VRealize Orchestrator Plug-In
Development Guide

Development Guide
Version 7.x

TECHNICAL WHITE PAPER
DECEMBER 2016

VERSION 1.0



vRealize Orchestrator Plug-In Development Guide

Table of Contents

INEFOAUCTION ...ttt et sb et besaesne e 4
Basic PIUZ-IN CONCEPLS .....c.eevueriirieierieeesie ettt st s se e sneenesre e 4
CRECKPOINMEINE. ...ttt ettt ettt s b et bt et bt e a e e s bt eat et e s bt et e sbeene e besaeenes 4
FINARIS .ttt e e e 5
Developing Plug-Ins with Model-DITVEN.......cccevireeriinieieriieiesesieee ettt 5
Creating an Integration With RediS..........ceoiiiiiiiiniiiiiieieceeeeee e 5
Create the Skeleton of the PIug-In...........coooiiiiiiiniiiieee e 6
FIle SEIUCTUTE ..ot 9
Deploy the PIUG-IN ....cocoiiiiiiiiice e e 12
Modify the Plug-In Descriptor File .......cccoivviiiniiiiiiiiicecce e 13
Create @ SCIIPUNG ODJECT...ecuuiriieiiieieertierte st et et et e st e stestessbeesbeesseesbeesaeesseeseesseesseesasesas 14
Add Endpoint ConfigUuration ..........oeeeeverirnenineenineeeeneseeee et 17
Create @ WOTKEIOW ....ooviiuiiiiiiciiicc e s 32
EXPOTt the CONLENL....cccuiiiieiiieiieieereerte sttt ettt et e sttt e be e beesbeesbeesaeesaseeseesbeesanesanesas 34
Adding INVentory ODJECES ....cc.oviiiuiriirieiiiiriene et 35
WIAD the CLENL....ceiiiiiiiiiiicie et 40
Additional Relations.........cccciiiiiiiiiiiiiiiiiiiiiic 44

TECHNICAL WHITEPAPER /2



vRealize Orchestrator Plug-In Development Guide

Revision History

Dec 2016 1.0 Initial version

TECHNICAL WHITEPAPER /3



vRealize Orchestrator Plug-In Development Guide

Introduction

This document describes the steps to build plug-ins for vRealize Orchestrator 7.x by using the model-driven framework.

Basic Plug-In Concepts

Plug-ins in Orchestrator rely on a few key features:
Checkpointing

The checkpointing feature makes it possible for Orchestrator to store the state of a running workflow and resume the
workflow run from where it stopped. Checkpointing occurs every time a workflow completes a step and switches to the
next element.

FIGURE 1 SHOWS A SAMPLE OF A WORKFLOW RUN.

List path in guest process error

The sample workflow first invokes another workflow — List path in guest, and then calls the set result scripting
element. When the workflow run switches from the List path in guest workflow to the scripting element, the engine
creates a checkpoint by storing all input and output parameters, and attributes.

The sample workflow verifies if a folder exists in the file system of a specified virtual machine.

FIGURE 2 SHOWS THE INPUT PARAMETERS OF THE SAMPLE WORKFLOW.

General ‘ Inputs | Outputs | Schema Presentation Parameters References Workflow Tokens Events Permissions

Parameters

t 1= xXxXDhB e

# | Name Type Description

= vimlUsername string Username for the virtual machine
= vmPassword Securestring Password for the virtual machine
= VM VC:VirtualMachine Virtual machine

s path string Path in virtual machine to check

This workflow includes four input parameters. Two of them are strings, one is a custom SDK object that derives from
the vRealize Orchestrator vCenter Server plug-in, and the fourth one is a secure string.

TECHNICAL WHITEPAPER /4



vRealize Orchestrator Plug-In Development Guide

During the sample workflow run, when the List path in guest workflow step is completed, the engine serializes the state
of the workflow, which is called token, and stores it in the Orchestrator database. When the workflow run passes to the
set result scripting element, the engine deserializes the token and tries to resume the parameters and attributes that
are associated with the workflow.

Parameter types are serialized in a different way. Serializing string types consists in storing and reading the value of the
string. However, VC:VirtualMachine is a scripting object that contains data and methods, so serializing and
deserializing it requires the use of a plug-in.

Scripting objects, whose serialization and deserialization involves using a plug-in, are known as SDK objects or finders.
Such finder objects are not serialized by value but rather by a reference.

The reference has two components — object type, for example VC:VirtualMachine and the ID of the object. The
engine delegates the deserialization of finder objects to a plug-in and invokes that plug-in by the prefix in the parameter
name. The engine strips the VC prefix from the VC:VirtualMachine parameter type and invokes the finder and the
associated ID for type VirtualMachine.

Finders

Custom SDK objects are defined by the underlying plug-ins. Finders create the custom SDK objects and pass them to the
platform. The platform exposes an interface that includes three methods for retrieving these objects - £indById,
findAll and findRelation.

In the example described in Figure 1 and Figure 2, on every checkpoint, the engine invokes the £indById method to
restore the object. If you set a property to the virtual machine from the example, without storing this property on a third-
party system, the next checkpoint retrieves a new object from the platform but does not save the assigned property. This
means that the platform retains only a reference to the custom SDK object, without serializing the objects.

Developing Plug-Ins with Model-Driven

The sample code is available at:
HTTPS  https://github.com/dimitrovvlado/o1 1n-plugin-redis

SSH git@github.com:dimitrovvlado/o1 1n-plugin-redis.git

Model-driven is a framework that exposes the model of third-party libraries, which makes it suitable for creating plug-
ins for specific integrations. Model-driven is included in the vRealize Orchestrator 7.x SDK.

Creating an Integration with Redis

You can use the model-driven framework included in the Orchestrator SDK to create an integration with the Redis data
structure project.

Prerequisites
e Java Development Kit 8 installation
e  Maven build tool installation
e  Orchestrator Appliance on version 7.0 or later

e  Knowledge on Spring [oC

TECHNICAL WHITEPAPER /5


http://redis.io/
https://maven.apache.org/
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/beans.html

vRealize Orchestrator Plug-In Development Guide

Create the Skeleton of the Plug-in

The Orchestrator Appliance includes a Maven repository that contains the registered Maven archetypes. You can use
these archetypes to develop a plug-in.

