
vSphere Web Client SDK
Documentation
VMware vSphere Web Client SDK 6.5.1
VMware ESXi 6.5.1
vCenter Server 6.5.1

vSphere Web Client SDK Documentation

VMware, Inc. 2

You can find the most up-to-date technical documentation on the VMware website at:

https://docs.vmware.com/

If you have comments about this documentation, submit your feedback to

docfeedback@vmware.com

Copyright © 2013–2017 VMware, Inc. All rights reserved. Copyright and trademark information.

VMware, Inc.
3401 Hillview Ave.
Palo Alto, CA 94304
www.vmware.com

https://docs.vmware.com/
mailto:docfeedback@vmware.com
http://pubs.vmware.com/copyright-trademark.html

Contents

1 vSphere Web Client SDK Documentation 8

Revision History 9

About vSphere Web Client SDK 10
Knowledge Requirements for Using the vSphere Web Client SDK 10

vSphere Web Client SDK Contents 11

SDK Versions and Compatibility 12

Naming Convention for vSphere Objects in the vSphere Web Client SDK 13

2 About the vSphere Web Client and the vSphere Client 14

Introduction to the vSphere Web Client 14

Understanding the vSphere Web Client Architecture 14

Overview of the vSphere Web Client User Interface Layer Components 16

Introduction to the vSphere Client 21

Understanding the vSphere Client Architecture 21

Overview of the User Interface Layer Components 22

Understanding Extensibility in the vSphere Client and the vSphere Web Client 23

Extending the User Interface Layer 24

Extending the Java Service Layer 24

3 vSphere Web Client SDK Installation and Setup Guide 26

Software Requirements 26

Development Environment Requirements Overview 27

Setting Up for HTML-Based Plug-In Development 27

Download the vSphere Web Client SDK 28

Set Up for Java Development 29

Automate the Plug-In Build Process 30

Set Up the Eclipse Integrated Development Environment 31

Install the vSphere Web Client Tools Eclipse Plug-In 32

Register Your Local vSphere Client with the vCenter Server Instance 33

Configure the Virgo Server in Your Eclipse IDE 35

Set Up the Adobe Flex 4.6 Software Development Kit 36

4 vSphere Web Client SDK Upgrade 37

Upgrading Plug-Ins Created with the vSphere Web Client SDK 6.0 Update 2 37

Upgrading Plug-Ins Created with the vSphere Web Client SDK 6.0 Update 1 39

Upgrading Plug-Ins Created with the vSphere Web Client SDK 6.0 39

VMware, Inc. 3

Upgrading Plug-Ins Created with the vSphere Web Client SDK 5.5.x 40

5 Quick Startup Guide for Developing HTML-Based Plug-Ins 41

Before Creating an HTML Plug-In 41

Creating an HTML Plug-In Project 41

Generate an HTML Plug-In Project with a Script 42

Create an HTML Plug-In Project with Eclipse 42

Contents of the HTML Plug-In Project Template 43

Building a Plug-In Package from the Project Template 45

Testing the Generated Plug-Ins 46

Deploy the Plug-In on a Local vSphere Client 46

Deploy Your Plug-In on a Local vSphere Web Client 47

Deploying Your Plug-In on a Remote vSphere Client or vSphere Web Client 48

6 Developing Flex-Based User Interface Extensions 51

Understanding the User Interface Layer 52

User Interface Plug-In Module Manifest 52

XML Elements in the Manifest File 53

Specifying Dynamic Resources 54

Defining Extensions 55

Extension Definition XML Schema 56

Ordering Extensions 58

Filtering Extensions 59

Using Templates to Define Extensions 62

Types of User Interface Extensions 62

Global View Extensions 62

Object Workspace Extensions 63

Object Navigator Extensions 63

Action Extensions 63

Relation Extensions 64

Home Screen Shortcut Extensions 64

Object List View Extensions 64

Adding Global View Extensions 64

Properties of the GlobalViewSpec Extension Object 65

Extending the vCenter Object Workspaces 67

Extending an Existing Object Workspace 67

Creating an Object Workspace for a Custom Object 70

Creating Data View Extensions 73

Understanding the Frinje Framework 74

Using the Data Access Manager Library 83

Extending the Object Navigator 91

Defining an Object Navigator Extension 92

vSphere Web Client SDK Documentation

VMware, Inc. 4

Using a Template to Create an Object Collection Node Extension 97

Adding Custom Icons and Labels to an Object Collection Node 97

Creating Action Extensions 99

Actions Framework Overview 99

Defining an Action Set 100

Defining Individual Actions for Flex-Based Action Extensions 100

Handling Actions with Flex Command Classes 102

Performing Action Operations on the vSphere Environment 104

Organizing Your Actions in the User Interface 105

Creating Relation Extensions 111

Defining a Relation Extension 112

Describing a Relation by Using the RelationSpec Object 113

Creating Home Screen Shortcuts 115

Properties of the ShortcutSpec Extension Object 115

Creating Object List View Extensions 117

Defining Object List View Extensions 118

7 Developing HTML-Based User Interface Extensions 121

Overview 122

Global View Extensions 122

Properties of the HtmlView Extension Object 123

Adding a vCenter Server Selector 124

Extending the vCenter Object Workspace 125

Extending an Existing Object Workspace 126

Creating an Object Workspace for a Custom Object 128

Creating Data View Extensions 131

Creating Object List View Extensions 133

Creating Actions Extensions 134

Actions Framework Overview 135

Defining an Action Set 135

Defining Individual Actions for HTML-Based Action Extensions 135

Handling Actions for HTML-Based Action Extensions 139

Handling Locales 140

Guidelines for Creating Plug-Ins Compatible with the vSphere Client 143

Hybrid Plug-Ins 145

vSphere Client JavaScript APIs 146

Mapping the JavaScript to the Flex APIs 149

8 Developing Extensions to the Service Layer 151

Understanding the vSphere Web Client Data Service 151

Extending the Service Layer with Custom Components 152

Custom Component Types 154

vSphere Web Client SDK Documentation

VMware, Inc. 5

Interfaces to the Service Layer 155

Communications with the Virgo Service Layer 155

Overview of Data Service Queries 156

When To Use Data Service Queries 156

RequestSpec Data Structure in Data Service Queries 156

ResultSet Data Structure in Data Service Queries 159

Extending the Data Service with a Data Service Adapter 159

Advantages of Providing a Data Service Adapter 159

Designing a Data Service Adapter 160

Property Provider Adapters 162

Data Provider Adapters 164

Creating a Custom Java Service 170

Make Java Services Available to the UI Components in the vSphere Web Client and the

vSphere Client 170

Creating the Java Interface and Classes 171

Persisting Data from Your Plug-Ins to the vCenter Server Appliance and the vCenter Server

System 171

Packaging and Exposing the Service 172

Importing a Service in a User Interface Plug-In Module 173

9 Creating and Deploying Plug-In Packages 176

Plug-In Package Overview 176

XML Elements of the Plug-In Package Manifest File 177

Plug-Ins Compatibility Matrix 179

Deploying a Plug-In Package 180

Deploying a Plug-In Package From a Remote Server 181

Register a Plug-In Package as a vCenter Server Extension 181

Creating the vCenter Server Extension Data Object 182

Verifying Your Plug-In Package Deployment 184

Unregister a Plug-In Package 185

10 Sample Plug-Ins Overview 186

HTML Sample Plug-Ins 187

11 Best Practices for Developing Extensions for the vSphere Web Client 190

Best Practices for Creating Plug-In Packages 190

Best Practices for Plug-In Modules Implementation 192

Best Practices for Developing HTML-Based Extensions 193

Best Practices for Extending the User Interface Layer 194

Best Practices for Extending the Service Layer 195

OSGi-Specific Recommendations 196

DataService -Specific Best Practices 198

vSphere Web Client SDK Documentation

VMware, Inc. 6

Best Practices for Deploying and Testing Your vSphere Web Client Extensions 200

12 List of Extension Points 202

Global Extension Points 203

Object Navigator Extension Points 206

Object Workspace Extension Points 208

Actions Extension Points 215

Extension Templates 218

Custom Object Extension Points 219

vSphere Web Client SDK Documentation

VMware, Inc. 7

vSphere Web Client SDK
Documentation 1
The VMware vSphere® Web Client SDK is a collection of Java, Flex, and JavaScript libraries, utility tools,
code samples, and documentation to help you create extensions to the vSphere Web Client and the
vSphere Client .

VMware, Inc. 8

Revision History

This vSphere Web Client SDK Documentation is updated with each release of the product or when
necessary.

This table provides the update history of the vSphere Web Client SDK Documentation.

Revision Description

13NOV2017 Improvements to SDK version compatibility information.

Corrections to deprecated extension points.

11MAY2017 Initial release for vSphere 6.5 Update 1.

VMware, Inc. 9

About vSphere Web Client SDK

The vSphere Web Client SDK Documentation provides information about developing extensions to the
VMware vSphere® Web Client and the VMware vSphere® Client in vSphere 6.5.

VMware provides many APIs and SDKs for different applications and goals. This documentation provides
information about the extensibility framework of the vSphere Web Client and the vSphere Client for
developers that are interested in extending the Web applications with custom functionality.

Intended Audience
This information is intended for anyone who wants to extend the vSphere Web Client and the
vSphere Client with custom functionality in vSphere 6.5. Users typically are software developers who use
Flex or ActionScript, or HTML and JavaScript, to create graphical user interface components that work
with VMware vSphere®.

VMware Technical Publications Glossary
VMware Technical Publications provides a glossary of terms that might be unfamiliar to you. For
definitions of terms as they are used in VMware technical documentation, go to
http://www.vmware.com/support/pubs.

Knowledge Requirements for Using the
vSphere Web Client SDK
Developing extensions for the vSphere Client and the vSphere Web Client by using the
vSphere Web Client SDK, requires expertise with MXML and ActionScript, or HTML and JavaScript, and
Java.

n The vSphere Web Client SDK provides a custom Model-View-Controller framework, also called Frinje
framework. Understanding how the Frinje framework implements the MVC pattern is essential to
developing data view extensions. The graphic elements of the View component of the MVC
framework are implemented in MXML classes and the logic elements of the View component are
implemented in ActionScript classes.

n The vSphere Client and the vSphere Web Client application servers provide the Virgo server that
consists of a collection of Java services. These Java services communicate with vCenter Server,
ESXi hosts, and other data sources. Basic understanding in Java development is required.

VMware, Inc. 10

http://www.vmware.com/support/pubs

n You can extend the vSphere Client if you have a good understanding in Web application development
by using JavaScript and HTML. You can use any user interface technology to create views for the
vSphere Client UI layer. The samples provided within the SDK use the jQuery library.

vSphere Web Client SDK Contents
The vSphere Web Client SDK is a ZIP file that contains libraries for server and user interface
development, API reference documentation, sample code, and SDK tools that helps you develop
extensions for the vSphere Client and the vSphere Web Client applications.

After you download and unzip the SDK package, you see the following directory structure under the
vsphere-client-sdk folder:

Table 1. SDK Contents

SDK Folder Description

/flex-client-sdk /docs Contains the API reference documentation for the Java
and Flex libraries.

/libs Contains the Flex and Java libraries for building UI and
server plug-ins, and common libraries that are used to
build the sample plug-ins.

/resources Contains Ant build scripts and configuration files.

/samples Contains the source code and project files for the Flex-
based samples provided with the SDK.

/tools /Eclipse plugin

site

Contains the Eclipse plug-in with various tools to ease
the development of vSphere Web Client extensions.

/Plugin

generation

scripts

Contains scripts that you can use to create Flex and
Java plug-in template projects.

/vCenter

registration

scripts

Contains the scripts that are used to generate the files
the connect the local vSphere Web Client in your
development environment to the remote vCenter Server
instance.

/vsphere-client /plugin-packages Contains the core plug-in packages for the
vSphere Web Client application.

/server Contains the local vSphere Web Client application
which you use to deploy your plug-in packages.

vsphere-client-sdk-version.xml Contains information about the version and the build
number of the vSphere Web Client SDK.

/html-client-sdk /docs Contains the Java API reference documentation that
you can use to create your service layer extensions.

/libs Contains common libraries that are used to build the
sample plug-ins.

/resources Contains Ant build scripts, configuration files, and
minimal Adobe Flex 4.6 SDK for building .swf files out
of string resources.

vSphere Web Client SDK Documentation

VMware, Inc. 11

Table 1. SDK Contents (Continued)

SDK Folder Description

/samples Contains the source code and project files for the HTML
samples provided with the SDK.

/tools Contains the same tools as the ones in the /flex-
slient-sdk folder that can help you create and build
your HTML extensions.

/vsphere-ui /plugin-packages Contains core plug-in packages for the vSphere Client
application.

/server Contains the runtime server of the local vSphere Client
which you can use to deploy your HTML plug-ins.

html-client-sdk-version.xml Contains information about the version and the build
number of the vSphere Client development kit.

License-Agreement.html The license agreement for the SDK.

SDK Versions and Compatibility
When you upgrade from an older version of the vSphere Web Client SDK, you must consider whether
your plug-ins will be compatible with the new vSphere Client and vSphere Web Client.

You can refer to the following tables for more information about the compatibility of the plug-ins you
developed with the different versions of the vSphere Web Client SDK.

Table 2. Compatibility Between the HTML Plug-In Created with a Specific Version of the SDK
and the Different Web Browser Applications

Version of the SDK That Is
Used to Create the HTML
Plug-In vSphere Web Client 5.5 vSphere Web Client 6.0

vSphere Web Client 6.5 and
vSphere Client 6.5

version 5.5 Yes Yes* Yes*

version 6.0 No Yes Yes**

version 6.5 No Yes Yes

Note * If you have HTML-based plug-ins that are created with the vSphere Web Client SDK 5.5, you
must follow the instructions for upgrading your plug-in to ensure compatibility with the vSphere Web Client
versions 6.0 and 6.5, and the vSphere Client 6.5. For more information, see Upgrading Plug-Ins Created
with the vSphere Web Client SDK 5.5.x.

Note ** If you have HTML-based plug-ins that are created with the vSphere Web Client SDK 6.0, you
must follow the steps for upgrading your plug-in to ensure compatibility with the 6.5 versions of the
vSphere Web Client and the vSphere Client . For more information, see Upgrading Plug-Ins Created with
the vSphere Web Client SDK 6.0, Upgrading Plug-Ins Created with the vSphere Web Client SDK 6.0
Update 1, and Upgrading Plug-Ins Created with the vSphere Web Client SDK 6.0 Update 2.

vSphere Web Client SDK Documentation

VMware, Inc. 12

Table 3. Compatibility Between the Flex-Based Plug-In Created with a Specific Version of
the SDK and the vSphere Web Client

Version of the
vSphere Web Client SDK
That Is Used to Create the
Flex-Based Plug-In vSphere Web Client 5.5 vSphere Web Client 6.0 vSphere Web Client 6.5

version 5.5 Yes Yes Yes*

version 6.0 No Yes Yes*

version 6.5 No Yes Yes*

Note * To make the plug-ins that are created with the older versions of the vSphere Web Client SDK
compatible with the vSphere Web Client 6.5, make sure that you update the plug-ins according to the
release notes provided within the SDKs.

Naming Convention for vSphere Objects in the
vSphere Web Client SDK
The vSphere Web Client UI uses user-friendly names for the default types of vSphere managed objects.
However, the service APIs, extension points, and libraries in the SDK refer to vSphere objects by using
the naming convention established by the vSphere API.

Table 4. vSphere Entity Names in the User Interface and SDK Code

vSphere Entity Name in the vSphere Web Client User
Interface Entity Name in the SDK Code

Cluster ClusterComputeResource

Data Center Datacenter

Datastore Datastore

Distributed Port Group DistributedVirtualPortgroup

Distributed Switch DistributedVirtualSwitch

Folder Folder

Host HostSystem

Standard Network Network

Resource Pool ResourcePool

Storage Pod StoragePod

vApp VirtualApp

Virtual Machine VirtualMachine

vSphere Web Client SDK Documentation

VMware, Inc. 13

About the vSphere Web Client
and the vSphere Client 2
VMware vSphere® Web Client and the VMware vSphere® Client provide means for connecting to
VMware vCenter Server® systems and managing the objects in the vSphere 6.5 infrastructure.

Starting with vSphere 6.5, VMware provides the vSphere Client that is an HTML5 Web browser-based
application which you can use to connect to vCenter Server systems and manage vSphere objects.

This section includes the following topics:

n Introduction to the vSphere Web Client

n Introduction to the vSphere Client

n Understanding Extensibility in the vSphere Client and the vSphere Web Client

Introduction to the vSphere Web Client
The VMware vSphere® Web Client is a Web browser-based application that you can use to connect to
vCenter Server systems and manage your vSphere infrastructure.

You can use the vSphere Web Client to monitor and modify the objects in your vSphere inventory.

You can extend your vSphere infrastructure in different ways to create a solution for your unique use
case. You can extend the vSphere Web Client with additional GUI features to support these new
capabilities, with which you can manage and monitor your unique vSphere environment.

Understanding the vSphere Web Client Architecture
The vSphere Web Client architecture consists of a user interface layer and a service layer.

Both layers reside on a Web application server, called the Virgo server. Each layer has a role in
communicating with the vSphere environment, retrieving data, and presenting the data in a Web browser.

User Interface Layer The user interface layer consists of an Adobe Flex application that is
displayed in a Web browser. The Flex application contains all of the user
interface elements with which you interact, such as menus, navigation
elements, data portlets, and commands. You can navigate through the
various Flex elements in the user interface layer to view data on vSphere
objects, send commands, and make changes to the vSphere environment.

VMware, Inc. 14

The exact configuration of the elements in the user interface layer depends
on the unique properties of the vSphere environment and other factors
such as the level of privileges each user has.

Service Layer The service layer is a collection of Java services that run in a framework on
the vSphere Web Client application server, called the Virgo server. The
Java services communicate with VMware vCenter Server® and other parts
of the vSphere environment, as well as other remote data sources. The
Java services gather monitoring data on the virtual infrastructure, which is
in turn displayed by the Flex user interface layer. When you perform an
action from the Flex user interface, such as a management or
administration command, the Java services perform that command on the
virtual infrastructure.

The vSphere Web Client application server contains a Spring framework
that manages the communication between the user interface layer and the
service layer.

3rd party
Flex plug-in

Main UI with
core plug-ins

vCenter Server 1.. N

3rd party
HTML plug-in

3rd party back end
database or server

UI Flex Platform
HTML
Bridge

User Interface
Layer

HTML plug-in compatible
with the vSphere Web
Client and the vSphere Client

REST calls to
get/post data
with controllers

vSphere Web
Client Platform

Legend

VMware

Partners

Any
remote API

vSphere Web
Services SDK

secure AMF channel

• Container,
 common views
• Actions, Data Manager

Java Platform
Java controllers

Java services

Data adapters

Service
Layer

Back End Layer

• Extension Service
• Data Service
• Mutation Service

vSphere Web Client SDK Documentation

VMware, Inc. 15

Overview of the vSphere Web Client User Interface Layer
Components
The user interface layer of the vSphere Web Client contains all of the Flex objects, such as data views,
toolbars, and navigation interfaces, that make up the vSphere Web Client graphical user interface.

The major parts of the vSphere Web Client user interface are the object navigator, the main workspace,
and the tasks and alarms panel.

Object Navigator
You can use the object navigator to browse and select objects in the virtual infrastructure and to access
other solutions and data views in the vSphere Web Client. When you select an object in the object
navigator, the contents of the vSphere Web Client main workspace changes to display additional
information about the selected object.

Object Navigator Top Level

The top level of the object navigator contains links to the major features and solutions in the
vSphere Web Client, including the vCenter Inventory Lists, the inventory tree, Policies and Profiles, and
Administration applications. You can extend the object navigator top level with links to new solutions that
you create, such as Global Views.

vSphere Web Client SDK Documentation

VMware, Inc. 16

Object Navigator When Browsing the Virtual Infrastructure

When you browse the virtual infrastructure, the object navigator is the primary means of interacting with
the vSphere objects in the data center. The object navigator vCenter Home level presents the vSphere
objects in a graph-based view. You can navigate from an object to its related objects in the inventory,
regardless of their type. When you select an object in the object navigator, information about that object
appears in the main workspace.

When you extend the vSphere Web Client to support custom object types, you must extend the object
navigator vCenter Home level with new inventory lists or custom object lists. You can also add links to
other solutions to the vCenter Home level.

vSphere Web Client SDK Documentation

VMware, Inc. 17

Main Workspace
The vSphere Web Client displays the home screen, solutions and applications, and information about the
virtual infrastructure in the main workspace.

The main workspace is the center of the vSphere Web Client graphical user interface and contains data
views, navigation elements such as tabs and toolbars or context menus for user actions.

Home Screen

The home screen is the initial view shown in the main workspace when you log into the
vSphere Web Client. The home screen contains icon shortcuts to different solutions and inventories in the
virtual infrastructure. You can extend the home screen by adding additional shortcuts.

Browsing the Virtual Infrastructure

When you browse the virtual infrastructure by using the object navigator, the main workspace displays an
object workspace. An object workspace presents information about the selected vSphere object in a
hierarchy of nested Flex data views, which are displayed as top-level tabbed screens. Any given vSphere
object has associated Getting Started, Summary, Monitor, Configure, Permissions, and categorized
relations top-level tab screens. Some of these tabs contain table of contents elements and views within
these elements.

vSphere Web Client SDK Documentation

VMware, Inc. 18

Some of the nested data views are contextual. For example, the Monitor tab always contains a second-
level Issues tab, and contain also a second-level Events tab if any events are present for the selected
object.

You can extend the object workspace for any given vSphere object type by adding second-level tabs or
views to the existing hierarchy. The object workspace for each vSphere object contains the following top-
level tabs.

Table 2‑1. Top-Level Tabs for vSphere Objects

Tab Description

Getting Started The Getting Started tab shows a basic description of the
vSphere object and some contextual information on how the
object operates within the vSphere environment. The Getting
Started tab might also provide links to common tasks for that
object.

The Getting Started tab might not appear or might be disabled
for a vSphere object.

Summary The Summary tab shows basic, high-level information about the
selected object. The Summary tab might also show portlets with
additional specific information about the object features. You can
use the Summary tab to view information about the specific
object so that you can understand the role of the object in the
virtual infrastructure.

vSphere Web Client SDK Documentation

VMware, Inc. 19

Table 2‑1. Top-Level Tabs for vSphere Objects (Continued)

Tab Description

Monitor The Monitor tab shows current and historical information about
how the selected object is performing. The Monitor tab shows
alerts, issues, and other signals from the vSphere environment
to which you might respond. The Monitor tab contains data
views that show information about the health status,
performance statistics, event logs, issues, and alarms that are
related to the object.

Configure The Configure tab displays settings and configurations that
determine how the selected object behaves. Using the
Configure tab, you can perform operations on a vSphere object,
such as provisioning or maintenance. You can also change
object settings and issue management commands from the
Configure tab.

Permissions The Permissions tab displays the permissions that are
assigned to the logged-in user.

Categorized Tabs for Object Relations Each categorized tab shows the vSphere objects related to the
currently selected object. For example, if you select a cluster
from the object navigator, the categorized tabs that you see are
Hosts, VMs, Datastores, and Networks. Users can select a
related object directly from the first-level tabs, and view the
workspace for that related object.

Relations to custom vSphere objects are displayed as second-
level tabs under the More Objects first-level tab.

Global Views

The main workspace can display global views. A global view is a data view that is not a part of an object
workspace for any vSphere object type. A global view is a free-form data view and need not follow a tab
hierarchy as an object workspace does.

You can extend the vSphere Web Client with your own global views. Your global views can collect or
summarize information from many different sources in the vSphere environment to create a dashboard or
quick access screen, or to display information from outside the vSphere environment.

Workspace for Custom Objects

If you add a custom object type to the vSphere environment, you can extend the main workspace to
display an object workspace for that custom object. The vSphere Web Client SDK contains templates to
help you create the standard object workspace tabs, such as Getting Started, Summary, Monitor,
Configure, Permissions, and the categorized tabs for object relations.

vSphere Web Client SDK Documentation

VMware, Inc. 20

Administration Application
The Administration application allows users to change administrative settings and preferences for each
service in the vSphere environment, as well as for the vSphere Web Client itself.

When you select the Administration application, the object navigator displays different categories of
services such as Access Control, Single Sign-On, Licensing, Solutions, Deployment, and Customer
Experience Improvement Program. Information about specific services appears in the main workspace.
The vSphere Web Client and additional plug-in modules appear as services in the Administration
navigation interface.

Introduction to the vSphere Client
The VMware vSphere® Client is an HTML5-based Web application that you can use to connect to
vCenter Server systems and manage your vSphere infrastructure.

Use the vSphere Client in the same way as the Flex-based vSphere Web Client. Your existing HTML-
based plug-ins that are created for the HTML Bridge need some adjustments before they can work
property in the vSphere Client . For further information about how to create an HTML-based plug-in that is
compatible with both Web browser applications, see Hybrid Plug-Ins.

Understanding the vSphere Client Architecture
The vSphere Client architecture consists of three layers: the user interface layer, the Java service layer,
and the back end layer.

The user interface and the Java service layers have different roles in communicating with the back end
layer for retrieving data, and presenting the data in a Web browser.

User Interface Layer The user interface layer consists of an HTML platform that provides a plug-
in architecture for the extensions displayed in a Web browser. The HTML
application contains all user interface elements with which the user
interacts, such as menus, commands, home screen shortcuts, and other
views. You can use the user interface elements to view information about
an object in the vSphere environment, send a command, and make
changes to your vSphere infrastructure.

vSphere Web Client SDK Documentation

VMware, Inc. 21

The HTML platform ensures that each plug-in view is isolated from the
vSphere Client application which allows you to use the UI technology of
your choice when developing HTML plug-ins. You can also use any library
to implement the UI components within your views.

You can use the same extension points for your HTML plug-ins as the ones
that you use for the Flex-based plug-ins.

Java Service Layer The Java service layer remains the same as the one in the
vSphere Web Client application.

You can use the Spring MVC framework and the Ajax Web development
techniques to establish communication between the user interface layer
and the service layer.

Main user interface
with core plug-ins

vCenter Server 1.. N

3rd party
HTML plug-in

3rd party back end
database or server

HTML Platform REST calls to
get/post data
with controllers

vSphere
Client Platform

Legend

VMware

Partners

Any
remote API

vSphere Web Services SDK

HTTPS Ajax

• Container and views
• JavaScript API
• Extension points

Java Platform
Java controller(s)

Java service(s)

Data adapter(s)

• Data Service
• Other Java APIs
• Core services

HTML plug-in compatible
with the vSphere Web
Client and the vSphere Client

User Interface
Layer

Service
Layer

Back End
Layer

Overview of the User Interface Layer Components
The user interface layer of the vSphere Client 6.5 contains a limited set of the views and the features that
are provided by the vSphere Web Client for managing vSphere objects.

The user interface layer of the vSphere Client contains HTML views, such as the data views, portlets,
navigation options, and search bar. The vSphere Client provides a vSphere objects navigator, the same
top-level tabs for the vSphere objects in the main workspace area, and a panel that displays the recent
tasks and events.

You navigate through the user interface of the vSphere Client application in the same way as you do with
the vSphere Web Client.

vSphere Web Client SDK Documentation

VMware, Inc. 22

Understanding Extensibility in the vSphere Client and the
vSphere Web Client
You extend the vSphere Client and the vSphere Web Client by creating plug-in modules. Each plug-in
module extends either the user interface layer or the service layer of the vSphere Client or the
vSphere Web Client. The user interface plug-in modules and service plug-in modules together form a
complete solution to add new capabilities to the vSphere Client and the vSphere Web Client graphical
user interfaces.

In general, you extend the vSphere Client and the vSphere Web Client for one of the following reasons.

n You extended the vSphere environment in some way. You can extend vSphere by adding a new type
of object to the environment, or by adding more data to an existing object. If you extend vSphere in
this way, you can extend the vSphere Client and the vSphere Web Client with new user interface
elements that allow users to observe, monitor, and control these new objects.

n You want to view existing vSphere data in a different way. You can extend the vSphere Client and the
vSphere Web Client without having added new objects or data to the vSphere environment. For
example, you might want to collect existing vSphere data on a single screen or location in the user
interface. Shortcuts, global views, and object navigator inventory lists are examples of extensions that
you can use for these purposes. You can also create a new second-level tab, portlet, or other data
view that displays existing vSphere data, such as performance data, as a custom graph or chart.

vSphere Web Client SDK Documentation

VMware, Inc. 23

Extending the vSphere Client and the vSphere Web Client can involve creating both user interface plug-in
modules and service plug-in modules. For more information about the architectures of both clients, see
Understanding the vSphere Client Architecture and Understanding the vSphere Web Client Architecture.

n Extending the User Interface Layer

A user interface plug-in module adds one or more extensions to the vSphere Client and the
vSphere Web Client user interface layer.

n Extending the Java Service Layer

You can add new Java services to the service layer. The Java services you add can perform any of
the functions of a typical Java Web service.

Extending the User Interface Layer
A user interface plug-in module adds one or more extensions to the vSphere Client and the
vSphere Web Client user interface layer.

Extensions to the user interface layer can include new data views, either in the virtual infrastructure or as
global views. When you create a data view extension, you must also create the actual GUI objects in
Adobe Flex or in HTML and package them in the plug-in module. These GUI objects rely on data from the
vSphere Client and the vSphere Web Client service layers. You can use the libraries included with the
vSphere Web Client SDK to enable communication between your GUI objects and the service layer or if
you create an HTML plug-in, you can use a library of your choice.

Other user interface extensions can include new workspaces for custom objects, shortcuts added to the
object navigator or home screen, new relations between vSphere objects, and new actions associated
with vSphere objects.

Extending the Java Service Layer
You can add new Java services to the service layer. The Java services you add can perform any of the
functions of a typical Java Web service.

The Java services you add to the Java service layer are used to retrieve data from the vSphere
environment and display the data in the user interface layer, or to make changes to the vSphere
environment in response to actions in the user interface layer.

Getting Data from the vSphere Environment
Service plug-in modules that gather data from the vSphere environment usually extend the native
services on the vSphere Client and the vSphere Web Client application servers, such as the Data
Service. You can create standalone custom Java services for data gathering, but a best practice is to
extend the built-in services in the vSphere Web Client SDK. Extensions to the built-in services in the
vSphere Web Client SDK are often simple wrappers around existing Java services that you create.

In general, you must extend the Data Service if your extension solution meets any of the following criteria.

n Your extension provides new data about existing vSphere objects. If your extension provides a GUI
element to display data that the vSphere Client or the vSphere Web Client services do not already
provide, you must extend the Data Service to provide such data.

vSphere Web Client SDK Documentation

VMware, Inc. 24

n You want to add a new type of object to the vSphere environment. If you are adding a new type of
object to the vSphere environment, you can extend the Data Service to provide data for objects of the
new type.

The service extensions you create can access data from any source, either inside or outside of the
vSphere environment. For example, you can create an extension to the Data Service that retrieves data
from an external Web server, rather than from vCenter Server.

Making Changes to the vSphere Environment
Service plug-in modules that make changes to the vSphere environment are standalone Java services
that you create. These services are used when the user starts an action in the vSphere Client or the
vSphere Web Client user interfaces. If you create an action extension, you must also create the Java
service that performs the action operation on the vSphere environment as a service plug-in module.

vSphere Web Client SDK Documentation

VMware, Inc. 25

vSphere Web Client SDK
Installation and Setup Guide 3
To develop HTML and Flex-based custom plug-ins for the vSphere Web Client and the vSphere Client,
you must first set up your development environment.

This section includes the following topics:

n Software Requirements

n Development Environment Requirements Overview

n Setting Up for HTML-Based Plug-In Development

Software Requirements
You can set up your development environment for developing HTML-based and Flex-based extensions by
using specific software components.

To set up your development environment, you can use the following software components with their
respective versions.

Software Component
Minimum Required
Version Description

Java Standard Edition
Development Kit (JDK)

1.8.x For information about the required setup for Java development, see Set Up
for Java Development. The local Virgo server runtime requires JDK 1.8.x to
work with the vCenter Server 6.5 instance.

Apache Ant 1.9.x For more information about how to use Ant to automate the build process
of your plug-ins, see Automate the Plug-In Build Process.

Eclipse IDE for Java EE
Developers or Spring Tool
Suite

Eclipse 4.2 (Juno) and
Eclipse 4.3 (Kepler), or
Spring Tool Suite 2.9
and later

For more information about how to set up the Eclipse IDE, see (Optional)
Set Up the Eclipse Integrated Development Environment.

Note For developing HTML plug-ins you can use Eclipse Neon.

vSphere Web Client SDK
Tools

Use the version from
the downloaded
vSphere Web Client
SDK

For more information about how to install the vSphere Web Client SDK
Tool, see Install the vSphere Web Client Tools Eclipse Plug-In. The plug-in
works on Widows and Mac OS setups.

Adobe Flash Builder 4.7 The Adobe Flash Builder is required only for developing Flex-based plug-
ins.

Adobe Flex SDK 4.6 For more information about how to set up the Adobe Flex SDK, see Set Up
the Adobe Flex 4.6 Software Development Kit.

VMware, Inc. 26

Software Component
Minimum Required
Version Description

Flash Player and Flash
Player Content Debugger

11.5 and later You can install Flash Player and Flash Player Content debugger in the
browser that you use.

IntelliJ IDEA Standard Edition You can use the IntelliJ IDEA as an alternative to the Eclipse IDE for
developing your Java, JavaScript, and Flex code. The Standard Edition
also provides Flex debugging utilities.

Development Environment Requirements Overview
Before you start setting up your development environment, you must download the vSphere Web Client
SDK to your working machine and have access to a vCenter Server for Windows or a
vCenter Server Appliance instance.

To create a vSphere Web Client extension, your development environment must include the following
items.

n A development environment capable of developing Web applications by using ActionScript and
MXML, or JavaScript and HTML. You can use the Eclipse Integrated Development Environment or
Spring Tools Suite. The vSphere Web Client SDK includes tools and plug-ins for the both IDEs to aid
you in creating vSphere Web Client plug-ins.

n A development environment capable of developing Java-based Web applications. You can again use
the Eclipse IDE or the Spring Tools Suite. The vSphere Web Client contains tools and plug-ins for
both IDEs to aid you in creating services compatible with the vSphere Web Client Virgo server
framework.

n Access to avCenter Server for Windows or a vCenter Server Appliance instance to register your
extension and in this way allow the vSphere Web Client to download and install the plug-in.

You can set up the vSphere Web Client SDK on a machine with Windows or Mac OS operating systems.
Before you begin the SDK setup, you can set up your Java environment and Apache Ant, install and
configure the Eclipse IDE and the Adobe Flex SDK.

Setting Up for HTML-Based Plug-In Development
The vSphere Web Client SDK contains libraries, sample plug-ins, and various SDK tools that help you
develop and build extensions to the vSphere Web Client and the vSphere Client.

In vSphere 6.5, system administrators can use the vSphere Client to manage their vSphere
infrastructures. The vSphere Client development kit is added to the vSphere Web Client SDK allowing
developers to create custom HTML plug-ins and hybrid plug-ins for both Web browser-based applications.

Setting up your development environment for creating HTML and hybrid plug-ins for the
vSphere Web Client involves several tasks.

1 Download the vSphere Web Client SDK

Download the .zip file that contains all components of the vSphere Web Client SDK.

vSphere Web Client SDK Documentation

VMware, Inc. 27

2 Set Up for Java Development

You must set up your Java development environment to create extensions to the Service Layer.

3 Automate the Plug-In Build Process

Apache Ant is used by the scripts in the SDK to generate plug-in project templates and to build plug-
ins.

4 (Optional) Set Up the Eclipse Integrated Development Environment

You can use an IDE of your choice to develop custom plug-ins for the vSphere Client and the
vSphere Web Client. The SDK provides a plug-in for Eclipse to ease your development process
which suggests that you have installed the Eclipse IDE on your machine.

5 Install the vSphere Web Client Tools Eclipse Plug-In

The vSphere Web Client SDK provides an Eclipse plug-in that adds tools and wizards to your
Eclipse IDE to ease your HTML and Flex-based plug-in development process. This step is required
only if you use the Eclipse IDE for developing HTML plug-ins.

6 Register Your Local vSphere Client with the vCenter Server Instance

If you want to verify your custom plug-ins, you can deploy the plug-ins first on your local
vSphere Client and vSphere Web Client. You must register your local instances of the Web browser
applications with the vCenter Server Appliance or vCenter Server for Windows to be able to deploy
your plug-ins locally.

7 Configure the Virgo Server in Your Eclipse IDE

You can use the Virgo server from the Eclipse IDE in your development environment to test easily
your HTML plug-ins. This step is required only if you use the Eclipse IDE for developing HTML plug-
ins.

8 Set Up the Adobe Flex 4.6 Software Development Kit

To compile the resources of your HTML plug-ins, you must install the Adobe Flex 4.6 SDK on your
development machine.

Download the vSphere Web Client SDK
Download the .zip file that contains all components of the vSphere Web Client SDK.

Prerequisites

Create a My VMware account at https://my.vmware.com/web/vmware/.

Procedure

1 Download the vSphere Web Client SDK from the VMware Web site at
https://my.vmware.com/web/vmware/downloads.

The vSphere Web Client SDK is part of the VMware vCloud Suite and VMware vSphere, listed under
Datacenter & Cloud Infrastructure.

vSphere Web Client SDK Documentation

VMware, Inc. 28

https://my.vmware.com/web/vmware/
https://my.vmware.com/web/vmware/downloads

2 Conform the mid5sum is correct.

See the VMware Web site topic Using MD5 Checksums at
http://www.vmware.com/download/md5.html.

3 Extract the content of the SDK in a directory on your development machine.

Note The name of the directory where you extract the vSphere Web Client SDK must be short and
without spaces.

What to do next

Open the README.html file and review the information about the other files and directories in the
vSphere Web Client SDK.

Set Up for Java Development
You must set up your Java development environment to create extensions to the Service Layer.

You might already have the Java platform installed on your development machine. To check the version of
your Java installation, open a command prompt and enter java -version.

Procedure

1 From the Oracle Web site at http://www.oracle.com/technetwork/java/javase/downloads/index.html,
download the Java SE Development Kit installer.

n For developing Flex-based plug-ins, download JDK1.7.0_17.

n For developing HTML plug-ins, download JDK 1.8.x.

Download the 64-bit version of the JDK installer if you need to allocate more memory.

2 Install the JDK following the instructions of Oracle for the operating system of your development
machine.

3 Specify the location to the JDK.

Operating System Java Location

Windows Use the JAVA_HOME environment variable to specify the
location of the JDK. For example, set the environment
variable to C:\Program Files\Java\jdk1.7.0_17.

Mac OS Open the Terminal application and enter the following
command: echo export "JAVA_HOME=\$
(/usr/libexec/java_home)" >> ~/.bash_profile. In
case you have more than one Java Development Kits
installed, you can specify only the version you want by using
the following command: echo export "JAVA_HOME=\$
(/usr/libexec/java_home -v 1.7.0_17)" >>

~/.bash_profile.

vSphere Web Client SDK Documentation

VMware, Inc. 29

http://www.vmware.com/download/md5.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

What to do next

Set the Java compiler compliance level to Java 1.7 in your automation build scripts or in Eclipse.

Automate the Plug-In Build Process
Apache Ant is used by the scripts in the SDK to generate plug-in project templates and to build plug-ins.

You can setup Apache Ant in your development environment to generate plug-in project templates and
build plug-ins out of the projects. You can build also the samples provided with the vSphere Web Client
SDK and the vSphere Client development kit.

To use the SDK build scripts inside Eclipse, you can use the Apache Ant version provided with the
Eclipse package. The following procedure setups Apache Ant for running scripts by using the command
line console.

Prerequisites

Verify that you have a Java environment installed on your development machine. See Set Up for Java
Development.

Procedure

1 From the Apache Ant site at http://ant.apache.org/bindownload.cgi, download the Apache Ant binary
distribution.

n For developing Flex-based plug-ins, download Apache Ant 1. 7.1 or later.

n For developing HTML plug-ins, download Apache Ant 1.9.x.

2 Install Apache Ant by following the provided instructions for the operating system of your
development machine.

3 Set the ANT_HOME environment variable to the directory on your development machine where you
installed Apache Ant.

4 Set the VSPHERE_SDK_HOME environment variable to the directory on your development machine
where you extracted the vSphere Web Client SDK.

n For developing Flex-based plug-ins, set the environment variable to the flex-client-sdk
directory on your development machine.

n For developing HTML plug-ins, set the environment variable to the html-client-sdk directory
on your development machine.

vSphere Web Client SDK Documentation

VMware, Inc. 30

http://ant.apache.org/bindownload.cgi

(Optional) Set Up the Eclipse Integrated Development
Environment
You can use an IDE of your choice to develop custom plug-ins for the vSphere Client and the
vSphere Web Client. The SDK provides a plug-in for Eclipse to ease your development process which
suggests that you have installed the Eclipse IDE on your machine.

Procedure

1 From the Eclipse Web site at http://www.eclipse.org/downloads/eclipse-packages/, download the
Eclipse IDE for Java EE Developers package.

n For developing Flex-based plug-ins, download Eclipse Juno or Eclipse Kepler.

n For developing HTML plug-ins, download Eclipse Neon.

2 Extract the contents of the downloaded file into an appropriate location on your development
machine.

3 If you do not have the minimum and maximum heap size automatically set up for Eclipse, edit the
eclipse.ini file before you start Eclipse. You must add the location to the JDK you installed and to
increase the heap space and the maximum permanent space used by the VM.

You must add or edit the Eclipse initialization file to have the following lines:

-vm

C:/<your JAVA_HOME directory>/bin/java.exe

-Xmx1024m

-XX:MaxPermSize=512m

4 Start Eclipse and edit the Eclipse preferences to set up your workspace for developing plug-ins for
the vSphere Client and the vSphere Web Client.

a Go to Window > Preferences.

The Preferences dialog opens.

b From the General page, select the Show heap status option to display information about the
current Java heap usage.

c From General > Network Connections, configure the proxy settings to be used when opening a
connection.

d From General > Workspace, select the Build automatically and Refresh using native hooks
or polling check boxes.

e From Java > Code Style > Formatter, configure your code and naming conventions.

f From Java > Installed JREs, add the location to the JDK you installed. See Set Up for Java
Development.

vSphere Web Client SDK Documentation

VMware, Inc. 31

http://www.eclipse.org/downloads/eclipse-packages/

g From General > Workspace > Linked Resources, set the location to your SDK.

n For developing Flex-based plug-ins, set the path to the flex-client-sdk folder as a value
of the VSPHERE_CLIENT_SDK path variable.

n For developing HTML plug-ins, set the path to the html-client-sdk folder as a value of the
VSPHERE_CLIENT_SDK path variable.

h From Java > Build Path > Classpath Variables, set the location to your SDK.

n For developing Flex-based plug-ins, set the path to the flex-client-sdk folder as a value
of the VSPHERE_CLIENT_SDK classpath variable.

n For developing HTML plug-ins, set the path to the html-client-sdk folder as a value of the
VSPHERE_CLIENT_SDK classpath variable.

What to do next

After you install and set up the Eclipse IDE on your development machine, you can install the
vSphere Web Client SDK Tools Eclipse plug-in.

Install the vSphere Web Client Tools Eclipse Plug-In
The vSphere Web Client SDK provides an Eclipse plug-in that adds tools and wizards to your Eclipse IDE
to ease your HTML and Flex-based plug-in development process. This step is required only if you use the
Eclipse IDE for developing HTML plug-ins.

Prerequisites

n Configure the proxy to be used for your development machine. For more information, see (Optional)
Set Up the Eclipse Integrated Development Environment.

Procedure

1 Start Eclipse on your development machine.

2 From Help > Install New Software ..., click Add in the Install dialog box.

The Add Repository dialog box appears.

3 In the Name text box, enter a name for this local site, such as vSphere Client plug-in site.

You can reuse the created repository, if you install a new version of Eclipse at the same place on your
machine.

4 Click Local ... and browse to the your_SDK_location/tools/Eclipse plugin site directory.

5 Select the vSphere Web Client SDK Tools node from the discovered software and click Next.

6 Check the installation details and accept the license agreement.

7 Click Finish to complete the wizard.

Click OK on the warning pop-up dialog box that shows up during the installation process.

8 Restart your Eclipse SDK to apply the changes.

vSphere Web Client SDK Documentation

VMware, Inc. 32

What to do next

Verify that the Eclipse plug-in is installed correctly by going to Help > About Eclipse and selecting
Installation Details.

