLib.d11 library file is a non-Unicode DLL. In
Microsoft Visual Studio, build the test program vmGuestlibTest. c as a non-Unicode executable so that the
program can access the DLL at runtime.

Enabling and Disabling the Runtime Components

The vSphere Guest API runtime components are enabled by default (disable = “FALSE”). To disable the
runtime components, use the configuration editor in the vSphere Client to edit the configuration file for the
virtual machine. The virtual machine must be powered off before you can use the configuration editor.

1 In the vSphere Client window, right-click the virtual machine in the machine list.

2 In the drop-down menu, select Edit Settings.

VMware, Inc.

http://www.vmware.com/download/sdk/guest_sdk.html

Chapter 2 The Guest Programming API

In the Virtual Machine Properties window, click the Options tab.
In the list of “Advanced” settings, select General.

Click Configuration Parameters.

A O s W

In the Configuration Parameters window, add the following line or, if the file already contains the disable
configuration setting, set the value to TRUE:

isolation.tools.guestlibGetInfo.disable = "TRUE"

The default value for the disable setting is FALSE. The default setting enables the runtime components.
Reinstalling VMware Tools does not affect the disable setting. If you disable the vSphere Guest API and
then reinstall VMware Tools, the vSphere Guest API continues to be unavailable until you change the
guestlLibGetInfo.disable configuration setting to FALSE.

vSphere Guest API Data Types

The vSphere Guest API uses the data types listed in Table 1 to support access to virtual machine data.

Table 1. Data Types

Data Type Description
VMGuestLibHandle Reference to virtual machine data. VMGuestLibHandle is defined in vmGuestLib.h.
VMSessionID Unique identifier for a session. The session ID changes after a virtual machine is

migrated using VMotion, suspended and resumed, or reverted to a snapshot. Any of
these events is likely to render any information retrieved with this API invalid. You
can use the session ID to detect those events and react accordingly. For example, you
can refresh and reset any state that relies on the validity of previously retrieved
information.

Use VMGuestLib_GetSessionId to obtain a valid session ID. A session ID is
opaque. You cannot compare a virtual machine session ID with the session IDs from
any other virtual machines.You must always call VMGuestLib_GetSessionId after
calling VMGuestLib_UpdateInfo.

VMSessionID is defined in vmSessionId.h.

VMGuestLibError Status code that indicates success or failure. Each function returns a
VMGuestLibError code. For information about specific error codes, see “vSphere
Guest API Error Codes ” on page 15. VMGuestLibError is an enumerated type
defined in vmGuestLib.h.

vSphere Guest APl Functions

The vSphere Guest SDK contains the header file vmGuestLib.h. This file declares the functions and data types
that you use to call the vSphere Guest API. The following sections describe the vSphere Guest API functions:

® “Context Functions ” on page 11

B “Accessor Functions (Virtual Machine)” on page 13

Context Functions

The vSphere Guest API provides a set of functions that initialize and manipulate the context in which the
Guest API operates. Before your application can use the accessor functions to retrieve information about a
virtual machine, use the following functions to initialize the vSphere Guest API environment.

1 Call the VMGuestLib_OpenHandle function to obtain a handle for accessing information about the virtual
machine. The guest library handle is a parameter to every Guest API function.

2 Call the VMGuestLib_UpdateInfo function to update the information available through the handle.

3 Call the VMGuestLib_GetSessionId function to retrieve a session ID.

VMware, Inc. 11

Guest and HA Application Monitoring Developer’s Guide

Example 1 shows a C code fragment that illustrates the function calls for initialization. (The code fragments in
this section do not perform error handling. For information about error handling, see “vSphere Guest API
Error Codes ” on page 15.)

Example 1. Initializing the vSphere Guest API Environment

VMGuestLibHandle glHandle;

VMGuestLibError glError;

VMSessionId sid = 0;

glError = VMGuestLib_OpenHandle(&glHandle);
glError = VMGuestLib_UpdateInfo(glHandle);

glError = VMGuestLib_GetSessionId(glHandle, &sid);

You can use the session ID to detect changes that invalidate previously retrieved data. Example 2 shows a code
fragment that illustrates how to use the session ID to detect stale data. (The ResetStats function in the
following fragment represents application code to handle the session change.)