1. From the Orchestrator welcome page, navigate to Develop with the Orchestrator Server.

2. In the Develop an Orchestrator plug-in section, copy the first command and run it in the command line of

the machine you use for building the plug-in.
mvn archetype:generate -DarchetypeCatalog=https://{vro_host}:8281/vco-repo/archetype-catalog.xml
-DrepoUrl=https://{vro_host}:8281/vco-repo -Dmaven.repo.remote=https://{vro_host}:8281/vco-repo

-Dmaven.wagon.http.ssl.insecure=true -Dmaven.wagon.http.ssl.allowall=true

With this command, Maven generates a project by using the archetype catalog in the internal Maven repository of the
Orchestrator Appliance. The command is interactive and requires specifying several parameters.

a.  Select the numeric option that corresponds to the model-driven archetype.

Choose archetype:

ilg https://{vro_host}:8281/vco-repo/archetype-catalog.xml -> com.vmware.olln:olln-plugin-
archetype-inventory (ollnplugin-project-archetype)

2: https://{vro_host}:8281/vco-repo/archetype-catalog.xml -> com.vmware.olln:olln-package-
archetype (ollnplugin-project-archetype)

3: https://{vro_host}:8281/vco-repo/archetype-catalog.xml -> com.vmware.olln:olln-archetype-
inventory-annotation (ollnplugin-project-archetype)

4: https://{vro_host}:8281/vco-repo/archetype-catalog.xml -> com.vmware.olln:olln-plugin-
archetype-simple (ollnplugin-project-archetype)

5: https://{vro_host}:8281/vco-repo/archetype-catalog.xml -> com.vmware.olln:olln-archetype-
spring (ollnplugin-spring-archetype)

6: https://{vro_host}:8281/vco-repo/archetype-catalog.xml -> com.vmware.olln:olln-plugin-
archetype-modeldriven (ollnplugin-project-archetype)

7: https://{vro_host}:8281/vco-repo/archetype-catalog.xml -> com.vmware.olln:olln-client-
archetype-rest (ollnplugin-project-archetype)

Choose a number or apply filter (format: [groupld:]artifactId, case sensitive contains): : 6

b.  Enter the group ID according to the naming convention that your company uses. For more information,
see the Guide to naming conventions on groupld, artifactld and version in the official Maven
documentation.

Define value for property 'groupId': : com.vmware.olln.plugin

[INFO] Using property: groupld = com.vmware.olln.plugin

c. Enter the artifactId that corresponds to the developed integration. In the example — Redis.
Define value for property 'artifactId': : redis

[INFO] Using property: artifactId = redis
d.  Enter the name of the package.

The package name should correspond to the groupId value and must be compliant with the Java packages naming
convention. For more information, see Naming a Package in the official Java documentation.

TECHNICAL WHITEPAPER /6


https://maven.apache.org/guides/introduction/introduction-to-archetypes.html

vRealize Orchestrator Plug-In Development Guide

e. Enter name and alias of the plug-in.

The alias must not contain spaces because it is used as a prefix for the scripting objects. The archetype also uses the alias
to prefix the adaptor and the factory of the plug-in.

NOTE If the prefix contains spaces or invalid characters, Java classes with invalid names might be generated and the
plug-in might not compile successfully.

When you output all parameters, you will be prompted to confirm the information.

NOTE The vcoversion value depends on the version of the Orchestrator SDK that you use.

3. Navigate to the project directory. Verify that the directory structure corresponds to the example.

4. Runthemvn clean install command to build the plug-in.

NOTE When you build a project from the repository, you must add the Orchestrator IP address or DNS name in the
root pom. xml. By default, the archetype does this automatically.

TECHNICAL WHITEPAPER /7



vRealize Orchestrator Plug-In Development Guide

If the build is successful, the console displays the [INFO] BUILD SUCCESS message.

NOTE If you generate the Redis integration plug-in with Orchestrator 7.0, the build might fail because of a missing
filee. To work around the problem, you must open the {plug-in-home}/ollnplugin-redis-
core/src/main/resources/com/vmware/olln/plugin/redis/plugin.xml file and append the following
content:

Postrequisites

TECHNICAL WHITEPAPER /8




vRealize Orchestrator Plug-In Development Guide

e  The PluginFactory class must match your factory, namely RedisPluginFactory.

e The redis_gen directory that contains the runtime-config.properties file must match the
folder of your plug-in project.

File Structure

The home folder of the plug-in contains five Maven modules.

o11nplugin-redis

The ollnplugin-redis folder contains the plug-in deliverables.

.dar archive
e  Contains the plug-in JAR files and the dependable JAR files.
e  Contains the plug-in icons.

e  Contains the .package archive that includes the workflows and actions.

.vmoapp file
e  Contains one or multiple DAR archives.

e  Contains the End-User License Agreement.

vso.xml descriptor file
e  Contains information about the plug-in.

e  Contains system information about the plug-in, such as name, scripting objects, inventory objects, name of the
.package file.

Images folder

e  Contains icons that you can associate inventory objects with.

FIGURE 3 SHOWS HOW THE STRUCTURE OF THE O11NPLUGIN-REDIS FOLDER LOOKS LIKE.

TECHNICAL WHITEPAPER /9



vRealize Orchestrator Plug-In Development Guide

|| webview

|
> || vmoapp
v |7 dar

¥ [ VSO-INF

@ vso.xml
¥ | | resources

v | images

& redis.png
@ item-16x16.png
& folder.png
@ enum.png
» default-32x32.png
"l default-16x16.png

o11nplugin-redis-core

This folder contains implementations that are related to the persistence, inventory objects and their mutual relations,
scripting objects, caching, unit tests, and others. The ollnplugin-redis-core folder also includes the
PluginAdaptor class, which is the entry point for the plug-in, and PluginFactory, which is a method of finding
inventory objects but model-driven does not use this method.

plugin.xml file
The plugin.xml file is a spring configuration file. This file defines a set of beans for the model-driven framework.