Register Your Local vSphere Client with the vCenter Server
Instance
If you want to verify your custom plug-ins, you can deploy the plug-ins first on your local vSphere Client
and vSphere Web Client. You must register your local instances of the Web browser applications with the
vCenter Server Appliance or vCenter Server for Windows to be able to deploy your plug-ins locally.

The SDK provides a registration script that you can run in the vCenter Server instance. The files
generated by this script connect your local Web browser application to the remote vCenter Server system.

Prerequisites

n Verify that you have access to a vCenter Server instance.

Procedure

1 Navigate to the vCenter registration scripts folder under tools in your SDK installation.

2 Copy the dev-setup script to one of the following locations on the vCenter Server system depending
on your vSphere deployment.

n On the vCenter Server Appliance, use the root directory to copy the script. You must make the
file executable.

n On the vCenter Server for Windows, use the C:\Users\Administrator directory to copy the
script.

3 Run the dev-setup script in the corresponding directory.

The script generates the following files: webclient.properties, store.jks, and ds.properties.

4 Copy the generated files on your development machine in one of the following locations.

Note On a Windows operating system, you might not be able to see the ProgramData folder. To
change the way items are displayed on a Windows machine, use Folder Options from Control
Panel.

Operating
System Generated File Location on Your Development Machine

Windows webclient.properties C:\ProgramData\VMware\vCenterServer\cfg\vsphere-client\

Mac OS /var/lib/vmware/vsphere-client/vsphere-client/

Windows store.jks C:\ProgramData\VMware\vCenterServer\cfg\

Mac OS /var/lib/vmware/vsphere-client/

vSphere Web Client SDK Documentation

VMware, Inc. 33

Operating
System Generated File Location on Your Development Machine

Windows ds.properties C:\ProgramData\VMware\vCenterServer\cfg\vsphere-

client\config\

Mac OS /var/lib/vmware/vsphere-client/vsphere-client/config/

5 Set up the VMWARE_CFG_DIR environment variable on your local machine to point to one of the
following directories:

n For a Windows development environment, set C:\ProgramData\VMware\vCenterServer\cfg\
as a value to the variable.

n For a Mac OS development environment, set /var/lib/vmware/vsphere-client
or /var/lib/vmware/vsphere-ui as a value to the variable.

6 If you use a Mac OS development environment, edit the following properties to point to
the /var/lib/vmware/vsphere-client/store.jks file.

a In the webclient.properties file, edit the keystore.jks.path property.

b In the ds.properties file, edit the solutionUser.keyStorePath property.

7 If you use a Mac OS development environment, before you connect your local Web browser
application to the vCenter Server system for the first time, edit the tomcat-server.xml file. Add
the /var/lib/vmware/vsphere-client/store.jks value to the keystoreFile.

You can locate the file at your_SDK_folder/vsphere-client-sdk/html-client-sdk/vsphere-
ui/server/configuration or your_SDK_folder/vsphere-client-sdk/flex-client-
sdk/vsphere-client/server/configuration depending on the Web browser application.

8 Start the local vSphere Client or vSphere Web Client by running the startup script located at the bin
directory of the server folder.

For example, if you use a Mac OS development environment, the script for starting the
vSphere Client is located at your_SDK_folder\vsphere-client-sdk\html-client-
sdk\vsphere-ui\server\bin.

9 Open a Web browser and log into your local vSphere Client at https://localhost:9443/ui or into
your local vSphere Web Client at https://localhost:9443/vsphere-client.

Your local vSphere Client or vSphere Web Client connects to the vCenter Server instance and
displays the vSphere inventory.

What to do next

You can deploy your custom plug-ins to the local vSphere Client or vSphere Web Client and verify
whether the plug-ins function properly in your development environment before deploying them on the
remote Web browser applications.

vSphere Web Client SDK Documentation

VMware, Inc. 34

Configure the Virgo Server in Your Eclipse IDE
You can use the Virgo server from the Eclipse IDE in your development environment to test easily your
HTML plug-ins. This step is required only if you use the Eclipse IDE for developing HTML plug-ins.

Prerequisites

n Configure the proxy to be used for your development machine. For more information, see (Optional)
Set Up the Eclipse Integrated Development Environment.

n Register your local vSphere Client with a vCenter Server instance. See Register Your Local vSphere
Client with the vCenter Server Instance.

Procedure

1 Start Eclipse on your development machine.

2 From Help > Install New Software ..., click Add in the Install dialog box.

The Add Repository dialog box appears.

3 In the Name text box, enter a name for the Virgo server tools and in the Location text box, enter
http://download.eclipse.org/virgo/snapshot/tooling.

4 From the displayed software, select Eclipse Virgo Tools and click Next.

5 Check the installation details and accept the license agreement.

6 Click Finish to complete the wizard.

Click OK on the warning pop-up dialog box that shows up during the installation process.

7 Restart your Eclipse SDK to apply the changes.

8 When Eclipse starts again, go to Window > Show View > Servers, right-click in the Servers view,
and select New > Server.

9 In the New Server wizard, select EclipseRT > Virgo Runtime and click Next.

10 Use the Browse button to navigate to the your_SDK_folder\vsphere-client-sdk\html-client-
sdk\vsphere-ui\server directory on your development machine.

11 Click Finish to complete the Virgo server creation.

What to do next

Before you start the local Virgo server application, you must register the server with a vCenter Server
instance. See Register Your Local vSphere Client with the vCenter Server Instance.

You must reconfigure also the following settings:

n Set the VMWARE_CFG_DIR environmental variable in the Edit Configuration dialog box that opens
when you select Open launch configuration from the General Information pane.

n In a Mac OS development environment, click the Environment tab and set
the /var/lib/vmware/vsphere-client value to the variable.

vSphere Web Client SDK Documentation

VMware, Inc. 35

n In a Windows development environment, click the Environment tab and set the
C:/ProgramData/VMware/vCenterServer/cfg/ value to the variable.

n From the Overview page of the Virgo server instance that opens when you double-click in the
instance in the Server view, configure the following options:

n From the Server Startup Configuration pane, select the Tail application trace files into
Console view and Start server with -clean option startup options.

n From the Redeploy Behavior pane, remove the *.xml file extension.

n From the General Information pane, select Open launch configuration. Click the Arguments
tab and under VM arguments add the following lines at the end of the text:

-XX:+CMSClassUnloadingEnabled

-XX:MaxPermSize=512m

Set Up the Adobe Flex 4.6 Software Development Kit
To compile the resources of your HTML plug-ins, you must install the Adobe Flex 4.6 SDK on your
development machine.

Procedure

1 From the Adobe Web site at http://www.adobe.com/devnet/flex/flex-sdk-download.html, download the
Adobe Flex 4.6 SDK.

2 Extract the contents of the SDK distribution file on your development machine.

3 Set up the FLEX_HOME environment variable to point to the location of the Adobe Flex SDK on your
machine.

4 (Optional) Go to the your_Flex_sdk/frameworks/libs/player directory and verify that you have a
11.5 folder that contains the playerglobal.swc file.

a If the folder is not present in your Adobe Flex SDK, download the missing file from the following
location
http://fpdownload.macromedia.com/get/flashplayer/installers/archive/playerglobal/playerglobal11_
5.swc.

b Rename the downloaded file to playerglobal.swc.

c Create a 11.5 folder under the your_Flex_sdk/frameworks/libs/player directory and place
the renamed file there.

vSphere Web Client SDK Documentation

VMware, Inc. 36

http://www.adobe.com/devnet/flex/flex-sdk-download.html
http://fpdownload.macromedia.com/get/flashplayer/installers/archive/playerglobal/playerglobal11_5.swc
http://fpdownload.macromedia.com/get/flashplayer/installers/archive/playerglobal/playerglobal11_5.swc

vSphere Web Client SDK
Upgrade 4
The vSphere Client development kit and the vSphere Web Client SDK provide different options for
upgrading your existing plug-ins to be compatible with the vSphere Client .

Upgrade options and recommendations depend on the version of the SDK that you used to create your
plug-ins.

This section includes the following topics:

n Upgrading Plug-Ins Created with the vSphere Web Client SDK 6.0 Update 2

n Upgrading Plug-Ins Created with the vSphere Web Client SDK 6.0 Update 1

n Upgrading Plug-Ins Created with the vSphere Web Client SDK 6.0

n Upgrading Plug-Ins Created with the vSphere Web Client SDK 5.5.x

Upgrading Plug-Ins Created with the vSphere Web Client
SDK 6.0 Update 2
You can upgrade your existing plug-ins created with the vSphere Web Client SDK 6.0 Update 2 by
applying changes to the URL formatting and the icon usage.

To make your existing plug-ins compatible with the vSphere Web Client 6.5 and the vSphere Client, you
must consider making changes to the URLs and icon definitions.

URL Changes
The URL changes that you must apply affect the web-platform.js, HTML, and JavaScript files where
the /vsphere-client root path must not be hard-coded. You must keep the /vsphere-client root path
only in the MANIFEST.MF and plugin.xml files.

The user interface bundle of each plug-in contains a specific generation of the web-platform.js file.
This file is used to bootstrap the JavaScript API based on the Web browser application on which the plug-
in is deployed. In vSphere 6.5, the WEB_PLATFORM.getRootPath function is added to set the correct path
to both Web browser applications. To reflect this change in your existing plug-ins, add the following line
inside the if(!WEB_PLATFORM) block:

WEB_PLATFORM.getRootPath = function() { return "/vsphere-client"; }

VMware, Inc. 37

Then you must use this function to define the Web context path in the following way:
my_plugin_namespace.webContextPath = WEB_PLATFORM.getRootPath() + "/my_plugin";. For
example, if you have the following definition of the Web context path in vSphere 6.0 Update 2:
com_vmware_samples_chassisa.webContextPath = "/vsphere-client/chassisa";, in vSphere
6.5 you must change the definition to: com_vmware_samples_chassisa.webContextPath =
WEB_PLATFORM.getRootPath() + "/chassisa";.

In the HTML files of your UI extensions, you must change the URLs that start with /vsphere-client/ to
use relative URL paths. This change allows the root context path to be adjusted at runtime depending on
the Web browser application on which the plug-in is deployed. For example, you must change the URLs
in the HTML files of the ChassisA sample from:

 <link rel="stylesheet"

 href="/vsphere-client/chassisa/assets/css/jquery-ui-1.10.3.marge.css" />

 <script src="/vsphere-client/chassisa/assets/jquery-1.10.2.min.js"></script>

 <script src="/vsphere-client/chassisa/assets/jquery-ui-1.10.3.custom.min.js"></script>

 <script src="/vsphere-client/chassisa/resources/js/web-platform.js"></script>

 <script src="/vsphere-client/chassisa/resources/js/jquery-util.js"></script>

to the following relative paths:

 <link rel="stylesheet" href="../assets/css/jquery-ui-1.10.3.marge.css" />

 <script src="../assets/jquery-1.10.2.min.js"></script>

 <script src="../assets/jquery-ui-1.10.3.custom.min.js"></script>

 <script src="./js/web-platform.js"></script>

 <script src="./js/jquery-util.js"></script>

In the JavaScript code of your UI extensions, you can use the buildDataUrl(objectId, propList)
utility function to make data requests that use the correct context path. You must remove also all
mentions of /vsphere-client/ from the URLs in your JavaScript code.

External Icons
Your plug-in might include external icons, such as Home view shortcut icons, menu icons, dialog box title
icons, and object list icons. In vSphere 6.0 Update 2, these icons are defined in the plugin.xml by using
the following #{key} format and their values are set in the .properties files. The vSphere Web Client
uses the default resource bundle declared in the plugin.xml manifest file to load the icons.

In vSphere 6.5, the vSphere Client loads the external icons that are defined with separate CSS classes in
the additional plugin-icons.css file located in the assets/css/ directory of your UI component. The
CSS class names must follow the .bundleName-iconName pattern and you must set the width, height,
and display attributes for each class. Use the following settings for object list icons:

vertical-align: text-bottom;

margin: 1px 4px 0;

vSphere Web Client SDK Documentation

VMware, Inc. 38

For Home screen shortcuts and dialog box title icons, use the following setting:

vertical-align: top;

To make the vSphere Client aware of these external icons, declare the plugin-icons.css CSS file as a
dependency in the plugin.xml manifest file.

Upgrading Plug-Ins Created with the vSphere Web Client
SDK 6.0 Update 1
You can upgrade your existing plug-ins created with the vSphere Web Client SDK 6.0 Update 1 by
applying changes to the properties filenames, the initialization code of the web-platform.js file, and the
bundle-context.xml file.

To make your plug-ins developed with the vSphere Web Client SDK 6.0 Update 1 compatible with
vSphere 6.5, you must apply the following changes.

n Change the filenames suffix of the .properties files located in the webapp/locales folder of your
existing plug-ins for example from _en_US to -en_US. If you keep the existing filenames of your
localization resources, the vSphere Client and the vSphere Web Client display the keys of the strings
instead of the localized values.

After you apply this change, open the build-war.xml Ant build script for generating .war files and
change the value of the REGEXP2 environment variable to \2_\1.properties. Rebuild the plug-ins to
make them compatible with the current version of both Web browser applications.

n Remove all mentions of viewResolvers from your bundle-context.xml files to avoid conflicts.

n Edit your web-platform.js JavaScript API initialization files to start with the following code:

 var WEB_PLATFORM = self.parent.WEB_PLATFORM;

 if (!WEB_PLATFORM) {

 WEB_PLATFORM = self.parent.document.getElementById("container_app");

 self.parent.WEB_PLATFORM = WEB_PLATFORM;

 WEB_PLATFORM.getRootPath = function() { return "/vsphere-client"; }

 }

Upgrading Plug-Ins Created with the vSphere Web Client
SDK 6.0
You can upgrade your existing plug-ins created with the vSphere Web Client SDK 6.0 by applying
changes to your existing plug-ins.

You must apply all changes required to upgrade plug-ins created with the vSphere Web Client SDK 6.0
Update 1 before you proceed with the next three changes.

vSphere Web Client SDK Documentation

VMware, Inc. 39

Adapt your plug-ins to the following changes:

n The error handling mechanisms in the Java controllers. The code using the @ExceptionHandler
annotation must be updated to return the correct error map in case of exception. For more information
about the returned error response, see the ServicesController.java code sample located at the
globalview-html-service\src\main\java\com\vmware\samples\globalview\mvc directory of
the Global View sample.

n The properties of the UserSession object that the WEB_PLATFORM.getUserSession() function
returns no longer contain the samlTokenXml property.

n The WEB_PLATFORM.onGlobalRefreshRequest() function is replaced with the
WEB_PLATFORM.setGlobalRefreshHandler(callback) function. This function is called when a
global refresh is initiated by the user.

Upgrading Plug-Ins Created with the vSphere Web Client
SDK 5.5.x
You can upgrade your existing plug-ins created with the vSphere Web Client SDK 5.5.x to be compatible
with vSphere 6.5 by applying changes to your JavaScript code and plugin.xml manifest files.

You must apply all changes required to upgrade plug-ins created with the vSphere Web Client SDK 6.0
before you proceed with the next three changes.

To upgrade your existing plug-ins that are created with the vSphere Web Client SDK 5.5.x, you must
adapt the plug-ins to the following additional changes:

n Use the WEB_PLATFORM.setDialogSize() and WEB_PLATFORM.setDialogTitle() JavaScript
functions introduced to the APIs for vSphere 6.0 to change the dialog size and title at runtime.

n Use the <dialogIcon> and <showCloseButton> XML elements in your plugin.xml manifest files
to specify an icon and control the close button visibility for the dialog boxes and Summary view
portlets.

n Use the WEB_PLATFORM.openModalDialog() function introduced to the JavaScript APIs for vSphere
6.0 to open a modal dialog box from within an HTML view.

vSphere Web Client SDK Documentation

VMware, Inc. 40

Quick Startup Guide for
Developing HTML-Based Plug-
Ins 5
After you successfully install and configure your vSphere Client development kit, you can easily create an
HTML plug-in project, build and test your plug-in with a local or remote vSphere Web Client, or a remote
vSphere Client .

This section includes the following topics:

n Before Creating an HTML Plug-In

n Creating an HTML Plug-In Project

n Building a Plug-In Package from the Project Template

n Testing the Generated Plug-Ins

Before Creating an HTML Plug-In
Ensure that your development machine is prepared for developing HTML plug-ins by verifying that you
installed and set up the required software.

To develop HTML plug-ins make sure that you have familiarized yourself with the folder structure of the
SDK and you have followed the steps for setting up your development environment.

For more information about developing a plug-in that can run on both Web browser applications, see
Hybrid Plug-Ins.

Creating an HTML Plug-In Project
HTML plug-ins for the vSphere Client have two components. User interface components run in the Web
browser and Java service components run on the Virgo server. The vSphere Client development kit
provides tools for creating an HTML plug-in project template for each of these components.

You have two options for creating the HTML plug-in project template from which you can choose
depending on your development setup:

n Create the project template by using the scripts provided in the vsphere-client-sdk\html-
client-sdk\tools\Plugin generation scripts directory.

n Create an HTML plug-in project by using the vSphere Web Client Tools Eclipse plug-in. For more
information about how to set up the SDK Eclipse plug-in, see Install the vSphere Web Client Tools
Eclipse Plug-In.

VMware, Inc. 41

Generate an HTML Plug-In Project with a Script
You can run the plug-in project generation scripts to create an HTML plug-in project template and build a
plug-in out of the project.

The vSphere Client development kit provides two project generation scripts which you can use depending
on the operating system of your development environment.

Prerequisites

n Verify that you set up the correct paths for the ANT_HOME and VSPHERE_SDK_HOME environment
variables. See Automate the Plug-In Build Process.

n Verify that you set up the correct path for the FLEX_HOME environment variable. See Set Up the
Adobe Flex 4.6 Software Development Kit.

Procedure

1 In your development environment, open a command prompt or launch the Terminal application.

2 Navigate to the Plugin generation scripts folder.

On a Windows machine, the generation scripts are located at SDK_folder\vsphere-client-
sdk\html-client-sdk\tools\Plugin generation scripts.

3 Run the create-html-plugin.bat or the create-html-plugin script depending on your OS.

4 When prompted, enter the plug-in name, the directory on your machine where the project template
folder structure will be created, and the plug-in package name.

If you do not specify a value when prompted, the generation script uses predefined values.

The script generates two folders, myplugin-service and myplugin-ui. For more information about the
contents of each folder, see Contents of the HTML Plug-In Project Template.

What to do next

After you generate the HTML plug-in project template, you can build the plug-in package and test whether
your plug-in works by deploying the plug-in on the vSphere Client or the vSphere Web Client. For detailed
information, see Building a Plug-In Package from the Project Template and Testing the Generated Plug-
Ins.

Create an HTML Plug-In Project with Eclipse
If you have the Eclipse IDE set up on your development environment, you can create HTML plug-in
projects by using the vSphere Web Client Tools Eclipse plug-in.

Prerequisites

n Verify that you have the Eclipse IDE installed and configured correctly on your development
environment. See (Optional) Set Up the Eclipse Integrated Development Environment.

vSphere Web Client SDK Documentation

VMware, Inc. 42

n Verify that you have the vSphere Web Client Tools Eclipse plug-in installed and configured in the
Eclipse IDE. See Install the vSphere Web Client Tools Eclipse Plug-In.

n Verify that you have the Virgo server set up in your Eclipse IDE. See Configure the Virgo Server in
Your Eclipse IDE.

Procedure

1 Start Eclipse on your development machine.

2 From File > New, select Other.

The New wizard appears.

3 From the New wizard, select the HTML Plug-in Project node under the vSphere Web Client folder and
click Next.

The New vSphere Client HTML plug-in dialog box appears.

4 In the New vSphere Client HTML plug-in dialog box, enter the name of the plug-in project and click
Finish.

Best practice is to use -ui at the end of the project name for the user interface components and to
use lowercase letters. The project name is used for creating the Web context path of the plug-in.

Optionally, you can change the location where your plug-in project is stored and also the default plug-
in and plug-in package names.

Two plug-in projects are created for the HTML plug-in, user interface project and Java service project.
Before you start editing the files generated by the wizard, make sure that you understand what each file
must contain. For detailed information about the structure of the HTML plug-in project template, see
Contents of the HTML Plug-In Project Template.

What to do next

Before you start editing the generated HTML project files, you can build and deploy the HTML plug-in on
the vSphere Client or the vSphere Web Client.

Contents of the HTML Plug-In Project Template
Once you create a template project for your HTML plug-in, you must be familiar with the folder structure of
the project and the purpose of each file inside the project. This knowledge will help you to easily create
your custom plug-ins for the vSphere Client.

The following tables contain detailed information about the structure of the UI and Java service
components of the HTML plug-in project template.

vSphere Web Client SDK Documentation

VMware, Inc. 43

Table 5‑1. Details About the UI Project Template Structure

User Interface Project Structure Description

/myplug

in-ui

/sr

c/ma

in

local

e

en_US Contains string resources for the English
locale. You can use the build-resources
script to compile the resources.

Contains string resources for the French
locale. You can use the build-resources
script to compile the resources.

fr_FR

webap

p

assets css Contains assets used in the plug-in such as
images, CSS files, and JavaScript libraries.
The css folder contains the plugin-
icons.css file that you can use to define
the external icons. For more information,
see Guidelines for Creating Plug-Ins
Compatible with the vSphere Client.

images

META-INF MANIFEST.MF Contains the manifest file of the WAR
bundle. The file contains the following
manifest headers:
n Bundle-SymbolicName - Specifies a

unique identifier for the bundle.
n Web-ContextPath - Specifies the Web

application context path which must
start with vsphere-client/.

n Import-Package - Lists the packages
on which the UI bundle depends
including references to classes from the
Java service layer.

resources js Contains the HTML and JavaScript
resources of the UI bundle.

The js folder includes also the web-
platform.js file. This file contains the
JavaScript initialization code that is
generated for each project. For more
information, see vSphere Client JavaScript
APIs.

host-monitor.html

mainView.html

WEB-INF spring bundle-

context.xml

Contains the Spring configuration which you
can use to declare the services from the
service layer that the UI bundle uses.

web.xml The deployment descriptor that describes
the classes, resources and configuration of
the application.

vSphere Web Client SDK Documentation

VMware, Inc. 44

Table 5‑1. Details About the UI Project Template Structure (Continued)

User Interface Project Structure Description

plugin.xml The manifest file that uses metadata to
define the plug-in extensions and
resources. See User Interface Plug-In
Module Manifest.

build-plugin-package.bat

build-plugin-package.sh

build-plugin-package.xml

build-resources.bat

build-resources.sh

build-resources.xml

build-war.bat

build-war.sh

build-war.xml

plugin-package.xml

Contains the automation scripts for
generating the WAR file, compiling the
resources for the UI component, for building
the plug-in package folder from the UI and
Java service components, and the template
plugin-package.xml manifest file.

For more information about he structure of
the plug-in package and the metadata
provided with the plugin-package.xml
file, see Plug-In Package Overview and
XML Elements of the Plug-In Package
Manifest File.

Table 5‑2. Details About the Java Service Project Template Structure

Java Service Project Structure Description

myplugin-

service

/src/main java/com/mycom

pany/myplugin

mvc Contains the controllers that manage requests to
the /actions.html, /data, and /services
endpoints. The folder contains also utility classes
related to the controllers.

services Contains the sample Echo service and the sample
service that responds to user actions.

resources/META

-INF

spring Contains the Spring configuration files and the
bundle manifest file.

MANIFEST.MF

build-java.bat

build-java.sh

build-java.xml

Contains the automation scripts for generating the
Java service bundle.

Building a Plug-In Package from the Project Template
You can validate your development environment setup by generating an HTML plug-in from the plug-in
project template. Use the automation scripts provided with the SDK for building the plug-in.

To create a plug-in package from the project template, run the build-plugin-package.bat or the
build-plugin-package.sh script depending on your operating system. You can locate these scripts in
the plugin_name-ui folder of the project template.

After running the script, you see the plugin_name folder that contains the plugin-package.xml
manifest file and the plugins folder with the WAR and JAR files generated for the UI and service
components. For more information about the XML elements of the plugin-package.xml manifest file,
see XML Elements of the Plug-In Package Manifest File.

vSphere Web Client SDK Documentation

VMware, Inc. 45

Example: Plug-In Package Manifest File
The following example shows the contents of the plugin-package.xml manifest file that is generated for
the template HTML plug-in.

<pluginPackage id="com.mycompany.myplugin" version="1.0.0" type="html" name="myplugin"

 description="Add plugin description" vendor="Add vendor">

 <dependencies>

 <pluginPackage id="com.vmware.vsphere.client" version="6.0.0" />

 </dependencies>

 <bundlesOrder>

 <bundle id="com.google.gson" />

 <bundle id="com.mycompany.myplugin.myplugin-service" />

 <bundle id="com.mycompany.myplugin.myplugin-ui" />

 </bundlesOrder>

</pluginPackage>

You can follow these recommendations for the plugin-package.xml file to ensure that your plug-in can
be deployed on both Web browser applications:

n Specify a unique plug-in package ID for the id attribute of the pluginPackage XML element.

n Add the type="html" attribute to the pluginPackage elements. This attribute is required if you want
your plug-in to be deployed on the vSphere Client.

n Specify that your plug-in depends on the com.vmware.vsphere.client package with 6.0.0
version. This dependency ensures that your plug-in can be deployed on the vSphere Web Client 6.0.

Testing the Generated Plug-Ins
You can verify that your plug-in packages work correctly on both Web browser applications by deploying
the plug-ins on a local and remote vSphere Client and vSphere Web Client.

Deploy the Plug-In on a Local vSphere Client
You can verify that your plug-in works as expected by first deploying the plug-in on the local
vSphere Client provided with the vSphere Client development kit.

You can use two options to deploy your plug-ins on the local vSphere Client.

n Copy the plug-in package folder into the plugin-packages directory. For example, on a Windows
machine, you can locate this folder under your_SDK_location\vsphere-client-sdk\html-
client-sdk\vsphere-ui.

n Copy the UI and Java service bundles into the pickup directory on the server. For example, on a
Windows machine you can locate this folder under your_SDK_location\vsphere-client-
sdk\html-client-sdk\vsphere-ui\server.

If you use the first option make sure that you restart the vSphere Client server to pick up the new plug-ins.

vSphere Web Client SDK Documentation

VMware, Inc. 46

The procedure that follows describes how you can use the second option for speeding up your
development process. You can repeat the steps for each new version of the UI and Java service
components of your plug-in.

Note If you use the pickup directory, you must be aware that the string resources are not reloaded
when you update the bundles until you restart the vSphere Client Virgo server.

Prerequisites

n Verify that you register the local vSphere Client with the vCenter Server instance. See Register Your
Local vSphere Client with the vCenter Server Instance.

n Verify that you run successfully the automation script for generating the plug-in package folder for
your plug-in. See Building a Plug-In Package from the Project Template.

Procedure

1 Navigate to the plugin folder where the WAR and JAR files of your plug-in are generated.

For example, on a Windows machine if you used the default settings of the plug-in generation script,
go to your_SDK_location\vsphere-client-sdk\html-client-sdk\tools\Plugin generation
scripts\plugin-packages\myplugin\plugin.

2 Copy JAR files to the pickup folder on the server. If the JAR files are deployed successfully, copy the
WAR files to the same folder.

For example, on a Windows machine you can paste the files in the your_SDK_location\vsphere-
client-sdk\html-client-sdk\vsphere-ui\server\pickup directory.

The Virgo server console is updated when the bundles are deployed on the local vSphere Client.

3 Refresh your Web browser at https://localhost:9443/ui to see the changes.

What to do next

To complete the verification of your plug-in, deploy the plug-in on a local vSphere Web Client, and on a
remote vSphere Client and vSphere Web Client.

Deploy Your Plug-In on a Local vSphere Web Client
You can deploy your custom plug-ins on the local vSphere Web Client to verify whether the plug-ins run
as expected.

You can use the same options for deploying your plug-ins to the local vSphere Web Client as the ones
described for the vSphere Client. See Deploy the Plug-In on a Local vSphere Client.

The procedure that follows describes how you can deploy your plug-ins by using the plugin-packages
folder. For example, on a Windows machine you can locate this folder under
your_SDK_location\vsphere-client-sdk\flex-client-sdk\vsphere-client.

vSphere Web Client SDK Documentation

VMware, Inc. 47

Prerequisites

n Verify that you register your local vSphere Web Client to a vCenter Server instance. See Register
Your Local vSphere Client with the vCenter Server Instance.

Procedure

1 On your development machine, navigate to the plugin-packages folder where your custom plug-in
is generated.

For example, on a Windows machine if you use the default options when running the plug-in
generation script, you can go to your_SDK_location\vsphere-client-sdk\flex-client-
sdk\tools\Plugin generation scripts\plugin-packages.

2 Copy the plugin_name folder to the plugin-packages folder under vsphere-client.

For example, on a Windows machine copy the folder to your_SDK_location\vsphere-client-
sdk\flex-client-sdk\vsphere-client\plugin-packages.

3 Start the vSphere Client Virgo server by running the startup script under bin.

For example, on a Windows machine you can find the startup script at
your_SDK_location\vsphere-client-sdk\flex-client-sdk\vsphere-client\server\bin.

4 Open your Web browser and log in at https://localhost:9443/vsphere-client to see the
changes.

What to do next

To complete the verification of your plug-in, deploy the plug-in on a remote vSphere Client and
vSphere Web Client.

Deploying Your Plug-In on a Remote vSphere Client or
vSphere Web Client
You can verify whether your custom plug-in runs as expected by deploying the plug-ins on a remote
vSphere Client and vSphere Web Client.

You can register your plug-ins with the remote Web browser applications by using one of the following
options:

n Create an Extension data object and register the data object with the ExtensionManager by using
the Managed Object Browser (MOB) of your vCenter Server instance. See Register a Plug-In
Package as a vCenter Server Extension.

n Use the vCenter Server plug-in registration tool provided with the vSphere Client development kit.

vCenter Server Plug-In Registration Tool
In vSphere 6.5, the vSphere Client development kit provides a tool to ease the registration of custom
plug-ins with the vSphere Client and vSphere Web Client. You can locate the tool at the vCenter plugin
registration folder under html-client-sdk\tools.

vSphere Web Client SDK Documentation

VMware, Inc. 48

The prebuilt folder contains the extension-registration script that allows you to register and
unregister your plug-ins as extensions to the vCenter Server instance. You can also update the
registration of an existing extension.

The project folder contains the source code and build scripts for the plug-in registration tool which you
can use to extend the logic of the tool.

To use the plug-in registration tool, run the script from the command line by providing the following
command-line options:

extension-registration -action <action> [-c <company>] [-k <key>]

 [-n <name>] [-p <vc pass>] [-pu <plugin url>] [-s <summary>]

 [-show] [-st <server thumbprint>] [-u <vc user>] [-url <vc url>]

 [-v <version>]

Table 5‑3. Command-Line Options for the Plug-In Registration Tool

Command-Line Option Description

-action <action> The action that the tool must perform. You can choose from the following
options:
n registerPlugin

n unregisterPlugin

n isPluginRegistered

-c or --company <company> The company that developed the plug-in.

-k or --key <key> The unique extension key that must be the same as the plug-in package ID of
your plug-in.

-n or --name <name> The name of your plug-in.

-url <vc url> The URL of the vCenter Server instance where you want to register your plug-
in. The URL must end with /sdk.

-p or --password <vc pass> The credentials for logging into the vCenter Server instance.

-u or --username <vc user>

-pu or --pluginUrl <plugin url> The URL from which your plug-in package ZIP file is downloaded.

-s or --summary <summary> The short description of your plug-in.

-show or --showInSolutionManager The plug-in is available under Administrator > Solutions > vCenter Server
Extensions.

Note In vSphere 6.5, Administration menus are not implemented for the
vSphere Client.

-st or --serverThumbprint <server
thumbprint>

The thumbprint of the Web server hosting your plug-in package. This option is
required when your plug-in package ZIP file location is a secure URL (HTTPS).

-v or --version <version> The dot-separated version number of the plug-in package that is defined in the
plugin-package.xml manifest file.

vSphere Web Client SDK Documentation

VMware, Inc. 49

For example, to register the com.acme.myplugin plug-in with version 1.0.0 that is located at
https://150.20.23.254/MyPluginpackage.zip, use the following command on a Mac OS
development machine:

./extension-registration.sh -url https://10.23.222.35/sdk -username administrator@vsphere.local -

password adninistrator -action registerPlugin -key com.acme.myplugin -version 1.0.0 -pluginUrl

https://150.20.23.254/MyPluginpackage.zip -serverThumbprint 99:FD:2B:0D:12:85:37:AA:DA:A0:08:E1:F4:3B:

4A:E6:08:AC:49:CD

After you register your custom plug-in, log in the vSphere Client or vSphere Web Client to verify that the
plug-in is visible in the remote Virgo server. You can also use the MOB of your vCenter Server instance to
view all registered extensions.

vSphere Web Client SDK Documentation

VMware, Inc. 50

Developing Flex-Based User
Interface Extensions 6
You can create extensions to the user interface layer of the vSphere Web Client that add GUI elements
that are specific for your vSphere environment.

The vSphere Web Client user interface is based on a modular Flex application, hosted on the application
server, that runs in the Web browser. The user interface layer contains every visual component of the
application, including data views, portlets, and navigation controls.

You can add new features or elements to the Flex application by creating user interface extensions. A
Flex user interface plug-in module contains one or more extensions, which add Flex GUI elements to the
vSphere Web Client user interface.

This section includes the following topics:
n Understanding the User Interface Layer

n User Interface Plug-In Module Manifest

n Types of User Interface Extensions

n Adding Global View Extensions

n Extending the vCenter Object Workspaces

n Creating Data View Extensions

n Extending the Object Navigator

n Creating Action Extensions

n Creating Relation Extensions

n Creating Home Screen Shortcuts

n Creating Object List View Extensions

VMware, Inc. 51

Understanding the User Interface Layer
The user interface layer consists of a Flex application, called the container application, that serves as a
framework for a set of modular GUI elements.

The container application supplies the structural components of the vSphere Web Client user interface,
such as major navigation controls, window frames, and menus. The container application manages and
renders each of the GUI elements that it contains. Together, the collected GUI elements and the container
application make up the vSphere Web Client user interface.

Each GUI element inside the container application is a self-contained object that communicates directly
with the vSphere environment. Each element can retrieve data for display, send commands, or change
the virtual infrastructure. Each GUI element implements a version of the MVC architecture to manage
communication with the vSphere environment.

The container application uses a metadata framework to determine where to place each GUI element in
the user interface and how that element looks. Each GUI element has a metadata definition that you
create using an XML schema that is defined in the vSphere Web Client SDK. The container application
uses the values in the metadata definition to render the element at the appropriate place in the user
interface.

User Interface Plug-In Module Manifest
A user interface plug-in module is a standard Web Application ARchive (WAR) bundle. The WAR bundle
contains all of the resources and classes required for each GUI element the module adds to the
vSphere Web Client interface. In a user interface plug-in module, the GUI elements you add to the
interface are called extensions.

In the SWF file that contains the Flex classes that make up the UI components of the plug-in module
extensions, the main class must be an MXML class that extends the mx.modules.Module class.

In the root folder of the WAR bundle, you must create a manifest file called plugin.xml. The
plugin.xml manifest file uses metadata to define the plug-in module’s extensions and resources.

Creating the Plug-In Module Manifest File
The plug-in module manifest file, plugin.xml, is a metadata file that the vSphere Web Client container
application uses to integrate the extensions in the plug-in module with the rest of the interface. The
plugin.xml file fulfills the following functions.

n The manifest defines each individual extension in the user interface plug-in module.

n The manifest specifies the SWF file containing the Flex or ActionScript classes you have created for
the module extensions.

n If the user interface plug-in module contains an interface element defined in HTML, the manifest
specifies the HTML file.

vSphere Web Client SDK Documentation

VMware, Inc. 52

n The manifest specifies the location of any included runtime resources in the module, such as
localization data.

n If the user interface plug-in module hosts any extension points, the manifest declares those extension
points.

XML Elements in the Manifest File
The metadata in the manifest file follows a specific XML schema. The major XML elements of a user
interface plug-in module manifest include the <plugin> element, the <resources> element, and one or
more <extension> elements. The vSphere Web Client SDK contains several examples of user interface
plug-in modules with complete plugin.xml manifest files.

<plugin> Element
The <plugin> element is the root element of any plug-in module manifest file. All other elements are
contained within the <plugin> element. The attributes of the <plugin> element contain information
about the entire plug-in module.

Table 6‑1. Attributes of the <plugin> Element

Attribute Name Attribute Description

id The unique identifier that you choose for the plug-in module.

moduleUri A Uniform Resource Identifier (URI) for the SWF file in the plug-
in module. The SWF file contains the Flex or ActionScript
classes used by the extensions in the plug-in module. The URI
must be specified relative to the root directory of the plug-in
module WAR bundle.

securityPolicyUri A URI for a standard cross-domain security policy file. This
optional element is used when the plug-in module is hosted
remotely and the domain of the plug-in module URL is different
from the domain vSphere Web Client application server. For
more information on specifying a cross-domain security policy
file, go to
http://www.adobe.com/devnet/articles/crossdomain_policy_file_s
pec.html .

defaultBundle The name of the default resource bundle for the plug-in module.
The bundle name must be unique to your plug-in module to
avoid name clashing issues with other plug-in modules.
Resources, such as localization data and icons, can be
dynamically loaded at runtime. See Specifying Dynamic
Resources

vSphere Web Client SDK Documentation

VMware, Inc. 53

http://www.adobe.com/devnet/articles/crossdomain_policy_file_spec.html
http://www.adobe.com/devnet/articles/crossdomain_policy_file_spec.html

The following XML fragment shows how the <plugin> element might appear in the plug-in module
manifest file.

<plugin id="com.acme.sampleplugin"

 moduleUri="SampleModule.swf"

 defaultBundle="com_acme_sampleplugin">

 ...

 <!-- additional plugin data -->

 ...

</plugin>

<resources> Element
The <resources> element is used to specify the location of the plug-in module runtime resources, such
as localization data. In general, resources are bundled in separate SWF files from the SWF file that
contains the plug-in module Flex classes. The vSphere Web Client supports the same set of locales as
vCenter Server. The default locale is the locale set by the user’s Web browser. If the user’s Web browser
is not set to a locale that the vSphere Web Client supports, the vSphere Web Client defaults to the
English (United States) locale.

A best practice is to set the locale attribute in the <resource> element to the value {locale}, rather than
hard-coding a specific locale, in your plugin.xml manifest. Using the {locale} value instructs the
vSphere Web Client to use the locale that your Web browser specifies at runtime.

For the vSphere Web Client to import the resource locale properly at runtime, resource bundles for all
supported locales must be included in the plug-in module. Currently supported locales include English
(United States) (en_US), French (fr_FR), German (de_DE), Japanese (ja_JP), Korean (ko_KR), and
Mandarin Chinese (zh_CN) locales. For testing purposes, you can make copies of the default locale for
any languages for which you do not have resources available. The sample plug-in modules included with
the vSphere Web Client SDK demonstrate this method.

<extension> Element
The plug-in module manifest file must define each extension that the plug-in module adds to the
vSphere Web Client. Each extension is defined using the <extension> element. The <extension>
element contains information about each feature, and its exact composition varies depending on the kind
of user interface element your plug-in module is adding. See Defining Extensions.

Specifying Dynamic Resources
Your extension definitions can use the dynamic resource loader to load resources or localization data at
runtime.

When you have specified a resource bundle in the manifest file, the <extension> elements in the
manifest file can specify that bundle by reference. Resource specifications in the <extension> elements
should use the expression #{bundle:key} when specifying resources, where bundle indicates the name
of the resource bundle, and key indicates the resource to use.

vSphere Web Client SDK Documentation

VMware, Inc. 54

For example, in an <extension> element in the plugin.xml file, you can specify an icon resource to be
loaded dynamically at runtime by using the following expression.

<icon>#{MyResourceBundle:MyIconImage}</icon>

Specifying a dynamic resources allows you to avoid using a static value for the icon resource. The bundle
name must specify a resource bundle that you made available in the <resources> element of
plugin.xml.

You can also omit the bundle name from a resource expression by using the following expression.

<icon>#{MyIconImage}</icon>

Omitting the bundle name causes the vSphere Web Client to use the bundle name that the
defaultBundle attribute in the <plugin> element specifies.

Defining Extensions
The metadata extension definition for a user interface extension specifies where the extension appears in
the vSphere Web Client GUI, and provides information about how the extension appears, including which
Flex classes contain the actual GUI code.

Depending on the type of extension that you create for the vSphere Web Client, you must create different
metadata definition for each extension, but all extension definitions share certain basic characteristics.

Extension Point The extension point represents the specific location in the
vSphere Web Client user interface where the extension appears. The
vSphere Web Client SDK publishes a set of extension points that
correspond to specific locations in the user interface.

Each extension definition must specify one of the provided extension
points. The vSphere Web Client SDK provides several extension points for
adding new data view extensions to the Virtual Infrastructure object
workspaces. Each of these points corresponds to an existing top-level tab
or second-level tab for a specific type of vSphere object. The SDK also
provides extension points for other extensible GUI features, including the
object navigator, Actions Framework, Related Objectscategorized object
relations specifications, and home screen shortcuts.

vSphere Web Client SDK Documentation

VMware, Inc. 55

You can nest extensions. An extension can define its own extension points,
creating a multilevel structure of extensions. The Virtual Infrastructure
object workspaces use a nested structure of extensions. For example, top-
level tab screen extensions in an object workspace define extension points
for second-level tab extensions, and second-level tab extensions define
extension points for nested views or portlets.

Extension Object The extension object is a data object that describes the properties of the
extension. You must provide a specific type of extension object for each
extension point. Rather than instantiating the actual extension object, your
extension definition must use MXML or HTML to provide a description of
the required object.

The extension objects associated with each extension point correspond to
specific ActionScript classes in the vSphere Web Client SDK. The
properties of the ActionScript class are used in the data object to specify
things like labels and icons for the extension. In the cases of data views,
actions, and certain extensions to the object navigator, you also use the
extension object properties to specify the Flex or HTML classes that you
created for those extensions.

Filtering Metadata You can include filtering metadata in your extension definition. You can use
filtering metadata to control when the user has access to a given extension.
For example, you can filter an extension to appear only for certain types of
objects, or when an object's property has a specific value. Filtering
metadata is optional and not required for every extension definition.

Extension Definition XML Schema
In the plugin.xml manifest file, each extension is defined in its own <extension> element. The principal
characteristics of the extension are described in their own elements, the <extendedPoint> element for
the extension point, the <object> element for the extension object, and the <metadata> element for
filtering metadata.

Specifying the Extension Point
The <extendedPoint> XML element contains the name of the extension point. The vSphere Web Client
renders the extension at the extension point when the new plug-in module is loaded. In the Example:
Extension Definition, the extension point is vsphere.core.vm.summarySectionViews

vSphere Web Client SDK Documentation

VMware, Inc. 56

Describing the Extension Object
The <object> element describes the required extension data object for the target extension point. The
<object> element uses standard XML syntax to describe a data object of the ActionScript class type that
the extension point requires and sets values for the properties in that object. Each type of extension
requires a specific extension data object. To find the required extension object type for any given
extension point, see Chapter 12 List of Extension Points.

Note In general, you do not explicitly specify the extension data object type. The <object> element is
assumed to be an object of the type that the extension point requires. The <object> element has an
optional type attribute that you can use to specify explicitly a type. You only have to specify explicitly a
type if your extension definition provides a subclass of the extension point’s required class, or if the
extension point requires an interface rather than a class.

In the Example: Extension Definition, the extension point vsphere.core.vm.summarySectionViews
requires a class of type com.vmware.ui.views.ViewSpec. The <object> element describes how the
ViewSpec data object looks.

Objects of type com.vmware.ui.views.ViewSpec have a <name> property and a <componentClass>
property. The <name> property contains the name that the vSphere Web Client displays for the new data
view extension. In Example: Extension Definition, this name is Sample Monitor View Title. You can
also specify a dynamic resource string for any <name> property.

The <componentClass> property specifies the Flex class that implements the new data view. If you are
implementing an HTML component, you specify one of the HTML Bridge Flex classes provided by the
SDK. Otherwise, you must create the Flex component. In Example: Extension Definition ,this class is
com.vmware.samples.viewpropertiesui.views.VmSampleSummarySectionView, which appears
under the Summary tab for virtual machine objects.

You can use the ActionScript API reference included with the vSphere Web Client SDK to obtain detailed
information on the extension data object that you must create for each type of extension.

Providing Filtering Metadata
The <metadata> element contains filtering data that determines when the extension is available to the
user. See Filtering Extensions

Example: Extension Definition
The following example shows an example extension definition, starting with the <extension> element.
The extension that the XML definition describes adds a Data View to the object workspace for a virtual
machine object. In the example, the Data View is a section view for the Summary tab in the object
workspace for the virtual machine objects and appears only to users with the Global.Licenses privilege.