Example 2. Detecting Stale Data

VMGuestLibHandle glHandle;
VMGuestLibError glError;
VMSessionId oldSid;
VMSessionId newSid;

/* [...code here would access data based on an existing, valid session ID (oldSid)...] */

/* Update the library, get the session ID, and compare it to the previous session ID */
glError VMGuestLib_UpdateInfo(glHandle);
glError = GuestlLib_GetSessionId(glHandle, &newSid);
if (oldSid != newSid) {
ResetStats();
oldSid = newSid;

Table 2 lists the context functions for creating and releasing handles, updating information, and obtaining
session IDs.

Table 2. Open, Close, and Update Functions

Function Description

VMGuestLib_OpenHandle Gets a handle for use with other vSphere Guest API functions. The guest library
handle provides a context for accessing information about the virtual machine.
Virtual machine statistics and state data are associated with a particular guest library
handle, so using one handle does not affect the data associated with another handle.

VMGuestLib_CloseHandle Releases a handle acquired with VMGuestLib_OpenHandle.
VMGuestLib_UpdateInfo Updates information about the virtual machine. This information is associated with
the VMGuestLibHandle.

VMGuestLib_UpdateInfo requires similar CPU resources to a system call and
therefore can affect performance. If you are concerned about performance, minimize
the number of calls to VMGuestLib_UpdateInfo.

If your program uses multiple threads, each thread must use a different handle.
Otherwise, you must implement a locking scheme around update calls. The vSphere
Guest API does not implement internal locking around access with a handle.

VMGuestLib_GetSessionId Retrieves the VMSessionID for the current session. Call this function after calling
VMGuestLib_UpdateInfo. If VMGuestLib_UpdateInfo has never been called,
VMGuestLib_GetSessionId returns VVGUESTLIB_ERROR_NO_INFO.

12 VMware, Inc.

Chapter 2 The Guest Programming API

Accessor Functions (Virtual Machine)

Accessor functions retrieve information about a virtual machine. When you call an accessor function, you pass

a guest library handle (type VMGuestLibHandle) to the function. If the function is successful, it returns the

requested data as an output parameter. The function return value is an error code (type VMGuestLibError)
that indicates success or failure. Example 3 shows a C code fragment that illustrates an example of calling
VMGuestLib_GetCpuLimitMHz to retrieve the processor limit available to the virtual machine.

Example 3. Using an Accessor Function

uint32 cpuLimitMHz = 0;

glError = VMGuestLib_GetCpuLimitMHz(glHandle, &cpulLimitMHz);

When a call completes successfully, the function returns the value VMGUESTLIB_ERROR_SUCCESS. Unsuccessful
calls return error codes that contain an appropriate description as part of the error code name. For details, see
“vSphere Guest API Error Codes ” on page 15.

Call VMGuestLib_UpdateInfo once to refresh all statistics before calling an accessor function or a series of

accessor functions.

Table 3. Accessor Functions for Virtual Machine Data

Function

Description

VMGuestLib_GetCpulLimitMHz

Retrieves the upper limit of processor use in MHz available to the virtual
machine. For information about setting the CPU limit, see “Limits and
Reservations” on page 14.

VMGuestLib_GetCpuReservationMHz

Retrieves the minimum processing power in MHz reserved for the virtual
machine. For information about setting a CPU reservation, see “Limits and
Reservations” on page 14.

VMGuestLib_GetCpuShares

Retrieves the number of CPU shares allocated to the virtual machine. For
information about how an ESX server uses CPU shares to manage virtual
machine priority, see the vSphere Resource Management Guide.

VMGuestLib_GetCpuStolenMs

Retrieves the number of milliseconds that the virtual machine was in a

ready state (able to transition to a run state), but was not scheduled to run.

VMGuestLib_GetCpuUsedMs

Retrieves the number of milliseconds during which the virtual machine
has used the CPU. This value includes the time used by the guest
operating system and the time used by virtualization code for tasks for this
virtual machine. You can combine this value with the elapsed time
(VMGuestLib_GetElapsedMs) to estimate the effective virtual machine
CPU speed. This value is a subset of elapsedMs.

VMGuestLib_GetElapsedMs

Retrieves the number of milliseconds that have passed in the virtual
machine since it last started running on the server. The count of elapsed
time restarts each time the virtual machine is powered on, resumed, or
migrated using VMotion. This value counts milliseconds, regardless of
whether the virtual machine is using processing power during that time.
You can combine this value with the CPU time used by the virtual machine
(VMGuestLib_GetCpuUsedMs) to estimate the effective virtual machine
CPU speed. cpuUsedMS is a subset of this value.