FIGURE 4 SHOWS HOW THE STRUCTURE OF THE O11NPLUGIN-REDIS-CORE FOLDER LOOKS LIKE.

v [ src
> [ test
v || main

Vv [ | resources

v | com

v [ | vmware

v [ ol1n
v [ plugin
v [ redis
@ plugin.xml
v | java
¥ [ com

v [ | vmware

v B o11n
v [ plugin
v | redis
@ RedisPluginFactory.java
@ RedisPluginAdaptor.java

@ pom.xml|

TECHNICAL WHITEPAPER /10



vRealize Orchestrator Plug-In Development Guide

o11nplugin-redis-custom

The ol1lnplugin-redis-custom folder is essential for the model-driven-based plug-ins because it stores all scripting
objects and their finders.

FIGURE 5 SHOWS THE STRUCTURE OF THE O11NPLUGIN-REDIS-CUSTOM FOLDER.

v | src

> [ test
¥ || main
» | resources

v [ java
¥ [ com
v | vmware
v [ 1 0o11n
v [ plugin
v | | redis
@ CustomModule.java
@ CustomMapping.java
W pom.xml

CustomModule.java file

In the CustomModule. java file, you apply modifications to the vso.xml descriptor file.
public CustomModule () {

this.plugin = new Plugin();

plugin.setApiPrefix ("Redis") ;

plugin.setIcon("default-32x32.png") ;

plugin.setDescription("Redis") ;

plugin.setDisplayName ("Redis") ;

plugin.setName ("Redis") ;

plugin.setPackages (Collections.singletonList ("ollnplugin-example-package-
${project.version} .package")) ;

plugin.setAdaptorClassName (com.vmware.olln.plugin.redis.RedisPluginAdaptor.class);
}

In this file, you define the name and the prefix of the plug-in, and the content of the . package file. Here you also define
the PluginAdaptor class that points the plug-in entry point to the platform.

CustomMapping.java file

This is the Java class that contains all scripting objects, singleton objects, and finders of the plug-in. In the
CustomMapping.java file you bind all dynamic parts of the plug-in.

TECHNICAL WHITEPAPER /11



vRealize Orchestrator Plug-In Development Guide

o11nplugin-redis-gen

The ollnplugin-redis-gen folder stores all the generated code. You do not use this module for building the Redis
integration plug-in. The pom. xm1 file in this folder contains a custom Maven plug-in.

o11nplugin-redis-package

This folder includes the text representation of the plug-in, such as workflows, actions, resource elements, configurations
but without their corresponding binary files.

FIGURE 6 SHOWS THE STRUCTURE OF THE O11NPLUGIN-REDIS-PACKAGE FOLDER.

v [ src
¥ 8 main
v | | resources
v || Workflow
v [ ] Library
¥ [ Redis
@] Hello world.xml
@ Hello world.element_info.xml
» [ META-INF
@ pom.xml
HowToSynchronize.txt
| archetype.keystore

HelloWorld.xml file

The HellowWorld.xml file is a sample workflow text representation file.

Deploy the Plug-In
After you confirm that the plug-in built is successful, you upload the plug-in to the Orchestrator server.
1. Login to Control Center as root.

2. Go to the Manage Plug-ins page.

W

Browse to the ol11nplugin-redis.vmoapp file that is located in the {plug-in-home}/ollnplugin-
redis/target directory.

Click Install to install the plug-in.
Restart the Orchestrator server service from the Startup Options page in Control Center.
Log in to the Orchestrator client.

Click Help > Installed plug-ins...

® N vk

Verify that the Redis plug-in is available in the Plug-ins installed in the server list.

TECHNICAL WHITEPAPER /12



vRealize Orchestrator Plug-In Development Guide

FIGURE 7 SHOWS THE REDIS PLUG-IN IN THE LIST OF AVAILABLE PLUG-INS THAT ARE INSTALLED ON THE
ORCHESTRATOR SERVER.

|| SNmP 1.0.3 Simple Network Manageme...
3 PowerShell 1.0.7 Power Shell Plug-in
L. Net 7.0.0 Wrapper to Jakarta Apache ...
E AMQP 1.0.4 AMQP Plug-in

1 Redis 1.0.0-SNAPSHOT Redis
=i XML 7.0.0 XML Plug-in

Modify the Plug-In Descriptor File
You can customize the plug-in further, for example by changing the plug-in icon that appears in Control Center and in
the Orchestrator client.
1. Open the CustomModule. java file in the ol11lnplugin-redis-custom folder and change the icon and the
description of the Redis plug-in.
public CustomModule () {
this.plugin = new Plugin();
plugin.setApiPrefix ("Redis") ;
plugin.setIcon("redis.png") ;
plugin.setDescription ("Redis plug-in for vRO");
plugin.setDisplayName ("Redis") ;
plugin.setName ("Redis") ;

plugin.setPackages (Collections.singletonList ("ollnplugin-redis-package-
${project.version} .package")) ;

plugin.setAdaptorClassName (com.vmware.olln.plugin.redis.RedisPluginAdaptor.class) ;
}
2. Runthemvn clean install command to rebuild the plug-in.
mvn clean install -Dmaven.wagon.http.ssl.insecure=true -Dmaven.wagon.http.ssl.allowall=true
3. (Optional) During the installation, you can change the build number, the version and the installation mode of
the plug-in, by adding the corresponding properties to the install command.
For example:
mvn clean install -Dbuild.number=999 -Dinstallation.mode=always

NOTE The installation mode is a property that defines the behavior of the newly-built plug-in content. The
value of the installation mode can be either never, always or version,

never The new content never overwrites the existing content.

always The new content always overwrites the existing content. For example, if the new content has a lower
version number compared to the existing one.

TECHNICAL WHITEPAPER /13



vRealize Orchestrator Plug-In Development Guide

version Compare the versions and update the plug-in only if the new version number is higher than the
existing one.

When the new build completes, the vso.xml file in the {plug-in-home}/ollnplugin-
redis/src/main/dar/VSO-INF directory shows the new values for the icon and for the description.

Create a Scripting Object

Besides changing the basic plug-in configuration options, you can add some code that makes the plug-in complete a
task. You can create a scripting object and statically invoke its methods, by using a scripting singleton.

1. Under the {plug-in-home}/ollnplugin-redis-
core/src/main/java/com/vmware/olln/plugin/redis create a new directory with name singleton,

This directory constitutes the com.vmware.olln.plugin.redis.singleton package of the plug-in.

2. Create a ConnectionManager scripting class in the com.vmware.olln.plugin.redis.singleton

package.

3. Save the ConnectionManager scripting class as a ConnectionManager.java file in the singleton

directory.