<!-- Add a summary Section View to the VirtualMachine Summary tab by

extending the extension point "vsphere.core.vm.summarySectionViews". -->

<extension id="com.vmware.samples.viewspropertiesui.vm.summarySectionView">

vSphere Web Client SDK Documentation

VMware, Inc. 57

 <extendedPoint>vsphere.core.vm.summarySectionViews</extendedPoint>

 <object>

 <name>Sample Summary Section View</name>

 <componentClass

className="com.vmware.samples.viewspropertiesui.views.VmSampleSummarySectionView"/>

 </object>

 <metadata>

 <privilege>Global.Licenses</privilege>

 </metadata>

</extension>

In the example, the <extension> element contains an id attribute, which is a unique identifier that you
create. Other extensions, such as extensions to the object navigator, can reference this extension by
using the extension unique identifier.

Ordering Extensions
You can use the <precedingExtension> element to specify the order in which the vSphere Web Client
renders the extensions in your plug-in module.

Within each <extension> element, you can specify a <precedingExtension> element that contains the
ID of another extension that is to be rendered before the current extension. Setting the value of
<precedingExtension> to NULL causes that extension to be rendered first.

If no <precedingExtension> value is specified, the extensions are rendered in the order they appear in
the plugin.xml module manifest file. If you specify the same value for the <precedingExtension>
element for several extensions, the extensions are rendered in the order in which they appear in the
manifest.

The following XML fragment shows how the <precedingExtension> element might appear in the
extension definitions in the plug-in module manifest file.

<extension id = "com.MyPluginPackage.MyPlugin.PerformanceView">

 <extendedPoint>vsphere.core.vm.views</extendedPoint>

 <precedingExtension>NULL</precedingExtension>

 ...(extension data)...

 </extension>

 <extension id = "UtilityView">

 <extendedPoint>vsphere.core.vm.views</extendedPoint>

 <precedingExtension>PerformanceView</precedingExtension>

 ...(extension data)...

 </extension>

The <precedingExtension> elements in the example ensure that the PerformanceView extension is
rendered first, followed by the UtilityView extension.

vSphere Web Client SDK Documentation

VMware, Inc. 58

Filtering Extensions
In your extension definition, you can use filtering metadata to control when the extension appears in the
vSphere Web Client GUI.

You can filter extensions based on the selected object type, on the value of any property associated with
the selected object, or on the user’s privilege level. You set the filter type and the specific filter values by
using the appropriate XML elements inside the <metadata> element of your extension definition.

Filtering Based on Selected Object Type
You can filter your extension to appear only when the user selects one or more specific types of vSphere
objects. You specify the types of objects for which the extension is valid by creating an <objectType>
element in the <metadata> element in the extension definition. The extension appears only when the
user selects an object whose type matches the value of the <objectType> element.

You can use any vSphere or custom object type name as the value for the <objectType> element. To
specify multiple object types, include two or more object type names in the <objectType> element,
separated by commas. You can also use the * symbol to specify all object types. See Naming Convention
for vSphere Objects in the vSphere Web Client SDK.

Example: Extension Filtered by Entity Type
The following example filters the extension action to appear only when the user has selected a virtual
machine object.

<extension id="com.vmware.samples.actions.vmActionSet">

 <extendedPoint>vise.actions.sets</extendedPoint>

 <object>

 <actions>

 <com.vmware.actionsfw.ActionSpec>

 <uid>com.vmware.samples.actions.myVmAction1</uid>

 <label>#{action1.label}</label>

 <command className="com.vmware.samples.actions.VmActionCommand"/>

 </com.vmware.actionsfw.ActionSpec>

 </actions>

 </object>

 <metadata>

 <!-- This filters the action to be visible only on VMs -->

 <objectType>VirtualMachine</objectType>

 </metadata>

</extension>

Filtering Based on the Value of a Property of the Selected Object
You can filter your extension to appear or not depending on the value of a property of the selected object.
You must use the property value filter together with the object type filter.

vSphere Web Client SDK Documentation

VMware, Inc. 59

You create the property value filter by describing one or more property value comparisons to be made on
the selected object by using the <propertyConditions> element. You include the
<propertyConditions> element in the <metadata> element in the extension definition. You can define
a single comparison, or define multiple comparisons and conjoin those comparisons together.

In the <propertyConditions> element, you must describe a data object of type
com.vmware.data.query.CompositeConstraint using MXML syntax. Using the
CompositeConstraint data object, you specify the names of the object properties used in the filter, the
desired value for each object property, and the comparison operator. You can also specify a conjoiner if
your CompositeConstraint data object has multiple comparisons.

In the CompositeConstraint data object, you describe each property value comparison using the
<nestedConstraints> element. The <nestedConstraints> element contains an array of data objects
of type com.vmware.data.query.PropertyConstraint. Each PropertyConstraint data object
represents one comparison between a given object property and a value you specify.

When you create a PropertyConstraint data object, you specify the object property to compare by
using the <propertyName> element, the value to compare against using the <comparableValue>
element, and the comparison operator using the <comparator> element.

The value of the <propertyName> element must match the name of the object property to compare. You
can set the value of the <comparableValue> element depending on the type of property you are
comparing, but the value must be a primitive type. You can use a string value, an integer value, or a
Boolean value of true or false in the <comparableValue> element.

You use the <comparator> element to choose how the property is compared against the value you
specify in the filter. You can use values of EQUALS, NOT_EQUALS, GREATER, SMALLER, CONTAINS,
EQUALS_ANY_OF or CONTAINS_ANY_OF. If you use the CONTAINS operator, you must provide an array of
values. If you use the operators EQUALS_ANY_OF or CONTAINS_ANY_OF, you must provide a string
containing multiple values in the <comparableValue> element, each separated by a comma.

If your CompositeConstraint data object defines multiple comparisons, you can choose how those
comparisons are conjoined by using the <conjoiner> element. You can use a value of AND or OR in the
<conjoiner> element.

Example: Example Property Value Filter
The following example filters an action extension only when the value of the isRootFolder property is
true and the selected object contains child objects that are virtual machines.

<extension id="com.vmware.samples.actions.vmActionSet">

<extendedPoint>vise.actions.sets</extendedPoint>

<object>

<actions>

<com.vmware.actionsfw.ActionSpec>

<uid>com.vmware.samples.actions.myVmAction1</uid>

<label>#{action1.label}</label>

<command className="com.vmware.samples.actions.VmActionCommand"/>

</com.vmware.actionsfw.ActionSpec>

</actions>

vSphere Web Client SDK Documentation

VMware, Inc. 60

</object>

<metadata>

<objectType>Folder</objectType>

<propertyConditions>

<com.vmware.data.query.CompositeConstraint>

<nestedConstraints>

<com.vmware.data.query.PropertyConstraint>

<propertyName>isRootFolder</propertyName>

<comparator>EQUALS</comparator>

<comparableValue>

<String>true</String>

</comparableValue>

</com.vmware.data.query.PropertyConstraint>

<com.vmware.data.query.PropertyConstraint>

<propertyName>childType</propertyName>

<comparator>CONTAINS</comparator>

<comparableValue>

<String>VirtualMachine</String>

</comparableValue>

</com.vmware.data.query.PropertyConstraint>

</nestedConstraints>

<conjoiner>AND</conjoiner>

</com.vmware.data.query.CompositeConstraint>

</propertyConditions>

</metadata>

</extension>

Filtering Based on User Privilege Level
You can filter your extension to appear only for users that have specific privileges. You can base your filter
on global privilege settings in the vSphere Web Client, such as settings or licenses. For example, you can
use a filter to make your extension available only to users that have global privileges to change settings.

You can also filter your extension based on privileges related to specific types of vSphere objects. For
example, you can use a filter to make your extension available only to users who have privileges to create
or delete datastore objects.

You specify the privilege for which the object is valid by creating a <privilege> element inside the
<metadata> element in the extension definition. The extension appears only for users whose privileges
include the value specified by the <privilege> element. You can specify multiple privilege values in the
<privilege> element, separated by commas. If you specify multiple privileges, the user must have all
specified privilege values for the extension to appear.

Example: Extension Filtered by User Privileges
The following example filters the extension to appear only when the user privileges include
Global.Licenses.

<extension id="vsphere.core.hosts.sampleMonitorView">

<extendedPoint>vsphere.core.hosts.monitorViews</extendedPoint>

<object>

<name>Sample Monitor View Title</name>

vSphere Web Client SDK Documentation

VMware, Inc. 61

<componentClass className="com.vmware.vsphere.client.sampleplugin.SampleObjectView"/>

</object>

<metadata>

<privilege>Global.Licenses</privilege>

</metadata>

</extension>

Using Templates to Define Extensions
You can use extension templates to define extensions in your user interface plug-in module.

The vSphere Web Client SDK provides XML templates that you can include in the plugin.xml file. The
templates use variable values that you provide to create automatically extension definitions. The
vSphere Web Client SDK provides templates for some extension types, including the data views in a
vSphere object workspace and for inventory list extensions in the object navigator. You can find examples
of templates among the sample material for each extension type. See Extending the vCenter Object
Workspaces and Extending the Object Navigator.

Types of User Interface Extensions
You can create several types of extensions to the vSphere Web Client user interface. Each type of
extension has different requirements for its metadata definition, and some extensions can require you to
provide visual components to serve as new GUI elements.

To build a complete extension solution for the vSphere Web Client, you might need to include multiple
types of extensions in your user interface plug-in module.

Global View Extensions
A global view extension is a free-form, general-purpose data view that appears in the vSphere Web Client
main workspace.

Unlike the object workspaces for objects in the virtual infrastructure, a global view extension does not
need to follow any particular tab structure. The structure of your global view can be simple or complex,
depending on how you create the components for the extension. For more information on creating
components for data view extensions, see Creating Data View Extensions.

Users can access global views through pointers in either the object navigator or the home screen. For
users to access your global view extension, you must also create extensions that add a pointer to the
object navigator, home screen, or both.

vSphere Web Client SDK Documentation

VMware, Inc. 62

Object Workspace Extensions
When you select a vSphere object in the object navigator, the object workspace appears in the
vSphere Web Client main workspace. Each object workspace contains a hierarchy of nested data views
in a series of top-level tabs and second-level tabs.

You can add new data views to the tabs in any object workspace. The vSphere Web Client provides
extension points for specific locations in each object workspace. For more information about the available
extension points, see Defining Extensions.

When you create a data view extension for an object workspace, you must also provide the Flex and
HTML classes that appear as the new GUI element in the interface. As a best practice, create these
classes by using the same architecture, libraries, and services as the existing data views in the
vSphere Web Client. See Creating Data View Extensions.

You can also add an object workspaces for a custom object that has the default structure and tabs. In
general you create object workspace extensions to support custom vSphere object types that you add to
the vSphere environment.

Object Navigator Extensions
The object navigator is the main navigation interface in the vSphere Web Client. The object navigator
control always appears on the left side of the vSphere Web Client screen.

The top level of the object navigator contains pointers to the major solutions and applications in the
vSphere Web Client, such as the vCenter Server navigator and the Administration application. You can
extend the top level of the object navigator with a pointer to your own solution or global view.

You can navigate to the objects in the virtual infrastructure by using the object navigator vCenter Server
page. The vCenter Server page shows the objects in the vSphere environment in inventory trees and
inventory lists. You can extend this level of the object navigator with an inventory list. In general, you add
a new inventory list to represent a new or custom type of object in the environment. You can also create
your own categories of lists in the object navigator vCenter Server page.

You create most object navigator extensions by defining the extensions metadata, in the plugin.xml
manifest file. Most object navigator extensions do not require that you create visual components.

Action Extensions
Actions represent the commands and requests that the users send to the vSphere environment to make
changes to the virtual infrastructure.

All actions in the vSphere Web Client are governed by the Actions Framework. The Actions Framework
determines which actions appear in the vSphere Web Client user interface, in toolbars and context
menus. You can add actions to the vSphere Web Client by creating an extension to the Actions
Framework.

vSphere Web Client SDK Documentation

VMware, Inc. 63

When you create an action extension, you must also provide the ActionScript classes that are called
when the user performs the action. You must also extend the vSphere Web Client service layer with a
Java service. The Java service performs the action operation in the vSphere environment.

Relation Extensions
vSphere uses a graph of related objects to model the objects that make up the virtual infrastructure.

When the user selects an object in the GUI, the vSphere Web Client can provide a list of any objects that
are related to the currently selected object. For example, a user can access information about the virtual
machines related to a given host object. These lists appear in the object navigator control and in the
Related Objects tabcategorized tabs for objects relations in the selected object workspace.

You can create extensions that define new relationships between vSphere objects, or relationships
between a new type of vSphere object that you created and the existing objects in the vSphere
environment. You create relation extensions by using only the metadata definition. You do not need to
create a Flex or an HTML class.

Home Screen Shortcut Extensions
You can create extensions that add a shortcut to the vSphere Web Client Home screen.

Home screen shortcuts can provide the user with a pointer to any data view in the vSphere Web Client,
including global views, specific inventory lists, or a top level solution application in the
vSphere Web Client.

You create Home screen shortcut extensions by using only the metadata definition. You do not need to
create a Flex or HTML class.

Object List View Extensions
Each object workspace in the vSphere Web Client contains a list view that displays information about
each individual object of that type in the virtual infrastructure.

You can create a new list view extension for your own custom object type, or extend the existing list views
for any type of vSphere object. When you extend an existing vSphere object list view, you can add new
data columns to appear in the list.

Adding Global View Extensions
In the vSphere Web Client, a global view extension is a way to create a free-form data view. You can use
a global view extension to create your own custom solution for the vSphere Web Client user interface.

A global view extension can have nearly any function, including aggregating data about different types of
vSphere objects onto a single screen, or displaying data from sources outside the vSphere environment.
A global view can be a simple single-level data view that uses the entire vSphere Web Client main
workspace, or a complex nested view with its own internal navigation structure and organization. Creating
a global view extension has a few restrictions.

vSphere Web Client SDK Documentation

VMware, Inc. 64

Global views are displayed in the vSphere Web Client main workspace, but exist outside of the virtual
infrastructure hierarchy. The user selects a global view directly, either through a pointer in the object
navigator or a shortcut on the vSphere Web Client home screen.

To create a global view extension, you must define the extension by using the XML elements in the plug-
in module manifest file, and create the Flex code that appears in the main workspace.

Use Cases
You can use global view extensions to create dashboard-style data views or console-style applications.

A dashboard aggregates data from different sources in the vSphere environment together in one unified
data view. For example, you can create a dashboard that provides status information about all custom
company-branded objects in the vSphere environment.

Console-style applications are displayed in the vSphere Web Client main content area. For example, the
vSphere Web Client Task Console and Event Console are console-style applications.

Creating Global View Classes
Each global view extension is an independent Flex element that must communicate with the vSphere
environment to retrieve data, or send commands, that the view requires. The vSphere Web Client SDK
includes an MVC framework and a Flex library that you can use when creating global view Flex classes.
Flex classes can use the Data Access Manager library to retrieve data from the vSphere environment and
to send commands to the virtual infrastructure.

You can create a global view class by using any pattern or framework, but using the vSphere Web Client
SDK MVC framework and Data Access Manager is a best practice for Flex classes. See Creating Data
View Extensions.

Making a Global View Accessible to Users
To make your global view extension accessible to users, you must create a pointer to the global view
somewhere in the vSphere Web Client user interface. You can create a pointer as either an object
navigator extension or a home screen shortcut extension. If you create a pointer in the object navigator,
you can add the pointer to either the top level Solutions category, or to the virtual infrastructure level. For
more information about how to create a pointer to a global view, see Extending the Object Navigator and
Creating Home Screen Shortcuts.

Properties of the GlobalViewSpec Extension Object
The vSphere Web Client provides an extension point for all global view extensions, named
vise.global.views. The extension definition must reference the vise.global.views extension point
and provide an extension object of type com.vmware.vsphere.client.views.GlobalViewSpec.

The following table describes the properties that you provide for the
com.vmware.vsphere.client.views.GlobalViewSpec extension data object by using the <object>
element in your extension definition.

vSphere Web Client SDK Documentation

VMware, Inc. 65

Property Type Description

<name> string The name of the global view that appears
as a title in the main workspace. In the
Example: Example Flex-Based Global
View Extension, the value is hard-coded
as My Console App. You can also use a
dynamic resource string from your plug-in
module.

<componentClass> string The Flex class that implements the global
view. The Flex class appears in the
vSphere Web Client main workspace. You
must set the value of the
<componentClass> element className
attribute to the fully qualified name of the
Flex view class.

If you develop an HTML-based extension,
use the
com.vmware.vsphere.client.htmlbrid

ge.HtmlView Flex object. See Properties
of the HtmlView Extension Object.

<applyDefaultChrome> boolean A Boolean value that indicates whether
the global view appears with the default
header, footer, title, and icon graphics
provided by the vSphere Web Client. The
property is optional and the default value
is true. If the property is omitted, the
property value is considered to be the
default.

Example: Example Flex-Based Global View Extension
The following example extension definition adds a console application to the main area by creating a
global view extension. The <object> element defines a data view object of type
com.vmware.vsphere.client.views.GlobalViewSpec.

<extension id="mySolution.myPlugin.myConsoleApp">

 <extendedPoint>vise.global.views</extendedPoint>

 <object>

 <name>My Console App</name>

 <componentClass className="com.myCompany.MyConsoleApp"/>

 <applyDefaultChrome>true</applyDefaultChrome>

 </object>

</extension>

vSphere Web Client SDK Documentation

VMware, Inc. 66

Extending the vCenter Object Workspaces
The vSphere Web Client displays a standard object workspace for each type of vSphere object. You can
extend the existing object workspaces or create an object workspace for a custom vSphere object.

The object workspace is a collection of data views with a tabbed navigation structure. The workspace for
a given vSphere object appears in the vSphere Web Client main workspace when the user selects an
object when browsing the virtual infrastructure.

Each vSphere object type has Summary, Monitor, Configure, and Related Objects categorized object
relations top-level tabs , and may contain additional sub-views within each tab. You can add extensions to
create your own sub-views within any of the top-level tab views, or within specific sub-views. You can also
create new object workspaces with the default top-level tab and sub-view structure.

Use Cases
You can either add a new data view to the existing object workspace for any type of vSphere object, or
you can create an object workspace for a custom vSphere object.

In general, you add a data view extension to an existing object workspace to convey additional
information about a vSphere object that is not included in an object's standard workspace. You might
need to create an extension to the vSphere Web Client service layer, such as a Data Service adapter, to
provide the data for your data view extension. See Chapter 8 Developing Extensions to the Service
Layer.

The vSphere Web Client SDK provides a set of extension points for each type of object in the vSphere
environment, such as a virtual machine or host. Each extension point corresponds to a specific view in
that object's workspace, to which you can add your own subordinate view extension.

When you create an object workspace, you use the XML extension templates included with the
vSphere Web Client SDK. The XML extension templates create all of the standard top-level tabs and
subordinate views in a standard object workspace, as well as defining a set of extension points for each.
You then create data view extensions that reference the extension points that the template created to
complete your object workspace.

Extending an Existing Object Workspace
The vSphere Web Client SDK provides a unique extension point for each of the default tabs and
subordinate views for all object types in the vSphere environment. You can define a data view extension
that references one of these extension points to create a subordinate view inside that tab or view.

Extension points use the following naming convention:

vsphere.core.${objectType}.${view}

The ${objectType} value indicates the type of vSphere object which object workspace you want to
extend. The ${view} value specifies the exact view to which you add the extension, such as a top-level
tab or specific subordinate view.

vSphere Web Client SDK Documentation

VMware, Inc. 67

For example, if you define an extension that specifies the vsphere.core.vm.manageViews extension
point, your extension appears as a subordinate view on the Configure tab in the object workspace for
virtual machine objects.

For a complete list of object workspace extension points, see Object Workspace Extension Points.

Types of Data Views
A data view extension appears differently depending on the vSphere object that you specified with the
extension point. Data views can appear in the object workspace having one of the following structures.

n Second-level tab - If you define an extension to a top-level tab, such as Summary, Monitor, or
Configure, a data view extension appears as a second-level tab in the object workspace.

n Second-level tab view - If you define an extension to one of the existing second-level tabs, such as
the Performance view inside the Monitor tab, a data view extension appears as a view within the
second-level tab in the object workspace.

n Table of contents views - If you define an extension to the Configure tab, an item view appears in the
table of contents located on the left side of the tab.

n Portlet - If you define the Summary tab extension point, a data view extension appears as a portlet in
the object workspace.

When you design the user interface for your data view extension, keep in mind the extension point where
the extension appears. The extension point data view type affects the amount of available screen space
and the layout of your data view.

Properties of the ViewSpec Extension Object
An extension to an existing object workspace must specify the target extension point in the extension
definition and provide a data object of type com.vmware.ui.views.ViewSpec.

The following table describes the properties that you provide for the com.vmware.ui.views.ViewSpec
extension data object by using the <object> element in your extension definition.

vSphere Web Client SDK Documentation

VMware, Inc. 68

Property Type Description

<name> string The name of the data view that appears
as a title where appropriate in the user
interface. For example, the string can be
the name of the second-level tab or the
portlet title. The value of the <name>
property can be a hard-coded string or a
dynamic resource included in your plug-in
module. In Example: Example Portlet
Extension for Host Summary Tab, the
portlet title is hard-coded as My Summary
Portlet.

<componentClass> string The Flex class for your data view
extension that appears at the user
interface location corresponding to the
extension point that you specify. You must
set the value of the className attribute of
the <componentClass> element to the
fully qualified name of the Flex view class.
If you implement the view by using the
HTML bridge, specify the HtmlView
container class. For more information
about the HtmlView container class, see
Properties of the HtmlView Extension
Object.

Example: Example Portlet Extension for Host Summary Tab

The following example extension definition adds a data view to the workspace for Host objects. In the
example, the <extendedPoint> element references the extension point for the Summary tab,
vsphere.core.host.summarySectionViews. The extension appears as a portlet under the Summary
tab for Host objects. The <object> element defines a data object of type
com.vmware.ui.views.ViewSpec.

<extension id="mySolution.myPlugin.MySummaryPortlet">

 <extendedPoint>vsphere.core.host.summarySectionViews</extendedPoint>

 <object>

 <name>My Summary Portlet</name>

 <componentClass className="com.mySolution.myPlugin.MyPortletView"/>

 </object>

</extension>

vSphere Web Client SDK Documentation

VMware, Inc. 69

Creating an Object Workspace for a Custom Object
If you add a custom vSphere object, you can create the object workspace by using the XML templates
provided with the SDK. You instantiate the XML template in the plugin.xml manifest file.

The vSphere Web Client SDK includes a standard object view template for an object workspace. The
object view template uses variable values that you provide to create extension definitions and extension
points for the object workspace tabs and subordinate views, including Summary, Monitor, Configure,
and the tabs for the different related objects groups.

Using the objectViewTemplate to Create an Object Workspace

You can create an instance of the standard object view template by using the <templateInstance> XML
element in your plugin.xml manifest file.

To create an instance of the standard object view template, you use the <templateInstance> element in
your plugin.xml manifest file. Inside the <templateInstance> element, you define the variables that
describe the specific instance of the template. The <templateInstance> element can appear anywhere
inside the root <plugin> element in the plugin.xml manifest file, but a best practice is to include the
template definition with other extension definitions.

You must add the <templateId> element inside the <templateInstance> element. This element
contains the identifier of the template you want to create. To use the standard object view template
included with the vSphere Web Client SDK, use the vsphere.core.inventory.objectViewTemplate.
To use the objectViewTemplate, you must define a namespace variable and an objectType variable.

Namespace

The namespace variable sets the naming convention for the object workspace extension points. Extension
points for a custom object workspace are formed by using the following schema for each data view:

<namespace_value>.<default_extension_point_name>

The following list shows the extension points that you create when you instantiate the standard object
view template.

n <namespace>.gettingStartedViews - Adds views under the Getting Started tab.

n <namespace>.summaryViews - Adds views under the Summary tab.

n <namespace>.monitorViews - Add views under the Monitor tab.

n <namespace>.monitor.issuesViews - Adds views to the Issues second-level tab of the Monitor
tab.

n <namespace>.monitor.performanceViews - Adds views to the Performance second-level tab of
the Monitor tab.

n <namespace>.monitor.performance.overviewViews - Adds views to the Overview performance
charts under the Monitor tab.

vSphere Web Client SDK Documentation

VMware, Inc. 70

n <namespace>.monitor.performance.advancedViews - Adds views to the Advanced performance
charts under the Monitor tab.

n <namespace>.monitor.tasksViews - Adds views to the Tasks second-level tab under the Monitor
tab.

n <namespace>.monitor.eventsViews - Adds views to the Events second-level tab under the
Monitor tab.

n <namespace>.manageViews - Adds an entry in the table of contents under the Configure tab.

n <namespace>.manage.settingsViews - Adds an entry to the Settings node in the table of contents
under the Configure tab.

n <namespace>.manage.alarmDefinitionsViews - Adds views to the Alarm Definitions entry in the
table of contents under the Issues second-level tab of the Monitor tab.

n <namespace>.manage.permissionsViews - Adds views to the Permissions tab.

Object Type

You use the objectType variable to associate the object workspace with your custom entity type. Your
custom entity type name should include a namespace prefix, such as your company name, to avoid
clashing with other object type names in the vSphere environment. The vSphere Web Client displays the
object workspace when the user selects an object of the specified type.

Creating the Data Views Within the Template

After you create an object workspace by using the standard template, you can create data views at the
resulting extension points in the same way that you do for other extension points in the virtual
infrastructure. For more information about defining data view extensions, see Properties of the ViewSpec
Extension Object.

Top-level tabs, second-level tabs, and views created by using the standard object view template do not
appear in the vSphere Web Client main workspace unless you define a data view extension at that
extension point. For example, if you do not define a data view extension at the
com.vmware.samples.rack.monitor.performanceViews extension point for the Rack object from the
following example, the Performance second-level tab under the Monitor tab does not appear for Rack
objects.

vSphere Web Client SDK Documentation

VMware, Inc. 71

Example: Instantiating the Standard Template

The following example instantiates the object view template for a new object called Rack. The namespace
variable has a value of com.vmware.samples.rack. The vSphere Web Client uses the value to create an
extension point for each data view included in the standard object workspace. The extension point for the
Monitor tab for the Rack object workspace is named com.vmware.samples.rack.monitorViews. The
other extension points in the Rack object workspace are named by using the same convention.

<templateInstance id="com.vmware.samples.rack.viewTemplateInstance">

 <templateId>vsphere.core.inventory.objectViewTemplate</templateId>

 <variable name="namespace" value="com.vmware.samples.rack"/>

 <variable name="objectType" value="samples:Rack"/>

</templateInstance>

Using the Summary Tab Template
The vSphere Web Client SDK contains a template that you can use to create a standard Summary tab
view for your custom object.

The standard Summary tab view contains a header view displayed at the top of the main workspace, and
an extension point for the portlet views under the header view. The extension point that the template
creates for portlet views is named <namespace>.summarySectionViews.

To use the standard Summary tab template, you must create an instance of the template in your
plugin.xml manifest file by using the <templateInstance> element. The Summary tab template
definition must appear after the definition for the standard object workspace.

The <templateId> element contains the identifier of the template to create. To use the standard
Summary tab template included with the vSphere Web Client SDK, this identifier must be
vsphere.core.inventory.summaryViewTemplate. To use the summaryViewTemplate, you must
define a namespace variable and a summaryHeaderView variable.

Namespace

The value you supply for the namespace variable must match the namespace for the parent object
workspace of the Summary tab. The Summary tab created by the Summary tab template uses the
extension point <namespace>.summaryViews, as defined by the object workspace template. The
Summary tab template also creates the extension point <namespace>.summarySectionViews. You can
use the <namespace>.summarySectionViews extension point to add portlet data views to your custom
object Summary tab.

Summary Header View

You use the summaryHeaderView variable to specify the data view that appears at the top of the
Summary tab. The value you supply for the summaryHeaderView variable must be the fully qualified
class name for an MXML data view class in your extension. If you omit the summaryHeaderView variable,
no header appears in the Summary tab, and the main workspace displays the portlet data views you
create at the <namespace>.summarySectionViews extension point, if any.

vSphere Web Client SDK Documentation

VMware, Inc. 72

Adding Portlets to the Summary Tab

After you create a Summary tab for your custom object workspace by using the Summary tab template,
you can add portlet data views to the Summary tab. You create the portlet data views at the
<namespace>.summarySectionViews extension point that the template creates, in the same way that
you do for any other extension point in the virtual infrastructure. For more information about defining data
view extensions, see Properties of the ViewSpec Extension Object.

Example: Instantiating the Summary Tab Template

The following example instantiates the Summary tab template for a custom object called Rack. The
<templateInstance> element contains an id attribute, which is a unique identifier of your choice.

<!-- Object Workspace Template for Rack -->

<templateInstance id="com.vmware.samples.rack.viewTemplateInstance">

 <templateId>vsphere.core.inventory.objectViewTemplate</templateId>

 <variable name="namespace" value="com.vmware.samples.rack"/>

 <variable name="objectType" value="samples:Rack"/>

</templateInstance>

<!-- Summary Tab Template for Rack -->

<templateInstance id="com.vmware.samples.chassis.summaryViewTemplateInstance">

 <templateId>vsphere.core.inventory.summaryViewTemplate</templateId>

 <variable name="namespace" value="com.vmware.samples.rack"/>

 <variable name="summaryHeaderView" value="com.vmware.samples.rack.views.RackSummaryView"/>

</templateInstance>

Creating Data View Extensions
When you create a data view extension for the vSphere Web Client user interface layer, you must provide
user interface classes for the GUI elements that appear in the main workspace area. Data view
extensions that require user interface classes are the global view extensions, extensions to existing and
custom object workspaces.

Flex classes for GUI elements in the vSphere Web Client are implemented by using the Model-View-
Controller (MVC) pattern. In the MVC pattern, the business logic and graphics components of a GUI
element are separated into different classes. The Flex classes in vSphere Web Client data views use an
internal MVC framework, called Frinje, to create the associations between the classes used in the MVC
pattern.

The vSphere Web Client SDK provides an event-driven API, based on the Frinje framework, called the
Data Access Manager. Data view classes can use the Data Access Manager library to query data from
sources inside or outside of the vSphere environment.

You can use any framework to develop Flex-based data view extensions for the vSphere Web Client, but
using the Frinje framework is a best practice. By using the Frinje framework and implementing a
compatible MVC architecture, your extensions can use the built-in Data Access Manager library provided
with the vSphere Web Client SDK to retrieve data and send commands to the virtual infrastructure.

vSphere Web Client SDK Documentation

VMware, Inc. 73

The MVC architecture pattern applies only to vSphere Web Client extensions that add data views to the
GUI. Other extensions, such as shortcuts for the home screen or object navigator, are defined only in
metadata and do not require you to create MVC code.

MVC Pattern Overview
The Model-View-Controller pattern separates the domain logic of the software from the user interface
elements. The decoupling of components allows each part of the software to be developed, tested, and
maintained independently.

In the MVC architecture, the model component manages the business logic of the software, including
calculations, data access, and communications with external data sources. The view component
manages only the graphics-related functions of the user interface. The controller component contains the
control logic that governs communication between the model component and the view component.

The model, view, and controller components can be implemented as a single class or as a collection of
different classes.

Understanding the Frinje Framework
The vSphere Web Client uses the Frinje framework to implement the concepts of the MVC architecture.
Frinje uses Flex to build on the MVC architecture in several ways by including additional features.

Understanding how the Frinje framework implements the Model-View-Controller architecture is essential
to reading and making use of the Flex-based samples for data view extensions provided with the
vSphere Web Client SDK. The vSphere Web Client SDK contains an Eclipse plug-in that enables you to
create Flex and Java projects for your vSphere Web Client extensions.

The Frinje framework uses metadata annotations to describe the relationships between the different
classes that make up the MVC model. Frinje does not require you to subclass specific foundational
classes to use the functionality of the Frinje framework. As a result, your source code has no direct
dependency on the Frinje framework, so the same class definitions can be compiled into any Flex
environment.

View Components in Frinje
Frinje implements the View component of the MVC architecture as two separate classes, view and
mediator classes.

The graphic elements of the View component are implemented in an MXML class and the logic elements
of the View component are implemented in an ActionScript class. The Frinje framework refers to the
MXML class as a view class, and the ActionScript class as a mediator class.

The view class and the mediator class are associated by using metadata tags. The MXML view class
uses the [DefaultMediator] tag to specify the associated mediator class. The ActionScript mediator
class uses the [View] tag to specify the associated view class.

vSphere Web Client SDK Documentation

VMware, Inc. 74

The view class contains the graphic elements that the user sees and clicks, such as buttons, text fields,
and menus. The mediator class contains the logic that drives those elements, such as the actions taken
when a user clicks a particular button. A mediator class interacts with the other elements in the Frinje
framework by dispatching events in response to user actions. To gain this functionality, each mediator
class must extend the EventDispatcher base class.

When you create data view or global view extensions to the vSphere Web Client, you must provide the UI
view that appears in the main workspace, and the mediator class that contains the interaction logic for
that view.

The view class is typically an MXML class that encapsulates the visual Flex components for the data
view. The view class specifies the data view mediator by using the [DefaultMediator] annotation, and
contains little business logic, if any.

The mediator class in a vSphere Web Client data view contains the logic used to populate the view
components, make data requests, and handle data responses. The vSphere Web Client SDK provides
libraries and interfaces that your mediator class can use to obtain the object that the user has currently
selected in the vSphere Web Client, and to request data from the vSphere environment.

Obtaining the Currently Selected vSphere Object

Some data views, such as those you add to the object workspace for a specific vSphere object type, need
to track which object the user has selected by using the object navigator. For example, if you add a data
view to the object workspace for Virtual Machine objects, that data view must track which Virtual Machine
the user has selected to request the appropriate data for display.

Your mediator class can use the Frinje framework to obtain the object that the user has currently selected
in the object navigator. To make use of this functionality, your mediator class must implement the
com.vmware.ui.IContextObjectHolder interface.

When your mediator class implements the IContextObjectHolder interface, you must provide get and
set methods for the contextObject property. You do not need to set the contextObject property
directly. The Frinje framework calls the mediator class set contextObject() method when the view
becomes active. The currently selected vSphere object is passed to set contextObject() as the
parameter value.

A best practice is to place your data view’s initial data requests and other initialization code in the set
contextObject() method. That way, you can initialize the view when the framework passes the
currently selected object as the view becomes active.

vSphere Web Client SDK Documentation

VMware, Inc. 75

Example: Example Mediator Class Implementing IContextObjectHolder

The following example mediator class contains the logic for a data view for a custom object type called
Chassis. The example mediator implements the IContextObjectHolder interface, and uses set
contextObject() to obtain the currently selected Chassis object. In the example, the framework invokes
the set contextObject() method, which in turn sends an initial data request, or clears the interface if
no object is selected.

public class ChassisSummaryViewMediator extends EventDispatcher implements IContextObjectHolder {

 private var _view:ChassisSummaryView;

 private var _contextObject:IResourceReference;

 public function set contextObject(value:Object):void {

 _contextObject = IResourceReference(value);

 if (_contextObject == null) {

 clearData();

 return;

 }

 // Initialize the view's data once the current context is known.

 requestData();

 }

 [Bindable]

 public function get contextObject():Object {

 return _contextObject;

 }

 ...

}

Requesting Data from the vSphere Environment

To obtain the data needed to populate the view, your mediator class must communicate with data
sources. These data sources can be in vSphere, or they can be external Web sources. Your mediator
class can use the Data Access Manager (DAM) Flex library in the vSphere Web Client SDK to request
data from either type of data source. To use Data Access Manager, your mediator must use the DAM API,
which is based on Frinje events. See Frinje Event-Driven APIs.

Your mediator class can also communicate with a data source by importing a Java service that you
create. If you create a Java service and add it to the vSphere Web Client Virgo server framework, you can
use an ActionScript proxy class to access the service from your mediator class. See Model Components
in Frinje.

vSphere Web Client SDK Documentation

VMware, Inc. 76

Model Components in Frinje
Frinje implements the Model component of the MVC architecture as an ActionScript proxy class and
associated data objects. The proxy class handles communication with Java services that run on the
vSphere Web Client Virgo server framework, as part of the vSphere Web Client service layer.

For most data view extensions that you create, you do not need to implement the proxy class yourself.
The vSphere Web Client SDK provides a Flex library called the Data Access Manager, which handles all
communications tasks with the Java services running in the vSphere Web Client service layer. For more
information about the Data Access Manager library, see Using the Data Access Manager Library.

You only need to implement the proxy class if you created your own custom Java service and added that
service to the vSphere Web Client service layer. Any proxy class you create must extend the
com.vmware.flexutil.proxies.BaseProxy class in the vSphere Web Client SDK.

Example: Simple Frinje Proxy Class

The following sample proxy class calls the simple EchoService service in the vSphere Web Client
service layer.

public class EchoServiceProxy extends BaseProxy {

 private static const SERVICE_NAME:String = "EchoService";

 // channelUri uses the Web-ContextPath define in MANIFEST.MF (globalview-ui)

 private static const CHANNEL_URI:String =

ServiceUtil.getDefaultChannelUri(GlobalviewModule.contextPath);

 /**

 * Create a EchoServiceProxy with a secure channel.

 */

 public function EchoServiceProxy() {

 super(SERVICE_NAME, CHANNEL_URI);

 }

 /**

 * Call the "echo" method of the EchoService java service.

 *

 * @param message Single argument to the echo method

 * @param callback Callback in the form <code>function(result:Object,

 * error:Error, callContext:Object)</code>

 * @param context Optional context object passed back with the result

 */

 public function echo(message:String, callback:Function = null, context:Object = null):void {

 callService("echo", [message], callback, context);

 }

}

vSphere Web Client SDK Documentation

VMware, Inc. 77

Controller Components in Frinje
Frinje implements the Controller component of the MVC architecture using the Frinje event bus and
command classes.

Frinje Event Bus

The Frinje event bus is a global event bus that extends and improves the capabilities of the native Flex
event model. Rather than requiring each component class to dispatch and receive events directly to and
from one another, the Frinje event bus lets you use metadata annotations to specify the events relevant to
your classes. The Frinje event bus routes events for your application to classes that are registered to
subscribe to those events.

The view, mediator, command, and proxy classes in the Frinje framework work together with the Frinje
event bus to drive the vSphere Web Client user interface. Classes that dispatch events, typically views
and mediators, use metadata annotations to specify the events they generate. Likewise, classes that
handle events, typically command classes, use metadata annotations to specify the events they can
receive. The Frinje event bus is responsible for routing the events and instantiating the receiving class at
runtime.

By using the Frinje event bus, event-dispatching classes, such as views or mediators, and event-handling
classes, such as command classes, can be developed independently without those classes explicitly
referencing one another.

Command Classes

In the Frinje framework, a command class is responsible for handling events generated by changes in the
state of the user interface. When the user clicks a button, for example, the View containing that button
dispatches an event on the Frinje event bus. A command object is instantiated to handle that event using
the appropriate business logic.

Events can be dispatched from any part of the Frinje framework, but are commonly generated from view
or mediator classes in response to user actions. For example, if the user clicks an action for which you
previously created an action extension, the vSphere Web Client generates a Frinje event using the
appropriate action ID. As part of your action extension, you must provide a command class with a method
annotated to handle the generated Frinje event.

Frinje Event-Driven APIs
You can develop APIs that are based on the Frinje framework and use the Frinje event bus.

Some libraries and frameworks in the vSphere Web Client SDK, specifically the Data Access Manager
(DAM) and the Actions Framework, make use of the Frinje framework. These features provide APIs in the
vSphere Web Client SDK that are based on Frinje events. The DAM, for example, provides specific
events that are sent over the Frinje event bus, and you use the DAM by sending and receiving these
events.

vSphere Web Client SDK Documentation

VMware, Inc. 78

A mediator class can use the Data Access Manager library by dispatching the request events in the DAM
API, and handling the response events. The classes do not need to explicitly include the libraries or
subclass any specific class. They need only the proper Frinje metadata annotations to make use of the
Frinje event bus.

Frinje Metadata Annotations
Your classes and methods make use of the Frinje framework by including metadata annotations with the
class or method declaration.

When you construct your classes, you can use the following metadata annotations: [DefaultMediator],
[Event], [Model], [RequestHandler], [ResponseHandler], [EventHandler] and [View]. Each
annotation has certain required attributes you must include.

Note String arguments in metadata annotations are not validated at compile time. If you encounter
errors or your extensions do not function correctly, review your metadata annotations. In addition, it is a
best practice to use the fully qualified class name for any class arguments included in your metadata
annotations.

DefaultMediator

You use the [DefaultMediator] tag to declare the mediator class associated with a particular view
component. You typically use this tag in your view MXML class, to specify the ActionScript class that
contains the UI logic. The [DefaultMediator] tag has one argument, which must be the fully qualified
class name for the mediator class.

[DefaultMediator("<fully_qualified_class_name>")]

To use the [DefaultMediator] tag in an MXML class, you must enclose the tag in <mx:Metadata>
elements.

Example: [DefaultMediator] Metadata Tag in MXML view

The following example [DefaultMediator] tag declares the ChassisSummaryViewMediator class as
the mediator class for the view described in MXML.

<mx:VBox xmlns:mx="http://www.adobe.com/2006/mxml">

 <mx:Metadata>

 [DefaultMediator("com.vmware.samples.chassisui.views.ChassisSummaryViewMediator")]

 <mx:Metadata>

 ...

Event

You use the [Event] tag to define any events that your class generates. You must insert the [Event] tag
before the ActionScript class definition for any class that dispatches events.

vSphere Web Client SDK Documentation

VMware, Inc. 79

The [Event] tag is a native Flex metadata tag that contains the arguments name and type. You use the
name argument to specify the name of the event that your class can dispatch, and the type argument to
specify the data type for the event object.

[Event(name="<event_name>", type="<event_type>")]

In the vSphere Web Client SDK, you typically use the [Event] tag to specify events from the Data
Access Manager library. Your classes can dispatch these events to request data from the vSphere
environment. See Using the Data Access Manager Library

Example: [Event] Metadata Tag in Mediator Class

The following example mediator class is annotated to dispatch a Data Access Manager event. The event
class is included in the com.vmware.data.query library in the vSphere Web Client SDK. In the example,
the name attribute in the [Event] tag has the value
{com.vmware.data.query.events.DataByModelRequest.Request_ID} . The REQUEST_ID
corresponds to a specific event identifier defined in the DataByModelRequest class, rather than a hard-
coded event name.

// Declares the data request event sent from this UI class.

[Event(name="{com.vmware.data.query.events.DataByModelRequest.REQUEST_ID}",

 type="com.vmware.data.query.events.DataByModelRequest")]

public class ChassisSummaryViewMediator extends EventDispatcher implements IContextObjectHolder {

 ...

 private function requestData():void {

 // Dispatch an event to fetch the _contextObject data from the server along the specified model.

 dispatchEvent(DataByModelRequest.newInstance(_contextObject, ChassisSummaryDetails));

 }

 ...

Model

You use the [Model] tag to annotate a data model class. Data model classes are used to specify
information being retrieved through the vSphere Web Client SDK Data Access Manager library. See
Using the Data Access Manager Library

RequestHandler

You use the [RequestHandler] tag to annotate a method to handle a particular action in the
vSphere Web Client. Typically, you create a command class for your action and annotate a method in that
command class with the [RequestHandler] tag.

The [RequestHandler] tag has one parameter, which is the UID for the action that the method handles.
The action UID in the [RequestHandler] tag must match the action UID that you specified in the action’s
extension definition. See Creating Action Extensions.

[RequestHandler("<action_uid>")]

vSphere Web Client SDK Documentation

VMware, Inc. 80

ResponseHandler

You use the [ResponseHandler] tag to annotate a method to handle a specific type of event generated
by the Data Access Manager library in response to a data request.

The method you annotate with the [ResponseHandler] tag listens for specific, named events that are
dispatched from its parent component class. When writing a UI component class, such as a mediator, you
typically annotate the class with the [Event] tag to specify the events named events that the class can
generate. You can then annotate specific methods within that class with [ResponseHandler] to handle
each event.

The [ResponseHandler] tag has a single argument, which you use to specify the event name that the
method expects.

[ResponseHandler(name="<response_event_name>")]

The method you annotate with [ResponseHandler] must accept the parameters request and result,
representing the type of data request and the result of the data request, respectively. The request type
must match that of the dispatched event. The method you annotate with [ResponseHandler] can also
accept the optional parameters error and resultInfo.