VMGuestLib_GetHostProcessorSpeed

Retrieves the speed of the ESX system’s physical CPU in MHz.

VMGuestLib_GetMemActiveMB

Retrieves the amount of memory the virtual machine is actively using —its
estimated working set size.

VMGuestLib_GetMemBalloonedMB

Retrieves the amount of memory that has been reclaimed from this virtual
machine by the vSphere memory balloon driver (also referred to as the
“vmmemctl” driver).

VMGuestLib_GetMemLimitMB

Retrieves the upper limit of memory that is available to the virtual
machine. For information about setting a memory limit, see “Limits and
Reservations” on page 14.

VMGuestLib_GetMemMappedMB

Retrieves the amount of memory that is allocated to the virtual machine.
Memory that is ballooned, swapped, or has never been accessed is
excluded.

VMware, Inc.

13

Guest and HA Application Monitoring Developer’s Guide

Table 3. Accessor Functions for Virtual Machine Data (Continued)

VMGuestLib_GetMemOverheadMB

Retrieves the amount of “overhead” memory associated with this virtual
machine that is currently consumed on the host system. Overhead
memory is additional memory that is reserved for data structures required
by the virtualization layer.

VMGuestLib_GetMemReservationMB

Retrieves the minimum amount of memory that is reserved for the virtual
machine. For information about setting a memory reservation, see “Limits
and Reservations” on page 14.

VMGuestLib_GetMemSharedMB

Retrieves the amount of physical memory associated with this virtual
machine that is copy-on-write (COW) shared on the host.

VMGuestLib_GetMemSharedSavedMB

Retrieves the estimated amount of physical memory on the host saved
from copy-on-write (COW) shared guest physical memory.

VMGuestLib_GetMemShares

Retrieves the number of memory shares allocated to the virtual machine.
For information about how an ESX server uses memory shares to manage
virtual machine priority, see the vSphere Resource Management Guide.

VMGuestLib_GetMemSwappedMB

Retrieves the amount of memory that has been reclaimed from this virtual
machine by transparently swapping guest memory to disk.

VMGuestLib_GetMemTargetSizeMB

Retrieves the size of the target memory allocation for this virtual machine.

VMGuestLib_GetMemUsedMB

Retrieves the estimated amount of physical host memory currently
consumed for this virtual machine's physical memory.

VMGuestLib_GetResourcePoolPath

Retrieves the path name of the resource pool to which the virtual machine
belongs on the ESX system where it is running.
VMGuestLib_GetResourcePoolPath uses an additional parameter to
determine the size of the path name output string buffer.

VMGuestLibError VmGuestLib_GetResourcePoolPath(
VMGuestLibHandle handle,
size_t *bufferSize,
char *pathBuffer);

handle is an input parameter specifying the guest library handle.
bufferSize is an input/output parameter. It is a pointer to the size of the
pathBuffer in bytes. If bufferSize is not large enough to accomodate the
path (including a NULL terminator), the function returns
VMGUESTLIB_ERROR_BUFFER_TOO_SMALL. In this case, the function
uses the bufferSize parameter to return the number of bytes required for
the string.

pathBuffer is an output parameter. It is a pointer to a buffer that receives
the resource pool path string. The path string is NULL-terminated.

For information about using resource pools, see the vSphere Resource
Management Guide.

For more information about ESX resource management, see the vSphere Resource Management Guide, available

on the VMware Web site.

Limits and Reservations

You use the Guest API to retrieve information about limits and reservations for CPU and memory. To set limits
and reservations, you can use either the vSphere Client or the vSphere API. Setting limits and reservations on
a virtual machine ensures that resources are available to that machine and to other virtual machines that draw
resources from the same resource pool.

To use the vSphere Client to set limits or reservations:
1 In the vSphere Client window, click on the Resource Allocation tab.
2 Ineither the CPU or Memory section, click Edit.

3 In the Virtual Machine Properties Window, click on the Resources tab.

14 VMware, Inc.

Chapter 2 The Guest Programming API

4 Select either the CPU or Memory setting.
5 Use the slider controls to set limits or reservations.
For more information, see the help for the vSphere Client.