TECHNICAL WHITEPAPER /14



vRealize Orchestrator Plug-In Development Guide

Add the singleton (ConnectionManager.class) line to the CustomMapping. java file so that the
plug-in can expose the ConnectionManager class as a scripting object.

2.  Build the plug-in again, by running the mvn clean install command.

3. Verify the changes in the vso.xml file.

TECHNICAL WHITEPAPER /15




vRealize Orchestrator Plug-In Development Guide

The Orchestrator platform can interpret the scripting-objects tag. RedisConnectionManager is a scripting object

associated to the ConnectionManager class.

With model-driven you can extend objects with different functionalities. For example, in this example, the vso.xml
file points to a wrapper class, instead of pointing to the scripting object itself.

4. Install the modified version of the plug-in to the Orchestrator server. See Deploy the Plug-In.

Log in to the Orchestrator client.

5.
6. Navigate under Tools > API Explorer.
7.

Expand the Redis plug-in to browse through the API elements.

FIGURE 8 SHOWS THE API ELEMENTS OF THE REDIS PLUG-IN.

L API Search

» il DynamicTypes
> Enums

» [ Mail

ald

Search for API elements

» . Net Containing text - [Redlsfmmw" |"J [ case sensitive
3 PowerShell
» @) REST Scripting class - (]

- MI; F Attributes & methods - @

ionManager
® save(String,String Number) : String
> | SNMP

Types & enumerations - @

» @ soap
» Bl soL |

[ Stop searching J [ ©, SEARCH ]

» I SSH
» B8 yap Name

= |Type | Fold... |

» (2 ve O Redis / RedisConnectionManager

L ] als]

ey 4
B XML v

S =

Scripting Class

Object : RedisConn:ctionManager L

P 1 element found.
L]

Description
none

The ConnectionManager class is exposed as a scripting object together with the save method.

TECHNICAL WHITEPAPER /16



vRealize Orchestrator Plug-In Development Guide

NOTE By default, the code generator adds the name of the plug-in as a prefix of the plug-in objects. For example,
ConnectionManager becomes RedisConnectionManager.

Add Endpoint Configuration

1. Under the {plug-in-home}/ollnplugin-redis-
core/src/main/java/com/vmware/olln/plugin/redis create a new directory with name model.

This directory constitutes the com.vmware.olln.plugin.redis.model package of the plug-in.
2. Create an endpoint configuration.

Most of the Orchestrator plug-ins require an endpoint configuration. An endpoint is a location where the plug-in stores
connection details for the instances, with which Orchestrator communicates.

The following example shows a plain old Java object (POJO) that is used to store connection details for the plug-in
endpoint, such as connection name, host name and host port. For more information on the available interfaces and
configuration services, see Plug-In SDK Guide for vRealize Orchestrator.

TECHNICAL WHITEPAPER /17


https://en.wikipedia.org/wiki/Plain_Old_Java_Object
http://pubs.vmware.com/orchestrator-70/topic/com.vmware.ICbase/PDF/plug-in_SDK_guide_for_vrealize_orchestrator.pdf

vRealize Orchestrator Plug-In Development Guide

1. Specify an ID, so that the default constructor can find a unique ID.

Plug-ins use Sid instead of a string ID. When you build hierarchies of object, each child object must know its parent ID.
A Sid wraps multiple key-value objects and you can identify a single object by different properties.

TECHNICAL WHITEPAPER /18




vRealize Orchestrator Plug-In Development Guide

For example, a single configuration can have multiple connections, each connection has a list of locations and each
location has a list of virtual machine images. When you run certain operation, fox example delete, on a virtual machine
image, you must know the specific connection, to which you run the command. By using a Sid, you can identify the
virtual machine image object by connection ID, name and location.

2. Save the endpoint configuration as a ConnectionInfo.java file in the model directory.

3. Wrap ConnectionInfo to Connection to expose the actual object as a scripting object.

TECHNICAL WHITEPAPER /19




NOTE

vRealize Orchestrator Plug-In Development Guide

After the Connection object is exposed as a scripting, it will also be exposed as an inventory object.
Save the Connection object as a Connection.java file in the model directory.

Under the {plug-in-home}/ollnplugin-redis-
core/src/main/java/com/vmware/olln/plugin/redis create a new directory with name config.

This directory constitutes the com.vmware.olln.plugin.redis.config package of the plug-in.

6.

NOTE

Add to the com.vmware.olln.plugin.redis.config package a connection, a persister, and an interface
to use for object messaging.

a. AddConnectionPersister and save it asa ConnectionPersister.java file.

ConnectionPersister invokes the Orchestrator Persistence SDK.

TECHNICAL WHITEPAPER /20



vRealize Orchestrator Plug-In Development Guide

b. AddDefaultConnectionPersister and save it as a DefaultConnectionPersister.java file.

TECHNICAL WHITEPAPER /21




vRealize Orchestrator Plug-In Development Guide

TECHNICAL WHITEPAPER /22




vRealize Orchestrator Plug-In Development Guide

TECHNICAL WHITEPAPER /23




vRealize Orchestrator Plug-In Development Guide

TECHNICAL WHITEPAPER /24




vRealize Orchestrator Plug-In Development Guide

TECHNICAL WHITEPAPER /25




vRealize Orchestrator Plug-In Development Guide

TECHNICAL WHITEPAPER /26




vRealize Orchestrator Plug-In Development Guide

TECHNICAL WHITEPAPER /27




vRealize Orchestrator Plug-In Development Guide

The DefaultConnectionPersister class includes the TEndpointConfigurationService service that is specific
for Orchestrator. ITEndpointConfigurationService stores in the resources of the Orchestrator platform simple key-
value objects called TEndpointConfiguration objects. This service saves and deletes configuration, and also
validates connection configurations if these configurations have a unique name system-wide.

c. Add a collection of ConfigurationChangeListener interfaces.
d.  Save the interface as a ConfigurationChangeListener.java file in the config directory.

You can use the ConfigurationChangeListener interfaces as an extension point of the
IEndpointConfigurationService service.

In this way, you implement the Observer pattern. If you want to cache all live connections, you must know which of the
connections are deleted, so that you can remove them from the local cache.

e. Create a local cache by using ConnectionRepository saved as a ConnectionRepository.java
file in the config directory.