Example: [ResponseHandler] Metadata Tag in Event Handler Method

The following example method is annotated to handle a Data Access Manager data response event. The
event class is included in the com.vmware.data.query library in the vSphere Web Client SDK. The
onData function is annotated to receive the event
com.vmware.data.query.events.DataByModelRequest.Response_ID. The event must be generated
from the parent class of the onData function. The parent class must be annotated with an [Event] tag
that specifies that the class dispatches the
com.vmware.data.query.events.DataByModelRequest.RESPONSE_ID event.

[ResponseHandler(name="{com.vmware.data.query.events.DataByModelRequest.RESPONSE_ID}")]

public function onData(request:DataByModelRequest, result:ChassisSummaryDetails):void {

 _view.chassisDetails = result;

}

EventHandler

You use the [EventHandler] tag to annotate a method to handle a general, application-wide notification
event. An example of such an event is the DataRefreshInvocationEvent that is generated when the
user clicks the global refresh button in the vSphere Web Client UI.

The [EventHandler] tag has one argument, which specifies the name of the event for which the method
is listening.

[EventHandler(name="event_name")]

The method you annotate with [EventHandler] must accept an event parameter. The event parameter
contains the generated event.

vSphere Web Client SDK Documentation

VMware, Inc. 81

You can annotate a method with [EventHandler] to handle data responses from the Data Access
Manager. However, a method annotated with [ResponseHandler] is more suited to handling data
requests. The Frinje framework extracts the request type and result data automatically for
[ResponseHandler] methods.

Example: [EventHandler] Metadata Tag

The following example method is annotated to handle the global DataRefreshInvocationEvent.

[EventHandler(name="{com.vmware.core.events.DataRefreshInvocationEvent.EVENT_ID}")]

public function onGlobalRefreshRequest(event:DataRefreshInvocationEvent):void {

 requestData();

}

View

You use the [View] tag to inject a view component object into the view’s associated mediator class.
When you use the [View] tag, you can reference the view component with a generic view variable, and
the Frinje framework will associate the mediator with the specific view at creation time. The associated
view must be annotated with the [DefaultMediator] tag for the framework to make the association.
See DefaultMediator.

Example: [View] Metadata Tag in Mediator Class

The following example mediator class declares a generic variable for the view class, and uses the [View]
tag to inject the view component in the mediator get and set methods for the view.

/**

* The mediator for the ChassisSummaryView view.

*/

public class ChassisSummaryViewMediator extends EventDispatcher implements IContextObjectHolder {

 private var _view:ChassisSummaryView;

 [View]

 public function get view():ChassisSummaryView {

 return _view;

 }

 public function set view(value:ChassisSummaryView):void {

 _view = value;

 }

 ...

vSphere Web Client SDK Documentation

VMware, Inc. 82

Using the Data Access Manager Library
When you create your data view Flex classes using the MVC architecture pattern and Frinje framework,
you can use the Data Access Manager (DAM) library included in the vSphere Web Client SDK. The DAM
library is a Flex library that communicates with the vSphere Web Client Data Service. Using DAM and the
Data Service is the principal way to retrieve information about objects in the vSphere environment.

In general, the mediator class in a data view extension uses the DAM library to request data from the
vSphere environment. The mediator class then updates the extension's view class to reflect the new
information. The DAM also includes a data refresh mechanism that you can use to handle data changes
implicitly. You can include a data update specification with your data request, so that DAM can assign
updated data to GUI elements in your view class without the need for extra code to do so.

Data view extensions implemented in HTML communicate with the Data Service indirectly. To use the
Data Service library from an HTML extension, you must install an adapter process on the Virgo
application server. For more information about HTML bridge adapters, see Creating Action Extensions.

Create a Data Access Manager Workflow
The DAM API consists of Frinje events, such as requests for data or responses to data requests. To use
DAM, your Flex classes must dispatch the request events and listen for the associated responses. You
indicate which events your classes can receive by using Frinje metadata annotations.

To use the Data Access Manager library, you must build your extension Flex classes as follows.

Procedure

1 Create an annotated data model class in your plug-in module. The data model class must extend the
DataObject base class.

The data model class describes the information that the mediator class of the extension must retrieve
by using the DAM. The mediator references the data model class when dispatching data request
events or receiving data response events.

To query for a single property of a given vSphere object, you do not need to create a data model
class and can start from Step 2.

2 In the mediator class of your extension, create and dispatch one or more data request events.

Data request events include both a reference to the target vSphere object and a data model class as
described in Step 1. Optionally, the data request can also include a data update specification that will
cause the DAM to send notifications whenever the values of the requested properties change.

For data request events that retrieve a single property, you specify the property name by using a
string value and do not need to include a data model class.

3 The DAM sends a data response event, which contains a DataObject with the values of the
requested properties, as specified in the data model class in Step 1 . You must annotate a method in
the mediator class of your extension to receive the data response event.

vSphere Web Client SDK Documentation

VMware, Inc. 83

4 In your data response event handler method, update your extension's user interface elements using
the data in the data response event.

Creating the Data Model Class
You create a data model class in your extension to describe the information needed from the Data Acess
Manager.

When you create a data model class, you specify the type of vSphere or custom object to which the
request pertains, and the specific properties of that object that you need to retrieve. For example, you can
create a data model class to request information on a Virtual Machine object and include the name and
powerState properties in the data request.

Class Declaration

The data model class must extend the DataObject class and use the [Model] annotation tag. Typically,
you create the data model class as a separate class or package in your plug-in module. This package
must import the package com.vmware.core.model.DataObject from the vSphere Web Client SDK.

The type tag in the [Model] annotation is optional. If you specify the type tag in the annotation, the data
model class can retrieve properties only for objects of the specified type. You can create a data model
class to request common properties for multiple object types, or you can use the type tag in the [Model]
annotation to make the data model class specific to a particular vSphere object type.

Declaring the Properties to Retrieve

In the data model class, you must specify a class property for each data property to retrieve through
DAM. When you declare each property, you must include a [Model] annotation with a property tag. The
[Model] annotation on a property differs from the [Model] annotation on the class.

The [Model] annotation on a property associates the property with a data property belonging to a
vSphere object. The property tag of the annotation specifies the name of the property to retrieve from
the vSphere object. When you use the data model class in a data request, DAM retrieves the property
specified in the annotation from the vSphere environment, and assigns the value to the associated class
property.

When you use the data model class in a data request, the DAM returns values only for class properties
that have the [Model] annotation. Class properties without the annotation are ignored.

vSphere Web Client SDK Documentation

VMware, Inc. 84

Example: Data Model Class

The following example shows a data model class. The class MyVmData has a [Model] annotation and
extends DataObject. In the example, the object type VirtualMachine is specified, indicating that the
data model retrieves information on Virtual Machine objects. The class MyVmData includes the myVmName
and myVmPowerState annotated properties. Each property includes an annotation that specifies to the
DAM the vSphere property to associate with the class property.

package com.myExtension.model {

 import com.vmware.core.model.DataObject

 // data model class annotation and declaration

 [Model(type="VirtualMachine")]

 public class MyVmData extends DataObject {

 //properties to retrieve, specified by annotation

 [Model(property="name")]

 public var myVmName:String;

 [Model(property="runtime.powerState")]

 public var myVmPowerState:String;

 }

}

Retrieving Properties for Related Objects

You can specify and annotate class properties to retrieve data on related objects, such as the host
associated with a given virtual machine object. You use the relation tag in the [Model] annotation for
the class property to specify that the property requested from the DAM is for a related object.

The following data model class is with a property annotated for the DAM to retrieve data from a related
object. In the example, the class property myVmHostName is annotated for the DAM to retrieve the name
property of the vSphere host object related to the target virtual machine object.

 [Model(type="VirtualMachine")]

 public class MyVmData extends DataObject {

 [Model(relation="runtime.host", property="name")]

 public var myVmHostName:String;

 }

You can retrieve properties over multi-hop relationships by specifying each hop separated by a comma.
The following example shows a property annotated to retrieve data over a multi-hop relationship. In the
example, the myDatacenterName property is annotated to retrieve the name property for a datacenter
object associated with the host for a given virtual machine.

 [Model(type="VirtualMachine")]

 public class MyVmData extends DataObject{

 [Model(relation="runtime.host,cluster", property="name")]

 public var myDatacenterName:String;

 }

vSphere Web Client SDK Documentation

VMware, Inc. 85

You can also retrieve properties for an object relationship with multiple cardinality, where the relationship
is one-to-many. For example, one such relationship is that of a virtual machine object to multiple related
network objects. When you retrieve a related property of this type, the associated class property in the
data model class must be of type Array or ArrayCollection.

Nested Data Models

The annotated properties in a data model class can be single properties, or they can be nested data
model classes. To specify a class property as a nested data model class, as opposed to a single property,
you omit the property tag from the [Model] annotation when declaring the class property.

Omitting the property tag implicitly declares that the class member variable is a data model of the same
object type as the parent data model. If the relation tag is specified, however, the class property is
assumed to be a data model for the object type specified in the relation tag.

The following example data model class is with two class properties that are nested data models. The first
property, myVmHardwareData, is another data model for Virtual Machine objects, the same as the parent
data model. The second property, myHostDetails, is a data model for Host objects.

 [Model(type="VirtualMachine")]

 public class MyVmData extends DataObject{

 [Model]

 public var myVmHardwareData:VmHardwareData; // VmHardwareData is a VM data model

 [Model(relation="runtime.host")]

 public var myHostDetails:HostData; // HostData is a Host data model

 }

You can use a nested data model to create an array of data model objects. The following example shows
a data model class that uses a nested data model to create an array of objects based on the Host data
model.

 [Model(relation="runtime.host")]

 public var HostList:Array; // array of Host objects using the HostData model

If the related object for which you want to retrieve data is a user-defined custom object, you must use a
different syntax in your [Model(relation="..."] annotation. Your [Model] annotation must explicitly
specify both the custom object type, and the nested data model that you use to define that type. The
following example shows a data model class that uses a nested data model for a user-defined custom
Chassis object.

[Model(relation="Chassis as comexample:Chassis", nestedModel="com.example.ChassisModelData"]

public var myChassisDetails:ChassisModelData; // Chassis object using the ChassisModelData model

In the example, the [Model(relation="..."] annotation specifies the exact object type for Chassis
as comexample:Chassis. The annotation also includes an explicit nestedModel attribute that specifies
the fully-qualified class name for the Chassis data model. Use this syntax for any custom object type that
you include in a data model class.

vSphere Web Client SDK Documentation

VMware, Inc. 86

Sending Data Requests and Handling Data Responses
The mediator class of your extension can use the DAM API to create requests for data.

Your mediator class creates data requests by dispatching one or more data request Frinje events
specified in the API. The DAM responds to each data request by generating a data response event. You
can annotate a method in your mediator class to handle the data response event and update the
associated view class with the new information.

Data Request Events

The DAM API contains several different kinds of data request events. Requests can retrieve a single
property for a single object in the vSphere environment, or requests can retrieve multiple properties for an
object by using a data model class to specify those properties. Requests can be targeted to a specific
vSphere object, or you can specify a constraint to request data on all objects that match your defined
criteria.

Your mediator requests data from DAM by dispatching data request events. To dispatch the events in the
DAM API, your mediator class declaration must include an [Event] annotation for each type of event it
dispatches, and the class must extend the base SDK class EventDispatcher.

For data requests that retrieve a single property, you must specify the name of the property to retrieve
using a String type.

Data Response Events

The DAM can return either a response with data about a single vSphere object, or a response with data
about multiple vSphere objects. The DAM always returns one of these two responses, depending on the
type of request. For requests sent by using a data model class, the DAM returns a data response with an
object of the data model class type, or an array of such objects for multiple objects. For requests sent for
a single property, the DAM returns the property value in a generic DataObject wrapper, or an array of
generic DataObjects for multiple objects.

Your mediator class can listen for and handle data response events by annotating a class method with the
[ResponseHandler] annotation. You specify the type of event for which the method listens in the
[ResponseHandler] annotation.

Request-to-Response Mapping

The following table contains the types of data request events, the resulting data response events, and the
associated result types included in the DAM API.

vSphere Web Client SDK Documentation

VMware, Inc. 87

Table 6‑2. Data Request and Data Response Events

Request Event Result Type Description

DataByModelRequest Instance of specified data model class Retrieves multiple properties for a given
vSphere or custom object, specified by a
data model class.

PropertyRequest Appropriate subtype of DataObject with
the property value in the value field

Retrieves a single property for a given
vSphere or custom object. The property
name is specified using a String value.

DataByConstraintRequest ArrayCollection of instances of
specified data model class

Retrieves properties specified by data
model for vSphere or custom objects that
match the given constraint.

DataByQuerySpecRequest ArrayCollection of
ObjectDataObject (property-value
map)

Retrieves data specified by query
specification.

Example: Examples of Data Request and Data Response Events

The following example mediator class that interfaces with the DAM by dispatching data request events
and handling data response events. The class MyDataViewMediator extends the EventDispatcher
base class, and the declaration has an [Event] annotation for each of the data request events that the
class can dispatch.

Each of the methods that the class uses to handle data response events contains a [ResponseHandler]
annotation with the method declaration.

In the example, the MyDataViewMediator class dispatches a DataByModelRequest event, a
PropertyRequest event, and a DataByConstraintRequest event in the requestData method.

The DataByConstraintRequest specifies the constraint by using the
createConstraintForRelationship method. In the example, the constraint specifies the virtual
machine objects related to the host object specified by hostRef, which represent all virtual machines
related to the given host.

[Event(name="{com.vmware.data.query.events.DataByModelRequest.REQUEST_ID}",

 type="com.vmware.data.query.events.DataByModelRequest")]

[Event(name="{com.vmware.data.query.events.PropertyRequest.REQUEST_ID}",

 type="com.vmware.data.query.events.PropertyRequest")]

[Event(name="{com.vmware.data.query.events.DataByConstraintRequest.REQUEST_ID}",

 type="com.vmware.data.query.events.DataByConstraintRequest")]

public class MyDataViewMediator extends EventDispatcher {

 // Requests

 private function requestData(event:Event): void {

 // data-model request event

 var VmDataRequest:DataByModelRequest = DataByModelRequest.newInstance(vmRef, MyVmData);

 // vmRef is the target object reference; MyVmData is the data model class

 dispatchEvent(VmDataRequest);

vSphere Web Client SDK Documentation

VMware, Inc. 88

 // single-property request event

 var VmGuestInfoRequest:PropertyRequest = PropertyRequest.newInstance(vmRef, "guest");

 // vmRef is the target object reference; single property specified as String

 dispatchEvent(VmGuestInfoRequest);

 // request by constraint

 var VmListRequest:DataByConstraintRequest = DataByConstraintRequest.newInstance(

 QuerySpecUtil.createConstraintForRelationship(hostRef, "vm"), MyVmData);

 dispatchEvent(vmListRequest);

 }

 // Responses

 [ResponseHandler(name="{com.vmware.data.query.events.DataByModelRequest.RESPONSE_ID}")]

 public function onMyVmDataRetrieved(request:DataByModelRequest, result:MyVmData):void {

 // use MyVmData result

 }

 [ResponseHandler(name="{com.vmware.data.query.events.PropertyRequest.RESPONSE_ID}")]

 public function onVmGuestInfoRetrieved(request:PropertyRequest, result:StringDataObject):void {

 // use string result from result.value

 }

 [ResponseHandler(name="{com.vmware.data.query.events.DataByConstraintRequest.RESPONSE_ID}")]

 public function onVmListRetrieved(request:DataByConstraintRequest, result:ArrayCollection):void {

 // result is an ArrayCollection of MyVmData objects

 }

}

Error Checking and Troubleshooting Your Data Requests

Data response events contain an additional error property that you can use to obtain more information
about the results of a failed data request. The error property is available as an optional parameter to the
response handler method.

[Event(name="{com.vmware.data.query.events.DataByConstraintRequest.REQUEST_ID}",

 type="com.vmware.data.query.events.DataByConstraintRequest")]

public class MyDataViewMediator extends EventDispatcher {

 // Skip request method; show only response method.

 [ResponseHandler(name="{com.vmware.data.query.events.DataByConstraintRequest.RESPONSE_ID}")]

 public function onDataRetrieved(request:DataByConstraintRequest,

 result:ArrayCollection,

 error:Error):void {

 if (error != null) {

 _logger.debug(“onDataRetrieved error: “ + error.message);

 return;

 }

 // Valid result has been received.

 _view.datastoreItems = result;

 }

}

For more information, see the ActionScript API reference included with the vSphere Web Client SDK.

vSphere Web Client SDK Documentation

VMware, Inc. 89

Data Refresh and Data Update Specifications
You can use the DAM data refresh mechanism to subscribe your component to receive updated data from
the vSphere environment.

You can bind the requested data directly to elements in the view class, causing those elements to be
updated whenever the requested data changes. To perform this binding, you must include a data update
specification when you dispatch your data request event.

A data update specification is included in the SDK base class DataRequestInfo. You must create an
instance of DataRequestInfo and set the DataUpdateSpec property, and then pass the
DataRequestInfo object when you create your data request.

The DAM data refresh mechanism has different modes of operation. You specify the mode of operation
with your choice of constructor for the DataUpdateSpec object that you pass to your DataRequestInfo
object.

n implicit - The DAM refreshes the data when the user performs an operation on the relevant object,
or when the user clicks on the vSphere Web Client global Refresh button.

n explicit - The DAM refreshes the data only if explicitly requested, such as when the user clicks the
vSphere Web Client global Refresh button.

To create an implicit binding, you use the newImplicitInstance() method to construct the
DataUpdateSpec object. To create an explicit binding, you use the newExplicitInstance() method.

Example: Mediator Class Using DAM Binding Specification for Data Refresh

The following example mediator class includes the DataRequestInfo and DataUpdateSpec objects to
create an automatic binding in the data request. In the example, the DataUpdateSpec is constructed
using the newImplicitInstance() method, resulting in an implicit binding.

In the example, the function onStart dispatches the initial DataByModelRequest. The initial request
includes a DataRequestInfo object with an implicit DataUpdateSpec. The function onDataRetrieved is
annotated to handle the response, and updates a UI control with the returned data. Because of the data
update specification, the DAM calls onDataRetrieved when the data changes.

import com.vmware.data.query.events.DataByModelRequest;

import com.vmware.data.query.DataUpdateSpec;

import com.vmware.data.query.events.DataRequestInfo;

[Event(name="{com.vmware.data.query.events.DataByModelRequest.REQUEST_ID}",

 type="com.vmware.data.query.events.DataByModelRequest")]

public class MyVmViewMediator extends EventDispatcher {

 private function onStart():void {

 var requestInfo:DataRequestInfo = new DataRequestinfo(DataUpdateSpec.newImplicitInstance());

 // create a DataRequestInfo with an implicit-mode DataUpdateSpec

 var myRequest:DataByModelRequest = DataByModelRequest.newInstance(vmRef,

 MyVmData, // data model

 requestInfo); // include the DataRequestInfo object when constructing the request

vSphere Web Client SDK Documentation

VMware, Inc. 90

 dispatchEvent(myRequest);

 }

[ResponseHandler(name="{com.vmware.data.query.events.DataByModelRequest.RESPONSE_ID}")]

 public function onDataRetrieved(request:DataByModelRequest, result:MyVmData):void {

 _view.vmData = result;

 }

}

Extending the Object Navigator
The object navigator is the primary navigation interface for reaching solutions and applications in the
vSphere Web Client, and for finding and focusing on objects in the virtual infrastructure. You can extend
the object navigator by creating new nodes and categories on each page. You can add both pointer
nodes and object collection nodes to the object navigator control.

The object navigator control contains a collection of nodes, which can be simple pointers to global views
and other solutions that can appear in the vSphere Web Client main workspace. Nodes can also be
expandable collections for vSphere object types.

The object navigator home page appears when the user logs in to the vSphere Web Client, and contains
a pointer node for the home screen, an entry point to your virtual infrastructure through vCenter Server,
and pointer nodes for other major solutions in the vSphere Web Client. The object navigator
Administration page appears when you click Administration on the vSphere Web Client home page. The
Administration page contains categories and pointer nodes specific to that application. The object
navigator vCenter Server page appears when the user browses the objects in the virtual infrastructure.
On the vCenter Server page, the object navigator displays the available objects in the vSphere
environment in collections, such as inventory tree nodes and inventory list nodes.

Use Cases
Extensions to the object navigator provide access to other extensions or areas of interest in the
vSphere Web Client, such as global views and object workspaces. You create different object navigator
extensions depending on what access you want to give to the user.

n Global Views

You can add a pointer node to the object navigator that causes a global view extension to appear in
the vSphere Web Client main workspace. Global views are generally consoles, dashboards,
applications. A best practice is to create pointer node extensions on the object navigator home page
only for major applications and solutions. You can create pointers to other global views and
dashboards on the vSphere Web Client Home page. See Creating Home Screen Shortcuts.

n Object Collections

The object navigator vCenter Server page organizes vSphere objects using object collection nodes
called inventory lists. Each inventory list node is an aggregate collection of all objects of a particular
type in the vSphere environment. The Virtual Machine inventory list, for example, is an object
collection node that contains all Virtual Machines in the vSphere environment.

vSphere Web Client SDK Documentation

VMware, Inc. 91

Entity collection nodes are expandable lists. When the user clicks an object collection node, a list of
every object in the collection appears in the object navigator control. The user can focus on any
specific object in the collection to view the workspace and data views of that object.

You can create an extension to add a new object collection node to the object navigator. A best
practice is to add your object collection node to the object navigator vCenter Server page, and to
create a new category for the object collection node.

Object collection nodes rely on relation extensions to display information about that object type's
relationship to other objects in the vSphere environment.

Defining an Object Navigator Extension
All object navigator extensions must reference a common extension point, named
vise.navigator.nodespecs. Object navigator extensions must specify this extension point in the
extension definition, and provide a data object of type
com.vmware.ui.objectnavigator.model.ObjectNavigatorNodeSpec.

An object navigator extension can add a category to the object navigator control, it can add a simple
pointer node, or it can add an object collection node. You determine which type of node you add to the
object navigator by which properties you include in the ObjectNavigatorNodeSpec data object, and how
you set those properties. Some properties of the ObjectNavigatorNodeSpec data object are optional
and not used for certain node types.

Specifying the Object Navigator Page and Category
When you add any type of extension to the object navigator, you specify where the extension appears by
using the <parentUid> property in the extension definition. Your extension can appear beneath one of
the predefined categories in the object navigator, or under a new category that you create with an
extension.

The following table lists the pre-defined categories in the object navigator and the corresponding id values
to which you must set the <parentUid> property.

Table 6‑3. Object Navigator Categories and IDs

Category Type Category ID

Object Navigator Home Page > Administration > Solutions vsphere.core.navigator.solutionsCategory

Object Navigator Global Inventory Lists Page vsphere.core.navigator.virtualInfrastructure

Object Navigator Global Inventory Lists Page > Resources vsphere.core.navigator.viInventoryLists

Object Navigator Administration Page vsphere.core.navigator.administration

Adding a Category to the Object Navigator
Your extension can add a category, rather than a node, to the object navigator.

The following table lists the properties of the ObjectNavigatorNodeSpec data object that you must set to
add a category to the object navigator.

vSphere Web Client SDK Documentation

VMware, Inc. 92

Property Type Description

<title> string A string that appears as the text label for
the category in the object navigator
control. The string can be hard coded, or it
can be a dynamic resource string included
in your plug-in module.

<parentUid> string A string value that determines where the
extension appears in the object navigator
control. The value of the <parentUid>
property must match the extension id
attribute of the parent category. The
extension appears in the category that you
specify in the <parentUid> property. See
Specifying the Object Navigator Page and
Category.

The following example extension definition is for an object navigator extension that adds a new category.
In the example, the category is named "Admin Sample", and the extension category is added to the object
navigator Administration page.

<extension id="mySolution.myPlugin.myAdminSampleCategory">

 <extendedPoint>vise.navigator.nodespecs</extendedPoint>

 <object>

 <title>Admin Sample</title>

 <parentUid>vsphere.core.navigator.administration</parentUid>

 </object>

</extension>

Adding a Pointer Node to the Object Navigator
Your extension can add a pointer node to the object navigator. A pointer node extension causes a specific
application, object workspace, or global view to appear in the vSphere Web Client main workspace when
the user clicks the pointer node.

The following table lists the properties of the ObjectNavigatorNodeSpec data object that you must set to
add a pointer node to the object navigator.

vSphere Web Client SDK Documentation

VMware, Inc. 93

Property Type Description

<title> string A string that appears as the text label for
the pointer node in the object navigator
control. The string can be hard coded, or it
can be a dynamic resource string included
in your plug-in module.

<parentUid> string A string value that determines where the
extension appears in the object navigator
control. The value of <parentUid>
property must match the extension id
attribute of the parent category. The
extension appears in the category that you
specify in the <parentUid> property. See
Specifying the Object Navigator Page and
Category.

<navigationTargetUid> string A string value that specifies the global
view, application, or object workspace that
appears in the main workspace when the
user clicks the pointer node. The value of
the <navigationTargetUid> property
must match the extension id attribute for
the target view.

<icon> resource The icon that appears for the pointer in the
object navigator control. The value of the
<icon> property typically references a
dynamic resource in your plug-in module.

Example: Example Pointer Extension to Object Navigator

The following example shows an extension definition for an object navigator extension that adds a new
pointer node. In the example, the pointer node has the name label "Sample Dashboard" and causes the
extension mySolution.myPlugin.myDashboardApp to appear in the main workspace. The pointer node
appears in the object navigator control in the top-level Solutions category.

<extension id="mySolution.myPlugin.myDashboardPointer">

 <extendedPoint>vise.navigator.nodespecs</extendedPoint>

 <object>

 <title>Sample Dashboard</title>

 <parentUid>vsphere.core.navigator.solutionsCategory</parentUid>

 <navigationTargetuid>mySolution.myPlugin.myDashboardApp</navigationTargetUid>

 <icon>#{samplePluginImages:sample}</icon>

 </object>

</extension>

vSphere Web Client SDK Documentation

VMware, Inc. 94

Adding an Object Collection Node to the Object Navigator
Your extension can add a new object collection node to the object navigator. You typically add an object
collection node to the object navigator if you have introduced a new type of object to the vSphere
environment, and you want to provide direct access to the instances of that object.

An object collection node extension represents an aggregation of object instances, such as data centers
or hosts. When the user clicks an object collection node, the node can expand to show a list of all
instances of that object in the vSphere environment.

When you create an object collection node, part of your extension definition must reference a relation
extension. The vSphere Web Client uses data from the relation extension to populate the expandable list
of object instances.

The following table lists the properties of the ObjectNavigatorNodeSpec data object that you must set to
add an object collection node to the object navigator.

Property Type Description

<title> string A string that appears as the text label for
the pointer node in the object navigator
control. The string can be hard coded, or it
can be a dynamic resource string included
in your plug-in module.

<parentUid> string A string value that determines where the
extension appears in the object navigator
control. The value of <parentUid>
property must match the extension id
attribute of the parent category. The
extension appears inside the category that
you specify in the <parentUid> property.
See Specifying the Object Navigator Page
and Category.

Typically, most object collection nodes are
found in the Inventory Lists category of the
object navigator vCenter Server page. A
best practice is to either add your object
collection node to the Inventory Lists
category, or to create a new category
extension.

vSphere Web Client SDK Documentation

VMware, Inc. 95

Property Type Description

<navigationTargetUid> string A string value that specifies the global
view, application, or object workspace that
appears in the main workspace when the
user clicks the pointer node. The value of
the <navigationTargetUid> property
must match the extension id attribute for
the target view.

For an object collection node, a best
practice is to set this value to an object
collection data view. You can create an
object collection data view by using the
standard template when you create an
object workspace for your custom object
type.

<icon> resource The icon that appears for the pointer in the
object navigator control. The value of the
<icon> property typically references a
dynamic resource in your plug-in module.

<isFocusable> boolean A Boolean value. If you set this value to
true , when the user clicks the collection
node, the object navigator control will slide
to display a new page with an expandable
list of every object in the collection.

<nodeObjectType> string A string that indicates the type of object
collection the node represents. The value
you specify in the <nodeObjectType>
property must match the extension id of
an ObjectRelationSetSpec that you
create in a relation extension for your
object.

Example: Example Entity Collection Node Extension

The following example shows an extension definition for an object navigator extension that adds an object
collection node for a custom object type called Rack. In the example, the Rack object collection node
appears under the Inventory Lists category in the object navigator vCenter Server page.

The Rack object collection node extension references an object workspace collection data view with the
identifier mySolution.myPlugin.Rack.objectCollectionView, and a relation extension with the
identifier RackNodeCollection.

<extension id="mySolution.myPlugin.myRackCollectionNode">

 <extendedPoint>vise.navigator.nodespecs</extendedPoint>

 <object>

 <title>Rack</title>

 <icon>#{myPluginImages:Rack}</icon>

 <parentUid>vsphere.core.navigator.viInventoryLists</parentUid>

 <navigationTargetUid>mySolution.myPlugin.Rack.objectCollectionView</navigationTargetUid>

vSphere Web Client SDK Documentation

VMware, Inc. 96

 <isFocusable>true</isFocusable>

 <nodeObjectType>RackNodeCollection</nodeObjectType>

 </object>

</extension>

Using a Template to Create an Object Collection Node Extension
You can use an XML template included in the vSphere Web Client SDK to quickly create an object
collection node extension for a new object type.

The object collection template generates an extension definition for an object collection node that
contains an expandable sliding view in the object navigator for all objects in the collection. The variables
in the template reference the necessary relation and object workspace extensions that the object
collection node needs to function.

Example: Example Usage of Object Collection Template
The following example shows how to instantiate the object collection template for a custom object type
called Chassis. In the example, the <variable> elements correspond to the properties of the
ObjectNavigatorNodeSpec data object.

To avoid name clashes with other extensions, such as object view templates, the namespace variable
must be unique. The template instance ID must be unique for every object collection you define.

<templateInstance id="com.vmware.samples.lists.allChassis">

 <templateId>vsphere.core.inventorylist.objectCollectionTemplate</templateId>

 <variable name="namespace" value="com.vmware.samples.chassisCollection"/>

 <variable name="title" value="#{chassisLabel}"/>

 <variable name="icon" value="#{chassis}"/>

 <variable name="objectType" value="samples:Chassis"/>

 <variable name="listViewId" value="com.vmware.samples.chassis.list"/>

 <variable name="parentUid" value="com.vmware.samples.chassisAppCategory"/>

</templateInstance>

Adding Custom Icons and Labels to an Object Collection Node
You can customize any object collection node that you create by adding a new icon and label.

To add an icon or label representation to an object collection node, you must create a separate extension
called an object representation extension. An object representation extension can specify one or more
icons and labels to display for a given object type, and the conditions under which each icon and label is
displayed. For example, you can specify three different icons for a single object type, and have each icon
appear under different conditions.

Defining an Object Representation Extension
Object representation extensions must reference a common extension point, named
vise.inventory.representationspecs. Object representation extensions must specify this extension
point in the extension definition, and provide a data object of type
com.vmware.ui.objectrepresentation.model.ObjectRepresentationSpec.

vSphere Web Client SDK Documentation

VMware, Inc. 97

An object representation extension specifies the target object type and an array of objects of type
com.vmware.ui.objectrepresentation.model.IconLabelSpec. Each IconLabelSpec object in the
array represents one icon and label set for the object, and can define the conditions for when that icon
and label set appears.

The following table lists the properties of the ObjectRepresentationSpec data object that you must set.

Property Type Description

<objectType> string The object type for which the icon and label sets apply.

<specCollection> array An array of objects of type
com.vmware.ui.objectrepresentation.model.IconLabelSpec. Each
IconLabelSpec object defines a single icon and label pair, along with the
conditions under which that icon and label set appear.

Example: Object Representation Extension for Rack Object
The following example shows an extension definition for an object representation extension. In the
example, the extension adds one new icon and label set for a custom object called Rack.

<extension id="com.vmware.samples.rack.iconLabelSpecCollection">

 <extendedPoint>vise.inventory.representationspecs</extendedPoint>

 <object>

 <objectType>samples:Rack</objectType>

 <specCollection>

 <com.vmware.ui.objectrepresentation.model.IconLabelSpec>

 <iconId>#{rack-empty}</iconId>

 <labelId>#{empty}</labelId>

 <conditionalProperties>

 <String>!chassis</String>

 </conditionalProperties>

 </com.vmware.ui.objectrepresentation.model.IconLabelSpec>

 </specCollection>

 </object>

</extension>

Defining an Individual Icon and Label Set
Each IconLabelSpec object contains an icon ID, a label ID, and one or more conditional properties. The
icon ID and label ID values specify the icon and label resources from your plug-in resource SWF file.

Conditional properties govern when the icon and label appear in the object navigator. The
<conditionalProperties> property of the IconLabelSpec object contains an array of properties to be
evaluated as simple Boolean properties. You can use the negation operator (!) to evaluate against the
reverse of the boolean value.

In Example: Object Representation Extension for Rack Object, the property chassis is evaluated as a
simple Boolean, and the (!) operator is used. The icon and label set in the example is only displayed for
Rack objects without an associated Chassis.

vSphere Web Client SDK Documentation

VMware, Inc. 98

You can also use a more advanced <conditions> property in an IconLabelSpec object to describe
more complex display conditions for your icon and label set. The <conditions> property functions
identically to property query constraints in the vSphere Web Client Data Service.

Creating Action Extensions
You can extend the vSphere Web Client by adding actions. You can add actions to existing vSphere
objects, or create actions associated with a new type of vSphere object.

In the vSphere Web Client, actions represent commands that the user can issue to manage, administer,
or otherwise manipulate the objects in the vSphere environment. Each action in the vSphere Web Client
is associated with one or more specific vSphere object types. For example, the user might perform an
action to change the power state of a selected Virtual Machine object, or to cause a Host object to enter
or exit maintenance mode.

When you add an action extension to the vSphere Web Client user interface layer, you must also extend
the vSphere Web Client service layer with a Java service. The Java service is responsible for performing
the action operation on the target vSphere object.

Use Cases
You can extend the vSphere Web Client by adding actions associated with an existing type of vSphere
object, or with a new type of vSphere object. You might add actions to an existing object type if you have
created a custom version of that vSphere object, such as a custom host.

In addition to creating the action extension in the user interface layer, you must also add a Java service to
the vSphere Web Client service layer. This Java service is used to perform the action operation on the
target vSphere object.

Actions Framework Overview
The Actions Framework governs all available actions in the vSphere Web Client. All actions in the Actions
Framework are organized into groups called action sets. When you create action extensions to the
vSphere Web Client, you must define one or more action sets in the Actions Framework.

Each action in the Actions Framework is associated with one or more specific types of objects in the
vSphere environment. Actions associated with virtual machines, for example, are available only when the
user has selected a virtual machine object. Available actions are displayed in the actions drop-down
menu at the top of the main workspace, or in a context menu when the user right-clicks on an object in
the object navigator.

Action Controllers in Flex Extensions
In the plug-in module that contains your action extension, you must create a Flex command class. The
Flex command class contains a handler method for each action. When the user invokes your action, the
vSphere Web Client generates a Frinje event, which is then routed to the appropriate handler method in
your command class.

vSphere Web Client SDK Documentation

VMware, Inc. 99

Defining an Action Set
An extension that adds one or more actions to the vSphere Web Client must define an action set. You
add each action set extension to a specific extension point in the vSphere Web Client user interface layer,
named vise.actions.sets.

Your extension definition must define an action set and the individual actions within that action set. An
action set is a data object of type com.vmware.actionsfw.ActionSetSpec. The ActionSetSpec object
contains an <actions> property, which is an array of action data objects. You specify each individual
action in the set inside the <actions> property, using a separate data object for each.

You associate each action set extension with a particular type of vSphere object. A best practice is to use
the vSphere Web Client extension filtering mechanism to ensure that the actions are only visible when the
user selects the relevant type of vSphere object. See Filtering Extensions.

Note If you omit the <metadata> element for extension filtering in your action set extension definition,
your action is shown for all vSphere objects. Use the <metadata> element to ensure that your actions
appear only for the correct type of vSphere custom objects.

Defining Individual Actions for Flex-Based Action Extensions
Each action data object in a set is a data object of type com.vmware.actionsfw.ActionSpec. You must
create an ActionSpec data object for every action to add to the action set.

You create each ActionSpec data object by using a <com.vmware.actionsfw.ActionSpec> XML
element. In this element, you set the properties for the action.

Property Type Description

<uid> string Unique identifier of the action. Using
namespace style is a best practice, for
example
com.mySolution.myPlugin.chassis.ch

assisPowerAction.

<label> string String containing the text label for the
action, suitable for a button or context
menu in the vSphere Web Client user
interface.

<description> string Optional. String containing a short
description of the action, suitable for a
tooltip.

<icon> resource Optional. Icon class or dynamic resource
for the action.

<acceptsMultipleTargets> boolean Optional. If you set this value to true, the
action can be made available when the
user selects multiple vSphere objects.

vSphere Web Client SDK Documentation

VMware, Inc. 100

Property Type Description

<conditionalProperty> string Optional. Indicates the name of a Boolean
property on the target vSphere or custom
object. You can use the value of the
property specified to define whether the
action is available on the target object. For
example, you can specify a Boolean
property on a Virtual Machine object, and
make your action available only when that
property is true.

<privateAction> boolean Optional. A flag that indicates that this
action must not be used by the Actions
Framework except when explicitly
identified by its <uid>. For example, you
can set the property value to true when
you define a context-less action.
Examples of such actions are global
actions in a list toolbar or drag-and-drop
actions that must not be available in the
default menu.

<command> string Command class for a Flex-based action.
The command class contains a method
annotated to handle the event that the
vSphere Web Client generates when the
user invokes your action. The handler
method must then perform the actual
action operation on the vSphere
environment.

Example: Flex-Based Action Extension Definition
The following example shows an extension definition for a Flex-based action set extension. In the
example, the extension adds a set of two actions to the vSphere Web Client Actions Framework. The
actions are associated with a custom object type called Chassis.

<extension id="mySolution.myPlugin.myActionSet">

 <extendedPoint>vise.actions.sets</extendedPoint>

 <object>

 <actions>

 <!-- first action -->

 <com.vmware.actionsfw.ActionSpec>

 <uid>com.mySolution.myPlugin.chassis.createChassis</uid>

 <label>Create Chassis</label>

 <description>Create a Chassis object.</description>

 <icon>#{myPluginImages:sample1}</icon>

 <acceptsMultipleTargets>false</acceptsMultipleTargets>

 <command className="com.mySolution.myPlugin.ChassisCommand"/>

 </com.vmware.actionsfw.ActionSpec>

 <!-- second action -->

 <com.vmware.actionsfw.ActionSpec>

 <uid>com.mySolution.myPlugin.chassis.editChassis</uid>

 <label>Edit Chassis</label>

vSphere Web Client SDK Documentation

VMware, Inc. 101

 <description>Edit a Chassis object.</description>

 <icon>#{myPluginImages:sample2}</icon>

 <acceptsMultipleTargets>true</acceptsMultipleTargets>

 <conditionalProperty>actions.isEditAvailable</conditionalProperty>

 <command className="com.mySolution.myPlugin.ChassisCommand"/>

 </com.vmware.actionsfw.ActionSpec>

 </actions>

 </object>

 <metadata>

 <!-- filters the actions in the set to be visible only for Chassis -->

 <objectType>samples:Chassis</objectType>

 </metadata>

</extension>

Handling Actions with Flex Command Classes
In a Flex-based action extension, you use a command class to provide the code that performs the action
operation in the vSphere environment when the user clicks your action.

When the user starts your action, the vSphere Web Client generates an ActionInvocationEvent using
the ID you specified using the <uid> property in the ActionSpec object in your extension definition. The
vSphere Web Client then instantiates the command class you specified in the <command> property. Your
command class must contain a method annotated to handle the ActionInvocationEvent that is
generated when the action is started. A single command class can contain handler methods for multiple
actions, if those methods have the necessary annotations.

You annotate a method to handle an ActionInvocationEvent by using the [RequestHandler]
metadata tag when you declare the method. In the [RequestHandler] tag, you must specify the <uid>
property for the action to handle. To annotate a method to handle the Create Chassis command in
Example: Flex-Based Action Extension Definition, you must include the following [RequestHandler] tag
in your method declaration.

[RequestHandler("com.mySolution.myPlugin.createChassis")]

Your method must also accept the ActionInvocationEvent as a parameter.

Example: Example Flex Command Class
The following example shows an example Flex command class. In the example, the ChassisCommand
class contains a handler method for each of the actions defined in Example: Flex-Based Action Extension
Definition.

package com.vmware.samples.chassisui {

import com.vmware.actionsfw.ActionContext;

import com.vmware.actionsfw.events.ActionInvocationEvent;

import com.vmware.core.model.IResourceReference;

import com.vmware.data.common.ObjectChangeInfo;

import com.vmware.data.common.OperationType;

import flash.events.EventDispatcher;

vSphere Web Client SDK Documentation

VMware, Inc. 102

import mx.controls.Alert;

[Event(name="{com.vmware.data.common.events.ModelChangeEvent.MODEL_CHANGE}",

 type="com.vmware.data.common.events.ModelChangeEvent")]

public class ChassisCommand extends EventDispatcher {

 private var _proxy:ChassisServiceProxy = new ChassisServiceProxy();

 /** Create Chassis action handler **/

 [RequestHandler("com.mySolution.myPlugin.chassis.createChassis")]

 public function onCreateChassisActionInvocation(event:ActionInvocationEvent):void {

 _proxy.createChassis(onCreateChassisComplete);

 }

 /** Edit Chassis action handler **/

 [RequestHandler("com.mySolution.myPlugin.chassis.editChassis")]

 public function onEditChassisActionInvocation(event:ActionInvocationEvent):void {

 var chassisReference:IResourceReference = getIResourceReference(event);

 _proxy.editChassis(chassisReference, onEditChassisComplete, chassisReference);

 }

 private function onEditChassisComplete(event:MethodReturnEvent):void {

 if (event.error != null) {

 Alert.show(event.error.message);

 return;

 }

 var chassisReference:IResourceReference = event.callContext as IResourceReference;

 var mce:ModelChangeEvent = ModelChangeEvent.newSingleObjectChangeEvent(chassisReference,

 OperationType.CHANGE);

 dispatchEvent(mce);

 }

 private function onCreateChassisComplete(event:MethodReturnEvent):void {

 if (event.error != null) {

 Alert.show(event.error.message);

 return;

 }

 var chassisReference:IResourceReference = event.result as IResourceReference;

 var mce:ModelChangeEvent = ModelChangeEvent.newSingleObjectChangeEvent(chassisReference,

 OperationType.ADD);

 dispatchEvent(mce);

 }

 private function getIResourceReference(event:ActionInvocationEvent):IResourceReference {

 // actionContext.targetObjects is an array of objects on which the action is called

 // so actionContext.targetObjects[0] is the selected Chassis for this action.

 var actionContext:ActionContext = event.context;

 if (actionContext == null || (actionContext.targetObjects.length <= 0)

 || (!(actionContext.targetObjects[0] is IResourceReference))) {

 return null;

 }

vSphere Web Client SDK Documentation

VMware, Inc. 103

 return (actionContext.targetObjects[0] as IResourceReference);

 }

}

}

In the example, the onCreateChassisActionInvocation and onEditChassisActionInvocation
methods are annotated to handle the actions defined in the action set in Example: Flex-Based Action
Extension Definition. The actual action operations are performed by an imported Java service. In the
example, ChassisServiceProxy refers to a proxy class for a Java service that performs the action
operations. See Performing Action Operations on the vSphere Environment.

Performing Action Operations on the vSphere Environment
You can create a Java service for your action extension to perform operations on objects in the vSphere
environment. After the action operation completes, you must update accordingly the vSphere Web Client
user interface.

Typically, an action requires you to make a change to the vSphere environment, such as changing the
power state of a Virtual Machine, creating a new Host object, or deleting a vSphere object. You make
changes to the vSphere environment by using a Java service in thevSphere Web Client service layer. A
command class for an action extension must either import the Java service, or use a service proxy class.
Methods in the Java service perform the actual operations in the vSphere environment.

A best practice is to create a Java service for your action extensions, and add that service to the
vSphere Web Client service layer. You can then create a proxy class for the Java service, and use the
service proxy in a command class. See Chapter 8 Developing Extensions to the Service Layer.

Obtaining the Action Target Object
For some actions, such as the Edit Chassis action in Example: Example Flex Command Class, you must
obtain a reference to the target vSphere object that the user selected before performing the action. You
can obtain a reference to the target vSphere object by using the ActionInvocationEvent that the
Actions Framework generates when an action is triggered.

The ActionInvocationEvent contains an object of type ActionContext in the Actions Framework
library. The ActionContext object contains an array named targetObjects, from which you can obtain
references to all vSphere objects that the user has selected in the user interface. In Example: Example
Flex Command Class, the method getIResourceReference shows an example of how to obtain a
reference to the target object.