To use the vSphere API to set limits or reservations, call the ReconfigVM_Task method. In the method call,
use the VirtualMachineConfigSpec data object to set the cpuAllocation or memoryAllocation property.
These properties are of type ResourceAllocationInfo type, which has limit and reservation properties. For
more information, see the VMware vSphere API Reference Documentation.

vSphere Guest API Error Codes

Each vSphere Guest API function returns an error code. If successful, the returned error code is
VMGUESTLIB_ERROR_SUCCESS. If the function is unable to complete its task, the error code provides information for
diagnosing the problem.

Use the VMGuestLib_GetErrorText function to retrieve the error text associated with a particular error code.
When you call the function, pass the error code to the function; VMGuestLib_GetErrorText returns a pointer
to a string containing the error text.

Example 4 shows error handling. The C code fragment declares a guest library handle and calls the function
VMGuestLib_OpenHandle. If the call is not successful, the code calls VMGuestLib_GetErrorText and
displays the error text.

Example 4. Error Handling

VMGuestLibHandle glHandle;
glError = VMGuestLib_OpenHandle(&glHandle);
if (glError != VMGUESTLIB_ERROR_SUCCESS) {
printf("OpenHandle failed: %s\n", VMGuestLib_GetErrorText(glError));
}

Table 4 lists all error codes defined for the vSphere Guest API.

Table 4. Error Codes

Error Code

Description

VMGUESTLIB_ERROR_SUCCESS

The function has completed successfully.

VMGUESTLIB_ERROR_OTHER

An error has occurred. No additional information about the type of
error is available.

VMGUESTLIB_ERROR_NOT_RUNNING_IN_VM

The program making this call is not running on a VMware virtual
machine.

VMGUESTLIB_ERROR_NOT_ENABLED

The vSphere Guest API is not enabled on this host, so these functions
cannot be used. For information about how to enable the library, see
“Context Functions ” on page 11.

VMGUESTLIB_ERROR_NOT_AVAILABLE

The information requested is not available on this host.

VMGUESTLIB_ERROR_NO_INFO

The handle data structure does not contain any information. You must
call VMMGuestLib_UpdateInfo to update the data structure.

VMGUESTLIB_ERROR_MEMORY

There is not enough memory available to complete the call.

VMGUESTLIB_ERROR_BUFFER_TOO_SMALL

The buffer is too small to accommodate the function call. For example,
when you call VMGuestLib_GetResourcePoolPath, if the path buffer
is too small for the resulting resource pool path, the function returns
this error. To resolve this error, allocate a larger buffer.

VMGUESTLIB_ERROR_INVALID_HANDLE

The handle that you used is invalid. Make sure that you have the correct
handle and that it is open. It might be necessary to create a new handle
using VMGuestLib_OpenHandle.

VMGUESTLIB_ERROR_INVALID_ARG

One or more of the arguments passed to the function were invalid.

VMGUESTLIB_ERROR_UNSUPPORTED_VERSION

The host does not support the requested statistic.

VMware, Inc.

15

Guest and HA Application Monitoring Developer’s Guide

16 VMware, Inc.

vSphere HA Application Monitoring

This chapter discusses the vSphere High Availability (HA) Application Monitoring and the following topics:
® “About vSphere HA” on page 17

B “Prerequisites for HA Application Monitoring” on page 18

® “Using the HA Application Monitoring APIs” on page 18

® “HA Application Monitoring API Error Messages” on page 21

About vSphere HA

The vSphere High Availability (HA) feature for ESXi hosts in a cluster provides protection for a guest OS and
its applications, by restarting the virtual machine if a guest OS or application failure occurs. The HA feature
provides this reset capability through two different mechanisms:

1 VM Monitoring — Guest OS heartbeats issued by the VMware Tools process.

2 Application Monitoring — Heartbeats issued by a program that uses the HA Application Monitoring SDK
to communicate with the VMware Tools process and the vSphere HA agent. This mechanism involves
local monitoring by the program to avoid the overhead of sending messages to and from vCenter Server.

Figure 3-1 depicts the monitoring and reset capability of host and virtual machine.

Figure 3-1. Heartbeat and Status Signals

VMware, Inc. 17

Guest and HA Application Monitoring Developer’s Guide

Additionally in vSphere 5.5 and later, the in-guest agent can set state to indicate it needs an immediate reset.
This can be done without enabling heartbeats. The HA Application monitoring facility can reset the guest OS
when ready to do so, if the in-guest agent has not changed state to say reset is no longer needed.

Using the HA Application Monitoring SDK, developers can write HA application monitoring programs in the
C or C++language. The HA Application Monitoring API is available with C language bindings only.