TECHNICAL WHITEPAPER /28



vRealize Orchestrator Plug-In Development Guide

TECHNICAL WHITEPAPER /29




vRealize Orchestrator Plug-In Development Guide

TECHNICAL WHITEPAPER /30




vRealize Orchestrator Plug-In Development Guide

You can use ConnectionRepository as a local cache to read a single connection or all available connections. A data
structure keeps all connections and every time the platform requests a connection, the local cache retrieves the same
connection instance.

NOTE You use ConnectionRepository for read operations and ConnectionPersister for create, update, and
delete operations. When a connection is created, the persister notifies all listeners, for example ConnectionRepository
and the local cache stores every new connection.

For performance reasons, using ConnectionRepository is the preferred method for handling connections. Reading
connections with IEndpointConfigurationService might unnecessary increase the plug-in load.

7. Use ConnectionManager from the singleton directory to expose the configuration-specific options in the
scripting.

TECHNICAL WHITEPAPER /31



vRealize Orchestrator Plug-In Development Guide

When you invoke the save method of the singleton scripting object, new ConnectionInfo class is constructed. You
save the connection by using the newly created persister.

NOTE You must annotate the class, otherwise the dependency injection does not work.

8. Build the plug-in again and deploy it to the Orchestrator server. See Deploy the Plug-In.

Create a Workflow

After you install the Redis plug-in and install it to the Orchestrator server, you can create workflows. The Add redis
connection workflow is a sample workflow that requires three input parameters: a name, a host name and a port.

1. Log in to the Orchestrator client.
2. Navigate to the Workflows view and expand Redis.
3. Right-click Configuration and select New workflow.

FIGURE 9 SHOWS THE FOLDER STRUCTURE OF THE REDIS PLUG-IN WITHIN THE WORKFLOW LIBRARY.

TECHNICAL WHITEPAPER /32



vRealize Orchestrator Plug-In Development Guide

FIGURE 10 SHOWS THE SCHEMA OF THE ADD REDIS CONNECTION WORKFLOW.

o | - - z
J 31!‘,? @ 3 g - General Inputs Outputs | Schema | Presentation Parameters References Workflow Takens Events Permissions
v [ admin @ 10.23.34.248 (}l"“ your Alte” teic here... (=) pRun § Debug @ Validate (100 v) % T Open
£ Generic
¥ [JLibrary -
» £ AMQP E
D vQ Seriptable task " Decision L4
» [ AMQP Samples S Basic
» ] Configuration B Log - "
» [ Dynamic Types 2 Newwork Create connection
» [ HTTP-REST £ All Workflows
» [ HTTP-REST Samples 8 All Actions
» o
» [ Locking =
+ £ ail Info IN OUT Exception | Visual Binding | Scripting
In Parameters
» D Microsoft == Type Create connection
» [] Orchestrator
name string
» [] PowerShell host string QUL
v £ Redis port number Name Type Name

name string
host string
port number

¥ [ Configuration
v [E3 Add redis connection

» [ SNMP
4. Add a scripting element.

The Create connection scriptable task invokes the save method of the scripting object and displays the generated ID.
var connectionId = RedisConnectionManager.save (name, host, port);

System.log("Created connection with ID: " + connectionId) ;
5. Right-click the workflow and select Start workflow.
6. Enter a name, a host name and a port to complete the workflow.

The printed connection ID displays in the Logs tab.

[2016-02-08 15:43:51.274] [1] Created connection with ID: yxiglJsQQ6-ekcSeQxoueA
7. Navigate to the Resources view and expand Redis > Configuration.

Redis and Configuration are resource categories that the Orchestrator platform creates. Redis is the prefix of the plug-
in and Configuration is the location where IEndpointConfigurationService stores its configuration parameters.

In the Viewer tab, you can review the input parameters that you used to run the workflow.

FIGURE 11 SHOWS THE RESOURCES OF THE REDIS PLUG-IN.

. 4
Q.7
((— 1 —
E ,_‘!:; (%] Ld‘ Q A General | Viewer | Events Permissions
v [ admin @ 10.23.34.248 <?xml version="1.8" encoding="UTF-8" standalone="yes"?>
v CLibrary <endpoint pluginVersion="1.0.0-SNAPSHOT">
» E7AD <properties>
» EJ Configuration <property type="string" name="serviceHost">172.16.110.143</property>
» [ Configurator <property type:"strl:.ng" name:"name">wi|imit ruv-:;"pruperty:
» £ DynamicTypes <property type:"ﬁtrmg" nalle="connes:tlonld“:-yx;gIJsOOB-echeroueA</property>
<property type="integer" name="servicePort">6379</property>
» CDynamic Types </properties>
» [_] PowerShell </endpoint>
¥ [ Redis
¥ [ Configuration
yxigllsQQ6-ekcSeQxoueA
» JvC
» [JvCenter

TECHNICAL WHITEPAPER /33



vRealize Orchestrator Plug-In Development Guide

Export the Content

After you install a plug-in in Orchestrator, you can create and run workflows. If you want to include these workflows in
the plug-in package, you must export the content of the workflows to the plug-in project.

1. Log in to the Orchestrator client and go to the Packages view.
Click Add package to create a package and enter com.vmware.library.redis as a Package name....

Right-click the com.vmware.library.redis package and select Edit.

B o

Go to the Workflows tab in the pop-up window.
5. Click the = icon and search for the Add redis connection workflow.

Select the workflow and click Save and close.

7. On the machine where you are building the Redis plug-in, open the pom. xm1 file of the package o11nplugin-
redis-package module.

8. Modify the packageName property of the plug-in package configuration.

9.  Go to the ollnplugin-redis-package folder and run the mvn import command.

You must replace the placeholders with the parameters of your environment. If the user name you use requires a domain,
for example administrator@vsphere.local, you must write the user name with a slash.

Two new files appear under the ol11nplugin-redis-package/src/main/resources/Workflow/Library folder.

TECHNICAL WHITEPAPER /34



vRealize Orchestrator Plug-In Development Guide

If you want to include an additional content to the plug-in project, you must add this content to the plug-in package and
run the mvn import command.

Adding Inventory Objects

With the Redis plug-in, you can store connections and make them visible in the plug-in inventory. Model-driven defines
three types of interfaces that you can use to display objects in the plug-in inventory.