Your Flex command class must import the packages com.vmware.actionsfw.ActionContext and
com.vmware.actionsfw.events.ActionInvocationEvent to use these vSphere Web Client SDK
features.

Updating the vSphere Web Client with Action Operation Results
When your Java service completes the action operation, you must update the vSphere Web Client with
the results of that operation. You update the vSphere Web Client by dispatching a ModelChangeEvent in
your command class.

vSphere Web Client SDK Documentation

VMware, Inc. 104

To dispatch a ModelChangeEvent, your Flex command class must import the following classes:
com.vmware.data.common.OperationType, com.vmware.data.common.ObjectChangeInfo, and
com.vmware.data.common.events.ModelChangeEvent. You must also annotate your command class
as follows.

[Event(name="{com.vmware.data.common.events.ModelChangeEvent.MODEL_CHANGE}",

 type="com.vmware.data.common.events.ModelChangeEvent")]

You can use a callback method to ensure that your command class dispatches the necessary
ModelChangeEvent. Your service proxy class can invoke the callback method in your command class
when the action operation finishes. In Example: Example Flex Command Class, the command class
passes references to the appropriate callback methods, onEditChassisComplete and
onCreateChassisComplete, when it invokes the action operations in the service proxy. The callback
methods then process the results of the action operation and dispatch the ModelChangeEvent as
necessary.

Organizing Your Actions in the User Interface
You can control some aspects of how the actions you add appear in the vSphere Web Client user
interface. In addition to choosing the objects for which your actions appear, you can display actions in
nested menus, add nested menus and separators to action menus, and prioritize which actions appear
highest in an action menu.

Extending an Action Menu
You can extend the action menu of an object by adding a nested solution menu. The solution menu can
contain actions, additional nested menus, and separators. You can extend an action menu by defining a
Solution Menu extension in the plugin.xml manifest file of your plug-in module.

Defining a Solution Menu Extension

All Solution Menu extensions that you create use a common extension point in the vSphere Web Client
extension framework, called vsphere.core.menus.solutionMenus. The extension definition must
provide an extension object of type com.vmware.actionsfw.ActionMenuItemSpec.

The ActionMenuItemSpec object represents the new solution menu nested in an object action menu. In
the solution menu object, you define an array of additional ActionMenuItemSpec objects to represent
actions, nested menus, and separators.

The following table shows the properties of the ActionMenuItemSpec object that you must set for your
nested solution menu extension.

vSphere Web Client SDK Documentation

VMware, Inc. 105

Property Type Description

<label> string String that appears as the text label for the nested solution menu. The string can be hard-coded, or it can be
a dynamic resource string included in your plug-in module.

<uid> string The unique identifier for the nested solution menu. A best practice is to use the English label for the nested
solution menu in camel case.

<children> array An array of additional ActionMenuItemSpec objects. Each ActionMenuItemSpec child object can represent
an action, a nested menu, or a separator.

You associate your Solution Menu extension with a particular type of vSphere or custom object. A best
practice is to use the vSphere Web Client extension filtering mechanism to ensure that the actions are
only visible when the user selects the relevant type of vSphere object. See Filtering Extensions.

Note If you omit the <metadata> element for extension filtering in your Solution Menu extension
definition, your Solution Menu is shown for all vSphere objects. Use the <metadata> element in your
Solution Menu extension definition to ensure that your Solution Menu appears only for the correct type of
vSphere or custom objects.

Example: Example Solution Menu Extension Definition

The following example shows a Solution Menu extension definition. In the example, the extension adds a
nested solution menu to the action menu for VirtualMachine objects.

<!-- Defines a solution sub-menu on VirtualMachine objects -->

<extension id="com.vmware.samples.actions.submenus">

 <extendedPoint>vsphere.core.menus.solutionMenus</extendedPoint>

 <object>

 <label>#{allSampleActions.label}</label>

 <uid>allSampleVMActions</uid>

 <children>

 <Array>

 <!-- array of ActionMenuItemSpec objects, which are items in the Solution Menu -->

 <com.vmware.actionsfw.ActionMenuItemSpec>

 ...

 </com.vmware.actionsfw.ActionMenuItemSpec>

 <com.vmware.actionsfw.ActionMenuItemSpec>

 ...

 </com.vmware.actionsfw.ActionMenuItemSpec>

 </Array>

 </children>

 </object>

 <metadata>

 <objectType>VirtualMachine</objectType>

 </metadata>

</extension>

Adding Items to a Nested Solution Menu

You can add items to a nested solution menu by using the <children> property in your Solution Menu
extension’s ActionMenuItemSpec object. In the <children> property, you can add one or more
additional ActionMenuItemSpec objects to represent each item.

vSphere Web Client SDK Documentation

VMware, Inc. 106

To add an action to your solution sub-menu, you create a child ActionMenuItemSpec object with the
properties listed in the following table.

Property Type Description

<label> string String that appears as the text label for the action. The string can be hard coded, or it can be a dynamic
resource string included in your plug-in module.

<uid> string Unique identifier for the action. The action UID must match the UID you set for the action when you defined it
using the ActionSpec object. See Defining Individual Actions for Flex-Based Action Extensions.

<type> string Type parameter for the item to add to the nested solution menu. For an action, <type> must be set to the string
action.

Example: Nested Solution Menu Extension with Actions

The following example shows a nested solution menu with two action items as child objects.

<!-- Defines a solution sub-menu on VirtualMachine objects -->

<extension id="com.vmware.samples.actions.submenus">

<extendedPoint>vsphere.core.menus.solutionMenus</extendedPoint>

<object>

<label>#{allSampleActions.label}</label>

<uid>allSampleVMActions</uid>

<children>

<Array>

<!-- array of ActionMenuItemSpec objects, which are items in the Solution Menu -->

<com.vmware.actionsfw.ActionMenuItemSpec>

<!-- first action -->

<type>action</type>

<uid>com.vmware.samples.actions.myVmAction1</uid>

<label>#{action1.label}</label>

</com.vmware.actionsfw.ActionMenuItemSpec>

<com.vmware.actionsfw.ActionMenuItemSpec>

<!-- second action -->

<type>action</type>

<uid>com.vmware.samples.actions.myVmAction1</uid>

<label>#{action1.label}</label>

</com.vmware.actionsfw.ActionMenuItemSpec>

</Array>

</children>

</object>

<metadata>

<objectType>VirtualMachine</objectType>

</metadata>

</extension>

To add a separator to your nested solution menu, you create a child ActionMenuItemSpec object with a
<type> property which value must be set to the string separator.

To add an action to your nested solution menu, you create a child ActionMenuItemSpec object with the
following properties.

vSphere Web Client SDK Documentation

VMware, Inc. 107

Property Type Description

<label> string String that appears as the text label for the nested solution menu. The string can be hard-coded, or it can be
a dynamic resource string included in your plug-in module.

<uid> string The unique identifier for the nested solution menu. A best practice is to use the English label for the nested
solution menu in camel case.

<children> array An array of additional ActionMenuItemSpec objects. Each ActionMenuItemSpec child object can represent
an action, a nested menu, or a separator.

Example: Example Solution Menu Extension with Nested Menu and Separator

The following example shows a solution menu that adds a Solution Menu extension for VirtualMachine
objects. The nested solution menu includes a subordinate nested menu called Configuration with two
actions, a separator, and an additional action.

<!-- Defines a solution sub-menu on VirtualMachine objects -->

<extension id="com.vmware.samples.actions.submenus">

<extendedPoint>vsphere.core.menus.solutionMenus</extendedPoint>

<object>

<label>#{allSampleActions.label}</label>

<uid>allSampleVMActions</uid>

<children>

<Array>

<!-- array of ActionMenuItemSpec objects, which are items in the Solution Menu -->

<!-- add a nested sub-menu called "configuration" -->

<com.vmware.actionsfw.ActionMenuItemSpec>

<uid>configuration</uid>

<label>#{configurationMenu.label}

<children>

<array>

<!-- first action in sub-menu -->

<com.vmware.actionsfw.ActionMenuItemSpec>

<type>action</type>

<uid>com.vmware.samples.actions.myVmAction1</uid>

<label>#{action1.label}</label>

</com.vmware.actionsfw.ActionMenuItemSpec>

<!-- second action in sub-menu -->

<com.vmware.actionsfw.ActionMenuItemSpec>

<!-- second action -->

<type>action</type>

<uid>com.vmware.samples.actions.myVmAction1</uid>

<label>#{action1.label}</label>

</com.vmware.actionsfw.ActionMenuItemSpec>

</array>

</children>

</com.vmware.actionsfw.ActionMenuItemSpec>

<!-- add a separator after the sub-menu -->

<com.vmware.actionsfw.ActionMenuItemSpec>

<type>separator</type>

</com.vmware.actionsfw.ActionMenuItemSpec>

vSphere Web Client SDK Documentation

VMware, Inc. 108

<!-- add an additional action -->

<com.vmware.actionsfw.ActionMenuItemSpec>

<type>action</type>

<uid>com.vmware.samples.actions.myVmAction3</uid>

<label>#{action3.label}</label>

</com.vmware.actionsfw.ActionMenuItemSpec>

</Array>

</children>

</object>

<metadata>

<objectType>VirtualMachine</objectType>

</metadata>

</extension>

Prioritizing Actions in the User Interface
If your plug-in module adds actions to the vSphere Web Client, you can change the order in which those
actions appear at different points in the user interface.

You can prioritize the action order in the global action menu for all vSphere actions, or in the context-
specific action menu for a vSphere or custom object.

To change your actions display order, you must create a Prioritization extension. You must define the
Prioritization extension in the same plug-in package that contains your action extensions. You must create
different extensions depending on whether you want to promote actions in the action menu for a certain
object type, or to set the action priority in the global action list.

Prioritizing Context-Specific Actions

To change how actions are prioritized in the action menu for a specific object type, you must create a
Prioritization extension at the extension point vmware.prioritization.actions. Your extension must
provide a data object of type com.vmware.vsphere.client.prioritization.ActionPriorityGroup.

The ActionPriorityGroup object defines the priority order for the actions in the action menu, and the
target object type. The actions listed first in your extension definition appear at the top of the action menu
and to the right side of the actions toolbar. You can promote a maximum of five actions on the actions
toolbar.

Following is a list of the properties of the ActionPriorityGroup object that you must set in your
Prioritization extension.

vSphere Web Client SDK Documentation

VMware, Inc. 109

Property Type Description

<prioritizedIds> array Array of <string> elements. Each <string>element contains the UID of an action. You list each
action UID string in order from highest priority to lowest priority, depending on how you want the
actions to appear in the action menu.

<actionTargetTypes> array The <string> element that contains the target object type, such as samples:Chassis or
VirtualMachine. The Prioritization extension sets the display priority for the action menu of the
target object type.

<regionId> string Optional parameter you can use to specify a specific subset of actions in an action menu. If a
vSphere or custom object has a different action list depending on that object state, you can
specify the UID of that action list in the <regionId> parameter to promote actions in that action
list.

Example: Prioritizing Items in the Chassis Action Menu

The following example shows a Prioritization action that sets the display priority for actions in the default
actions menu for a custom object called Chassis.

<extension id="com.vmware.samples.chassis.actionMenuPrioritization.editAction">

<extendedPoint>vmware.prioritization.actions</extendedPoint>

<object>

<prioritizedIds>

<string>com.vmware.samples.chassis.editChassis</string>

<string>com.vmware.samples.chassis.deleteChassis</string>

<string>com.vmware.samples.chassis.moveChassis</string>

<string>com.vmware.samples.chassis.poweronChassis</string>

<string>com.vmware.samples.chassis.poweroffChassis</string>

</prioritizedIds>

<actionTargetTypes>

<string>samples:Chassis</string>

</actionTargetTypes>

</object>

</extension>

Prioritizing Global Actions Toolbar

To change how actions are prioritized in the global actions menu, you must create a Prioritization
extension at the extension point vmware.prioritization.listActions. Your extension must provide a
data object of type com.vmware.vsphere.client.prioritization.ActionPriorityGroup.

The ActionPriorityGroup object defines the priority order for the actions in the global actions toolbar,
which is the toolbar that appears to the left of the context toolbar. The actions listed first in your extension
definition appear farthest left in the global actions toolbar.

The following table lists the properties of the ActionPriorityGroup object that you must set in your
Prioritization extension.

vSphere Web Client SDK Documentation

VMware, Inc. 110

Property Type Description

<prioritizedIds> array Array of <string> elements. Each <string> element contains the UID of an action. You list each
action UID string in order from highest priority to lowest priority, depending on how you want the
actions to appear in the global action list.

<regionId> string UID of the region of the global action list to modify.

Example: Prioritizing Items Added to Global Actions Toolbar for Chassis Objects

The following example shows a Prioritization action that sets the display priority for actions in the default
actions menu for a custom object called Chassis.

<extension id="com.vmware.samples.chassis.actionListPrioritization.createAction">

 <extendedPoint>vmware.prioritization.listActions</extendedPoint>

 <object>

 <prioritizedIds>

 <string>com.vmware.samples.chassis.createChassis</string>

 <string>com.vmware.samples.chassis.createRack</string>

 </prioritizedIds>

 <regionId>com.vmware.samples.chassis.list</regionId>

 </object>

</extension>

Creating Relation Extensions
You can create relation extensions to define relationships between the objects in the vSphere
environment and organize the objects in groups under categorized tabs.

The vSphere objects that make up the virtual infrastructure are organized as a graph of related objects.
Each type of vSphere object maintains parent-child relationships with adjacent objects. For example, a
host object can have several related virtual machine objects as children, while many host objects might
have a single cluster object as a parent. The relationships between vSphere objects are reflected in
different places in the vSphere Web Client GUI, including the object navigator and the categorized tabs
for relations in an object workspaceon the Related Objects tab in an object workspace. The object
navigator and object workspaces can display the related items for a vSphere object, such as the virtual
machine objects associated with a given host object.

The vSphere Web Client uses relation extensions to represent the relationships between objects. A
relation extension defines a relationship between a vSphere object and any other objects in the hierarchy
of the virtual infrastructure. Certain extensions, such as some object navigator nodes and object list
views, reference relation extensions to obtain their information. You can create relation extensions to add
new relationships between vSphere objects in your vSphere environment, and to have other areas of the
vSphere Web Client reflect those relationships.

vSphere Web Client SDK Documentation

VMware, Inc. 111

Use Cases
You create a relation extension when you want the user to receive information about other vSphere or
custom objects, either in a list view or in the object navigator, when they select or focus on a given
vSphere or custom object. For example, if you created Chassis object type, it might contain one or more
host objects. You can create a relation extension for the Chassis object so that information about any
related host objects also appears in the object workspace or object navigator when the user selects a
Chassis object.

You can add a relation extension to the vSphere Web Client to create a new relationship between a given
type vSphere object and any other object type in the virtual infrastructure hierarchy. If you add a new type
of object to the vSphere environment, you must create a relation extension to place your new object in the
graph of vSphere objects, and to populate the Related Items views.

You can also create a relation extension for two existing vSphere objects that do not have an existing
relationship. You might create such a relation to take advantage of the Related Items views in the object
navigator and object workspaces for those objects, or if you created an object collection node for an
existing object in the object navigator.

Defining a Relation Extension
You create a relation extension by defining the objects relationships in the plugin.xml manifest file of
your user interface plug-in module.

You do not need to create a Flex class. Relation extensions use a single common extension point in the
vSphere Web Client user interface layer, named vise.relateditems.specs. Relation extensions must
specify this extension point, and provide a data object of type
com.vmware.ui.relateditems.model.ObjectRelationSetSpec.

The ObjectRelationSetSpec object specifies the object type to which the relation pertains, and a list of
RelationSpec objects that describe the current object’s relationship to other vSphere objects. The
ObjectReltaionSetSpec contains other optional properties that you can use to set the data view in
which relations are displayed, and to further refine when relations appear.

The following table lists the properties that you set for the ObjectReltaionSetSpec object.

Property Type Description

<type> string Type of object to which the relation pertains. For example, if you are creating a relation for the
Host object type, you set the <type> property to the string HostSystem.

<relationSpecs> array Array of objects of type com.vmware.ui.relateditems.model.RelationSpec. Each
RelationSpec object describes the relation between the current object, specified in the
<type> property, and a target object that you specify. See Describing a Relation by Using the
RelationSpec Object.

vSphere Web Client SDK Documentation

VMware, Inc. 112

Property Type Description

<relationsViewId> string Extension ID of the Related Items data view for the current object. When the user selects the
object node using the object navigator, the Related Items data view you specify in the
<relationsViewId> property appears in the main workspace in the vSphere Web Client GUI.
This property is optional. If you do not include the <relationsViewId> property in your
extension definition, no Related Items data view appears for that object.

<conditionalProperty> string Optional property that you can include as an additional constraint for the relation. To use this
property, you specify the name of a Boolean property on the target object. For example, if you
are creating a relation extension for a virtual machine object, you can additionally specify a
Boolean property, such as the power-on state, on that virtual machine using
<conditionalProperty> . The relation appears in the vSphere Web Client only if both the
relation conditions are met and <conditionalProperty> is satisfied.

Describing a Relation by Using the RelationSpec Object
You define relations between the vSphere objects by using the RelationSpec object in the plugin.xml
manifest file of your vSphere Web Client extension.

You describe each of the relations for the vSphere object using RelationSpec objects, which you must
create inside the <relationSpecs> property of the ObjectRelationSetSpec extension object. Each
RelationSpec object contains information on the relation target object type, display properties such as
icons and labels, and any relevant list extensions for the relation target object.

The following table lists the properties of the RelationSpec object.

Property Type Description

<id> string Unique identifier for the relation. The best practice for creating an ID value for a relation is to
use the format <relation_target_object>For<relation_object>. For example, if the
parent ObjectRelationSetSpec object defines the relations for Chassis objects, you might
use the value hostForChassis as the ID for the RelationSpec object that describes the
relation to host objects.

<icon> array Icon resource for the relation. The icon appears in the Related Objectsrelated objects data
view and in the object navigator. You can specify a dynamic resource from your plug-in module
for the relation icon.

<label> string Text label for the relation. This label appears in the Related Objectsrelated objects data view
and in the object navigator. You can hard code a string value or include a dynamic resource
string from your plug-in module resources file.

<listViewId> string Extension ID for a list view that can display the relation target object type. For example, a
hostForChassis relation can specify the extension ID of a host list view. The
vSphere Web Client uses this list view extension to display the list of related target objects.

<relation> string Property name that is included in the relation constraint.

<conditionalProperty> string Additional property on the relation target object that can be used to constrain which related
items are displayed in the vSphere Web Client GUI. You specify the name of a Boolean
property on the target object using this property, and only objects for which the property is true
appear in the vSphere Web Client GUI.

<targetType> string Relation target object type. For example, in the hostForChassis relation, which displays Host
objects related to a selected Chassis object, you specify the <targetType> as HostSystem.

vSphere Web Client SDK Documentation

VMware, Inc. 113

Example: Example Relation Extension for Chassis Entity
The following example presents an example extension definition for a relation extension. In the example,
the extension defines relations for the Chassis object type. When the user selects a chassis object, the
vSphere Web Client provides related items information for the relations defined in the example. In the
example, relations are defined for Rack and Host object types.

<!-- Chassis relations -->

<extension id="com.vmware.samples.relateditems.specs.chassis">

<extendedPoint>vise.relateditems.specs</extendedPoint>

<object>

<type>samples:Chassis</type>

<!-- relationsViewId references the "related items view" extension created

by the object template. It must be defined for the related items view to

be shown on the right-hand side.

-->

<relationsViewId>com.vmware.samples.chassis.related</relationsViewId>

<relationSpecs>

<com.vmware.ui.relateditems.model.RelationSpec>

<id>rackForChassis</id>

<icon>#{rack}</icon>

<label>#{rackLabel}</label>

<relation>rack</relation>

<targetType>samples:Rack</targetType>

<!-- listViewId must be defined for the chassis' related items tab

to show the rack list. The extension itself gets created as part of

the object view template. Here we use ${namespace}.list for id.

-->

<listViewId>com.vmware.samples.rack.list</listViewId>

</com.vmware.ui.relateditems.model.RelationSpec>

<com.vmware.ui.relateditems.model.RelationSpec>

<id>hostForChassis</id>

<icon>#{CommonImages:hostsystem}</icon>

<label>#{Common:typeResource.hostPlural}</label>

<relation>host</relation>

<targetType>HostSystem</targetType>

<!-- listViewId below is the id defined by vSphere client for the HostSystem

type. This list is shown as one of the items in the chassis Related Items tab.

Other vSphere types like VirtualMachine, ClusterComputeResource, etc., have

similar lists are predefined.

-->

<listViewId>vsphere.core.host.list</listViewId>

</com.vmware.ui.relateditems.model.RelationSpec>

</relationSpecs>

</object>

</extension>

vSphere Web Client SDK Documentation

VMware, Inc. 114

Creating Home Screen Shortcuts
The home screen appears in the vSphere Web Client main workspace when the user first logs in to the
system. You can extend the home screen by adding a shortcut.

The home screen serves as an entry point to key features in the vSphere Web Client, and contains
information about getting started with common tasks in the vSphere environment. The home screen
provides shortcuts to solutions and global views in several categories, including Monitoring Tools,
Inventories, and Setup.

A shortcut extension can provide access to a global view, an inventory list in the Virtual Infrastructure, or
other solution in the vSphere Web Client. You can use a home screen shortcut to provide faster access to
a data view or application that is not accessible through the top level pages of the object navigator.

Use Cases
You can add a home screen shortcut extension to make your other extension solutions more visible and
accessible to vSphere Web Client users. For example, home screen shortcuts are one of only two
methods available to make global view extensions accessible to users.

Home screen shortcut extensions can be added for almost any solution or inventory in the
vSphere Web Client.

Properties of the ShortcutSpec Extension Object
All home screen shortcut extensions must reference the vise.home.shortcuts extension point. The
extension definition must provide an extension object of type
com.vmware.vsphere.client.views.ShortcutSpec.

The following table lists the properties you set for the
com.vmware.vsphere.client.views.ShortcutSpec object.

vSphere Web Client SDK Documentation

VMware, Inc. 115

Property Type Description

<name> string String value that appears as the title for
the shortcut on the vSphere Web Client
home screen. The string can be hard-
coded or a dynamic resource from your
plug-in module.

<categoryUid> string Home screen category in which the
shortcut extension appears. Home screen
shortcut extensions must be added to one
of the preexisting categories on the home
screen. The following are valid values for
the <categoryUid> property:
n vsphere.core.controlcenter.inv

entoriesCategory for Inventories
n vsphere.core.controlcenter.mon

itoringCategory for Monitoring
n vsphere.core.controlcenter.adm

inistrationCategory for
Administration

<icon> string Icon that appears for the shortcut. You can
specify the icon as a dynamic resource
from the resource SWF file in your plug-in
module.

<targetViewUid> string Extension, such as a global view, object
workspace, or other solution, that appears
in the vSphere Web Client main
workspace when the user clicks the
shortcut. The value of <targetViewUid>
property must match the <extension
id="..."> attribute in the target
extension definition.

Example: Example Home Screen Shortcut Extension
The following example shows an extension definition for a home screen shortcut extension. In the
example, the <extendedPoint> element specifies the home screen shortcut extension point. The
<object> element defines a data object of type com.vmware.vsphere.client.views.ShortcutSpec.

<extension id = "mySolution.myPlugin.sampleGVShortcut">

 <extendedPoint>vise.home.shortcuts</extendedPoint>

 <object>

 <name>Sample Shortcut to Global View</name>

 <categoryUid>vsphere.core.controlcenter.inventoriesCategory</categoryUid>

 <icon>#{samplePluginImages:logo}</icon>

 <targetViewUid>mySolution.myPlugin.myConsoleApp</targetViewUid>

 </object>

</extension>

vSphere Web Client SDK Documentation

VMware, Inc. 116

In the example, the <targetViewUid> property has the value mySolution.myPlugin.myConsoleApp.
This value matches the extension ID of the example global view extension defined in Adding Global View
Extensions. When the user clicks the shortcut created by the example extension, the
mySolution.myPlugin.myConsoleApp extension appears in the vSphere Web Client main workspace,
and the object navigator displays the appropriate pointer or virtual infrastructure node.

Creating Object List View Extensions
You can extend the list view for any given vSphere object type by adding one or more columns to the list
view table. You can also create a list view for a custom vSphere object by using the standard template to
create an object workspace.

The vSphere Web Client provides a list view for each type of object in the vSphere environment. The list
view appears in the main workspace when the user selects an inventory list in the object navigator, or
when the user selects the Related Objects data view one of the categorized relations tabs in an object
workspace. Each list view is a table containing the names of all objects of the relevant type, along with
information on status, properties, and related items. For example, the virtual machine object list view
contains the names of all virtual machines in your vSphere environment, the power state of each virtual
machine object, the related host object for each virtual machine object, and other relevant information.

Use Cases
You can extend an existing vSphere object list view to include additional information about each object in
the list. The following are some examples of new information you might add to an object list view.

n You added a new object type to the vSphere environment that is related to the target object, and you
want the related object to appear in the target object list view. For example, if you add a custom
object type called Backup to the vSphere environment, you can extend the Virtual Machine object list
to show Backup objects related to a given Virtual Machine.

n You extended the vSphere Web Client Data Service to provide additional properties for the target
object type, and you want those properties to appear in the object list view. For example, if you add
additional properties to a virtual machine object, you can extend the virtual machine list view to
display those properties.

n You want the vSphere Web Client to show an existing property or other information that does not
appear as a column in the default object list view.

vSphere Web Client SDK Documentation

VMware, Inc. 117

Defining Object List View Extensions
You extend an object list view by creating an <extension> element in your plugin.xml file. The
extension point you specify depends on whether you extend a vSphere object or create a new object
type.

Extending a vSphere Object List View
The vSphere Web Client provides an extension point for the list view for each type of vSphere object. The
extension point names follow the format vsphere.core.<objectType>.list.columns, where the
objectType placeholder corresponds to the type of vSphere object. For a list of extension points, see
Chapter 12 List of Extension Points.

Example: Example Extension to Object List View
The following example shows part of an extension definition for an extension that adds a column to the
virtual machine object list view. The column shows the name of the host object related to a virtual
machine object.

The <object> element type attribute specifies the column or columns to add to the target object list view.
The properties referenced in the <requestedProperties> elements are requested by the platform, with
no UI code involved. On the Virgo application server, the Data Access Manager retrieves the requested
property for you and returns it to the client.

<!-- Define the host name column for the vm object list view -->

<extension id="com.mySolution.myPlugin.vm.columns">

 <extendedPoint>vsphere.core.vm.list.columns</extendedPoint>

 <object>

 <items>

 ...

 <!-- Host name column -->

 <com.vmware.ui.lists.ColumnContainer>

 <uid>com.mySolution.myPlugin.vm.column.hostame</uid>

 <dataInfo>

 <com.vmware.ui.lists.ColumnDataSourceInfo>

 <headerText>#{hostName}</headerText>

 <!-- Object property whose text value will be displayed (1-element array) -->

 <requestedProperties>

 <String>n{['hostName']}</String>

 </requestedProperties>

 <sortProperty>hostName</sortProperty>

 <exportProperty>hostName</exportProperty>

 </com.vmware.ui.lists.ColumnDataSourceInfo>

 </dataInfo>

 </com.vmware.ui.lists.ColumnContainer>

 ...

</extension>

vSphere Web Client SDK Documentation

VMware, Inc. 118

Adding a List View for a New Object Type
If you added a new object type to the vSphere environment, and you used the standard object view
template to create an object workspace for that object, that object workspace contains a list view. For
more information on the object view template, see Extending the vCenter Object Workspaces.

You can extend a custom object list view in the same way as you extend the pre-existing list views in the
vSphere Web Client. In your extension definition, you must specify the list extension point created by the
custom object template namespace. The format for a custom object list extension point is typically
<namespace>.list.columns. For example, the list extension point for a custom object called Chassis
might appear as myExtension.core.Chassis.list.columns, where the template namespace is
myExtension.core.Chassis.

Example: Example Extension to Object List View
The following code snippet shows an extension definition for an extension that adds a Chassis object list
view. The list view shows the name of a custom Chassis object, in addition to any other properties
specified inside ColumnContainer elements.

The <object> element type attribute specifies the column or columns in the target object list view. The
properties referenced in the <requestedProperties> elements are requested by the platform, with no
UI code involved. On the Virgo application server, you need to implement a Data Service Adapter to
retrieve data and return it to the client.

<!-- Define the chassis list columns -->

<extension id="com.vmware.samples.chassis.list.sampleColumns">

 <extendedPoint>com.vmware.samples.chassis.list.columns</extendedPoint>

 <object>

 <items>

 <!-- Chassis name column -->

 <com.vmware.ui.lists.ColumnContainer>

 <uid>com.vmware.samples.chassis.column.name</uid>

 <dataInfo>

 <com.vmware.ui.lists.ColumnDataSourceInfo>

 <headerText>#{name}</headerText>

 <!-- Object property whose text value will be displayed (1-element array) -->

 <requestedProperties>

 <String>name</String>

 </requestedProperties>

 <sortProperty>name</sortProperty>

 <exportProperty>name</exportProperty>

 </com.vmware.ui.lists.ColumnDataSourceInfo>

 </dataInfo>

 </com.vmware.ui.lists.ColumnContainer>

 ...

</extension>

vSphere Web Client SDK Documentation

VMware, Inc. 119

Column Visibility
When you extend a list view with a new column, your users will not see the new column when they first
install your plug-in. To see the extension, each user must select the new column to appear in the
vSphere Web Client list view. The column selection is saved in the user preferences so that the column
will be visible in future sessions.

vSphere Web Client SDK Documentation

VMware, Inc. 120

Developing HTML-Based User
Interface Extensions 7
You can create extensions to the user interface layer of the vSphere Client that extend the GUI with
components specific for your vSphere environment.

The vSphere Client is a Web browser-based application that provides extensible plug-in architecture. The
user interface layer contains every visual component of the application, including data views, portlets, and
navigation controls.

You can add new features or elements to the HTML application by creating user interface extensions. An
HTML user interface plug-in contains one or more extensions, which add HTML GUI elements to the
vSphere Client user interface.

This section includes the following topics:
n Overview

n Global View Extensions

n Extending the vCenter Object Workspace

n Creating Data View Extensions

n Creating Object List View Extensions

n Creating Actions Extensions

n Handling Locales

n Guidelines for Creating Plug-Ins Compatible with the vSphere Client

n Hybrid Plug-Ins

n vSphere Client JavaScript APIs

n Mapping the JavaScript to the Flex APIs

VMware, Inc. 121

Overview
The vSphere Client provides an extensible plug-in architecture which you can use to create custom
solutions for your environment. Use the vSphere Client development kit to develop HTML plug-ins that
are compatible with both Web applications.

The vSphere Client development kit provides the following features:

n You can use the same JavaScript APIs provided with the vSphere Web Client SDK 6.0 which ensures
that your HTML plug-ins are backward compatible.

n You can use the JavaScript libraries of your choice to develop the user interface components of your
extensions.

n You can easily access the vSphere Client server by using REST calls and the Spring Web MVC
framework integration.

n You can create extensions to the service layer by using the same Data Service APIs and
mechanisms.

n You can examine the sample HTML plug-ins provided with the vSphere Web Client SDK. The
samples demonstrate how you can add different extensions to the vSphere Client .

Global View Extensions
In the vSphere Client , you can create global view extensions to create custom solutions for the user
interface.

A global view extension can have nearly any function, including aggregating data about different types of
vSphere objects onto a single screen, or displaying data from sources outside the vSphere environment.
A global view can be a simple single-level data view that uses the entire vSphere Client main workspace,
or a complex nested view with its own internal navigation structure and organization. Creating a global
view extension has a few restrictions.

Global views are displayed in the vSphere Client main workspace, but exist outside of the virtual
infrastructure hierarchy. The user selects a global view directly, either through a pointer in the object
navigator or a shortcut on the vSphere Client home screen.

To create a global view extension, you must define the extension by using the XML elements in the plug-
in module manifest file, and create the HTML code that appears in the main workspace.

Use Cases
You can use global view extensions to create dashboard-style data views or console-style applications.

A dashboard aggregates data from different sources in the vSphere environment together in one unified
data view. For example, you can create a dashboard that provides status information about all custom
company-branded objects in the vSphere environment.

Console-style applications are displayed in the vSphere Client main content area. For example, the
vSphere Client Task Console and Event Console are console-style applications.

vSphere Web Client SDK Documentation

VMware, Inc. 122

Creating Global View Extensions
You create global view extensions by using the vise.global.views extension point. To define a global
view extension, you must use the com.vmware.vsphere.client.htmlbridge.HtmlView class for the
<componentClass> property of the extension object. For more information about the properties of this
HTML object, see Properties of the HtmlView Extension Object.

Since there is no context object for a global view extension, the global view document is opened with a
request that contains only the locale parameter.

Accessing Data
Each global view extension is an independent HTML element that must communicate with the vSphere
environment to retrieve data, or send commands, that the view requires. The vSphere Client development
kit includes an MVC framework and a JavaScript library that you can use when creating global view
extensions. The JavaScript code can use REST-based Ajax queries to retrieve data from the vSphere
environment and call actions on objects in the virtual infrastructure by using the
callActionsController() function.

You can create a global view extension by using any pattern or framework, but using the vSphere Client
development kit MVC framework and the Data Access Manager is a best practice. See Creating Data
View Extensions.

Properties of the HtmlView Extension Object
The vSphere Client provides the com.vmware.vsphere.client.htmlbridge.HtmlView for creating
object views and global views for your HTML-based extensions. You must define the HtmlView object in
the plugin.xml manifest file of your HTML view extensions.

The following table describes the properties that you provide for the
com.vmware.vsphere.client.htmlbridge.HtmlView object class by using the <root> element inside
the <object> element of your extension definition.

Property Type Description

<url> string The relative URL path starting with your plug-in Web context path to the HTML view. If your
HTML-based extension displays external context, use an HTTPS URL to the context.

<showVCenterSelector> boolean The vCenter Server selector allows you to switch between all instances that are connected
to the vSphere Client . If an object view or a global view from your extension needs to
display data for a particular vCenter Server instance, include the selector by adding the
<showVCenterSelector> property with value set to true. The default value is false.

<dialogTitle> string The name of the view. The property is applicable only for portlet views that are displayed in
a separate dialog box.

<dialogSize> integer The size of the dialog box of a portlet view which is provided in pixels and the property value
must have the following format: <width>,<height>.

<dialogIcon> string The icon that you add to the title bar of the portlet view, if necessary.

vSphere Web Client SDK Documentation

VMware, Inc. 123

Property Type Description

<scrollPolicy> string Indicates whether scrollbars are added to the view. You choose between the following
values: yes, no, and auto. You set auto as a value to the property to let the Web browser
decide whether scrollbars are needed for your views. The default value is no.

Example: Example HTML-Based Global View Extension
The following example extension definition adds the VM Summary view to the VM workspace.

<extension id="com.vmware.samples.vspherewssdk.vm.summary">

 <extendedPoint>vsphere.core.vm.summarySectionViews</extendedPoint>

 <object>

 <name>#{summaryView.title}</name>

 <componentClass className="com.vmware.vsphere.client.htmlbridge.HtmlView">

 <object>

 <root>

 <url>/vsphere-client/vspherewssdk/resources/vm-summary.html</url>

 <dialogTitle>WSSDK Summary Sample</dialogTitle>

 <dialogSize>440,400</dialogSize>

 </root>

 </object>

 </componentClass>

 </object>

</extension>

Adding a vCenter Server Selector
You can display data for a particular vCenter Server instance for a global view extension by using the
vCenter Server selector feature of the HTMLView object class.

To use the vCenter Server selector, you must create a global view by using the
com.vmware.vsphere.client.htmlbridge.HtmlView object. In the plugin.xml manifest file, define
the properties of the extension object and add the <showVCenterSelector> property with value set to
true.

When enabled, the vCenter Server selector displays a drop-down menu that contains all vCenter Server
instances that the vSphere Client is connected to. You can easily switch between the data specific for the
different vCenter Server systems by using the selector.

The JavaScript code for the extension makes an Ajax GET request that contains the following parameters:

n serviceGuid

n sessionId

n serviceUrl

You can use the vSphere Web Services SDK and pass these parameters to a Java service to access
data about a specific vCenter Server instance.

vSphere Web Client SDK Documentation

VMware, Inc. 124

Example: vCenter Server Selector
The sample demonstrates how you can create a global view extension and enable the vCenter Server
selector to display specific properties for the selected vCenter Server system.

<!-- Global app vCenter view -->

 <extension id="com.vmware.samples.h5.globalview.vcView">

 <extendedPoint>vise.global.views</extendedPoint>

 <object>

 <name>#{app.vcView}</name>

 <componentClass className="com.vmware.vsphere.client.htmlbridge.HtmlView">

 <object>

 <root>

 <url>/vsphere-client/globalview/resources/vcView.html</url>

 <showVCenterSelector>true</showVCenterSelector>

 </root>

 </object>

 </componentClass>

 </object>

 </extension>

Extending the vCenter Object Workspace
The vSphere Client displays a standard object workspace for each type of vSphere object. You can
extend the existing object workspaces or create an object workspace for a custom vSphere object.

The object workspace is a collection of data views with a tabbed navigation structure and detailed views
with table of contents entries. The workspace for a given vSphere object appears in the vSphere Client
main workspace for a selected object from the virtual infrastructure.

Each vSphere object type has Summary, Monitor, Configure, and categorized object relations top-level
tabs , and may contain additional detailed views within each tab. You can add extensions to create your
own sub-tabs and detailed views within any of the top-level tab views. You can also create new object
workspaces with the default top-level tab, sub-tabs and detailed views structure.

Use Cases
You can either add a new data view to the existing object workspace for any type of vSphere object, or
you can create an object workspace for a custom vSphere object.

In general, you add a data view extension to an existing object workspace to convey additional
information about a vSphere object that is not included in the standard workspace of the object. You might
need to create an extension to the vSphere Client service layer, such as a Data Service adapter, to
provide the data for your data view extension. See Chapter 8 Developing Extensions to the Service
Layer.

vSphere Web Client SDK Documentation

VMware, Inc. 125

The vSphere Client development kit provides the same set of extension points for each type of object in
the vSphere environment as the vSphere Web Client SDK. Each extension point corresponds to a
specific view in the object workspace, to which you can add your own extension view.

When you create an object workspace, you use the same XML extension templates that you use for
creating Flex-based extensions.

Extending an Existing Object Workspace
The vSphere Client development kit provides the same extension points as the vSphere Web Client SDK.
When you define a data view extension that references one of these extension points, your extension
appears as a subordinate view inside that tab or view.

The extension points for the HTML views use the
com.vmware.vsphere.client.htmlbridge.HtmlView generic class. For more information about the
properties of the HtmlView class, see Properties of the HtmlView Extension Object.

To add HTML extensions to the Monitor and Configure tabs in the vSphere Client, use the following
generic extension points:

n vsphere.core.${objectType}.monitorViews

n vsphere.core.${objectType}.manageViews

n vsphere.core.${objectType}.manage.settingsViews

n ${namespace}.monitorViews

n ${namespace}.manageViews

n ${namespace}.manage.settingsViews

For example, if you define an extension that extends the vsphere.core.vm.manageViews extension
point, your extension appears as an entry in the table of contents under the Configure tab in the object
workspace for virtual machine objects.

For a complete list of object workspace extension points available for the vSphere Client, see Object
Workspace Extension Points.

Types of Data Views
A data view extension appears differently depending on the vSphere object that you specified with the
extension point. Data views can appear in the object workspace having one of the following structures.

n Table of contents entry - If you define an extension to a top-level tab, such as Monitor, or Configure,
a data view extension appears as an entry in the table of contents on the left in the object workspace.

n Second-level tab view - If you define an extension to one of the existing second-level tabs, such as
inside the Monitor tab, a data view extension appears as a view within the second-level tab in the
object workspace.

n Portlet - If you define the Summary tab extension point, a data view extension appears as a portlet in
the object workspace.

vSphere Web Client SDK Documentation

VMware, Inc. 126

When you design the user interface for your data view extension, keep in mind the extension point where
the extension appears. The extension point data view type affects the amount of available screen space
and the layout of your data view.

Configure and Monitor Views Extensions
You can extend a vSphere object view under the Configure and Monitor tabs by using HtmlView to
specify the generic HTML class that implements the new data view. You must also specify the URL to the
HTML source of the data view.

Example: Adding a Host Monitor View
Following is an example of how you can add an HTML view to the Monitor tab of host objects.

 <!-- Host monitor HTML view, visible in both Flex client and HTML client -->

 <extension id="com.vmware.samples.vspherewssdk.host.monitor">

 <extendedPoint>vsphere.core.host.monitorViews</extendedPoint>

 <object>

 <name>#{monitorHtml.label}</name>

 <componentClass className="com.vmware.vsphere.client.htmlbridge.HtmlView">

 <object>

 <root>

 <url>/vsphere-client/vspherewssdk/resources/host-monitor.html</url>

 </root>

 </object>

 </componentClass>

 </object>

 </extension>

The value of the <url> property is a relative URL that starts with the Web context path of the plug-
in, /vsphere-client/vspherewssdk. You must set the same URL without the first slash as a value to
the Web-ContextPath manifest header of the Web application MANIFEST.MF file.

Make sure that the relative URL finishes with the .html file extension to enable session authentication for
the view.

To display content from another domain in the view, you can use HTTPS URLs. Note that the content is
not loaded the first time that the user open the view, unless the domain certificate is already verified. You
must not use HTTP URLs because the contemporary Web browsers are designed to block any insecure
content that you try to display inside the secure vSphere Client domain.

The host-monitor.html document view is opened with a REST request that contains the following
parameters:

n objectId - The context object ID used to create the REST URL that is used to retrieve object
properties. For more information, see the description of the buildDataUrl(objectId, propList)
function in vSphere Client JavaScript APIs.

n objectType - The context object type.

n locale - The current locale of the Web browser.

vSphere Web Client SDK Documentation

VMware, Inc. 127

Creating an Object Workspace for a Custom Object
If your vSphere environment contains a custom vSphere object, you can create the object workspace by
using the XML templates provided with the vSphere Client development kit. You instantiate the XML
template in the plugin.xml manifest file.

The vSphere Client development kit includes the same object view template as the vSphere Web Client
SDK. The object view template uses variable values that you provide to create extension definitions and
extension points for the object workspace tabs and subordinate views, including Summary, Monitor,
Configure, and the tabs for the different related objects groups.

Using the objectViewTemplate to Create an Object Workspace

You can create an instance of the standard object view template by using the <templateInstance> XML
element in your plugin.xml manifest file.

To create an instance of the standard object view template, you use the <templateInstance> element in
your plugin.xml manifest file. Inside the <templateInstance> element, you define the variables that
describe the specific instance of the template. The <templateInstance> element can appear anywhere
inside the root <plugin> element in the plugin.xml manifest file, but a best practice is to include the
template definition with other extension definitions.

You must add the <templateId> element inside the <templateInstance> element. This element
contains the identifier of the template you want to create. To use the standard object view template
included with the vSphere Client development kit, use the
vsphere.core.inventory.objectViewTemplate. To use the objectViewTemplate, you must define a
namespace variable and an objectType variable.

Namespace

The namespace variable sets the naming convention for the object workspace extension points. Extension
points for a custom object workspace are formed by using the following schema for each data view:

<namespace_value>.<default_extension_point_name>

The following list shows the extension points that you create when you instantiate the standard object
view template.

n <namespace>.gettingStartedViews - Adds views under the Getting Started tab.

n <namespace>.summaryViews - Adds views under the Summary tab.

n <namespace>.monitorViews - Adds an entry in the table of contents under the Monitor tab.

n <namespace>.monitor.performance.overviewViews - Adds views to the Overview performance
charts in the Performance entry in the table of contents under the Monitor tab.

n <namespace>.monitor.performance.advancedViews - Adds views to the Advanced performance
charts in the Performance entry in the table of contents under the Monitor tab.

n <namespace>.manageViews - Adds an entry in the table of contents under the Configure tab.

vSphere Web Client SDK Documentation

VMware, Inc. 128

n <namespace>.manage.settingsViews - Adds views to the Settings node in the table of contents
under the Configure tab.

n <namespace>.manage.permissionsViews - Adds views to the Permissions tab.

Object Type

You use the objectType variable to associate the object workspace with your custom entity type. Your
custom entity type name should include a namespace prefix, such as your company name, to avoid
clashing with other object type names in the vSphere environment. The vSphere Client displays the
object workspace when the user selects an object of the specified type.