The application monitoring program sends an enable request to start the monitoring, possibly followed by a
heartbeat signal. The vSphere infrastructure passes the signal up from your HA application monitoring
program to the virtual machine, and then to the ESXi host. The HA application monitoring facility will reset
the virtual machine if the application monitoring program stops sending a heartbeat signal, or requests a reset.

For more information about vSphere HA and application monitoring, see the vSphere Availability guide in the
vSphere Documentation Center.

Prerequisites for HA Application Monitoring

Before you start working with the HA Application Monitoring SDK, make sure that your vSphere application
is running within a VMware cluster that has both the High Availability and VM and Application Monitoring
options enabled.

You must install VMware Tools on the virtual machines where your HA monitoring applications are running.

The vSphere Availability guide contains information about how to set up a high availability (HA) cluster, and
how to configure VM and Application Monitoring. VMware’s New Cluster Wizard allows you to choose from
three monitoring options:

B Disabled — Neither VM Monitoring nor Application Monitoring.

B VM Monitoring Only - If you choose this option, you will have the Guest OS monitoring discussed
previously (the first mechanism).

B VM and Application Monitoring — If you choose this option, you will also have the ability to employ
Application Monitoring and the HA Application Monitoring SDK (the second mechanism).

For information about Web services interfaces for HA, see the VMuware vSphere API Reference Guide, especially
data objects VirtualMachineRuntimeInfo and VirtualMachineRuntimeInfoDasProtectionState.

Using the HA Application Monitoring APIs

18

You can use the HA Application Monitoring SDK to create a stand-alone application monitoring program, or
to enhance an existing application or script. The purpose of your application monitoring program determines
the API call sequence and the application behavior that you write to handle the response data.

For example, if your application monitoring program is tracking critical applications that are running in a
guest OS, your application can intentionally stop sending heartbeat signals if any application-related process
fails. The HA monitoring agent interprets the absence of heartbeats as a failure, and resets the virtual machine.

Alternatively, instead of not sending heartbeat signals, your application monitoring program can set the
needReset flag using the VMGuestAppMonitor_PostAppState call. When the HA monitoring agent notices
this flag, it will reset the virtual machine.

Most of the calls you make using the HA Application Monitoring APIs send information one-way to the virtual
infrastructure of the ESXi host, and the host relays the information to the HA monitoring agent. However the
VMGuestAppMonitor_GetAppStatus call is a two-way transaction that lets you request the virtual machine
status from the HA monitoring agent.

Most HA Application Monitoring functions lack input parameters, because the calls are local. The vSphere
infrastructure passes the heartbeat and status data to and from other levels of the cluster.

Call each function from your application monitoring program. The vSphere infrastructure (in the virtual
machine where the application monitoring program is running) passes the function data up to the ESXi host.
The local virtual machine sends all status responses to your application monitoring program, even though
they are passed down from the HA monitoring agent.

VMware, Inc.

Chapter 3 vSphere HA Application Monitoring

HA Application Monitoring API Functions

The following calls are available to a vSphere HA application monitoring program:
Table 3-1. HA Application Monitoring API Calls

Data Type
Call Name Returned Description

VMGuestAppMonitor_Enable char Requests the virtual machine infrastructure to monitor the calling
application.
The virtual machine infrastructure returns a value of
VMGUESTAPPMONITORLIB_ERROR_SUCCESS, if monitoring
was enabled.

After your application monitoring program makes this call, your
program must call VMGuestAppMonitor_MarkActive() at least
once every 30 seconds or the virtual machine infrastructure will
change the virtual machine’s status to Red or Gray.

VMGuestAppMonitor_Disable int Requests the virtual machine infrastructure to stop monitoring the
calling program.
The virtual machine infrastructure returns a value of TRUE, if
monitoring was disabled.

VMGuestAppMonitor_IsEnabled int Returns the current recorded state of application monitoring.

The virtual machine infrastructure returns a value of TRUE, if
monitoring is enabled.

VMGuestAppMonitor_MarkActive char Sends a request to mark the program as active. This function is
also known as the heartbeat because your program must call it at
least once every 30 seconds while your application monitoring is
enabled, or the virtual machine infrastructure will determine that
the monitoring has failed.