ObjectRelater Describes the relation between In the example in Step 2 of Add Endpoint
two model objects. Configuration, this class holds the code that lists all
virtual machines by their location.

ObjectFinder Finds objects of a certain type by | Finders are a key concept in plug-in development.
ID or by using a query. You use finders in plug-in checkpointing. For more
information, see Checkpointing.

Extension Extends the functionality of a You can add methods and fields to model objects in
model object. your code repository. If you expose model objects
that derive from third-party libraries, you must wrap
these objects and delegate calls to the wrapped object.

NOTE Model-driven does this wrapping in a
transparent way.

Add Inventory Objects

If you want to define the Connection class as a finder object, you must create a new finder object that implements the
ObjectFinder interface. This automatically exposes the object as a scripting object but does not add it to the inventory
tree.

1. Create a Connection class as a finder object or modify the Connection.java file in the model directory.
@Component
QQualifier (value = "connection")
@Scope (value = "prototype")

public class Connection implements Findable {

QOverride
public Sid getInternalId() {
return getConnectionInfo () .getId();
}
QOverride

TECHNICAL WHITEPAPER /35



vRealize Orchestrator Plug-In Development Guide

NOTE If you want the platform to query objects by a filter, the Connection class must implement the Findable
interface.

1. Under the {plug-in-home}/ollnplugin-redis-
core/src/main/java/com/vmware/olln/plugin/redis create a new directory with name finder.

2. Create the finder and save it as a ConnectionFinder.java file in the finder folder.

TECHNICAL WHITEPAPER /36




vRealize Orchestrator Plug-In Development Guide

NOTE You can inject ConnectionRepository directly to the finder.

The find method is invoked every time the platform retrieves a Connection by its ID. When the plug-in returns a model
object to the platform, it uses assignedId. The assignedId method sets an ID to the object that is returned to the
platform. You might use this ID to restore the object later.

3. Expose the finder object as a scripting object, by defining it in CustomMapping.
wrap (Connection.class) .andFind() .using (ConnectionFinder.class) .withIcon("connection.png”);
Build the plug-in.
Install the modified version of the plug-in to the Orchestrator server. See Deploy the Plug-In.
Log in to the Orchestrator client.

Navigate under Tools > API Explorer.

® =N bk

Expand the Redis plug-in to browse through the API elements.
FIGURE 12 SHOWS THE API ELEMENTS OF THE REDIS PLUG-IN AFTER ADDING THE CONNECTION OBJECT.

TECHNICAL WHITEPAPER /37



vRealize Orchestrator Plug-In Development Guide

I U API Search ]
» @) REST .
v Redis Search for API elements
¥ @ RedisConnection Containing text -  Redis m [ Case sensitive
s displayName
s host Scripting class - ()
= name

< port Attributes & methods - (]
® destroyl() : void
» @ RedisConnectionManager
> éSNMP
» % soap v Stop searching , SEARCH
b .
. S Name < | Type Folder
Type : Redis:Connection : : : w
< Redis / Redis:Connection Type
Scripting Object : RedisConnection O Redis / RedisConnection Scripting Class
“ O Redis / RedisConnectionManager Scripting Class

Types & enumerations - (V]

Description
none

Properties
name
displayName
port
host

The Connection object is exposed as a scripting object and is also defined as a type, or a findable object. You can set
this type as an input, output or an attribute of a workflow.

Create a Redis Connection Workflow
1. Navigate to the Workflows view and expand Redis.
2. Right-click Configuration and select New workflow.

3. Create a workflow where Redis:Connection is an input parameter.

FIGURES 13 AND 14 SHOWS THE INPUT PARAMETERS OF THE REDIS CONNECTION WORKFLOW.

General | Inputs  Outputs Schema Presentation Parameters References Workflow Tokens Events Permissions

Parameters
t +oX(DB @

# Name Type

E» connection Redis:Connection

[ ] Select a type...

® Type 3 elements found.] ...

) Array Of Filter : Clear
Type

Redis:Connection
VC:VmwareDistributedVirtualSwitch
VC:VmwareDistributedVirtualSwitchPvlanPortType

Define composite type...

Cancel Accept |
- —

4. Right-click the workflow and select Start workflow.

The Search text box appears.

TECHNICAL WHITEPAPER /38



vRealize Orchestrator Plug-In Development Guide

Start Workflow : redis connections

Common parameters

Redis connection

‘ Search [ |
\

‘ Redis:Connection © vdimitrov [172.16.110.143] ‘

The search string you enter is delegated to the query method of the ConnectionFinder. If you leave the text box
empty, the plug-in returns all available connections.

NOTE The wrap method exposes the Connection as a scripting object and the andFind method marks the object as a
type. You cannot define an object as a findable type if you do not use a finder class. So, you can use a
ConnectionFinder,

Although there is a findable object and you can use a query to search for this object, the plug-in inventory tree is empty.
If you want to see the available connections in the inventory tree, you must define the relation of the findable object.

The platform cannot identify the parent object of the Connection object and cannot retrieve objects of this type. The
platform only can search for the object by ID.

5.  Under the {plug-in-home}/ollnplugin-redis-
core/src/main/java/com/vmware/olln/plugin/redis create a new directory with name relater.

6. Use the ObjectRelated interface to create a RootHasConnections relater.

TECHNICAL WHITEPAPER /39



vRealize Orchestrator Plug-In Development Guide

The RootHasConnections relater creates the relation between the root of the inventory and a list of connection.

NOTE The relater only returns all connection objects. When you relate the root of a tree to an object, the arguments
of the findChildren method become irrelevant.
7. Use the define method to define the relation in CustomMapping.

relateRoot () . to(Connection.class) .using (RootHasConnections.class) .as ("connections") ;
8.  Build the plug-in.
9. Install the modified version of the plug-in to the Orchestrator server. See Deploy the Plug-In.
10. Log in to the Orchestrator client.
11. Go to the Inventory view and expand the Redis plug-in inventory.

FIGURE 15 SHOWS THE INVENTORY OF THE REDIS PLUG-IN.

> || SNMP
» ¥ PowerShell

» |y AvQP

v &8 Redis

» BE VAPl
» &% soap
» - VRO Configuration

The relateRoot () method relates objects to the root of the tree. There is one additional method for adding inventory
objects to the tree — relate ().