Creating the Data Views Within the Template

After you create an object workspace by using the standard template, you can create data views at the
resulting extension points in the same way that you do for other extension points in the virtual
infrastructure. For more information about defining data view extensions, see Creating Data View
Extensions.

Top-level tabs, second-level tabs, and detailed views created by using the standard object view template
do not appear in the vSphere Client main workspace unless you define a data view extension at that
extension point. For example, if you do not define a data view extension at the
com.vmware.samples.chassisb.monitor.performanceViews extension point for the ChassisB object
from the following example, the Performance second-level tab under the Monitor tab does not appear
for ChassisB objects.

Example: Instantiating the Standard Template

The following example instantiates the object view template for a new object called ChassisB. The
namespace variable has a value of com.vmware.samples.chassisb. The vSphere Client uses the value
to create an extension point for each data views included in the standard object workspace. The
extension point for the Monitor tab for the ChassisB object workspace is named
com.vmware.samples.chassisb.monitorViews. The other extension points in the ChassisB object
workspace are named by using the same convention.

 <templateInstance id="com.vmware.samples.chassisb.viewTemplateInstance">

 <templateId>vsphere.core.inventory.objectViewTemplate</templateId>

 <variable name="namespace" value="com.vmware.samples.chassisb"/>

 <variable name="objectType" value="samples:ChassisB"/>

 </templateInstance>

vSphere Web Client SDK Documentation

VMware, Inc. 129

Creating Extensions to the Summary Tab
The vSphere Client development kit contains the same extension points for creating Summary tab views
as the vSphere Web Client SDK.

The Summary tab view contains a header view displayed at the top of the main workspace, and an
extension point for the HTML portlet views under the header view. The extension point that you can use
for adding views to the Summary tab is <namespace>.summaryViews. Use the generic
com.vmware.vsphere.client.htmlbridge.HtmlView class to describe your Summary view
extension.

You can add also a portlet to the Summary tab of a vSphere object by using the
vsphere.core.host.summarySectionViews.html HTML-specific extension point. This extension point
is used in hybrid plug-ins that provide portlet view implementations visible in both Web applications. For
more information about how to create hybrid plug-ins, see Hybrid Plug-Ins.

Example: Instantiating a vSphere Object Summary Tab

The following example instantiates the Summary tab template for a custom object called ChassisB. The
Summary view extension uses the .

 <!-- Chassis summary view -->

 <extension id="com.vmware.samples.chassisb.SummaryView">

 <extendedPoint>com.vmware.samples.chassisb.summaryViews</extendedPoint>

 <object>

 <name>#{summary.view}</name>

 <componentClass className="com.vmware.vsphere.client.htmlbridge.HtmlView">

 <object>

 <root>

 <url>/vsphere-client/chassisb/resources/chassis-summary.html</url>

 </root>

 </object>

 </componentClass>

 </object>

 </extension>

Adding Portlets to the Summary Tab

After you create a Summary tab for your custom object workspace by using the Summary tab extension
point, you can add portlet data views to the Summary tab. You create portlet views at the
<namespace>.summarySectionViews.html extension point by using the generic HtmlView component
class. For more information about the properties of this generic class, see Properties of the HtmlView
Extension Object.

vSphere Web Client SDK Documentation

VMware, Inc. 130

If you use the default <namespace>.summarySectionViews extension point that the Summary tab
template creates, the HTML-based portlets are displayed inside a separate pop-up modal dialog. The link
to the dialog is generated in the portlet area of the Summary tab. You can use the mouse to move around
the portlets but you cannot change their size.

Starting with vSphere 6.5, the HTML platform of the vSphere Client allows you to creates portlets that
display their content directly in the Summary tab.

Example: Adding Portlet Views to the Summary Tab

The following example creates a portlet in the Summary view of a host.

 <extension id="com.vmware.samples.vspherewssdk.host.summary2">

 <extendedPoint>vsphere.core.host.summarySectionViews.html</extendedPoint>

 <object>

 <name>#{summaryView.title}</name>

 <componentClass className="com.vmware.vsphere.client.htmlbridge.HtmlView">

 <object>

 <root>

 <url>/vsphere-client/vspherewssdk/resources/host-summary.html</url>

 <dialogTitle>WSSDK Summary Sample</dialogTitle>

 <dialogSize>440,400</dialogSize>

 </root>

 </object>

 </componentClass>

 </object>

 </extension>

Creating Data View Extensions
You can select the methods used by your HTML plug-ins to access data from the vCenter Server system.
You can use the Ajax Web development techniques and the Spring Web MVC framework integration, or
another solution of your choice.

When you create data view extensions for the vSphere Client user interface layer, follow these general
recommendations:

n You do not need to change the Data Adapter services running in the service layer.

n You can use the generic DataAccessController Java class provided with each generated plug-in
project to handle HTTP JSON GET data requests.

n You must access data through the vSphere Client server and avoid calling directly your back end
services or database.

vSphere Web Client SDK Documentation

VMware, Inc. 131

Common Data Access Pattern
You can use the pattern demonstrated in the SDK samples to access data from the vCenter Server
system from your plug-ins:

n The Ajax GET request created in your JavaScript code has the following format:

/plugin_context_path/rest/data/properties/objectId?properties=properties-list

, where objectId is the object ID of the currently selected vSphere object, and properties-list is the
comma-separated list of properties that must be retrieved for that object.

n The web.xml deployment descriptor located in the WEB-INF folder of the UI bundle of your plug-in
contains the <servlet-mapping> element that defines the /rest/* URL pattern for invoking the
springServlet servlet.

 <servlet-mapping>

 <servlet-name>springServlet</servlet-name>

 <url-pattern>/rest/*</url-pattern>

 </servlet-mapping>

n The bundle-context.xml file located in the WEB-INF\spring folder declares the
dataAccessController bean for the DataAccessController class that is available in the Java
service bundle of your plug-in.

<bean name="dataAccessController"

 class="com.vmware.samples.vspherewssdk.mvc.DataAccessController" />

n The DataAccessController class included in the Java service bundle of your plug-in has the
@RequestMapping annotation set to process the HTTP JSON GET for the /data endpoint. The
getProperties() generic method has the @RequestMapping annotation set to
the /properties/{objectId} value to handle the Ajax GET requests created in your JavaScript
code.

 ...

@Controller

@RequestMapping(value = "/data", method = RequestMethod.GET)

public class DataAccessController {

 ...

 @RequestMapping(value = "/properties/{objectId}")

 @ResponseBody

 public Map<String, Object> getProperties(

 @PathVariable("objectId") String encodedObjectId,

 @RequestParam(value = "properties", required = true) String properties)

 ...

vSphere Web Client SDK Documentation

VMware, Inc. 132

n The getProperties() generic method uses the QueryUtil class to create a Data Service query for
the requested list of vSphere object properties. The query results are returned to the Web browser as
JSON data.

 ...

 Object ref = getDecodedReference(encodedObjectId);

 String objectId = _objectReferenceService.getUid(ref);

 String[] props = properties.split(",");

 PropertyValue[] pvs = QueryUtil.getProperties(_dataService, ref, props);

 Map<String, Object> propsMap = new HashMap<String, Object>();

 propsMap.put(OBJECT_ID, objectId);

 for (PropertyValue pv : pvs) {

 propsMap.put(pv.propertyName, pv.value);

 }

 return propsMap;

 }

n The JavaScript code can display the data returned by the Ajax GET request as needed.

Creating Object List View Extensions
You can extend the list view for any given vSphere object type by adding one or more columns to the list
view table. You can also create a list view for a custom vSphere object by using the standard template to
create an object workspace.

The vSphere Client provides a list view for each type of object in the vSphere environment. The list view
appears in the main workspace when the user selects an inventory list in the object navigator, or when
the user selects one of the categorized relations tabs in an object workspace. Each list view is a table
containing the names of all objects of the relevant type, along with information on status, properties, and
related items. For example, the virtual machine object list view contains the names of all virtual machines
in your vSphere environment, the power state of each virtual machine object, the related host object for
each virtual machine object, and other relevant information.

You create list view extensions for the vSphere objects in the same way as for the Flex-based plug-ins.

Example: HTML List Extension
Following is an example of how to create a list extension for an HTML plug-in. The values of the
<requestedProperties> element are retrieved directly from the vCenter Server instance. You must
provide implementations of the DataProviderAdapter and PropertyProviderAdapter that handle the
requests and return the data.

 <extension id="com.vmware.samples.chassisa.list.sampleColumns">

 <!-- This extension point is created by objectViewTemplate above -->

 <extendedPoint>com.vmware.samples.chassisa.list.columns</extendedPoint>

 <object>

 <!-- XML representation of com.vmware.ui.lists.ColumnSetContainer -->

 <items>

 <!-- Chassis name column -->

vSphere Web Client SDK Documentation

VMware, Inc. 133

 <com.vmware.ui.lists.ColumnContainer>

 <uid>com.vmware.samples.chassisa.column.name</uid>

 <dataInfo>

 <com.vmware.ui.lists.ColumnDataSourceInfo>

 <!-- Column header -->

 <headerText>#{name}</headerText>

 <!-- Object property whose text value will be displayed (array of 1 element) -->

 <requestedProperties>

 <String>name</String>

 </requestedProperties>

 <!-- Use sortProperty to allow column to be sorted with header click -->

 <sortProperty>name</sortProperty>

 <!-- Use exportProperty to allow column data to be exported -->

 <exportProperty>name</exportProperty>

 </com.vmware.ui.lists.ColumnDataSourceInfo>

 </dataInfo>

 </com.vmware.ui.lists.ColumnContainer>

 ...

Creating Actions Extensions
You can extend the vSphere Client by adding actions. You can add actions to existing vSphere objects, or
create actions associated with a new type of vSphere object.

In the vSphere Client, actions represent commands that the user can issue to manage, administer, or
otherwise manipulate the objects in the vSphere environment. Each action in the vSphere Client is
associated with one or more specific vSphere object types. For example, the user might perform an
action to change the power state of a selected Virtual Machine object, or to cause a Host object to enter
or exit maintenance mode.

When you add an action extension to the vSphere Client user interface layer, you must also extend the
vSphere Client service layer with a Java service. The Java service is responsible for performing the action
operation on the target vSphere object.

Use Cases
You can extend the vSphere Client by adding actions associated with an existing type of vSphere object,
or with a new type of vSphere object. You might add actions to an existing object type if you have created
a custom version of that vSphere object, such as a custom host.

In addition to creating the action extension in the user interface layer, you must also add a Java service to
the vSphere Client service layer. This Java service is used to perform the action operation on the target
vSphere object.

vSphere Web Client SDK Documentation

VMware, Inc. 134

Actions Framework Overview
The Actions Framework governs all available actions in the vSphere Client. All actions in the Actions
Framework are organized into groups called action sets. When you create action extensions to the
vSphere Client, you must define one or more action sets in the Actions Framework.

Each action in the Actions Framework is associated with one or more specific types of objects in the
vSphere environment. Actions associated with virtual machines, for example, are available only when the
user has selected a virtual machine object. Available actions are displayed in the actions drop-down
menu at the top of the main workspace, or in a context menu when the user right-clicks on an object in
the object navigator.

Action Controllers for HTML Extensions
In the plug-in module that contains your action extension, you must create a Java actions controller. The
controller runs on the Virgo application server and acts as a dispatcher for commands. The HTML UI
component sends commands to the actions controller using a REST API, and the controller routes the
commands to services that implement the actions.

Defining an Action Set
An extension that adds one or more actions to the vSphere Client must define an action set. You add
each action set extension to a specific extension point in the vSphere Client user interface layer, named
vise.actions.sets.

Your extension definition must define an action set and the individual actions within that action set. An
action set is a data object of type com.vmware.actionsfw.ActionSetSpec. The ActionSetSpec object
contains an <actions> property, which is an array of action data objects. You specify each individual
action in the set inside the <actions> property, using a separate data object for each.

You associate each action set extension with a particular type of vSphere object. A best practice is to use
the vSphere Client extension filtering mechanism to ensure that the actions are only visible when the user
selects the relevant type of vSphere object. See Filtering Extensions.

Note If you omit the <metadata> element for extension filtering in your action set extension definition,
your action is shown for all vSphere objects. Use the <metadata> element to ensure that your actions
appear only for the correct type of vSphere custom objects.

Defining Individual Actions for HTML-Based Action Extensions
HTML-based extensions do not use the <command> property of the ActionSpec object. Instead they
contain a <delegate> object.

HTML-based extensions use delegated actions instead of the command classes used by Flex-based
extensions. The HtmlActionDelegate object requires a <className> property and an <object>
element that contains only an embedded <root> element.

vSphere Web Client SDK Documentation

VMware, Inc. 135

The <className> property must specify the HtmlActionDelegate object for HTML-based extensions.

<className>com.vmware.vsphere.client.htmlbridge.HtmlActionDelegate</className>

The <root> element specifies the UI dialog box used to initiate the HTML-based action.

The following table lists the properties that you can use in the <root> element.

Property Type Description

<actionURL> string Identifies the HTML resource to be
displayed. The value can be an absolute
HTTPS URL or a bundle context path. If
the value is a bundle context path, the
relative URL must end with the .html
extension to enable session
authentication. For absolute URLs, the
framework does not use session
authentication.

<dialogTitle> string Specifies the title of the dialog box. Add
this property to the <root> element, or the
action is treated as headless. Can be
localized.

<dialogSize> string Indicates the width and height of the
dialog box, in pixels, separated by
commas.

<dialogIcon> string Specifies an optional icon resource for the
dialog.

<showCloseButton> boolean Hides the top right close button for the
dialog. The default value of this property is
false.

There are two types of HTML-based action extensions. One type, known as a UI action, displays a modal
dialog box for user input or confirmation before submitting a service request. The other type, known as a
headless action, initiates a request to a service without additional user input. An extension definition for a
UI action specifies the size and title of the dialog box, while a headless action definition omits the dialog
box properties.

Invoking Headless HTML Actions
Your HTML-based action extension can invoke headless actions on its own initiative by calling the
WEB_PLATFORM.callActionsController(url, jsonData) JavaScript function.

n The value of the url parameter has the following form.

/vsphere-client/chassis/rest/actions.html?actionUid=<actionUid>

n The value of the jsonData parameter is a JSON map of parameters passed to the actions controller,
or null if no parameters are needed.

vSphere Web Client SDK Documentation

VMware, Inc. 136

Example: HTML-Based Headless Action Extension Definition
The following example shows an extension definition for an HTML-based headless action extension. The
extension must use a <delegate> object instead of the <command> object used by a Flex-based
extension. The action in this definition is associated with a custom object type called Chassis.

<extendedPoint>vise.actions.sets</extendedPoint>

<object>

 <actions>

 <com.vmware.actionsfw.ActionSpec>

 <uid>com.vmware.samples.chassis.deleteChassis</uid>

 <label>#{chassis.deleteAction}</label>

 <icon>#{deleteChassis}</icon>

 <delegate>

 <className>com.vmware.vsphere.client.htmlbridge.HtmlActionDelegate</className>

 <object><root>

 <actionUrl>/vsphere-client/chassis/rest/actions.html</actionUrl>

 </root></object>

 </delegate>

 </com.vmware.actionsfw.ActionSpec>

...

When the headless action is invoked the HTML bridge makes a POST request to the actions controller on
the Virgo server, using the actionUrl property. The following parameters are added to the URL.

n actionUid - The <uid> of the ActionSpec object defined in the plugin.xml file

n targets - A comma-separated list of objectIds

By default, the targets parameter takes only one objectId. To specify more than one objectId, set the
flag acceptsMultipleTargets to true.

In this example, the full URL takes the following form.

/vsphere-client/chassis/rest/actions.html?

actionUid=com.vmware.samples.chassis.deleteChassis&targets=objectId

UI Actions
You can implement a UI action that displays a modal dialog in response to a menu click or a toolbar
button. You can implement also other types of pop-up dialogs that are specific to an object view or a
global view. To open such modal dialogs, invoke the WEB_PLATFORM.openModalDialog(title, url,
width, height, objectId, scrollPolicy, showCloseButton) JavaScript function. Note that such
modal dialogs cannot be nested and the view from which they are invoked disappears temporarily until
they are closed.

vSphere Web Client SDK Documentation

VMware, Inc. 137

Example: HTML-Based UI Action Extension Definition
The following example shows an extension definition for an HTML-based UI action extension. The
extension must use a <delegate> object instead of the <command> object used by a Flex-based
extension. The action in this definition is associated with a custom object type called Chassis.

<extension id="com.vmware.samples.chassis.listActionSet">

 <extendedPoint>vise.actions.sets</extendedPoint>

 <object>

 <actions>

 <com.vmware.actionsfw.ActionSpec>

 <uid>com.vmware.samples.chassis.createChassis</uid>

 <label>#{chassis.createAction}</label>

 <icon>#{addChassis}</icon>

 <delegate>

 <className>com.vmware.vsphere.client.htmlbridge.HtmlActionDelegate</className>

 <object><root>

 <actionUrl>/vsphere-client/chassis/resources/createChassisDialog.html</actionUrl>

 <dialogTitle>#{chassis.createAction}</dialogTitle>

 <dialogSize>500,400</dialogSize>

 </root></object>

 </delegate>

 <privateAction>true</privateAction>

 </com.vmware.actionsfw.ActionSpec>

 </actions>

 </object>

</extension>

When the action is invoked the platform opens a modal dialog containing the HTML document specified in
the actionUrl property. The following table contains the parameters that are added to the URL.

n actionUid - The <uid> of the ActionSpec object defined in the plugin.xml file.

n targets - A comma-separated list of objectIds.

n locale - The current locale that is used.

By default, the targets parameter takes only one objectId. To specify more than one objectId, set
the flag acceptsMultipleTargets to true.

In this example, the full URL takes the following form

/vsphere-client/chassis/resources/createChassisDialog.html?

actionUid=com.vmware.samples.chassis.createChassis&targets=objectId&locale=en

The dialog script uses the REST API to GET or POST data requests. For instance, to get object properties
by using the Data Access API, you use a request similar to the following.

/vsphere-client/htmltest/rest/data/properties/objectId?properties=properties-list

After the dialog form is submitted or the operation is canceled, the JavaScript code calls
WEB_PLATFORM.closeDialog().

vSphere Web Client SDK Documentation

VMware, Inc. 138

Handling Actions for HTML-Based Action Extensions
When you create an HTML-based action extension to the vSphere Web Client, you must create an
actions controller class on the Virgo server to respond to the REST API requests from the client code.

A best practice is to implement the controller class as a simple dispatcher that maps the action UIDs to
Java services. You can invoke custom services or translate REST API requests to Data Manager
requests.

Example: Example Java Actions Controller Class
In the example, the invoke method must return a JSON map that signals the framework to update its
object lists in the client. The map must contain a result key whose value is the result of the service call. A
utility class ActionResult is provided to define additional result parameters.

If the action adds, updates, or deletes objects, you should use an instance of ActionResult to notify the
vSphere Web Client framework, so it can update object lists in the client. Use the ActionResult methods
setObjectAddedResult, setObjectChangedResult, or setObjectDeletedResult. Pass the result
returned by the service as the first parameter to the method.

The ActionResult methods accept an optional second parameter that contains a message key that the
client code can use to report an error in the UI if the result is false or null. Alternatively, you can use the
setErrorMessage method to add the error message key to the results map.

Note Headless actions cannot display error messages or otherwise report the results of the action. To
display results in the UI, you must handle your action request from a UI action dialog.

...

 @RequestMapping(method = RequestMethod.POST)

 @ResponseBody

public Map invoke(

@RequestParam(value = "actionUid", required = true) String actionUid,

@RequestParam(value = "targets", required = false) String targets,

@RequestParam(value = "json", required = false) String json)

throws Exception {

...

ActionResult actionResult = new ActionResult(actionUid, RESOURCE_BUNDLE);

if (actionUid.equals("com.vmware.samples.chassis.editChassis")) {

boolean result = _chassisService.updateChassis(objectRef, chassisInfo);

actionResult.setObjectChangedResult(result, "editAction.notFound");

} else if (actionUid.equals("com.vmware.samples.chassis.deleteChassis")) {

boolean result = _chassisService.deleteChassis(objectRef);

actionResult.setObjectDeletedResult(result, "deleteAction.notFound");

} else if (actionUid.equals("com.vmware.samples.chassis.createChassis")) {

Object result = _chassisService.createChassis(chassisInfo);

if (result != null) {

vSphere Web Client SDK Documentation

VMware, Inc. 139

actionResult.setObjectAddedResult((URI)result, "samples:Chassis", null);

} else {

// Case where the name is already taken

String[] params = new String[] { chassisInfo.name };

actionResult.setErrorMessage("createAction.nameTaken", params);

}

} else {

String warning = "Action not implemented yet! "+ actionUid;

_logger.warn(warning);

actionResult.setErrorLocalizedMessage(warning);

}

return actionResult.getJsonMap();

}

...

Handling Locales
Your HTML plug-ins must support the same set of locales as the Flex-based plug-ins. The default locale
is the locale that is set by the Web browser of the user, or the English (United States) locale if the
vSphere Client does not support the set locale.

In the vSphere Client locales are usually handled on the user interface layer. In some cases, the HTML
plug-in must return text from the Java service layer such as the properties of a vSphere object adm error
messages.

Handling Resources in the plugin.xml Manifest File
The localized resources for your plug-in are located in the locales directory of the WAR file. The Ant
build scripts for WAR files provided with the vSphere Client development kit compile the plug-in source
and the resource files into the .swf file format to keep your plug-in compatible with the
vSphere Web Client.

The plugin.xml manifest file contains the <resources> element that you must use to specify the
location of plug-in resources such as images and localization data. The defaultBundle attribute of the
<plugin> element specifies the name of the main .properties file of the plug-in and is added
automatically by the Ant build scripts.

To instruct the vSphere Client to use the locale that your Web browser specifies at runtime, set {locale}
as a value to the locale attribute of the <resource> element in the plugin.xml manifest file. You must
avoid hard-coding a specific locale as a value to the locale attribute.

The plugin.xml manifest file contains the names of views, dialogs, action menus, icons, and other
localizable objects. These strings and icons must be localized and not hard-coded in a particular
language. If the string or icon is defined in the main properties file specified with the defaultBundle
attribute, you must use the #{RESOURCE_KEY} syntax for the element and attribute values. If the string or
icon is defined in a different .properties file, use the #{BUNDLE_NAME:RESOURCE_KEY} syntax for the
element and attribute values.

vSphere Web Client SDK Documentation

VMware, Inc. 140

Example: Localizing Strings and Icons in the plugin.xml Manifest
File
The following code snippet demonstrates how you can specify the values for strings and icons that must
be localized in the vSphere Client depending on the settings of the Web browser. The main properties file
of the plug-in is locale/en_US/com_vmware_samples_chassisa.properties which is reflected with
the value of the defaultBundle attribute.

<plugin id="com.vmware.samples.chassisa"

 defaultBundle="com_vmware_samples_chassisa">

 <resources>

 <resource locale="{locale}">

 <module uri="locales/chassisa-{locale}.swf"/>

 </resource>

 </resources>

 ...

 <templateInstance id="com.vmware.samples.lists.allChassis">

 <templateId>vsphere.core.inventorylist.objectCollectionTemplate</templateId>

 <variable name="namespace" value="com.vmware.samples.chassisa_collection"/>

 <variable name="title" value="#{chassisLabel}"/>

 <variable name="icon" value="#{chassis}"/>

 ...

The English locales for the chassisLabel string and the chassis icon are defined in the
com_vmware_samples_chassisa.properties file in the following way:

------- String properties --------

chassisLabel = ChassisA

summary.title = Chassis main info

...

------------- Images -------------

chassis = Embed("../../assets/images/chassis.png")

localizedImage.url = assets/images/localizedImage-en_US.png

...

Handling Resources in the HTML and JavaScript Code
You can directly retrieve and use specific string resources at runtime in your HTML views or JavaScript
code.

vSphere Web Client SDK Documentation

VMware, Inc. 141

For example, you can use the ns.getString() function defined in the web-platform.js JavaScript
API. The following example demonstrates how this API is defined in the web-platform.js file for the
ChassisA sample included in the vSphere Client development kit.

 var ns = com_vmware_samples_chassisa;

 // Get a string from the resource bundle defined in plugin.xml

 function getString(key, params) {

 return WEB_PLATFORM.getString("com_vmware_samples_chassisa", key, params);

 }

 ns.getString = getString;

The following example demonstrates how you can use localized strings from the plug-in resource files
inside the HTML code of your plug-in.

 // insert the localized value of "summary.title" in the #title node

 <script>

 $(document).ready(function() {

 var ns = com_vmware_samples_chassisa;

 $("#title").text(ns.getString("summary.title"));

 });

 </script>

</head>

<body>

 <h3 id="title">Chassis main info</h3>

</body>

...

Handling Resources at the Service Layer
In some cases your plug-in might return strings from the service layer that must be displayed in the
vSphere Client. For example, the service layer can return the properties of a vSphere object that must be
displayed in a human-readable format, or an error message that comes from the back end. You must
retrieve the current locale of the user and return the translated text for that locale in your Java code.

In case of error messages, your back end server might have the messages localized. In other cases, you
can use the standard Java localization APIs and add .properties files inside your JAR files. These
properties files are used to load the correct strings based on the locale.

Following is an example of how to use the UserSession class to access the locale of the current client
session.

 // see the vsphere-wssdk-service sample for injecting _userSessionService in your class

 UserSession userSession = _userSessionService.getUserSession();

 String locale = userSession.locale;

 ...

vSphere Web Client SDK Documentation

VMware, Inc. 142

Guidelines for Creating Plug-Ins Compatible with the
vSphere Client
You can use the plug-in generation scripts provided with the vSphere Client SDK to create a plug-in that
is compatible with both Web browser-based applications.

To develop an HTML plug-in, you must first create a plug-in project that has the required by the plug-in
resources and directory structure. Use one of the generation scripts that are available in the
tools\Plugin generation scripts folder under html-client-sdk.

After you create the HTML plug-in project, follow these guidelines to ensure that your plug-in is
compatible with the vSphere Client and the vSphere Web Client:

n Use relative URLs to set the location to the resources inside your plug-in inside your HTML and
JavaScript code. For example, you must avoid adding the /vsphere-client root path to the URLs.

n Use the <plugin_namespace>.webContextPath variable defined in the web-platform.js
JavaScript API to specify the Web context path for the Virgo server requests.

n Use the vsphere-client root path only inside the MANIFEST.MF and plugin.xml files.

n Add Cascading Style Sheets (CSS) classes to the plugin-icons.css file for the icons that are
displayed outside the views, such as Home screen shortcut icons, menu icons, and vSphere objects
list icons. See Handling Icons Outside the HTML Views.

n When you add an extension to an existing object menu or a custom object menu, you must define a
custom menu extension referencing the vsphere.core.menus.solutionMenus extension point in
addition to the actions referencing the vise.actions.sets extension point. See Defining Menus and
Sub-Menus.

Using the Web Context Path in HTML Plug-Ins
Each HTML plug-in is a separate Web application that has a specific context path defined in the
MANIFEST.MF file of the WAR bundle. The context path of your application specifies where the Web
content is hosted and which requests must be handled by your application. For example, the Web context
path for the ChassisA sample is defined in the manifest file as follows:

Web-ContextPath: vsphere-client/chassisa

The root path for resources and data requests for the vSphere Client starts with ui while for the
vSphere Web Client, the root path starts with vsphere-client/. If you leave the vsphere-client/ root
path in the MANIFEST.MF and the URLs declared in the plugin.xml files of an HTML plug-in, you can still
deploy the plug-in on both Web browser-based applications. The root path URL is transformed at runtime.

vSphere Web Client SDK Documentation

VMware, Inc. 143

Handling Icons Outside the HTML Views
External icons are the icons displayed outside the HTML views and handled directly by the
vSphere Client. Examples of such icons are the Home view shortcut icons, menu icons, and the vSphere
object list icons. If you use the generation scripts or the wizard provided with the vSphere Web Client
Tools Eclipse plug-in to generate your HTML plug-in, the plugin-icons.css CSS file is added to the
plug-in project. The example CSS file contains the definitions of two external icons.

To declare that your plug-in depends on external icons, in the plugin.xml manifest file add the
<dependency> element inside the <dependencies> element. The following attributes of the
<dependency> element contain information about the external icons:

n type - The resource type such as css.

n uri - The URI of the CSS file that contains the external icon declarations.

Following is an example of dependency declaration in the plugin.xml file:

 <dependencies>

 <!-- Allow HTML Client to display icons in menus, shortcuts, lists -->

 <dependency type="css" uri="myplugin/assets/css/plugin-icons.css" />

 </dependencies>

Defining Menus and Sub-Menus
When you add a custom vSphere object menu or extend an existing object menu, you must define each
individual action and add a custom solution menu under the existing menu which might include sub-
menus and separators. Use the vise.actions.sets extension point to define each action, and the
vsphere.core.menus.solutionMenus extension point to add the custom solution menu.

The following example demonstrates how you can define custom actions for VirtualMachine objects
and then add custom solution menus under the existing VirtualMachine menu.

 <extension id="com.vmware.samples.vspherewssdk.vmActionSet">

 <extendedPoint>vise.actions.sets</extendedPoint>

 <object>

 <actions>

 <com.vmware.actionsfw.ActionSpec>

 <!-- UI action: show dialog -->

 <uid>com.vmware.samples.vspherewssdk.myVmAction1</uid>

 <label>#{action1.label}</label>

 <delegate>

<className>com.vmware.vsphere.client.htmlbridge.HtmlActionDelegate</className>

 <object><root>

 <!-- execute the action on client-side (html view in a modal dialog) -->

 <actionUrl>/vsphere-client/vspherewssdk/resources/vm-action-

dialog.html</actionUrl>

 <dialogTitle>#{action1.label}</dialogTitle>

 <dialogSize>500,250</dialogSize>

 </root></object>

vSphere Web Client SDK Documentation

VMware, Inc. 144

 </delegate>

 </com.vmware.actionsfw.ActionSpec>

 </object>

 <metadata>

 <!-- Filter this extension only for VirtualMachine objects -->

 <objectType>VirtualMachine</objectType>

 </metadata>

 </extension>

 ...

 <extension id="com.vmware.samples.vspherewssdk.vmMenu">

 <extendedPoint>vsphere.core.menus.solutionMenus</extendedPoint>

 <object>

 <!-- <label> is required here because it is an extension to an existing menu -->

 <label>#{solution.label}</label>

 <children>

 <Array>

 <com.vmware.actionsfw.ActionMenuItemSpec>

 <!-- UI action example -->

 <type>action</type>

 <uid>com.vmware.samples.vspherewssdk.myVmAction1</uid>

 </com.vmware.actionsfw.ActionMenuItemSpec>

 ...

 </object>

 <metadata>

 <!-- Filter creates this extension only for VirtualMachine objects -->

 <objectType>VirtualMachine</objectType>

 </metadata>

 </extension>

Hybrid Plug-Ins
Hybrid plug-ins are plug-ins that include both Flex and HTML implementations of the user interface
extensions. This type of plug-ins can be deployed to the vSphere Client and to the vSphere Web Client
but the functionality that they provide works with some limitations.

Use Cases
You can create hybrid plug-ins that either include a Flex implementation of a portlet in an HTML plug-in,
or convert an existing Flex plug-in to HTML without removing the Flex views.

To be able to use the same plug-in containing portlets with both Web applications, you can include a Flex
and HTML implementations of the same portlet in the plugin.xml manifest file. For the Flex extension
you must use the <namespace>.summarySectionViews extension points and for the HTML portlet you
must use the <namespace>.summarySectionViews.html extension points. Make sure that you specify
different extension IDs for both portlets in the manifest file. For more information about adding portlets to
the Summary tab, see Creating Extensions to the Summary Tab for HTML portlets and Using the
Summary Tab Template for Flex-based portlets.

vSphere Web Client SDK Documentation

VMware, Inc. 145

You can also convert an existing Flex-based plug-in to HTML, but leave some of the Flex extension
views. In this case the hybrid plug-in is in a transition mode. The plug-in functions correctly in the
vSphere Web Client, but has limited functionality in the vSphere Client that cannot display the Flex-based
extensions.

The SDK provides you with two options for combining HTML and Flex views in the same plug-in:

n Adding two different UI implementation bundles in the same plug-in package, one that uses Flex, and
one that uses HTML.

n Including both Flex and HTML views in the same plug-in project.

Combining Two UI Bundles in the Same Plug-In
You can use the wizard provided with the vSphere Web Client Tools Eclipse plug-in to create separate
Flex and HTML projects. When you build both WAR files that contain the Flex and HTML UI modules, you
must reference the bundles in the plugin-package.xml manifest file and include them in the same plug-
in package ZIP file.

Note Make sure that you specify different values to the Web-ContextPath header for each bundle
MANIFEST.MF manifest file.

Combining the Flex with the HTML Plug-In Projects
If you already have a Flex plug-in project and you have also an HTML project for developing HTML plug-
ins, follow these guidelines to combine both projects into one:

n In the Flex project, replace the war/src/main/webapp/WEB-INF/web.xml file with the web.xml
configuration from the HTML project.

n Edit the webapp/META-INF/MANIFEST.MF manifest file to include the packages listed in the Import-
Package header in the HTML project.

n Add the webapp/WEB-INF/spring/bundle-context.xml file from the HTML plug-in project to the
Flex project, if you use Java controllers.

n Copy all CSS files, images, and JavaScript libraries under the webapp/assets folder in the Flex
project.

n Copy the HTML and JavaScript code under the webapp/resources folder by including the web-
platform.js JavaScript APIs.

n Add the HTML view extensions to the webapp/plugin.xml manifest file.

n Modify your project build script to take into account the new files.

vSphere Client JavaScript APIs
You can access the Web platform APIs through the WEB_PLATFORM variable that is defined in the web-
platform.js generated for each plug-in.

Following is a list of the JavaScript APIs provided with the vSphere Client development kit.

vSphere Web Client SDK Documentation

VMware, Inc. 146

Table 7‑1. vSphere Client JavaScript APIs

JavaScript Function Description

callActionsController(url, jsonData) Use this function to invoke a headless action from within a user
interface action dialog. Pass to the function the following
parameters:
n url - The value of this parameter has the following

form: /<plugin_context_path>/rest/actions.html?
actionUid=<action_Uid>.

n jsonData - The optional data that is used by the headless
action.

The target objectIds are added automatically to the url
parameter.

For more information about how to create headless actions, see
Creating Actions Extensions.

closeDialog() Close a dialog that was opened through a user interface action
such as when a form is submitted.

getActionUid() Get the ID of the action that is invoked to open a user interface
action or wizard. You can use the returned action ID in the url
parameter of the callActionsController(url, jsonData)
function.

getActionTargets() Retrieve a comma-separated list of object IDs selected for an
action. This function returns null for a global action. Use this
function only within a user interface action dialog.

getObjectId() Get the context object ID within an object view or a modal
dialog. You can use this object ID to retrieve the vSphere object
data from the vCenter Server system.

getString(bundleName, key, params) Retrieve the localized value of a string that is defined in the
plug-in resource bundle. Pass to the function the following
parameters:
n bundleName - The name of the plug-in resource bundle.
n key - The string resource key.
n params - Optional array of values that must replace the

placeholders in the string.

getVcSelectorInfo() Retrieve information that is provided within a global view by
using the vCenter Server selector. The retrieved properties are
serviceGuid, sessionId, and serviceUrl. For more
information about how to enable the vCenter Server selector
option, see Adding a vCenter Server Selector.

getUserSession() Retrieve information about the current user session. The
function returns the following properties:
n userName

n locale

n serversInfo

You can use also the getUserSession() method of the
UserSessionService Java service to retrieve details about the
user session.

vSphere Web Client SDK Documentation

VMware, Inc. 147

Table 7‑1. vSphere Client JavaScript APIs (Continued)

JavaScript Function Description

setGlobalRefreshHandler(callback) Invoke this function to refresh your HTML views when the user
clicks on the global Refresh button. Pass as argument the
function that refreshes your HTML view.

openModalDialog(title, url, width, height,

objectId, scrollPolicy, showCloseButton)

Invoke this function to open a modal dialog from within an HTML
view, such as a wizard. The modal dialog blocks the rest of the
user interface and is not limited to the HTML view. Because the
dialog is modal, the content of the HTML view disappears
temporarily until the dialog is closed.

Pass to the function the following parameters:
n title - The title of the dialog.
n url - The URL to the HTML content of the dialog.
n width - The width of the dialog in pixels.
n height - The height of the dialog in pixels.
n objectId - Optional. The ID of the target object.
n scrollPolicy - Optional. The scroll policy of the dialog that

can be one of the following values: yes, no, or auto.
n showCloseButton - Optional. The option to display a close

button on the modal dialog. You can pass as a parameter to
the function one of the following values: true or false.

sendModelChangeEvent(objectId, opType) Trigger an event that results in the update of the object model
when something in the vSphere inventory changes.

The function accepts the following parameters:
n objectId - The ID of the vSphere object if the change must

be applied to an object view.
n opType - The type of the triggered event. You can pass as

parameter one of the following values: add, change,
delete, or relationshipChange.

sendNavigationRequest(targetViewId, objectId) Invoke this function to open a global view or an object view.

The function accepts the following parameters:
n targetViewId - The ID of the extension view.
n objectId - The object ID in case the function is invoked on

an object view.

setDialogTitle(title) Change the title of the dialog at runtime. This function overrides
the value of the <dialogTitle> property defined in the
plugin.xml manifest file.

The function takes as parameter the title of the dialog.

JavaScript Utility APIs
Following is a list of the additional utility APIs that are defined in the plug-in namespace variable inside
the web-platform.js file.

vSphere Web Client SDK Documentation

VMware, Inc. 148

Table 7‑2. Utility JavaScript APIs

JavaScript Function Description

buildDataUrl(objectId, propList) Invoke this function to create the REST URL that is used to
retrieve a set of object properties through the
DataAccessController class.

The function accepts the following parameters:
n objectId - The object ID that is passed as a parameter to

the view. You can use the WEB_PLATFORM.getObjectId()
function to retrieve the value of the objectId parameter.

n propList - An array of property names that must be
retrieved.

getString(key, params) Retrieve the localized value of a key defined in the plug-in
resource bundle.

The function accepts the following parameters:
n key - The string value of the resource key.
n params - Optional array of values that must replace the

placeholders in the string.

Mapping the JavaScript to the Flex APIs
The Flex APIs provided with the vSphere Web Client SDK have an equivalent HTML and JavaScript APIs
provided with the vSphere Client development kit.

The following table represents the mapping between the Flex and HTML and JavaScript APIs. You can
use this information in case you want to start creating HTML plug-ins but you have used only the Flex
APIs so far.

Table 7‑3. Mapping Between the Flex and HTML APIs

Flex APIs HTML or JavaScript APIs

ActionContext Actions are invoked by making a REST call with the targets
parameter that contains a list of the object IDs of the involved
vSphere objects.

ActionInvocationEvent Use the
com.vmware.vsphere.client.htmlbridge.HtmlActionDele

gate class.

ActionMenuItemSpec Use this class to define actions extensions in the plugin.xml
file in the same way as for a Flex-based extension.

ActionSpec and ActionSetSpec Use these classes to define actions extensions in the
plugin.xml file in the same way as for a Flex-based extension.

BaseProxy Use Java controllers to support the REST calls to services
running on the Virgo server instead of the BaseProxy class.

For more information about how you can create controllers, you
can take a look at the DataAccessController and
ActionsController classes provided with the HTML sample
plug-ins.

vSphere Web Client SDK Documentation

VMware, Inc. 149

Table 7‑3. Mapping Between the Flex and HTML APIs (Continued)

Flex APIs HTML or JavaScript APIs

ColumnContainer, ColumnDataSourceInfo,
ColumnSetContainer

These classes are deprecated since vSphere 5.5. You can
define object list view extensions by using the $
{namespace}.list.columns extension point in the
plugin.xml file.

DataRefreshInvocationEven Use the
WEB_PLATFORM.setGlobalRefreshHandler(callback)

function to handle the user-initiated refreshes to the UI.

Dialogs Use your preferred JavaScript library to handle the different
types of pop-up dialogs such as error, warning, and confirmation
dialogs.

IconLabelSpec Use this class in the plugin.xml manifest file in the same way
as for a Flex-based extension.

IContextObjectHolder Use the WEB_PLATFORM.getObjectId() function to retrieve the
context object ID.

IResourceReference Use the object ID in your JavaScript code.

NavigationRequest Use the
WEB_PLATFORM.sendNavigationRequest(targetViewId,

objectId) function to navigate to a specific view or part of the
application.

UserSession Use the WEB_PLATFORM.getUserSession() function to retrieve
details about the currently logged in user.

Wizard This class has no equivalent in the JavaScript APIs.

vSphere Web Client SDK Documentation

VMware, Inc. 150

Developing Extensions to the
Service Layer 8
User interface elements in the vSphere Web Client and the vSphere Client` interact with Java services
that run in the application server, called the Virgo server. The Java services on the Virgo server
communicate with vCenter Server, ESXi hosts, and other data sources within and outside of the vSphere
environment.

The principal Java service included in the service layer is the Data Service. The Data Service provides
data on objects that vCenter Server manages, using a query-based information model. Components in
the vSphere Web Client and user interface layer, such as Flex and HTML data views, send queries to the
Data Service for specific objects or attributes. The Data Service processes each query and returns
responses.

When you create an extension in the user interface layer that requires data not provided by the Data
Service, you must extend the service layer with new providers for the data. This chapter explains how to
create Data Service extensions, how to create a custom Java service, how to access data using the
vSphere Web Services API or the Data Services interface, and how to import services in a user interface
module.

For more information about the relationships between the components in the different layers, see
Understanding the vSphere Web Client Architecture and Understanding the vSphere Client Architecture.

This section includes the following topics:

n Understanding the vSphere Web Client Data Service

n Overview of Data Service Queries

n Extending the Data Service with a Data Service Adapter

n Creating a Custom Java Service

n Importing a Service in a User Interface Plug-In Module

Understanding the vSphere Web Client Data Service
The default Data Service provides a stateless, query-based interface to retrieve information about
vSphere objects, as defined by the vSphere Web Client API.

The default Data Service interface can access data from vCenter Server. The Data Service accesses
various services on vCenter Server, including the Inventory and Property Collector services.

VMware, Inc. 151

User interface components, such as Flex data views, act as Data Service clients. These clients retrieve
information by creating Data Service queries. The Data Service processes each query and returns a set
of result objects.

If your vSphere Web Client or vSphere Client extensions require data from a different source, either within
vCenter Server or outside vCenter Server, you can extend the Data Service by creating a Data Service
Adapter. A Data Service Adapter provides a way for you to use Data Service queries to retrieve a data
from custom objects or to extend VMware managed objects.

Extending the Service Layer with Custom Components
The Web Client SDK provides several ways to extend the service layer. Each kind of extension is best
suited for certain functions.

n To manage back-end operations in the Virgo service layer, you create custom Java plug-ins, which
can be of two kinds:

n Plug-ins that implement REST services that act on behalf of user interface plug-ins written in
HTML.

n Plug-ins that implement custom RPC interfaces on behalf of Flex proxy components.

n To retrieve data from vCenter Server or from external sources, you create custom data adapters in
Java. Your data adapters can be of two kinds:

n Property Provider Adapters can retrieve data from vSphere managed objects.

vSphere Web Client SDK Documentation

VMware, Inc. 152

n Data Provider Adapters can retrieve data from external sources as well as vSphere managed
objects.

3rd party
Flex plug-in

Main UI with
core plug-ins

vCenter Server 1.. N

3rd party
HTML plug-in

3rd party back end
database or server

UI Flex Platform
HTML
Bridge

User Interface
Layer

HTML plug-in compatible
with the vSphere Web
Client and the vSphere Client

REST calls to
get/post data
with controllers

vSphere Web
Client Platform

Legend

VMware

Partners

Any
remote API

vSphere Web
Services SDK

secure AMF channel

• Container,
 common views
• Actions, Data Manager

Java Platform
Java controllers

Java services

Data adapters

Service
Layer

Back End Layer

• Extension Service
• Data Service
• Mutation Service

vSphere Web Client SDK Documentation

VMware, Inc. 153

Custom Component Types
The following types of custom components belong to or communicate with the Virgo service layer.

HTML UI components HTML components display the visual components of the vSphere Client
interface. You can create custom HTML components to add new features to
the user interface.

Flex UI components Flex user interface components display the visual components of the
vSphere Web Client interface. You can create custom Flex components to
add new features to the user interface.

Data Service Adapters Data Service Adapters implement query service interfaces designed by
VMware for data requests from user interface components. Property
Provider Adapters and Data Provider Adapters are the two kinds of Data
Service Adapters.

Data Provider Adapters Data Provider Adapters implement the DataProviderAdapter interface.
They respond to requests for data from custom vSphere objects or from
objects that are not managed by vSphere.