VMGuestAppMonitor_PostAppState int Publish the application state that the guest OS wants delivered to
vSphere HA. The application should monitor its environment and
update its state accordingly. Heartbeat counting does not need to
be enabled as a pre-condition, so the enable() call is not
necessary. Returns 0 (zero) on success.

The single state parameter passed to this call can be either:

® OK-The guest's application agent declared state to be normal
and no action is required.

® needReset — The guest's application agent has requested an
immediate reset. The guest can request this at any time.

VMGuestAppMonitor_GetAppStatus char Returns the current status recorded by the virtual machine

infrastructure as ‘Green’, ‘Red’, or ‘Gray’.

® Green. Virtual machine infrastructure acknowledges that the
application is being monitored.

® Red. Virtual machine infrastructure does not think the
application is being monitored. The HA monitoring agent will
initialize an asynchronous reset on the virtual machine if the
status is Red.

®m Gray. Application should send VMGuestAppMonitor_Enable
again, followed by VMGuestAppMonitor_MarkActive,
because either application monitoring failed, or the virtual
machine was vMotioned to a different location.

Use the VMGuestAppMonitor_Free function to free the result.

If this call returns a nonerror result that you did not anticipate, it

may mean that another program in the same virtual machine has

called VMGuestAppMonitor_Disable or

VMGuestAppMonitor_Enable. If your application is still running,

call VMGuestAppMonitor_Enable again, followed by calls to

VMGuestAppMonitor_MarkActive.

VMGuestAppMonitor_Free char Returns a pointer to the memory to be freed.

VMware, Inc. 19

Guest and HA Application Monitoring Developer’s Guide

20

Code Sample for appmon.cpp

The HA Application Monitoring SDK includes a code sample called appmon . cpp. The sample is located in the
docs/samples directory and defines the entry point for the console application. The appmon . cpp program
includes interface code that your application monitoring program can send after receiving results from calls
to VMGuestAppMonitor_Enable, VMGuestAppMonitor_MarkActive, and VMGuestAppMonitor_Disable.

Calling the APIs from Your Application

The following steps provide a possible API sequence of calls:

1
2

Include vmGuestAppMonitorLib.h in the declarations for your C program.

To start the monitoring, notify the virtual machine that you are going to start sending a heartbeat signal
by calling VMGuestAppMonitor_Enable.

After you have called VMGuestAppMonitor_Enable, call VMGuestAppMonitor_MarkActive every 30
seconds or your virtual machine will be reset.

Send VMGuestAppMonitor_IsEnabled to make sure the virtual machine infrastructure received your
requests correctly and has begun monitoring.

Periodically, call VMGuestAppMonitor_GetAppStatus to make sure the vSphere infrastructure is still
receiving the heartbeat calls.

The status will be returned as Green, Red, or Gray. See “HA Application Monitoring API Calls,” for a
description of each status value. Figure 3-1 shows a possible coding flow for the GetAppStatus call.

Figure 3-2. Coding Flow for VMGuestAppMonitor_GetAppStatus

> Call
VMGuestAppMonitor_GetAppStatus

Continue sending
VMGuestAppMeoenitor_MarkaActive every 30
seconds.

Return
a
Value of
Green?

Does
GetAppStatus
Return

CallVvMGuestAppMonitor_Enable and begin
sending VMGuestAppMonitor_Markactive
Yes again, because either the virtual machine did
not get reset, or the HA App Monitor has not
been enabled for this cluster. Inmost cases, the
vSphere HA agent will reset the virtual machine,
soyou will not receive the ‘Red’ value.

J

Call VM GuestAppMoenitor_Enable and begin
sending VMGuestAppMonitor_MarkActive
again, because either the monitering failed or
the VM was viviotioned.

Return
a
Value of
Gray?

No

After you call VMGuestAppMonitor_GetAppStatus, call the VMGuestAppMonitor_Free function to free
the memory that was used to store the status.

If your application does not free the memory, it can use a large amount of storage very quickly, because a
new status is created every 30 seconds, when VMGuestAppMonitor_MarkActive is called.

Call VMGuestAppMonitor_Disable when you want the agent to stop monitoring.

VMware, Inc.

Chapter 3 vSphere HA Application Monitoring

HA Application Monitoring APl Error Messages

The vSphere infrastructure can return errors in Table 3-2 as a result of HA Application Monitoring calls.

Table 3-2. HA Application Monitoring Error Codes

Data
Error Message Type Code Description
VMGUESTAPPMONITORLIB_ERROR_SUCCESS int 0 Call completed successfully.
VMGUESTAPPMONITORLIB_ERROR_OTHER char Unknown error.