Wrap the Client

The above steps are rather generic and common for all custom Orchestrator plug-ins. To create the integration with the
third-party system, for which you design the plug-in, you must add the Maven dependencies. You introduce a dependency
with a small Java-based client called Jedis and the Apache common pool library, on which the Jedis library depends.

1. Define the dependency in the main pom. xml file.

<properties>
<jedis.version>2.8.0</jedis.version>
<commons .pool.version>2.4.2</commons.pool.version>

</properties>

<dependency>
<groupld>redis.clients</groupId>
<artifactId>jedis</artifactId>
<version>${jedis.version}</version>
</dependency>

<dependency>

TECHNICAL WHITEPAPER /40


https://github.com/xetorthio/jedis
https://commons.apache.org/proper/commons-pool/

vRealize Orchestrator Plug-In Development Guide

2. Add dependency in the pom. xml file in the o11lnplugin-redis-core folder.

3. Define the use of Jedis.

Multiple threads, such as workflows and user interactions, will access the Connection class. You must make sure that
you have either a pool of Redis connections, which is provided by default, or a thread-safe connection.

a.  When you create the Connection object, you initialize the JedisPool.
b. Retrieve the Jedis object in the try-statement as a resource.
c. Close the resource by returning it to the JedisPool, when it is not used any more.

d.  When the connection is destroyed, you must destroy the JedisPool.

TECHNICAL WHITEPAPER /41


https://github.com/xetorthio/jedis/wiki/Getting-started

vRealize Orchestrator Plug-In Development Guide

TECHNICAL WHITEPAPER /42




vRealize Orchestrator Plug-In Development Guide

=y
private synchronized JedisPool getPool() {
if (pool == null) {
JedisPoolConfig jedisConfig = new JedisPoolConfig() ;

pool = new JedisPool (jedisConfig, connectionInfo.getHost(),
connectionInfo.getPort()) ;

}

return pool;

Important Notes on the Jedis Code

The Jedis implementation initializes only when you attempt to perform an operation over the Connection object. This
type of initialization is useful when you manage thousands of connections.

When you destroy a connection, you must destroy all related resources. To prevent a state of inconsistency, the destroy
and the getPool methods are synchronized.

You must explicitly close the Jedis connection. If, for example, you use the ping method, you retrieve a connection from
the pool, run a call and close the connection, by returning it to the pool. If you want to run multiple calls, you must
retrieve a connection multiple times. For performance reasons, you can expose the Jedis object to the users.

Create a Testing Redis Connection Workflow
After you add the Jedis functionality to the Connection object, you can use this functionality by creating a workflow.
Prerequisites
e  Build the plug-in.
e Install the modified version of the plug-in to the Orchestrator server. See Deploy the Plug-In.
Procedure
1. Login to the Orchestrator client.
2. Navigate to the Workflows view and expand Redis.
3. Right-click Configuration and select New workflow.
4. Use Redis:Connection as a connection type to create an input parameter of the workflow.

5. Create a Scriptable task element by inserting the following code:
connection.set ("plugin:tutorial”, "Testing redis connection - success");
var result = connection.get("plugin:tutorial") ;

System.log (result) ;

6. Save the workflow and run it.

TECHNICAL WHITEPAPER /43



vRealize Orchestrator Plug-In Development Guide

7. When the workflow completes, verify the output in the Logs tab.

FIGURE 16 SHOWS THE SCRIPTING TAB OF THE TESTING REDIS CONNECTION WORKFLOW.

©, [Tvpe vour filter text here... =7 P Run § Debug @ Validate [100 |v) % T Open om

8 ceneric
|A General Variables | Logs

[h /7 % & = [Info v

) scriptable task  <%y*) Decision
@ A4
Messages

[2016-03-01 11:52:01.273] [I] Testing redis connection - success

'r_\ Custom decision T\ Decision activity
3 <

— . P— O — ’ —@®

g Basic Set and get

g Log

£ Network
£ All workflows

£ All Actions

Info IN OUT Exception Visual Binding Scrip(ing.

[E03] (Redis:Connection) connection
@B g connection.set{"plugin:tutorial”, “"Testing redis connection - success");
> @0 AWS 7| [var result = connection.get("plugin:tutorial™);

> B Azure

» =1 Configurator
» [l DynamicTypes
» {}GCE

» @ REST

¥ g Redis

& Redis:Connection

System. log(result);|

a_disnlauN.

Object : RedisConnection

Description
none

Additional Relations

Redis is a data structure store and therefore you can use it as a database. In Redis there can be multiple databases identified
by a number and the number of the default database is 0. The commands you run through the Redis plug-in target the
default Redis database, unless you specify otherwise.

Jedis jedis = getPool () .getResource() ;
jedis.select(3); //Selects database with index 3
jedis.set ("plugin:tutorial”, "Using another database");

You can add to the plug-in the option to select a database that is different from the default one. To achieve this, you can
use either of the two available methods.

Expose database index as part of the scripting API When a user calls a set method, for example, he can
pass the database index as an additional function
argument.

Present a new inventory object, Database, that wraps You must move all current methods from the

the index Connection to the Database model object.

TECHNICAL WHITEPAPER /44



vRealize Orchestrator Plug-In Development Guide

FIGURE 17 SHOWS A MODEL DIAGRAM OF THE SECOND METHOD.

Connection Database
- connectioninfo : Connectioninfo _ connection - Connection
- pool : JedisPool - index - int
+ getDatabases() - List<Datbase> 1 1.7 + getDisplayName() - String
+ getDatabase() - Database [® 1+ getindex() - int
+ getDefaultDatabase() : Database + set{key, value) : String
+ getResource(index) - Jedis + get{key) : String
+ ping() - void
- getPool() : JedisPool

You define the Database object in the model package. The Database object that you invoke instead of get, set or
other methods, includes the following code.

TECHNICAL WHITEPAPER /45



vRealize Orchestrator Plug-In Development Guide

The Connection object also requires some changes. Some of them consist in removing methods, such as get, set,
append.

TECHNICAL WHITEPAPER /46




vRealize Orchestrator Plug-In Development Guide

The modified Connection model initializes a map of database instances. You can find a database by its index. The
getDatabases () method invokes a configuration command against the Redis instance and retrieves the count of the
supported database instances. By default, the number of supported instances is 16.