Property Provider
Adapters

Property Provider Adapters implement the PropertyProviderAdapter
interface. They respond to requests for properties of vSphere objects.
Property Provider Adapters cannot provide properties for custom objects.

Custom Java services Custom Java services provide operations on vSphere managed objects or
external data sources. Custom services usually dispatch requests to
vCenter Server or to external processes that perform extensive operations.

vSphere Web Client SDK Documentation

VMware, Inc. 154

Interfaces to the Service Layer
Components communicating in the service layer can use the following types of interfaces:

Data Service The Data Service is an interface accessible to the Data Access Manager or
to controller services used by HTML UI components.

Data Access Manager The Data Access Manager is a Flex library provided by VMware to simplify
communications between Flex UI components and the service layer.

PropertyProviderAdapt
er

Property Provider Adapters implement the PropertyProviderAdapter
interface of the Data Service. This interface is designed to provide
properties of VMware managed objects.

DataProviderAdapter Data Provider Adapters implement the DataProviderAdapter interface of
the Data Service. This interface is designed to provide properties of custom
objects.

Web Services API The Web Services API is supported by vCenter Server and ESXi systems.
It provides access to vSphere managed objects using an XML SOAP
protocol.

Custom Service
Interfaces

You can design your own service interfaces to use in custom Java services.

Communications with the Virgo Service Layer
The service layer contains several providers from VMware and you can extend it with custom providers
that you create in Java. Custom providers collect and package data used either by custom user interface
components or by existing user interface components.

Flex components in the user interface layer can use a Flex library called the Data Access Manager to
communicate with the Data Service in the service layer. The Data Access Manager library is included with
the vSphere Web Client SDK. See Creating Data View Extensions.

HTML components in the vSphere Client user interface layer communicate with a controller service in the
service layer by using REST APIs. The controller service can use the Data Service or the vSphere Web
Services API to access data about vSphere objects, or extend the Data Service to access objects outside
vSphere. The controller service can also use other custom or third-party services to access objects
outside vSphere.

You can extend the Data Service to process queries for new data sources. The new data can come from
other sources inside the vSphere environment, such as specific ESXi hosts, or from external data
sources. When you extend the Data Service, your extensions in the user interface layer can communicate
with new data sources by using the existing methods and libraries, such as the Data Access Manager.

vSphere Web Client SDK Documentation

VMware, Inc. 155

You extend the Data Service by creating a Java service called a Data Service Adapter. A Data Service
Adapter can either retrieve new properties for existing vSphere objects, or it can retrieve information from
new custom objects. You must create different types of Data Service Adapters, depending on whether
your environment adds new data to existing vSphere objects, or adds custom objects to the virtual
infrastructure.

You can create custom Java services to work with your UI components. These custom Java services are
typically used for performing action operations that make changes to the vSphere environment. Custom
Java services are generally used as pass-throughs to back-end processes or external data sources.

Note A best practice is to limit your Java service to dispatching requests from the vSphere Web Client
and the vSphere Client, without passing on requests to other services. You can implement extensive or
resource-intensive logic on your own external server.

Overview of Data Service Queries
Data Service is an API used to query data in the vSphere Virgo server. You can use the Data Service
either from user interface components or from providers in the service layer.

When To Use Data Service Queries
The Data Service is primarily intended for queries from user interface components. However, your service
providers also have access to the Data Service.

You can initiate Data Service queries in the Java code of your service providers to fetch data from
vCenter Server or from custom service providers. A best practice is to use the vSphere Web Services API
to fetch data from vCenter Server, because it is more efficient than Data Services. However, you must use
Data Services in the following cases:

n You need to join data from more than one vCenter Server.

n Your query includes properties that are available only from a custom provider.

n Your query includes data objects (complex properties) from vCenter Server, and the client is a UI
component from VMware that understands data object encoding.

RequestSpec Data Structure in Data Service Queries
A Data Services client sends a request in the form of a RequestSpec object, which contains a list of
QuerySpec objects.

QuerySpec Structure
The name field of a QuerySpec is optional. You can assign a name of your choosing, to help you identify
the corresponding results. The name field is also useful to troubleshoot custom data providers.

A QuerySpec also contains a ResourceSpec and a ResultSpec.

vSphere Web Client SDK Documentation

VMware, Inc. 156

ResourceSpec
The ResourceSpec specifies what properties and what objects are to be returned. It contains a list of
PropertySpec objects and a tree of Constraint objects. The PropertySpec objects select resources
and their properties, while the Constraint objects enable you to construct Boolean combinations of
conditions to filter the set of resources from which properties are returned.

ResultSpec
The ResultSpec, which is optional, enables you to sort the results and to specify a chunk length and a
starting index for the ResultSet.

The OrderingCriteria is a list of OrderingPropertySpec. Each list entry specifies the name of a
sortable property and whether to sort the values in ascending or descending order.

OrderingPropertySpec is a subclass of PropertySpec. The subclass adds a SortType field.

Note Sorting on custom properties can degrade performance in the client.

PropertySpec
A PropertySpec object is used to identify the properties to return in the ResultSet, or the properties
used for sorting the results. In the latter usage, you can specify an optional sort order for the property by
supplying an instance of OrderingPropertySpec, which is a subclass of PropertySpec. A
PropertySpec is required in the ResourceSpec, but OrderingPropertySpec is optional.

A PropertySpec begins with a type field which contains the name of a resource type. This is typically
the URI of a custom resource type, or the name of a managed object type in the case of a query that joins
data across vCenter Servers. For example, to request properties of a VirtualMachine managed object,
you must set the type field of a PropertySpec object to "VirtualMachine".

A PropertySpec contains an array of strings identifying properties to be returned in the ResultSet. To
identify nested properties, such as properties of nested data objects, use a period as delimiter. For
example, the name of a virtual machine config file is a property of the files data object, which is a
property of the config data object, which is a property of the VirtualMachine managed object, so you
identify the chosen property with the string "config.files.vmPathName".

To access properties of related resources or managed objects, such as the name of the host on which a
virtual machine is currently running, use a Constraint object to do a join operation between the two
managed object types.

Note The relation field and the ParameterSpec array contained in the propertySpec object are
reserved for internal use.

vSphere Web Client SDK Documentation

VMware, Inc. 157

Constraint
Constraint objects enable you to specify arbitrary Boolean expressions that filter the results of your
query. You can limit the results by placing conditions on property values and object identities. Your query
must include a Constraint object.

Constraint is an abstract class with four subclasses. You can supply a simple constraint of object
identity or property value by using an ObjectIdentityConstraint object or a PropertyConstraint
object. You can use a RelationalConstraint object to join data across resource types.

You can use a CompositeConstraint wherever a Constraint object is allowed. A
CompositeConstraint enables you to combine a list of other constraint objects, joined by a Boolean
operator. You can nest a CompositeConstraint within another CompositeConstraint, which enables
you to create arbitrarily complex Boolean expressions.

A query can contain the following types of constraints, each of which is a subclass of the base
Constraint class.

n ObjectIdentityConstraint - Queries based on this constraint retrieve the properties of a known
target object. For example, a query might retrieve the powered-on state of a given virtual machine.
The object identifier can be a managed object type or any custom type that implements the
IResourceReference interface. The identifier in this constraint includes the server GUID.

n PropertyConstraint - Queries based on this constraint retrieve all objects with a given property
value. For example, a query might retrieve all virtual machine objects with a power state of on. This
constraint accepts the property name and comparator as strings, and the property value as an
Object. This constraint is not bound to a specific server, and can be used to retrieve results from all
vCenter Servers known to the client.

n RelationalConstraint - Queries based on this constraint retrieve all objects that match the
specified relationship with a given object. For example, a query might retrieve all virtual machine
objects related to a given host object. The identifier in this constraint includes the server GUID.

n CompositeConstraint - Composite queries allow the combination of multiple constraints using the
and or or operator, passed as a string. The combined subconstraints in CompositeConstraint are
contained in an array of Constraint objects.

Each constraint operates relative to a resource type that you specify in its targetType field. For instance,
if you want to query the names of all virtual machines running on a given host, one way is to create a
PropertyConstraint that specifies a targetType of "HostSystem" and a value for the name property,
then nest that PropertyConstraint in the Constraint field of a RelationalConstraint that specifies
a targetType of "VirtualMachine" and a relation field of "runtime.host".

vSphere Web Client SDK Documentation

VMware, Inc. 158

ResultSet Data Structure in Data Service Queries
The response to a RequestSpec is a list of ResultSet objects. Each ResultSet corresponds to a
QuerySpec object in the RequestSpec, with a one-to-one mapping.

The queryName field of a ResultSet is used to identify the QuerySpec that corresponds to the
ResultSet. If you assigned a name to a query in the RequestSpec, the Response contains a ResultSet
with a matching value in its queryName field. If you submitted a QuerySpec without a name, the
corresponding ResultSet has an empty string in the queryName field. A best practice is to assign a
unique name to each QuerySpec whenever you submit a request that contains more than one query.

When you process a ResultSet, first check the error field. If the error is non-empty, the query failed,
and the queryName field has a valid value but other fields have indeterminate values. If the error is
empty, the other fields are meaningful.

The totalMatchedObjectCount tells you the number of items the query can return. If the query did not
specify a chunk size in the maxResultCount field, then totalMatchedObjectCount is the size of the
ResultSet.items list. If the query did specify a chunk size, then the items list size is the minimum of
QuerySpec.maxResultCount and ResultSet.totalMatchedObjectCount - QuerySpec.offset.

The data payload is ResultSet.items, which is a list of ResourceItem objects. Each ResourceItem
object contains a single resourceObject field, which holds the identifier of the resource whose
properties are returned in this ResourceItem. The ResultItem.properties field contains a list of
name-value pairs for properties requested by the QuerySpec.

Extending the Data Service with a Data Service Adapter
You extend the Data Service by creating a Data Service Adapter to provide data to the components in
your user interface extensions that require data that is not available through the Data Service.

A Data Service Adapter is a Java service that integrates with the Data Service, and gives the Data
Service the ability to process and respond to Data Service queries for new object types or properties.
Data Service Adapters can access data sources within vSphere, or outside data sources.

A Data Service Adapter must implement the same interface and information model as the Data Service.
When you create a Data Service Adapter, it must handle Data Service queries and return information as a
result set consisting of objects with associated properties.

Advantages of Providing a Data Service Adapter
Extending the Data Service by creating a Data Service Adapter has several advantages.

n The Data Service routes queries to the appropriate Data Service Adapters. This mechanism removes
any distinction between data sources inside or outside of vSphere, and your extension components
can access multiple data sources in a single call.

n The Flex components in your user interface extensions can use the Data Access Manager interface
to access the new data. The Data Access Manager provides a consistent data access model
throughout the component, easing maintenance and improving code consistency and re-use.

vSphere Web Client SDK Documentation

VMware, Inc. 159

n Centralizing data access through the Data Service lets your extension components take advantage of
services such as logging and error handling.

Designing a Data Service Adapter
To create a Data Service Adapter, you must create a Java service that implements one of the adapter
interfaces published by the Data Service. The Data Service publishes interfaces for Property Provider
Adapters and Data Provider Adapters. The type of Data Service Adapter you must create depends on the
information you want to make available through the Data Service.

Property Provider Adapters
You create a Property Provider Adapter to allow the Data Service to access new properties for existing
vSphere objects, such as virtual machines or hosts. For example, your vSphere environment might
contain custom virtual machines or hosts that provide extra properties not normally available through the
Data Service. You can create a Property Provider Adapter to extend the Data Service to fetch these
additional properties.

Data Provider Adapters
You can use a Data Provider Adapter to extend the Data Service to fetch data that is not associated with
an existing vSphere object. Typically, you create a Data Provider Adapter for one of the following
purposes.

n To retrieve information about a new type of object that you have added to the vSphere environment

n To retrieve information from a source outside the vSphere environment

For example, you might create a Data Provider Adapter to handle queries for a new type of vSphere
object called Chassis. You might also use a Data Provider Adapter to display data in the
vSphere Web Client or the vSphere Client from an external Web source separate from vCenter Server.

Implementing an Adapter
To implement one of the adapter interfaces, your Java service must import the
com.vmware.vise.data.query package.

After you create the adapter service, you must add the adapter service to the Virgo Server framework and
register the adapter with the Data Service. You register an adapter by using the
DataServiceExtensionRegistry service, typically within your adapter constructor method. See
Registering a Property Provider Adapter and Registering a Data Provider Adapter.

The registration process declares what types of objects and properties the Data Service Adapter can
provide. When the Data Service receives a query for one of the registered object or property types, the
Data Service routes the query to the proper Data Service Adapter.

vSphere Web Client SDK Documentation

VMware, Inc. 160

Processing Data Service Queries
Data Service queries are passed to your Data Service Adapter through the
com.vmware.data.query.RequestSpec object parameter.

A RequestSpec object consists of an array of objects of type com.vmware.data.query.QuerySpec,
each of which represents an individual query. Each QuerySpec object defines the query target, the query
constraints, and the expected formatting for the query results.

Query Target

A query target is a resource type for which your getData() method must retrieve properties. A
QuerySpec can specify a number of targets within its ResourceSpec, by including an array of objects of
type com.vmware.data.query.PropertySpec. Each target type is represented as a string in the field
ResourceSpec.PropertySpec[x].type.

Your getData() method can determine what information it must retrieve by using the values in the
PropertySpec objects. If the target is a VMware managed object, the value of the string is the name of
the managed object type. For custom objects, see Resolving a Custom Target Object.

Handling Constraints

Within the QuerySpec object, the query constraints are represented as an object of type
com.vmware.data.query.Constraint. A query can specify the following types of constraints, each of
which is a subclass of the base Constraint class.

n ObjectIdentityConstraint - Queries based on this constraint retrieve the properties of a known
target object. For example, a query might retrieve the powered-on state of a given virtual machine.
The object identifier can be a managed object type or any custom type that implements the
IResourceReference interface. The identifier in this constraint includes the server GUID.

n PropertyConstraint - Queries based on this constraint retrieve all objects with a given property
value. For example, a query might retrieve all virtual machine objects with a power state of on. This
constraint accepts the property name and comparator as strings, and the property value as an
Object. This constraint is not bound to a specific server, and can be used to retrieve results from all
vCenter Servers known to the client.

n RelationalConstraint - Queries based on this constraint retrieve all objects that match the
specified relationship with a given object. For example, a query might retrieve all virtual machine
objects related to a given host object. The identifier in this constraint includes the server GUID.

n CompositeConstraint - Composite queries allow the combination of multiple constraints using the
and or or operator, passed as a string. The combined subconstraints in CompositeConstraint are
contained in an array of Constraint objects.

When processing constraints, a best practice is to read the entire set of constraints and then determine
the most efficient processing order. For example, you can process relational constraints first to retrieve a
smaller number of objects that meet any included property constraints.

vSphere Web Client SDK Documentation

VMware, Inc. 161

Specifying Result Sets

In the QuerySpec object, the expected formatting for the query results are included in an object of type
com.vmware.data.query.ResultSpec. The properties of the ResultSpec object specify a maximum
number of results for the query to return, provide an offset into the returned results, and set ordering for
the returned results. Your getData() method must use the values of the ResultSpec properties to
format the information it has retrieved.

Note When a Data Service query requests a vSphere data object as a whole, rather than its properties,
the response contains the data object in an unsupported format that VMware user interface elements
understand. If your provider needs to use the Data Service to request a data object on behalf of a client,
your provider should copy the data object from its query results into the result set that your provider is
building in response to the client, without doing any kind of processing on the data object portion of the
results.

Property Provider Adapters
Queries to a Property Provider Adapter accept one or more specific vSphere objects, and return one or
more properties for those objects. A Property Provider Adapter registers with the Data Service to
advertise which types of properties it can return. When the Data Service receives a query for one of the
registered property types, the Data Service routes the query to the appropriate Property Provider Adapter
for processing.

Note You may not register a provider for an existing VMware property or object type. For example, if
your solution needs to identify a host by an alternate name, you may create an adapter to implement a
property such as alt_name, but it may not modify the original name property.

PropertyProviderAdapter Interface

A Property Provider Adapter must implement the PropertyProviderAdapter interface of the
com.vmware.vise.data.query package. The PropertyProviderAdapter interface publishes a single
method named getProperties(). Your Property Provider Adapter service must provide an
implementation of this method. The Data Service calls the getProperties() method of your adapter in
response to an appropriate query for the properties your adapter is registered to provide.

The method implementation in your service must accept as its parameter an object of type
com.vmware.vise.data.query.PropertyRequestSpec, and must return an object of type
com.vmware.vise.data.query.ResultSet.

public ResultSet getProperties(PropertyRequestSpec propertyRequest)

vSphere Web Client SDK Documentation

VMware, Inc. 162

Your service implementation of the getProperties() method can retrieve and format data in any way
you choose. However, your implementation must return the results as a ResultSet object. You use the
PropertyRequestSpec object to obtain the query list of target vSphere objects and desired properties.
The PropertyRequestSpec object contains an objects array and a properties array, which respectively
contain the target vSphere objects and requested properties.

For additional information on ResultSet, PropertyRequestSpec, and other features in the
com.vmware.vise.data.query package, see the Java API reference included in the SDK.

Registering a Property Provider Adapter
You must register your Property Provider Adapter for the adapter to work with the Data Service. You
register your Property Provider Adapter with the Data Service by using the
DataServiceExtensionRegistry service. The DataServiceExtensionRegistry service contains a
method named registerDataAdapter() that you must call to register your Property Provider Adapter.

A best practice for registering your adapter is to pass DataServiceExtensionRegistry as a parameter
to your Property Provider Adapter class constructor, and call registerDataAdapter() from that
constructor.

Example: Property Provider Adapter
The following example shows a Property Provider Adapter class. The class constructor method registers
the adapter with the Data Service.

The class constructor method MyAdapter() constructs an array of property types that the adapter can
supply to the Data Service in the array named providerTypes. The constructor then calls the Data
Service Extension Registry method named registerDataAdapter to register the Property Provider
Adapter with the Data Service. The Data Service calls the override method getProperties() when the
Data Service receives a query for the kinds of properties that were specified at registration. The
getProperties() method must retrieve the necessary properties, format them as a ResultSet object,
and return that ResultSet.

package com.myAdapter.PropertyProvider;

import com.vmware.vise.data.query;

import com.vmware.vise.data.query.PropertyProviderAdapter;

import com.vmware.vise.data.query.ResultSet;

import com.vmware.vise.data.query.type;

public class MyAdapter implements PropertyProviderAdapter {

 public MyAdapter(DataServiceExtensionRegistry extensionRegistry) {

 TypeInfo vmTypeInfo = new TypeInfo();

 vmTypeInfo.type = "VirtualMachine";

 vmTypeInfo.properties = new String[] { "myVMdata" };

 TypeInfo[] providerTypes = new TypeInfo[] {vmTypeInfo};

 extensionRegistry.registerDataAdapter(this, providerTypes);

 }

vSphere Web Client SDK Documentation

VMware, Inc. 163

 @Override

 public ResultSet getProperties(PropertyRequestSpec propertyRequest) {

 // Logic to retrieve properties and return as result set

 ...

 }

}

Data Provider Adapters
You can use a Data Provider Adapter to retrieve almost any data, including data agnostic to vSphere,
provided that you can format it as a set of objects and related properties.

A Data Provider Adapter is responsible for all aspects of data retrieval, including parsing a query,
computing the results of access operations, finding the matching objects or properties, and formatting
results as responses compatible with the Data Service.

Typically, you use a Data Provider Adapter to retrieve data on custom objects that you added to your
vSphere environment. The specific implementation of the Data Provider Adapter’s data access depends
on the data source for your custom object. Your Data Provider Adapter might query a database for
configuration data, or retrieve operational data directly from a particular device.

Note You may not register a provider for an existing VMware property or object type. For example, if
your solution needs to identify a host by an alternate name, you may create an adapter to implement a
property such as alt_name, but it may not modify the original name property.

When designing a Data Provider Adapter, consider the following constraints:

n You must be able to represent the external data by using the same object and property model as the
Data Service.

n The Java service that you create to act as the Data Provider Adapter must perform all necessary data
fetching operations from your remote data source.

n The service you create must process Data Service queries and return Data Service result sets.

n In general, you should not use a Data Provider Adapter to add properties to an existing resource. if
you register a Data Provider Adapter to service a request for any properties of the resource, your
provider must be able to provide all properties for the resource. A best practice is to use a Property
Provider Adapter to add properties to an existing resource.

DataProviderAdapter Interface

A Data Provider Adapter must implement the DataProviderAdapter interface in the
com.vmware.vise.data.query Java SDK package.

The DataProviderAdapter interface publishes a single method named getData(). Your Data Provider
Adapter service must provide an implementation of this method. The Data Service calls the getData()
method of your adapter in response to the queries your adapter is registered to process.

vSphere Web Client SDK Documentation

VMware, Inc. 164

Your implementation of the getData() method must accept an object of type
com.vmware.vise.data.query.RequestSpec as a parameter, and must return an object of type
com.vmware.vise.data.query.Response.

public Response getData(RequestSpec request)

The RequestSpec object parameter to the getData() method contains an array of Data Service query
objects. Each query contains a target object and one or more constraints that define the information that
the client requests, as well as the expected format for results.

Your getData() method determines what information it must fetch by processing each Data Service
query and handling the included constraints. The getData() method must then retrieve that information,
through whatever means your data source provides, such as a database query or a remote device
method.

Your getData() method must format the retrieved information as a specific result type for each query,
and then return those results as an array, packaged in a Response object.

Resolving a Custom Target Object
A custom target object for a query is identified by a Uniform Resource Identifiers (URI) string, which is a
unique identifier for a specific custom object type. In your Data Provider Adapter, you must resolve the
URI for a query target object to the correct custom object type.

Implementing a Resource Type Resolver

A best practice is to use a Resource Type Resolver to resolve a URI to the correct custom object type. To
use a Resource Type Resolver, you must create a Java class that implements the interface
com.vmware.vise.data.uri.ResourceTypeResolver.

The class you create to implement ResourceTypeResolver must support the following methods.

n String getResourceType(URI uri) - The getResourceType() method must parse a URI and
return a String containing the type of custom object to which the URI pertains. For example, for a URI
that referred to a custom Chassis object, the getResourceType() method must return the String
samples:Chassis.

n String getServerGuid(URI uri) - The getServerGuid() method must parse a URI and return a
String containing the server global unique identifier for the URI target object. For example, for the URI
string urn:cr:samples:Chassis:server1/ch-2, the getServerGuid() method must return the
string server1.

Registering a Resource Type Resolver

To use your Resource Type Resolver, you must register the resolver with the Data Service. You typically
register the Resource Type Resolver in your Data Provider Adapter class constructor by using the
Resource Type Resolver Registry service, an OSGi service included within the service layer of the
vSphere Web Client and vSphere Client. You must use the Spring framework to pass the Resource Type
Resolver Registry OSGi service as an argument to your class constructor method. See Passing
Arguments to Your Class Constructor.

vSphere Web Client SDK Documentation

VMware, Inc. 165

Data Provider Adapter Example shows an example of how to register a Resource Type Resolver.

Registering a Data Provider Adapter
You must register your Data Provider Adapter for the adapter to work with the Data Service. You can
register an adapter implicitly by declaring the Java service as an OSGi bundle, or you can register an
adapter explicitly by using the Data Service Extension Registry service.

Registering Implicitly

You can register your Data Provider Adapter implicitly when you add the adapter to the Virgo server
framework. To use implicit registration, you must declare the Java service that implements your Data
Provider Adapter as an OSGi bundle when you add the service to the Virgo server framework. The
vSphere Web Client and the vSphere Client detect new OSGi bundles as they are added and register the
Data Provider Adapters with the Data Service. You must also annotate the adapter class with the object
types that the adapter supports.

Declaring the Service as an OSGi Bundle

To declare the service as an OSGi bundle, you must define Java service of your adapter as a Java Bean
in the bundle-context.xml file. You can find the bundle-context.xml file in the
src/main/resources/META-INF/spring folder of your plug-in module.

To define the Java Bean, you must add the following XML element to the bundle-context.xml file.

<bean name="MyDataProviderImpl" class="com.example.MyDataProviderAdapter"> </bean>

The name attribute is an identifier that you choose for the Java Bean. You must set the value of the class
attribute to the fully qualified class name of the Java class you have created that implements the
DataProviderAdapter interface.

After you define your Data Provider Adapter as a Java Bean, you must modify the bundle-context-
osgi.xml file to include the Java Bean as an OSGi service. The bundle-context-osgi.xml file is in the
src/main/resources/META-INF/spring folder of your plug-in module.

You must add the following XML element to the bundle-context-osgi.xml file.

<osgi:service id="MyDataProvider" ref="MyDataProviderImpl"

 interface="com.vmware.vise.data.query.DataProviderAdapter" />

The id attribute is an identifier that you choose for the Data Provider Adapter. You must set the value of
the ref attribute to the same value as the name attribute that you defined when declaring your Java Bean.
The interface attribute must be set to the fully qualified class name of the DataProviderAdapter
interface.

You must update the src/main/resources/META-INF/MANIFEST.MF file to reflect any Java packages
from the SDK that your Data Provider Adapter imports. You add the imported packages to the Import-
Package manifest header of the MANIFEST.MF file.

vSphere Web Client SDK Documentation

VMware, Inc. 166

In Data Provider Adapter Example, the example Data Provider Adapter imports the packages
com.vmware.vise.data.uri and com.vmware.data.query. The packages are listed by using the
Import-Package OSGi manifest header in the MANIFEST.MF file.

Import-Package: org.apache.commons.logging,

com.vmware.vise.data,

com.vmware.vise.data.query,

com.vmware.vise.data.uri

Annotating the Adapter Class

You must annotate your Data Provider Adapter class with the object types for which the adapter
processes queries. The vSphere Web Client and the vSphere Client use these annotations to route
queries for the specific types to the correct adapters. You use the @type annotation to define the vSphere
object type for which the adapter processes queries.

For example, if you have a custom object of type WhatsIt, you annotate the class in the following way.

@type("samples:WhatsIt") // declares the supported object types

public class MyAdapter implements DataProviderAdapter {

...

Passing Arguments to Your Class Constructor

Most Data Provider Adapters use other OSGi services that the SDK provides. These services include the
base Data Service, the Resource Type Resolver Registry, and the vSphere Object Reference Service.
You can pass these OSGi services to your Data Provider Adapter as arguments to the Data Provider
Adapter class constructor method.

All Data Provider Adapters can include the Data Service. To include the Data Service as an argument to
your Data Provider Adapter class constructor, you add the following element to the bundle-context-
osgi.xml file of your service.

<osgi:reference id="dataService" interface="com.vmware.vise.data.query.DataService" />

Note Making Data Service queries from within a Data Service provider can impact the performance of
your provider. A best practice is to use the vSphere Web Services API to fetch data from vCenter Server,
because it is more efficient than Data Services.

If your Data Provider Adapter handles queries for multiple custom object types, you must include the
Resource Type Resolver Registry OSGi service and register a Resource Type Resolver. To include the
Resource Type Resolver Registry OSGi service as an argument to your Data Provider Adapter class
constructor, you add the following element to the bundle-context-osgi.xml file of your service.

<osgi:reference id="uriRefTypeAdapter"

interface="com.vmware.vise.data.uri.ResourceTypeResolverRegistry" />

vSphere Web Client SDK Documentation

VMware, Inc. 167

If your Data Provider Adapter handles queries for built-in vSphere object types, such as Hosts or Virtual
Machines, you can include the vSphere Object Reference Service. To pass the vSphere Object
Reference Service as an argument to your Data Provider Adapter class constructor, you add the following
element to the bundle-context-osgi.xml file of your service.

<osgi:reference id="vimObjectReferenceService"

interface="com.vmware.vise.vim.data.VimObjectReferenceService" />

Your Data Provider Adapter can use the User Session Service to get information about the current user
session. To pass the User Session Service as an argument to your Data Provider Adapter class
constructor, you add the following element to the bundle-context-osgi.xml file of your service.

<osgi: reference id="userSessionService" interface="com.vmware.vise.usersession.UserSessionService" />

If you pass OSGi services to your Data Provider Adapter class constructor, you must include those
constructor arguments when you declare your Data Provider Adapter as a Java Bean in the bundle-
context.xml file. See Declaring the Service as an OSGi Bundle.

For each service your Data Provider Adapter includes, you must add a <constructor-arg> element to
the Bean definition of your adapter. In each <constructor-arg> element, you set the ref attribute to the
same value as the id attribute in the <osgi:reference> element in the bundle-context-osgi.xml file.

If your Data Provider Adapter uses the Data Service, vSphere Object Reference Service, Resource Type
Resolver Registry, and User Session Service, the Bean definition might appear as follows.

<bean name="MyDataProviderImpl" class="com.example.MyDataProviderAdapter">

 <constructor-arg ref="dataService"/>

 <constructor-arg ref="uriRefTypeAdapter"/>

 <constructor-arg ref="vimObjectReferenceService"/>

 <constructor-arg ref="userSessionService"/>

</bean>

Registering Explicitly

You can register your Data Provider Adapter with the Data Service by using the
DataServiceExtensionRegistry service. DataServiceExtensionRegistry contains a
registerDataAdapter() method that you must call to register your Data Provider Adapter.

A common way to register your adapter is to pass DataServiceExtensionRegistry as a parameter to
your Data Provider Adapter class constructor, and call registerDataAdapter() from within that
constructor.

vSphere Web Client SDK Documentation

VMware, Inc. 168

Data Provider Adapter Example
The following example presents an example of a Data Provider Adapter class that supports hypothetical
WhatsIt objects. In the example, the class constructor method initializes the class member variables for
the Data Service and registers a Resource Type Resolver. The example assumes that the Data Provider
Adapter is registered implicitly by registering the service as an OSGi bundle. The Data Service and
Resource Type Resolver Registry services are passed as arguments to the class constructor.

As a best practice, you can initialize the other services that your Data Provider Adapter requires in your
Data Provider Adapter class constructor. These might include the Data Service, the Resource Type
Resolver Registry if your adapter handles multiple custom object types, and the vSphere Object
Reference Service if your adapter requires data from regular vSphere objects.

For more complete examples of Data Provider Adapters, see the sample extensions included in the SDK.

Example: Example Data Provider Adapter Class

The getData() method is called by the Data Service when it receives a query for one of the objects or
properties specified at registration. In the getData() method, your Data Provider Adapter must parse the
query, compute the results, and return that result data as a Response object. For a more complete
example, see the ChassisDataAdapter class in the SDK.

package com.MyAdapter.DataProvider;

import java.net.URI;

import com.vmware.vise.data.uri.ResourceTypeResolverRegistry;

import com.vmware.vise.data.query.DataProviderAdapter;

import com.vmware.vise.data.query.QuerySpec;

import com.vmware.vise.data.query.RequestSpec;

import com.vmware.vise.data.query.Response;

import com.vmware.vise.data.query.type;

@type("samples:WhatsIt") // type that the adapter supports

public class MyAdapter implements DataProviderAdapter {

 private final DataService _dataService;

 // Resource resolver, used to resolve the URIs of objects serviced by this adapter

 private static final ModelObjectUriResolver RESOURCE_RESOLVER = new ModelObjectUriResolver();

 // constructor method

 public MyAdapter(DataService dataService,

 ResourceTypeResolverRegistry typeResolverRegistry)

 {

 if (dataService == null || typeResolverRegistry == null) {

 throw new IllegalArgumentException("MyAdapter constructor arguments must be non-null.");

 }

 _dataService = dataService;

 try {

 // Register the Resource Type resolver for multiple custom object types

vSphere Web Client SDK Documentation

VMware, Inc. 169

 typeResolverRegistry.registerSchemeResolver(ModelObjectUriResolver.SCHEME,

 RESOURCE_RESOLVER);

 } catch (UnsupportedOperationException e) {

 _logger.warn("ModelObjectUriResolver registration failed.", e);

 }

 }

 @Override

 // All query requests for the types supported by this adapter are routed here by the vSphere

 // Web Client Data Service; this method is the starting point for processing constraints,

 // discovering objects and properties, and returning results

 public Response getData(RequestSpec request) {

 QuerySpec[] querySpecs = request.querySpec;

 List<ResultSet> results = new ArrayList<ResultSet>(querySpecs.length);

 for (QuerySpec qs : querySpecs) {

 // Call your logic for query processing, constraint processing, object discovery:

 ResultSet rs = processQuery(qs);

 results.add(rs);

 }

 Response response = new Response();

 response.resultSet = results.toArray(new ResultSet[]{});

 return response;

 }

}

Creating a Custom Java Service
You can extend the Java service layer with your own Java services.

Typically, you create a Java service if your user interface extensions adds an action to the
vSphere Web Client or the vSphere Client, where the Java service performs the action operation on the
virtual infrastructure. You can also add a Java service to perform a complex calculation, retrieve data from
an external source, or perform other miscellaneous tasks.

To add a Java service, you must provide a Java Archive (JAR) bundle. Inside the JAR bundle, you must
add an XML configuration file that declares all of the Java objects that the service adds to the Virgo server
framework. The Virgo server uses Spring as the application server framework.

Make Java Services Available to the UI Components in the
vSphere Web Client and the vSphere Client
To make a custom Java service available to your extension components in the vSphere Web Client and
the vSphere Client, complete the following tasks.

Procedure

1 Create a Java interface for the service.

2 Create a Java class that implements the interface in Step 1.

vSphere Web Client SDK Documentation

VMware, Inc. 170

3 Add the service to the Virgo server framework.

You must export and expose the service to the framework by adding it as a bean in the Spring
configuration Virgo server.

4 Import the service where your extension references it.

n For Flex-based extensions, import the service into the user interface plug-in module that contains
your Flex components.

n For HTML-based extensions, import the service in the controller module that services your
extension data requests.

5 Establish a communication between your service and the user interface layer.

n For Flex-based extensions, use ActionScript to create a proxy class in your Flex component. The
proxy class is used to communicate between the user interface plug-in module and the service.

n HTML-based extensions access the service by using a REST API that communicates with the
controller module on the Virgo server.

Creating the Java Interface and Classes
To integrate with the Virgo server Spring framework, the Java service you create must provide separate
interface and implementation classes.

The following example shows a basic interface class and an implementation class.

package com.vmware.myService;

public interface MyService {

 String echo (String message);

}

public class MyServiceImpl implements MyService {

 public String echo (String message) {

 return message;

 }

}

Persisting Data from Your Plug-Ins to the
vCenter Server Appliance and the vCenter Server System
You can store persistently small data files such as configuration changes on the
vCenter Server Appliance and the vCenter Server system.

You can use the default data directory on the vCenter Server Appliance and the vCenter Server on
Windows for storing small files. If the data you want to persist is complex or requires more storage space,
you must use a separate back end server or database.

vSphere Web Client SDK Documentation

VMware, Inc. 171

For more information, you can refer to the GlobalServiceImpl.getGlobalViewDataFolder() method
from the Global View sample. The sample code demonstrates how you can use your Java services to
create folders for storing the data persistently on the vCenter Server Appliance and vCenter Server
instances.

Note Make sure that the directories that you use for storing your data are accessible by the processes
running on the Virgo server.

Packaging and Exposing the Service
To make your Java service available for use with the vSphere Web Client and the vSphere Client, you
must export the service and add it to the Spring configuration on the Virgo server. Spring uses the OSGi
model to share Java libraries.

Exporting the Service
You must locate the /src/main/resources/META-INF/MANIFEST.MF file in your service JAR bundle
and ensure that the Java service package is exported. To export the package, the following line must
appear in the MANIFEST.MF file:

Export-Package: com.vmware.myService

In the example line, com.vmware.myService is the name of the service package you created.

Adding the Service to the Spring Configuration
You add your service to the Spring configuration on the Virgo server by creating a <bean> element in the
Spring configuration file. In the JAR bundle, locate the /src/main/resources/META-
INF/spring/bundle-context.xml file. The file contains a <beans> XML element containing services in
the configuration. Add your service as a new <bean> as shown in the following example.

<bean name="myServiceImpl" class="com.vmware.myService.MyServiceImpl"/>

The name attribute is the name of your service implementation, and the class attribute contains the class
you created that implements the service interface.

You must also expose the service interface as an OSGi bundle in the Spring framework. In the JAR
bundle, locate the /src/main/resources/META-INF/spring/bundle-context-osgi.xml file. This file
also contains a <beans> XML element. Add your service by using the following line.

<osgi:service id="myService" ref="myServiceImpl" interface="com.vmware.myService.MyService"/>

The id attribute is the name of your service, the ref element specifies the service implementation you
added to the bundle-context.xml file, and the interface element contains the class that defines the
service interface.

vSphere Web Client SDK Documentation

VMware, Inc. 172

Importing a Service in a User Interface Plug-In Module
To use a Java service you created and exposed in the service layer, a user interface plug-in module must
import the service. You import the service by updating two metadata configuration files within your user
interface plug-in module Web Archive (WAR) bundle.

In your user interface plug-in module WAR bundle, locate the /war/src/main/webapp/META-
INF/MANIFEST.MF file and add the following lines.

Import-Package: com.vmware.myService

com.vmware.myService is the name of the service package you created.

Specifying Flex-to-Java Service Parameters
If you are adding a Flex extension, you need to specify the parameters for the Flex-to-Java framework. In
the WAR bundle, locate the /war/src/main/webapp/WEB-INF/spring/bundle-context.xml file. This
file specifies the necessary service parameters for the Flex-to-Java framework on the vSphere Web Client
application server. Inside the <beans> element of the bundle-context.xml file, create the service
references as follows.

<flex:message-broker id="myService-ui-broker"

 services-config-path="/WEB-INF/flex/services-config.xml"/>

<osgi:reference id="myService" interface="com.vmware.myService.MyService"/>

<flex:remoting-destination ref="myService" message-broker="myService-ui-broker"/>

The <flex:message broker> and <flex:remoting-destination> elements declare your service as a
destination for Flex remote object invocation.

Creating a Proxy Class with ActionScript
Using a proxy class in your extension Flex component is the recommended way to manage
communication between a custom Java service and your Flex data views. The vSphere Web Client
includes a Flex utility library that includes a base proxy class. You can use this base proxy class to
implement the proxy class that communicates with your service.

For more information about proxy classes and their role in the user interface layer, see Creating Data
View Extensions.

vSphere Web Client SDK Documentation

VMware, Inc. 173

Example: Example ActionScript Proxy Class
The following example presents a sample ActionScript proxy class implementation. The sample proxy
class extends the com.vmware.flexutil.proxies.BaseProxy class that the vSphere Web Client
provides.

package com.vmware.samples.globalview {

 import com.vmware.flexutil.proxies.BaseProxy;

 /**

 * Proxy class for the EchoService java service

 */

 public class EchoServiceProxy extends BaseProxy {

 // Service name matching the flex:remoting-destination declared in

 // main/webapp/WEB-INF/spring/bundle-context.xml

 private static const SERVICE_NAME:String = "myService";

 // channelUri uses the Web-ContextPath define in MANIFEST.MF (globalview-ui)

 // A secure AMF channel is required because vSphere Web Client uses https

 private static const CHANNEL_URI:String =

 ServiceUtil.getDefaultChannelUri(GlobalviewModule.contextPath);

 /**

 * Create a EchoServiceProxy with a secure channel.

 */

 public function EchoServiceProxy() {

 super(SERVICE_NAME, CHANNEL_URI);

 }

 /**

 * Call the "echo" method of the EchoService java service.

 *

 * @param message Single argument to the echo method

 * @param callback Callback in the form <code>function(result:Object,

 * error:Error, callContext:Object)</code>

 * @param context Optional context object passed back with the result

 */

 public function echo(message:String,

 callback:Function = null,

 context:Object = null):void {

 // "echo" takes a single message argument but callService still requires an array.

 callService("echo", [message], callback, context);

 }

 }

}

You must set the Proxy constructor destination argument to the service ID that you imported in your plug-
in module configuration files. The proxy constructor sets the destination parameter to the service ID
myService, as defined in the /war/src/main/webapp/WEB-INF/spring/bundle-context.xml WAR
bundle configuration file.

vSphere Web Client SDK Documentation

VMware, Inc. 174

In the proxy, you can call functions of the Java service by using the callService method. The
callService method is included in the package com.vmware.flexutil.ServiceUtil. The proxy class
uses the callService method to call the echo method in the Java service.

vSphere Web Client SDK Documentation

VMware, Inc. 175

Creating and Deploying Plug-In
Packages 9
In the vSphere Web Client and vSphere Client, you deploy extension solutions using plug-in packages.
Each plug-in package can contain both user interface plug-in modules and service plug-in modules, and
manages the deployment of those modules. The vSphere Web Client and the vSphere Client extensibility
frameworks can perform live hot deployment of the plug-in modules in a package.

This section includes the following topics:

n Plug-In Package Overview

n XML Elements of the Plug-In Package Manifest File

n Plug-Ins Compatibility Matrix

n Deploying a Plug-In Package

Plug-In Package Overview
A plug-in package is a ZIP archive file that contains all of the plug-in modules in your extension solution
along with a package manifest.

The package manifest describes deployment information for each plug-in module using XML metadata.
The vSphere Web Client Extension Manager uses this metadata to install and deploy each plug-in
module in the plug-in package.

To create a plug-in package, you must create a ZIP archive file with the following structure:

n At the root level, add a plugin-package.xml file to the root folder.

n At the root level, add a plugins folder.

n Inside the plugins folder, add one or more WAR files containing the plug-in UI modules.

n Inside the plugins folder, add zero or more JAR files, one for each Java service component created
for your plug-in.

n Inside the plugins folder, add zero or more JAR files, one for each third party Java library used by
your plug-in.

You can use any text or XML editor to create the plugin-package.xml file.

Note Each WAR file or JAR file must contain an OSGi-compliant META-INF/MANIFEST.MF file that
describes the bundle.

VMware, Inc. 176

XML Elements of the Plug-In Package Manifest File
The plug-in package manifest file specifies general information about the plug-in package, the
deployment order for the plug-in modules in the package, and any dependencies for the plug-in package.

XML Elements in the Manifest File
The metadata in the manifest file follows a specific XML schema. The <pluginPackage> root element
encapsulates the entire plug-in package manifest. The <pluginPackage> element can contain the
<dependencies> element and the <bundlesOrder> element.

The following example shows an example of a plugin-package.xml manifest file.

<pluginPackage id = "com.vmware.client.myPackage"

version="1.0.0"

name="My Plugin Name"

description="Demo package version 1"

vendor="VMware"

iconUri="assets/packageIcon.png">

<dependencies>

<pluginPackage id = "com.vmware.vsphere.client" version="6.0.0" />

</dependencies>

<bundlesOrder>

<bundle id="com.mySolution.myDataServicePlugin" />

<bundle id="com.mySolution.myUIViewPlugin" />

<bundle id="com.mySolution.myActionPlugin" />

</bundlesOrder>

</pluginPackage>

<pluginPackage> Element
The <pluginPackage> element is the root element of any plug-in package manifest file. The following
attributes of the <pluginPackage> contain information about the entire package.

Attribute Name Description

id The unique package identifier that you define. A best practice is to use namespace notation, such as
com.myCompany.<PackageName>.

version A dot-separated string containing the package version number, such as 1.0.0.

description A short description of the package.

vendor The name of the package vendor.

iconUri The URI of an icon to represent the package. The location is specified relative to the manifest file.

vSphere Web Client SDK Documentation

VMware, Inc. 177

<dependencies> Element
The <dependencies> element defines any dependencies upon other plug-in packages. In the
<dependencies> element, you specify each specific package dependency with a <pluginPackage>
element. Each <pluginPackage> element in the <dependencies> element must have the following
attributes.

Attribute Name Description

id The unique identifier of the package that your package depends on.

version The version number of the package that your package depends on.

match The version matching policy. Possible values are equal, greaterThan, lessThan, greaterOrEqual, or lessOrEqual.
The match attribute is optional and defaults to greaterOrEqual if omitted.

Important If your vSphere Web Client extension depends on plug-in packages with specific versions
and might not be compatible with later versions of these plug-in packages, make sure that you define
correctly the dependencies by using the match parameter. Otherwise, your plug-in package will not work
and might cause errors in the vSphere Web Client.

For example, you can use the following lines in the manifest file of your plug-in package to define the
minimum and maximum supported versions of the vSphere Web Client:

...

<dependencies>

 <pluginPackage id="com.vmware.vsphere.client" version="5.5.0" match=“greaterOrEqual" />

 <pluginPackage id="com.vmware.vsphere.client" version=“6.0.0" match=“lessThan" />

</dependencies>

...

If your plug-in package is only compatible with a specific version of the vSphere Web Client, you must use
the equal value of the match attribute to specify the version. This ensures that when the
vSphere Web Client is upgraded, your plug-in package will not be deployed, and will not cause any
errors.