VMGUESTAPPMONITORLIB_ERROR_NOT_RUNNING_IN_VM char

Calling application is not running within a
virtual machine.

VMGUESTAPPMONITORLIB_ERROR_NOT_ENABLED char

Monitoring is not enabled.

VMGUESTAPPMONITORLIB_ERROR_NOT_SUPPORTED char

Monitoring is not supported.

VMware, Inc.

21

Guest and HA Application Monitoring Developer’s Guide

22 VMware, Inc.

Index

Numerics
32-bit guest support 10
64-bit guest support 10

A

accessor functions 13

C

call sequence for HA 20

code sample for HA application monitoring 20
configuration file for virtual machine 10
context functions 11

D
data types 11
disabling the vSphere Guest APl 10

E
enabling the vSphere Guest APl 10
error messages 21

H

handle 11, 13

heartbeat for guest and applications 17
high availability (HA), about 17

how to use the vSphere Guest API 10

L
libvmGuestLib.so 10
Linux guest operating system 9

N
non-Unicode DLL (Windows) 10

O

overview of the vSphere Guest API 9

R

refreshing all statistics 13
runtime components 10

S

sequence of HA calls 20
session ID 11
supported guest operating systems 9

VMware, Inc.

T

test program vmGuestlibTest.c 10

\%

virtual machine statistics 9
VMGuestAppMonitor_Disable 19
VMGuestAppMonitor_Enable 19
VMGuestAppMonitor_Free 19
VMGuestAppMonitor_GetAppStatus 19
VMGuestAppMonitor_IsEnabled 19
VMGuestAppMonitor_MarkActive 19
VMGuestAppMonitor_PostAppState 19
vmGuestLib.h 11

vmGuestLib.lib 10
VMGuestLib_CloseHandle 12
VMGuestLib_GetCpuLimitMHz 13
VMGuestLib_GetCpuReservationMHz 13
VMGuestLib_GetCpuShares 13
VMGuestLib_GetCpuStolenMs 13
VMGuestLib_GetCpuUsedMs 13
VMGuestLib_GetElapsedMs 13
VMGuestLib_GetHostProcessorSpeed 13
VMGuestLib_GetMemActiveMB 13
VMGuestLib_GetMemBalloonedMB 13
VMGuestLib_GetMemLimitMB 13
VMGuestLib_GetMemMappedMB 13
VMGuestLib_GetMemOverheadMB 14
VMGuestLib_GetMemReservationMB 14
VMGuestLib_GetMemSharedMB 14
VMGuestLib_GetMemSharedSavedMB 14
VMGuestLib_GetMemShares 14
VMGuestLib_GetMemSwappedMB 14
VMGuestLib_GetMemUsedMB 14
VMGuestLib_GetResourcePoolPath 14
VMGuestLib_GetSessionld 12
VMGuestLib_OpenHandle 12
VMGuestLib_Updatelnfo 12
VMGuestLibError 11
VMGuestLibHandle 11
VMGuestLibSessionID 11

vSphere Guest API runtime components 10

w

Windows guest operating system 9

23

Guest and HA Application Monitoring Developer’s Guide

24 VMware, Inc.

	Guest and HA Application Monitoring Developer’s Guide
	Contents
	About This Book
	Installing the Development Kit
	About the SDK Contents
	Displaying vSphere Guest Library Statistics
	Using the HA Application Monitoring SDK
	Controlling the Application Monitoring Heartbeat
	Compiling the Sample Program on Linux
	Compiling Sample Programs on Windows
	Demonstrating the HA Application Monitoring API

	The Guest Programming API
	Overview of the vSphere Guest API
	Supported Guest Operating Systems
	Virtual Machine Statistics

	How to Use the vSphere Guest API
	vSphere Guest API Runtime Components
	Enabling and Disabling the Runtime Components

	vSphere Guest API Data Types
	vSphere Guest API Functions
	Context Functions
	Accessor Functions (Virtual Machine)

	vSphere Guest API Error Codes

	vSphere HA Application Monitoring
	About vSphere HA
	Prerequisites for HA Application Monitoring
	Using the HA Application Monitoring APIs
	HA Application Monitoring API Functions
	Code Sample for appmon.cpp
	Calling the APIs from Your Application

	HA Application Monitoring API Error Messages

	Index