You use CustomMapping to add a relation between a Connection object and a Database object.

TECHNICAL WHITEPAPER /47




vRealize Orchestrator Plug-In Development Guide

NOTE After you add a new inventory object, you must create a new Finder implementation and a new Relater
implementation.

Although the finder of the Database object is similar to ConnectionFinder, some major differences exist between
these finders. While the Connection object is related to the root of the inventory tree and does not have a parent object,
the Database object is a child object of the Connection object. When you invoke the assignId method, the
relatedObject argument is the ID of the parent object, or the ID of the Connection object. You can track a child
object by the ID of its parent object.

The relatedObject.with ("dbid", obj.getIndex()); implementation creates a new ID based on the connection
ID. The Database object ID includes the Connection object ID and the index of the database instance. By using this
method, you identify a single database instance among all Connection objects.

FIGURE 18 SHOWS THE RELATION BETWEEN SEVERAL LAYERS OF OBJECTS AND THEIR CORRESPONDING IDS.

TECHNICAL WHITEPAPER /48



vRealize Orchestrator Plug-In Development Guide

ID
134Kow5TTI2ZmBC38YMLLBQ

-------- ' :
m————==3 [34Kow5TTIZmBC38YMLLBQ

1 obj: 1

1D
———————————a3  [34Kow5TTI2mBC38YMLLBQ
obj: 2
| 1D
__t=————>=  [134Kow5TTI2ZmBC38YMLLEQ
| obj: 3
: ID
l 134Kow5STTIZmBC38YMLLBQ

|
(— .

- | > obj: 3
| :
|
I

ID

[ 134Kow5TTIZmBC38YMLLBQ
obj: 3
sobj: 2

subobj1 (1)

subobj2 (2)

For example, Connection 1 hasan ID 134Kow5TTI2mBC38YMLL8Q. Connection 1 also has subobjects: obj1, obj2
and obj 3, whose natural IDs are 1, 2, and 3 respectively. obJ 3 has a set of subobjects, namely subob3j1 and subobj2,

There are three types of objects, so you need three finders — for Connections, for obj and for subobj objects.

The assignId method for the connection returns only the ID of the connection. The assignId method for the finder of
the first-level objects, ob3j, returns the ID of the connection and the ID of the obj. The assignId method for the finder
of the subob3j objects returns the ID of the parent object and the ID of the subobject.

A structure, similar to a map, stores the values of the ID for each object.

NOTE During checkpointing, the Orchestrator server stores only the ID of the object, the method that mixes the IDs
makes it possible to retrieve the connection ID of a subobject and, at the same time, retrieve the ID of the Connection
object.

Defining the finder of the Database object is not enough to show the database objects in the inventory tree. By using
CustomMapping, you need to define the parent object of the Database object and pass it to the Orchestrator platform.
By introducing the ConnectionHasDatabase class, you can find a set of databases for a certain connection.

public class ConnectionHasDatabases implements ObjectRelater<Database> {

@Autowired

private ConnectionRepository connectionRepository;

@QOverride

public List<Database> findChildren (PluginContext ctx, String relation, String parentType,
Sid parentId) {

Connection connection = connectionRepository.findLiveConnection (parentId) ;

if (connection != null) {

TECHNICAL WHITEPAPER /49



vRealize Orchestrator Plug-In Development Guide

return connection.getDatabases() ;

}
return Collections.emptyList() ;

}

Similarly to using the ConnectionFinder class, when you know the ID of the Connection object, which is a parent
object, you can use ConnectionRepository to find the connection instance. To retrieve the result, you must invoke
the getDatabases () method.

After you rebuild the Redis plug-in and redeploy it to the Orchestrator server, you see all database instances in the plug-
in inventory.

FIGURE 19 SHOWS HOW THE PLUG-IN INVENTORY LOOKS LIKE AFTER ADDING THE RELATION BETWEEN THE
CONNECTION AND THE DATABASE OBJECTS.
> ESQL Plug-in

» BB vap

¥ & Redis

dimitrov [172.16.110.146)

£ dbo
£ db1
£ dbz2
£ db3
£ dba
£ dbs
£ dbs
£ db7
£ dbs
£ dbs
fJdb1o
£Jdb11
3 db1z
£3db13
£ db14
£ db1s

If you run the workflow in the Wrap the Client paragraph, an TypeError: Cannot find function set in object
DynamicWrapper (Instance) : [RedisConnection]-[class
com.vmware.olln.plugin.redis gen.Connection Wrapper] -- VALUE : error message appears.

To fix the error, you must recreate the scripting of the Testing Redis Connection workflow.
connection.defaultDatabase.set ("plugin:tutorial”, "Testing redis connection - success");

var result = connection.defaultDatabase.get ("plugin:tutorial") ;

System.log (result) ;

FIGURE 20 SHOWS THE TESTING REDIS CONNECTION WORKFLOW AFTER YOU MOVED THE COMMANDS FROM
THE CONNECTION OBJECT TO THE DATABASE OBJECT.

TECHNICAL WHITEPAPER /50



vRealize Orchestrator Plug-In Development Guide

4, Tvpe vour filter text here... = P Run § Debug @ Validate |100 |v| % 3 Open om
B Generic
|A General Variables | Logs
" Scriptable task  <y®> Decision
- - 0/ K @[ v

Messages
[2016-03-07 18:07:51.489] [1] Testing redis connection - success

¥ Custom decision <**> Decision activity
L ¥

& o [ v o -8 -@

v Setand get
B Basic
£ Log
£ Network
B AllWorkflows
B All Actions
Info IN OUT Exception Visual Binding [Scrip[ingl
03] (Redis:Connection) connection
@ B g connection.defaultDatabase.set("plugin:tutorial®, “Testing redis connection - success");
7| [var result = connection.defaultDatabase.get{"plugin:tutorial”);

» O RedisConnectionManager

System.log(result);

RedisDatabase{RedisConnection Number) : Redis|
displayName

index

append (String,String) : Number
blpop(Number,String(]) : String(]
del(String) : Number
exists(String[]) : Number

sessscnnn

N
Object : RedisDatabase

Description
nene

The modified workflow uses the same Redis:Connection connection parameter but retrieves the default database.

TECHNICAL WHITEPAPER /51