<bundlesOrder> Element
The <bundlesOrder> element specifies the order in which locally hosted plug-in modules are deployed to
the vSphere Web Client. If your plug-in package contains both service plug-in modules and user interface
plug-in modules, a best practice is to deploy the service plug-in modules first, because the user interface
plug-in modules might import those services.

vSphere Web Client SDK Documentation

VMware, Inc. 178

You specify each plug-in module using a <bundle> element inside the <bundlesOrder> element. The id
attribute of the <bundle> element contains the unique identifier of the plug-in module. The value of the id
attribute must match the Bundle-SymbolicName specified in the plug-in module MANIFEST.MF file
included in the WAR bundle.

Note Plug-in modules in the package that are not explicitly specified in the <bundlesOrder> list are still
deployed, but in an undefined order.

Plug-Ins Compatibility Matrix
In vSphere 6.5, you can prevent plug-ins that are not compatible with the current version of the
vSphere Client and the vSphere Web Client from deploying in your environment.

You can use the compatibility matrix feature in the following use cases:

n You can mark as incompatible plug-ins that have compatibility issues with the current version of the
vSphere Client or the vSphere Web Client. For example, the plugin-package.xml manifest file
might contain incorrect definitions of the plug-in dependencies. For more information, see
<dependencies> Element.

n You can mark as compatible in your environment, plug-ins that are by default considered as
incompatible for the current version of the vSphere Client or the vSphere Web Client.

n You can blacklist several plug-ins that you suspect are causing issues in your environment and in this
way you can narrow down the list of problematic plug-ins.

To disable and enable plug-ins from deploying on the vSphere Client or the vSphere Web Client, you
must edit the compatibility-matrix.xml configuration file. You can locate the file in one of the
following directories:

Table 9‑1. Location of the compatibility-matrix.xml Configuration File

vSphere Environment Setup vSphere Client vSphere Web Client

vCenter Server for Windows C:\ProgramData\VMware\vCenterServer\cfg\vs

phere-ui

C:\ProgramData\VMware\vCente

rServer\cfg\vsphere-client

vCenter Server Appliance /etc/vmware/vsphere-ui /etc/vmware/vsphere-client

You can define your compatibility rules by inserting a <PluginPackage> element inside the
<pluginsCompatibility> element for each plug-in. The <PluginPackage> element contains the
following attributes:

n id - The ID of the plug-in that you want to prevent from deploying or explicitly declare as compatible
with current version of the vSphere Client or the vSphere Web Client.

n version - The version of the plug-in that you want to prevent from loading.

n status - The rule that you want to be applied for the plug-in. The value of this attribute can be either
incompatible or compatible.

vSphere Web Client SDK Documentation

VMware, Inc. 179

Example: Plug-Ins Compatibility Matrix
The following example of the compatibility-matrix.xml file content demonstrates how you can
control the plug-ins that are deployed on your vSphere Client or vSphere Web Client.

<!--

 This file lets you define a WHITE LIST and a BLACK LIST of plugins to control your own setup.

 It overrides the internal black and white lists that are hard-coded in this release.

-->

<Matrix>

 <pluginsCompatibility>

 <!--

 WHITE LIST:

 Add this to enable all plugins whose plugin-package id is com.acme.example.myplugin:

 <PluginPackage id="com.acme.myplugin" status="compatible"/>

 Or this to specify all versions greater or equal to 2.1.0:

 <PluginPackage id="com.acme.myplugin" version=[2.1.0,] status="compatible"/>

 Or this to enable all plugins starting with com.acme:

 <PluginPackage id="com.acme.*" status="compatible"/>

 -->

 <!--

 BLACK LIST:

 Add this to disable a plugin whose plugin-package id is com.acme.example.myplugin:

 <PluginPackage id="com.acme.myplugin" status="incompatible"/>

 -->

 </pluginsCompatibility>

</Matrix>

Deploying a Plug-In Package
You deploy a plug-in package to the vSphere Web Client by registering the package as an extension on
vCenter Server. When you register your plug-in as an extension on vCenter Server, your plug-in becomes
available to any vSphere Web Client that connects to your vSphere environment.

You must register your plug-in on every vCenter Server where you need to use it. When a
vSphere Web Client connects to a vCenter Server where your plug-in is not registered, the plug-in is not
visible to the client.

When a vSphere Web Client establishes a user session to a vCenter Server instance, the
vSphere Web Client application server queries vCenter Server for a list of all available plug-in packages
that are registered as vCenter Server extensions. Plug-in packages that are not present on the
vSphere Web Client application server are downloaded and installed.

The vSphere Web Client application server can run only one version of each plug-in package. If a plug-in
package is present on the application server, but has an older version number than the registered
vCenter Server extension, the registered vCenter Server extension replaces the older plug-in package.

vSphere Web Client SDK Documentation

VMware, Inc. 180

Deploying a Plug-In Package From a Remote Server
The plug-in package ZIP file that represents a vSphere Web Client extension is typically hosted on a
remote Web server. A vCenter Server extension can reference a remotely hosted plug-in package by
specifying the Web sever URL in the extension definition. If you register such an extension with a
vCenter Server instance, the plug-in package ZIP file is downloaded from the remote URL.

The vSphere Web Client establishes a secure HTTPS connection with the remote Web server that hosts
the plug-in packages. Starting with vSphere 6.0 Update 2, you can configure the TLS protocol versions
for the vCenter Server Service, VMware vSphere Web Client Service, VMware Directory Service, Security
Token Service and Syslog Collector Service. You can choose between the following configurations:

n TLS protocol version 1.2

n TLS protocols versions 1.1 and 1.2

n TLS protocols versions 1.0, 1.1 and 1.2

In vSphere 6.0 Update 2, you have all three TLS protocol versions enabled by default. Note that the TLS
protocol versions that you configure for the vCenter Server Service must be the same as the protocol
versions for all other services.

Note Make sure that the Web server that hosts your vSphere Web Client plug-ins supports the same
TLS protocol versions that are configured for the vSphere services. If this requirement is not met, the
vSphere Web Client fails to download the extension plug-ins.

Register a Plug-In Package as a vCenter Server Extension
To register your plug-in package as an extension with vCenter Server, you must create an Extension
data object and register this data object with the vCenter Server ExtensionManager.

You can create and register an Extension data object in the following ways:

n Use a utility application or script to create the Extension data object programmatically, and register
that data object using the vSphere API. You can use the
ExtensionManager.registerExtension() method to register the data object.

n Use the Managed Object Browser (MOB) application for your vCenter Server system. For more
information about how to use the MOB to register your extension, see the procedure bellow.

Procedure

1 Create the vim.Extension data object in an XML file, and place that file in a file system available to
the vSphere Web Client.

2 In a Web browser, navigate to the Managed Object Browser of your vCenter Server.

https://<vcenter_server_ip_address_or_fqdn>/mob/?moid=ExtensionManager

3 Log in with your vCenter Server credentials.

vSphere Web Client SDK Documentation

VMware, Inc. 181

4 On the ManagedObjectReference:ExtensionManager page, under Methods, click
RegisterExtension.

5 On the void RegisterExtension page, in the text box inside the Value column, enter the XML data
of your vSphere Web Client extension.

6 Click Invoke Method to register the extension.

For an example about how to define your Extension data object, see Creating the vCenter Server
Extension Data Object.

What to do next

Check whether your extension is registered successfully with the vCenter Server instance by using one of
the following approaches:

n In the vSphere Web Client, go to Administration and under Solutions, select Client Plug-Ins and
click Check for New Plug-Ins.

n Log out and log in again to the vSphere Web Client. The vSphere Web Client checks for new plug-ins
for each new user session.

Note If you try to upgrade an existing plug-in with a new version and you do not follow the best
practices and recommendations for developing vSphere Web Client plug-ins, you might need to
restart the vSphere Web Client service to see your plug-in. This additional step is required in the
following two cases:

n The new version of your plug-in has a different plug-in ID.

n The plugin-package.xml manifest file and the vCenter Server extension data object have
different plug-in IDs or versions specified.

For more information about verifying the deployment of your plug-in package, see Verifying Your Plug-In
Package Deployment.

Creating the vCenter Server Extension Data Object
Regardless of the registration method you choose, you must set the properties of the Extension data
object.

You use the following properties to define the Extension data object.

vSphere Web Client SDK Documentation

VMware, Inc. 182

Property
Name Description

<key> The plug-in package ID that you defined in your plug-in package manifest file, plugin-package.xml file.

<client> This property must contain one ExtensionClientInfo data object, with the following properties.

Property Name Description

<version> The dot-separated version number of the plug-in package that is defined in plugin-
package.xml.

<type> Must be set to vsphere-client-serenity.

<url> The location of the plug-in package ZIP file that is accessible on a Web server.

<server> Optional. If the URL uses HTTPS, you must define a <server> property in your extension data
object. The <server> property must contain the SHA1 thumbprint for the server where your
plug-in package ZIP file is stored. For information about the <server> property, see the
following example.

Example: Example vim.Extension XML Definition

The following example shows an example Extension object defined in an XML file.

<extension>

 <description>

 <label>My plugin</label>

 <summary>My first vSphere Client plugin</summary>

 </description>

 <key>com.mycompany.myPlugin.MyPlugin</key>

 <company>VMware</company>

 <version>1.0.0</version>

 <client>

 <version>1.0.0</version>

 <description>

 <label>My plugin</label>

 <summary>My first vSphere Client plugin</summary>

 </description>

 <company>VMWare</company>

 <type>vsphere-client-serenity</type>

 <url>http://a-web-server-path/mypluginPackage.zip</url>

 </client>

</extension>

Using a Secure URL for the Plug-In Location
A best practice is to use a secure URL (HTTPS) for your plug-in package ZIP file location. If you use an
HTTPS URL, you must include a <server> property in your vim.Extension data object. The <server>
property contains the SHA1 thumbprint for the server that corresponds to the URL.

vSphere Web Client SDK Documentation

VMware, Inc. 183

The following example shows an example <server> property.

<extension>

...

 <server>

 <url>https://myhost/helloworld-plugin.zip</url>

 <description>

 <label>Helloworld</label>

 <summary>Helloworld sample plugin</summary>

 </description>

 <company>VMware</company>

 <!-- SHA1 Thumbprint of the server hosting the .zip file -->

 <serverThumbprint>

 3D:E7:9A:85:01:A9:76:DD:AC:5D:83:1C:0E:E0:3C:F6:E6:2F:A9:97

 </serverThumbprint>

 <type>HTTPS</type>

 <adminEmail>your-email</adminEmail>

 </server>

</extension>

Verifying Your Plug-In Package Deployment
Once you register your plug-in package extension, the plug-in is downloaded and deployed on
vSphere Web Client startup. You can verify that the deployment procedure is successful by using the log
files of the Virgo server.

You can verify that your plug-in package is deployed correctly by searching the log file on the
vSphere Web Client Virgo server for your plug-in package ID. If the package is deployed correctly, the
plug-in package ID is included in a message about a successful package deployment.

On startup, the vSphere Web Client caches the downloaded plug-in package in one of the following
directories on the Virgo server.

Table 9‑2. Locations for the Cached Downloaded Plug-In Packages

Virgo Location Cache Location

vCenter Server for Windows C:\ProgramData\VMware\vCenterServer\cfg\vsphere-

client\vc-packages\vsphere-client-serenity\

vCenter Server Appliance /etc/vmware/vsphere-client/vc-packages/vsphere-

client-serenity/

Windows OS %PROGRAMFILES%/VMware/vSphere Web Client/vc-

packages/vsphere-client-serenity/

Mac OS /var/lib/vmware/vsphere-client/vsphere-client/vc-

packages/vsphere-client-serenity/

Note If you want to update the content of a plug-in package, you must register the plug-in with a new
version or remove the plug-in package from the cache.

vSphere Web Client SDK Documentation

VMware, Inc. 184

Unregister a Plug-In Package
You can unregister a plug-in package that you previously registered with a vCenter Server instance.

You can unregister the extension in the following ways:

n Use the vSphere API and invoke the unregisterExtension() method of the ExtensionManager
managed object to unregister programmatically your extension.

n Use the vCenter Managed Object Browser (MOB) interface in your Web browser to delete manually
the extension. For more information about how to use the MOB to unregister your extension, see the
procedure bellow.

Procedure

1 In a Web browser, navigate to the Managed Object Browser of your vCenter Server.

https://<vcenter_server_ip_address_or_fqdn>/mob/?moid=ExtensionManager

2 Log in with your vCenter Server credentials.

3 On the ManagedObjectReference:ExtensionManager page, under Methods, click
UnregisterExtension

4 On the void UnregisterExtension page, in the text box inside the Value column, enter the value
for the key property of the Extension data object of your vSphere Web Client extension.

5 Click Invoke Method to unregister the extension.

Unregistering a plug-in package on vCenter Server does not delete the plug-in package files that are
installed locally on the vSphere Web Client server. The files are not used after you unregister the
package. To remove the files for cleanup purposes, you must delete the plug-in package files manually.

Note In the current release of vSphere, any Java services you added are still active after you unregister
a plug-in package, and the plug-in might still appear in the vSphere Web Client Plug-In Management
view. This behavior is a known issue, and a workaround is to restart the Virgo server.

vSphere Web Client SDK Documentation

VMware, Inc. 185

Sample Plug-Ins Overview 10
The vSphere Web Client and the vSphere Client SDKs provide samples for both Web browser-based
applications. You can use the scripts provided in both SDKs to rebuild and run the samples.

VMware, Inc. 186

HTML Sample Plug-Ins
When you download the vSphere Web Client SDK, you can find the HTML sample plug-ins in the
SDK\vsphere-client-sdk\html-client-sdk\samples directory.

Table 10‑1. HTML Sample Plug-Ins

Name Description

ChassisA Client The ChassisA Client sample demonstrates how you can use extension templates to create
a standard vSphere object workspace for custom objects.

The sample code is provided within the chassisA-html and chassisA-service folders.

The chassisA-html folder contains the UI extensions that add Chassis objects to the
vSphere inventory. The sample uses a custom jQuery UI CSS which is similar to the theme
of the vSphere Web Client. The sample also demonstrates the usage of internationalization
for different locales.

The chassisA-service folder contains the implementation of the DataProviderAdapter
that handles all UI requests about the samples:ChassisA object type.

The ChassisA Client sample extends the following extension points:
n vise.navigator.nodespecs

n ${namespace}.gettingStartedViews

n ${namespace}.summaryViews

n ${namespace}.monitorViews

n ${namespace}.manageViews

n ${namespace}.list.columns

n vise.actions.sets

n vsphere.core.menus.solutionMenus

n vsphere.core.objectTypes

n vmware.prioritization.listActions

n vise.inventory.representationspecs

n vsphere.core.host.summarySectionViews

The sample uses the following extension templates:
n vsphere.core.inventorylist.objectCollectionTemplate

n vsphere.core.inventory.objectViewTemplate

ChassisB Client The ChassisB Client sample demonstrates how you can use extension templates to add
custom Rack objects, relations between Chassis and Rack objects, and also between
Chassis and vSphere hosts.

The sample code is provided within the chassisB-html and chassisB-service folders.

The chassisB-html folder contains the UI extensions that add the Chassis and Rack
objects to the vSphere inventory. The sample uses a custom jQuery UI CSS which you can
modify if you want.

The chassisB-service folder contains the implementation of the DataProviderAdapter
interface to define the ChassisRackVSphereDataAdapter to the Data Service. The data
adapter handles all UI requests about the HostSystem,samples:Rack, and
samples:ChassisB object types. The mvc folder contains controllers that handle the HTML
requests and dispatch actions and queries.

The ChassisB Client sample extends the following extension points:
n vise.navigator.nodespecs

n ${namespace}.summaryViews

vSphere Web Client SDK Documentation

VMware, Inc. 187

Table 10‑1. HTML Sample Plug-Ins (Continued)

Name Description

n ${namespace}.monitorViews

n ${namespace}.manageViews

n ${namespace}.list.columns

n vise.relateditems.specs

n vise.actions.sets

n vsphere.core.objectTypes

n vmware.prioritization.listActions

n vmware.prioritization.actions

n vise.inventory.representationspecs

n vsphere.core.menus.solutionMenus

The sample uses the following extension templates:
n vsphere.core.inventory.objectViewTemplate

n vsphere.core.inventorylist.objectCollectionTemplate

vSphere Web Client SDK Documentation

VMware, Inc. 188

Table 10‑1. HTML Sample Plug-Ins (Continued)

Name Description

Global View The Global View sample demonstrates how to add global views to the vSphere Client and
how to make Java service calls. The sample also shows how you can store data in a local
file and how to use the vCenter Server Selector functionality.

The sample code is provided within the globalview-html and the globalview-html-
service folders.

The globalview-html folder contains the global views extensions created by using the
jQuery JavaScript library.

The globalview-html-service folder contains the GlobalService and EchoService
interfaces and their implementations. The sample shows how you can expose OSGi
services and make them available to other bundles on the Virgo server.

The Global View sample extends the following extension points:
n vise.global.views

n vise.home.shortcuts

n vise.navigator.nodespecs

vSphere WSSDK The vSphere WSSDK sample demonstrates how to use the vSphere Web Services SDK to
access the vSphere management objects which may not be accessible through the Data
Service. The sample shows how to create hybrid plug-ins that use the HTML views to open
specific Flex views in the vSphere Web Client.

The sample code id provided within the vsphere-wssdk-html and vsphere-wssdk-
service folders.

The vsphere-wssdk-html folder contains the HTML and Flex Summary portlets and
Monitor views extensions for both virtual machines and hosts. The Monitor view of the host
also demonstrates how to display data from different objects in the same view .

The vsphere-wssdk-service folder contains the DataProviderImpl property provider
adapter that uses the vSphere Web Services SDK to access data from the vCenter Server
system. The sample also demonstrates how to handle multiple properties and build complex
queries.

The vSphere WSSDK sample extends the following extension points:
n vsphere.core.${objectType}.monitorViews

n vsphere.core.${objectType}.monitorViews.html

n vsphere.core.${objectType}.summarySectionViews

n vsphere.core.${objectType}.summarySectionViews.html

n vsphere.core.menus.solutionMenus

n vise.actions.sets

vSphere Web Client SDK Documentation

VMware, Inc. 189

Best Practices for Developing
Extensions for the
vSphere Web Client 11
You can improve your extension solutions by understanding the process of extending the user interface
layer and service layer of the vSphere Web Client, and packaging and deploying your extension solutions.
Follow best practices to ensure optimal performance and scalability, and to improve the security of your
vSphere Web Client extensions.

This section includes the following topics:

n Best Practices for Creating Plug-In Packages

n Best Practices for Plug-In Modules Implementation

n Best Practices for Developing HTML-Based Extensions

n Best Practices for Extending the User Interface Layer

n Best Practices for Extending the Service Layer

n Best Practices for Deploying and Testing Your vSphere Web Client Extensions

Best Practices for Creating Plug-In Packages
To meet the requirements of your virtual environment, you must extend the capabilities of the
vSphere Web Client by creating plug-in modules. Depending on your extension solution, you can extend
the user interface layer and the service layer of the vSphere Web Client.

Incorrect structure of the plug-in package leads to deployment errors. To avoid these errors, consider the
following best practices when creating your plug-in packages.

n Use the generation tools provided with the vSphere Web Client SDK to develop your
vSphere Web Client extensions and create plug-in packages.

n Verify that the structure of the plug-in package is as follows:
n plugin-package.xml - The file describes general information about the plug-in package, the

deployment order of the plug-in modules, and any dependencies upon other plug-in packages.

n plugins folder - The folder contains one or more JAR and WAR files that represent the user
interface and Java services components. Limit the number of third-party libraries that you add to
this folder.

VMware, Inc. 190

n To avoid installation errors, make sure that all third-party libraries that you use are added inside the
JAR and WAR files of the plug-in package and not inside the plugins folder. If you add third-party
libraries to the plugins folder, the bundles must be OSGi-compliant. Because the
vSphere Web Client resides on the Virgo Web Server, which is based on the SpringSource dm Server
and is built on top of the Equinox OSGi framework, third-party libraries must be packaged as OSGi
bundles. OSGi bundles must include an OSGi manifest file that contains correct and thorough OSGi
metadata.

n To avoid deployment errors generated by the Virgo server, make sure that you do not include third-
party libraries that are already available on the server. You can navigate to the vsphere-client-
sdk/server/repository/usr and vsphere-client-sdk/server/pickup directories to view the
available libraries.

n If your plug-in package contains both user interface and Java service components, place the Java
service components before the user interface components in the plug-in package manifest file. Use
the <bundlesOrder> element to specify the order in which the bundles are deployed to the
vSphere Web Client.

n For best performance, when designing your vSphere Web Client extension, limit the number of files
included in the plugins folder of your plug-in package. Ideally, your plug-in package must contain
only one WAR file, which contains the user interface plug-in modules, and one JAR file, which
contains the Java service plug-in modules. Fragmenting your code into many bundles might
significantly increase the deployment time and memory consumption.

n To avoid compatibility issues in case your plug-in package depends on other plug-in packages with
specific versions, make sure that you define correctly the plug-in dependencies by using the match
parameter of the dependencies element in your plugin-package.xml manifest file. You must
specify not only the minimum required plug-in package version compatible with your plug-in, but also
the maximum one. Otherwise, after the vSphere Web Client deploys your plug-in package, the plug-in
will not work because the plug-in dependencies cannot be resolved and may cause errors in the
vSphere Web Client.

For example, you can use the following lines in the manifest file of your plug-in package to define the
minimum and maximum supported versions of the vSphere Web Client:

 ...

 <dependencies>

 <pluginPackage id="com.vmware.vsphere.client" version="5.5.0" match=“greaterOrEqual" />

 <pluginPackage id="com.vmware.vsphere.client" version=“6.0.0" match=“lessThan" />

 </dependencies>

 ...

Note If your plug-in package is only compatible with a specific version of the vSphere Web Client,
you must use the equal value of the match attribute to specify the version. In this way, you ensure
that when you upgrade the vSphere Web Client, your plug-in package is not deployed, and does not
cause any errors.

vSphere Web Client SDK Documentation

VMware, Inc. 191

n To avoid deployment failures, you must create a ZIP archive file for your vSphere Web Client
extension. Moreover, if you want to complete successfully the certification for your
vSphere Web Client plug-in, know that the plug-in signing tool signs only plug-ins that have the ZIP
file format.

Best Practices for Plug-In Modules Implementation
Following general design and development recommendations is the first step in creating high-
performance and secure vSphere Web Client extensions. You can then move on to special areas, such
as developing HTML-based extension solutions.

n When you develop and test your extension solution, make sure that the plug-in package installs and
functions properly on both the vCenter Server Appliance and the vCenter Server running on
Windows. Your plug-in package must be OS agnostic. You must avoid reading and writing on the file
system from the vSphere Web Client service layer. In case you need to temporarily store files, you
must use the Tomcat temp directory. To achieve platform independent read/write file operations, use
the Java APIs for handling file paths.

n To provide a consistent end-user experience in case your vSphere Web Client extension migrates
server workloads, make sure that your extension migrates only to vSphere environments that are
hosted by a VMware vCloud Air Network Service Provider. For more information about the available
service providers, see http://vcloudproviders.vmware.com/find-a-provider.

n When you create a Flex-based extension for the vSphere Web Client, you must use the Data Access
Manager API. The Data Access Manager communicates with the Data Service on the service layer.
The Data Service acts as the intermediary between the user interface layer and the objects in the
vSphere environment.

Using the Data Access Manager library has the following advantages:

n Provides a unified data channel

n Enables sending multiple queries in a batch request

n Provides a simple event-based API

n Enables receiving of aggregated responses to data requests

n Provides mechanisms for extending the existing vSphere managed objects and creating custom
ones.

n To achieve greater security and scalability, you must use the Java service layer for requesting data
from the vSphere environment. The communication between the Flex GUI objects and the Java
service layer is achieved by using the BlazeDS Java remoting technology and creating secure AMF
channels. This approach eliminates security breaches to data sent to and received from the vSphere
environment.

n Avoid using deprecated or private APIs and extension points. Using deprecated APIs in your
vSphere Web Client extensions will prevent them from working with future version of the
vSphere Web Client.

vSphere Web Client SDK Documentation

VMware, Inc. 192

http://vcloudproviders.vmware.com/find-a-provider

n To prevent performance problems in the vSphere Web Client and vCenter Server instances, use your
Java services only for communication between the vCenter Server instances, or other remote data
sources, and the user interface layer. You must not create thread pools in your Java services.
Consider implementing any complex business logic in your own backend servers.

n Avoid caching data in the Java service layer. Make sure that the vSphere Web Client remains
stateless. To ensure the scalability of the vSphere Web Client, you must use your backend server to
cache data.

n Use the data refresh mechanisms, which are provided by the Data Access Manager, to limit the time
for refreshing the data of your view objects. For further information about how to use the Data Access
Manager refresh mechanism, see Data Refresh and Data Update Specifications.

n To increase the security of your extensions, you must limit the access to your plug-ins to specific
users. Use the plugin.xml extension definition to control the user access to your extensions based
on their privileges. For example, you can make your extensions available only to users who have
privileges to create or delete Datastore objects. For more information about how to filter extensions,
see Filtering Extensions.

n To achieve optimal scalability and performance for your vSphere Web Client plug-ins, your Java
services must not require any significant heap allocation.

Best Practices for Developing HTML-Based Extensions
You can use the vSphere Web Client SDK and the vSphere Client development kit to create HTML-based
extensions.

Starting with vSphere 5.5 Update 1, an HTML Bridge infrastructure is added to the vSphere Web Client
that provides support for HTML-based extensions. The vSphere Web Client SDK provides APIs, tools,
and samples that can help you extend the vSphere Web Client.

Starting with vSphere 6.5, you can use the vSphere Client to connect to vCenter Server systems and
manage vSphere inventory objects. The vSphere Client development kit is provided to developers that
want to create HTML5-based extensions for both Web browser applications. For backward compatibility,
the vSphere Client development kit contains the same APIs as the HTML Bridge.

Follow these best practices when you create your HTML-based solutions.

n Make sure that your HTML and JavaScript code is fully functional on different Web browsers and
provides the same user experience.

n You must not send calls to the topmost browser window window.top or to the parent object of your
current window window.parent.

n You must include in your HTML-based extensions the latest version of the web-platform.js
JavaScript file provided with the vSphere Web Client SDK and added to each extension during
generation. If you use an older version of this file, your HTML-based extensions might not work in the
vSphere Web Client and might cause other HTML-based extensions to stop working.

vSphere Web Client SDK Documentation

VMware, Inc. 193

n To minimize future maintenance work and prevent incompatibility problems, do not change the web-
platform.js JavaScript file on your own initiative. The file depends on the vSphere Web Client
version and is updated with each major release of the SDK. If the file changes between major
releases, you must see whether the release notes contain any instructions for manual changes that
you must apply to the file before generating your plug-in packages.

n To ensure the integrity of future versions of the vSphere Web Client running HTML-based extensions,
do not modify the WEB_PLATFORM object. All HTML-based extensions use this global variable to
access the vSphere Web Client platform APIs. For example, if you change this variable, other HTML-
based extensions that use the WEB_PLATFORM =
self.parent.document.getElementById("container_app") variable initialization might stop
working.

Best Practices for Extending the User Interface Layer
When developing extensions for the user interface layer of the vSphere Web Client, follow these best
practices.

n Create pointer node extensions on the Object Navigator home page only for major applications and
solutions. This approach provides consistent and meaningful user experience for the customized
vSphere Web Client.

n When you create a view for your Flex extension, use the vSphere Web Client SDK Model View
Controller framework (Frinje) and the Data Access Manager APIs to achieve better performance and
scalability.

n When creating action set extensions for a particular type of vSphere object, you must use the
extensions filtering mechanism. The defined action sets must be visible only when the user selects
the relevant vSphere object type. For more information about how to filter extensions, see Filtering
Extensions.

n If your Flex-based solution extends the com.vmware.flexutil.proxies.BaseProxy class, make
sure that you are not hard-coding the channel URI. Use the getDefaultChannelUri() method of
the com.vmware.flexutil.ServiceUtil Flex class.

n Use the Data Access Manager API for retrieving data from the service layer. You must use proxies
only for adding, editing, and deleting issued data requests.

n For better performance, avoid making proxy calls that require more than several seconds to return a
response. A best practice is to design your extensions to submit a task that returns immediately, and
to track the task progress.

n If you use proxies for data requests, verify that you receive the request response before sending
another one through the proxy.

n If you want to use localization data for your plug-in package, follow these recommendations:

n Set the locale attribute in the <resource> element of the plugin.xml manifest file to the value
{locale}. Using the {locale} value instructs the vSphere Web Client and the vSphere Client to
use the locale that the user’s Web browser specifies at runtime.

vSphere Web Client SDK Documentation

VMware, Inc. 194

The following XML fragment shows how the <resource> element can be used in the plug-in
module manifest file of a Flex-based extension.

<plugin id="com.vmware.samples.helloworld_i18nui"

 moduleUri="Helloworld.swf" defaultBundle="com_vmware_samples_helloworld">

 <resources>

 <resource locale="{locale}">

 <!-- relative path of the .swf generated by the build script.

 {locale} will be set at runtime to the current vSphere Web Client locale

 -->

 <module uri="locales/helloworld-{locale}.swf"/>

 </resource>

 </resources>

....

</plugin>

n To avoid collisions with other localized plug-in packages, set a unique resource bundle name to
the defaultBundle attribute of the <plugin> element in the plug-in manifest file.

n If you develop HTML-based plug-ins, use the getString() API defined in the web-platform.js
JavaScript file.

n If you develop HTML-based plug-ins, make sure that the filenames of your resource files end with
_en_US instead of -en_US

Best Practices for Extending the Service Layer
Following these recommendations and best practices for creating extensions of the vSphere Web Client
service layer, can help you improve the security, scalability, and performance of your extension solutions.

n To avoid deployment errors, add your services to the Spring configuration by using the bundle-
context.xml Spring configuration file. Do not create alternative Spring contexts.

n To increase the deployment speed of your extensions, make sure that you optimize your Spring
context initialization. You must use as little source code as possible in the constructor and the
initialization method of your Spring beans.

n Avoid using timers for pooling data from the vSphere environment. In case there is no other way to
retrieve the required data, you must make sure that data queries are not overlapping.

n If you use a tool to automatically generate the manifest file of your service layer extension, make sure
that no third-party packages are added to the Package-Export manifest header.

vSphere Web Client SDK Documentation

VMware, Inc. 195

OSGi-Specific Recommendations
Following these OSGi-specific recommendations, helps you improve the performance and scalability of
your Java service layer extensions.

n To avoid deployment errors in case your plug-in depends on a third-party library with a different
version than the ones available on the Virgo server, you can embed the library inside your bundle.
You must also specify the library in your bundle manifest file by using the Bundle-Classpath
manifest header. In this way, the bundle class loader looks for required classes among the classes
from your plug-in and also from the embedded third-party library.

For example, if your bundle uses classes from the thirdPartyLibrary.jar, add the JAR to the root
of the bundle and add the following line to the bundle manifest file:

Bundle-Classpath: .,thirdPartyLibrary.jar

As a result, when you deploy your plug-in on the Virgo server, your bundle dependencies are
resolved using the embedded third-party library and not the one that is already on the server.

n To avoid future compatibility issues, make sure that you follow the recommendations of the OSGi
Alliance for wiring bundles. Use the Import-Package manifest header to declare your package
dependencies and not the Require-Bundle header.

n To avoid deployment failures in case your bundle imports packages that are exported from
vim25.jar, remove any packages exported by the vim25.jar bundle from the package imports of
your MANIFEST.MF file. You must add the following line to your MANIFEST.MF file:

Require-Bundle: com.vmware.vim25;bundle-version=1.0.0

You might have deployment issues, if you have in your environment a plug-in package that contains
the vijava-osgi.jar bundle.

n To improve the future maintenance of your bundles, you must export as few packages as possible.
Remember that every exported package is considered a public API that must be versioned and
maintained. If you export packages that contain implementation classes, your specific implementation
becomes harder to evolve and to be maintained in the future. Ideally, you must export APIs by using a
dedicated API bundles. Other bundles must import the APIs and provide implementation classes that
use and publish services. The implementation classes must not export packages.

n To avoid deployment errors, you must not export packages that do not belong to your own code. If
you include a third-party bundle in your bundle, do not export any classes from the third-party bundle.

n To avoid future compatibility issues in case you import a package from the vSphere Web Client
bundles, set the package version to 0 in the MANIFEST.MF file. When you update the
vSphere Web Client platform, your bundle might stop working if you specified concrete package
version that is not available after the update. If you do not specify a version, the OSGi validation utility
logs a warning message in the plugin-medic.log file.

vSphere Web Client SDK Documentation

VMware, Inc. 196

For example, if you import the com.vmware.vise.data and com.vmware.vise.data.query
packages, you must add the following line to your MANIFEST.MF file:

Import-Package: com.vmware.vise.data;version="0", com.vmware.vise.data.query;version="0"

n To improve the performance of your plug-in package, avoid using the DynamicImport-Package
manifest header unless necessary. If you use the DynamicImport-Package header in your bundle
and the packages you want to import are not known in advance, the Virgo framework switches to
searching mode for a publicly available package that satisfies the requirement. The use of wildcards
is discouraged.

n To improve the deployment time of your plug-in packages, you must add as few bundles as possible
to the <bundlesOrder> element of your plugin-package.xml manifest file. All bundles that are not
included in the ordered bundles list are deployed in parallel.

For example, you can deploy the OSGi bundles from your plug-in package in a parallel manner. This
deployment is achieved, if you move all APIs exported by bundle A and imported by bundle B to a
separate my_api.jar bundle. Include the my_api.jar bundle to the ordered bundles list of your
plug-in package. In this way, the dependencies of bundle A and B are satisfied in advance and these
bundles can start in parallel.

n To improve the deployment time of your plug-in package, do not perform Spring bean initialization in
the bundles from the ordered bundles list. The deployment of bundles is blocked until the Spring bean
initialization is completed for each bundle that is part of the ordered bundles list. This behavior slows
down the startup of the Virgo server. You must use the bundles from the ordered bundles list only to
export APIs and data transfer objects, if possible. For more information, see the previous
recommendation.

n To speed up the deployment of your plug-in package, you must use as few Web application ARchive
(WAR) files as possible, ideally only one WAR file per plug-in package. WAR files are deployed
slower that the other bundles, especially when the Web application has OSGi dependencies. For
example, the deployment process can be slowed down when the Web application registers a
message broker.

n To avoid runtime errors, you can specify the versions of the packages that you import and export for
your OSGi bundle.

n Starting with vSphere 6.5, an OSGi validation utility is added to the vSphere Web Client which
ensures that the deployed plug-ins follow the OSGi-specific best practices. The results from the
validation checks are logged to the plugin-medic.log file which is located in the same folder as the
Virgo server log file, vsphere_client_virgo.log. For more information about the location of the
Virgo server log files, see the Table 11‑2 table.

vSphere Web Client SDK Documentation

VMware, Inc. 197

Once the deployment of all plug-ins completes, the validation for the whole set of OSGi bad practices
begins. Any issues detected are logged as INFO and WARN messages to the plugin-medic.log file.
For example, following are some of the warning messages that can be seen in the log file after you
deploy your plug-ins:

n DynamicImport-Package should be avoided - To prevent performance issues during plug-in
deployment, you must avoid using the DynamicImport-Package manifest header to declare
packages that must be looked up at runtime. Using dynamic imports might cause instability
issues with the vSphere Web Client. To complete successfully the certification of your plug-in, use
wildcards with caution and avoid using declarations such as the following: DynamicImport-
Package: com.vmware.*.

n Don't use 'com.vmware' prefix for bundle symbolic names and packages - The
warning message is logged when a third-party bundle exports packages with the com.vmware
prefix and the bundle's symbolic name starts with a different prefix.

n Conflicting package exports - The warning message is logged when two or more plug-ins
contain bundles that export the same package. This violation of the recommendations of the
OSGi Alliance leads to ClassNotFoundExceptions at runtime that are difficult to troubleshoot.
For example, in production environments, this warning message is logged in case two plug-ins
contain bundles that export Hibernate or another third-party library with the same version number.

DataService -Specific Best Practices
Following these recommendations and best practices for writing Data Service queries, helps you improve
the performance and scalability of your extensions.

n To increase the performance of your extension, you must avoid creating constraints, such as
ObjectIdentityConstraints, PropertyConstraints, and RelationalConstraints, and defining
OrderingPropertySpec objects that have multi-valued properties such as collections and arrays.

For example, when you create a PropertyConstraint object that filters all VirtualMachine objects
based on their network property, the filtering process is slowed down. This situation occurs because
the back end Data Provider does not support such requests. In such cases, the Data Service fetches
the entire data set and then filters the received data.

n To improve the performance of your extension, you must avoid creating constraints and defining
OrderingPropertySpec objects by using the length of multi-valued properties such as collections
and arrays.

For example, when you create a PropertyConstraint object that filters query results by using the
property network._length for all VirtualMachine objects, the filtering process is slowed down.
This situation occurs because the back end Data Provider does not support such requests or does
not maintain a separate index for property length. In such cases, the Data Service fetches the entire
data set and then proceeds with filtering the received data.

n To improve the performance of your extensions, you can use
QuerySpec.resultSpec.maxResultCount field to limit the returned result set.

vSphere Web Client SDK Documentation

VMware, Inc. 198

n To improve the performance of your extensions in case you use PropertyConstraints, you must
use the com.vmware.vise.data.query.Comparator.EQUALS comparator instead of a text-
matching comparator such as com.vmware.vise.data.query.Comparator.CONTAINS and
com.vmware.vise.data.query.Comparator.TEXTUALLY_MATCHES for the PropertyConstraint
queries. Text-matching operations require a specific database indexing which only a few properties,
such as name, have. If you need to use a text-matching comparator, you can use CONTAINS instead of
TEXTUALLY_MATCHES, because TEXTUALLY_MATCHES requires more complex processing.

n To improve the performance of your extensions, you can set a value to the targetType field of each
com.vmware.vise.data.PropertySpec and
com.vmware.vise.data.query.OrderingPropertySpec object. The Data Service uses the
targetType field to optimize the execution of the queries.

n To avoid future compatibility issues with your vSphere Web Client extension, you must avoid using
multi-valued properties, such as collections and arrays, as the middle nodes in the property paths.

For example, you must not use the property path configurationEx.drsVmConfig.key for
ClusterComputeResource objects because the drsVmConfig property of the
vim.cluster.ConfigInfoEx data object is a collection. In this case, you must request the whole
vim.cluster.ConfigInfoEx data object.

n To avoid future compatibility issues with your vSphere Web Client extension, you must not use any
custom properties defined by the vSphere Web Client modules. These properties are prone to
change in the future. You must use only the properties defined in the vSphere Web Service API for
the managed objects and data objects.

n To avoid future compatibility issues with your extension, you must avoid using the
com.vmware.vise.data.query.Conjoiner.EXCEPT operator in your CompositeConstraints.
Instead you must use negation and De Morgan's laws.

n To avoid future incompatibility, avoid using the relation field of the
com.vmware.vise.data.PropertySpec objects.

n To avoid future incompatibility, avoid using the facets field of the
com.vmware.vise.data.query.ResultSpec objects.

n The Data Service uses the value of the targetType field to optimize query execution. To improve the
performance of your extensions, set the targetType field on every constraint except for the following
cases:

n com.vmware.vise.data.query.ObjectIdentityConstraint - You must not specify the
targetType field because the type is already present in the object reference. You can set the
type by using the target field of the ObjectIdentityConstraint class.

n com.vmware.vise.data.query.RelationalConstraint with hasInverseRelation field set
to true - The targetType field is ignored for such constraints.

n To avoid performance issues with your extension in case you use constraints, you must use a specific
managed object type as a value for the targetType field. For example, if you use an abstract base
type such as the ManagedEntity managed object type, the execution of the query is slowed down.

vSphere Web Client SDK Documentation

VMware, Inc. 199

n To ease the future optimization of your extensions, you must limit the size of each
CompositeConstraint by limiting the number of child constraints in the nestedConstraints field of
the CompositeConstraint class, and you must avoid also nesting multiple CompositeConstraint.

n Make sure that your Data Provider Adapter takes less than 3 seconds to process a query. If your
adapter takes too long to process a request, the Data Service cuts the adapter from the result.

Best Practices for Deploying and Testing Your
vSphere Web Client Extensions
After you develop your vSphere Web Client extension, you can follow these recommendations to ensure
that your extension is successfully deployed to the vSphere Web Client or the vSphere Client .

n To improve the performance of your plug-in package, the initial download and deployment time after
the first time the user logs into the vSphere Web Client, must be less than a minute.

n To ease the testing and debugging of your plug-in package, you must include the build number in the
dot-separated version number of the plug-in package when you register the plug-in as a
vCenter Server extension.

n To prevent deployment issues when you try to deploy a new version of a registered plug-in package,
make sure that you modify the version property of your plug-in package in the plugin-package.xml
manifest file.

n To prevent deployment issues when you try to deploy a plug-in package with the same version, make
sure that you unregister the plug-in package by removing the plug-in as a vCenter Server extension
point. You must also manually delete the cached files of the plug-in package that are stored on the
Virgo server from one of the following locations:

Table 11‑1. Locations for the Cached Downloaded Plug-In Packages

Virgo Location Cache Location

vCenter Server for Windows C:\ProgramData\VMware\vCenterServer\cfg\vsphere-

client\vc-packages\vsphere-client-serenity\

vCenter Server Appliance /etc/vmware/vsphere-client/vc-packages/vsphere-

client-serenity/

Windows OS %PROGRAMFILES%/VMware/vSphere Web Client/vc-

packages/vsphere-client-serenity/

Mac OS /var/lib/vmware/vsphere-client/vsphere-client/vc-

packages/vsphere-client-serenity/

n To avoid issues with the vSphere Web Client performance, make sure that your plug-in package has
only one version registered with the vCenter Server. You must not change the value of the key
property of the vCenter Server Extension data object between releases.

vSphere Web Client SDK Documentation

VMware, Inc. 200

n To verify easily the deployment of your plug-in package and monitor for any issues related to your
plug-in, you must know how to work with the Virgo server log files. You can find these log files in one
of the following locations:

Table 11‑2. Log Files Location

Environment Virgo Log Files Location

vSphere Client development environment

(Windows or Mac OS)

html-client-sdk/vsphere-

ui/server/serviceability/logs/vsphere_client_virg

o.log

vSphere Web Client SDK development environment

(Windows or Mac OS)

flex-client-

sdk/server/serviceability/logs/vsphere_client_vir

go.log

vCenter Server Appliance 6.5 installation

vSphere Client

/var/log/vmware/vsphere-ui/logs/

vCenter Server Appliance 6.5 and 6.0 installation

vSphere Web Client

/var/log/vmware/vsphere-client/logs/

vCenter Server for Windows 6.5 and 6.0

vSphere Web Client

C:\ProgramData\VMware\vCenterServer\logs\vsphere-

client\logs\

The vsphere_client_virgo.log file contains the log information that the Virgo server generates.
Problems usually start with the [ERROR] tag. Use your plug-in package name or the bundle symbolic
name to detect errors caused by your plug-in.

n To log information about your plug-in package, you must use the default logging mechanisms of the
vSphere Web Client. Use the Apache Log4j logging framework to provide debugging information for
your plug-in package. The Virgo server uses the Simple Logging Facade for Java (SLF4J) logging
API.

vSphere Web Client SDK Documentation

VMware, Inc. 201

List of Extension Points 12
The vSphere Web Client publishes extension points that you can use to create your extensions. The
following sections contain a list of the currently supported extension points, including a brief description of
each extension point and the required extension definition type.

This section includes the following topics:
n Global Extension Points

n Object Navigator Extension Points

n Object Workspace Extension Points

n Actions Extension Points

n Extension Templates

n Custom Object Extension Points

VMware, Inc. 202

Global Extension Points
Global extension points allow you to extend the home screen, to add a global view to the main
workspace, or to control application-wide settings.

vise.global.views
Flex

Client
HTML
Client

Compatibility yes yes

Adds a global UI view to the main area that is not related to vSphere objects.

Requires a data object of type GlobalViewSpec with available properties:
n name - user-visible name of the global view.
n componentClass

n url - relative URL to the HTML page that loads the view content.

Accessibility: can be a target of any navigation request.

Example:

<extension id="com.vmware.samples.h5.globalview.mainView">
 <extendedPoint>vise.global.views</extendedPoint>
 <object>
 <name>My Global View</name>
 <componentClass className="com.vmware.vsphere.client.htmlbridge.HtmlView">
 <object>
 <root>
 <url>/vsphere-client/globalview/resources/mainView.html</url>
 </root>
 </object>
 </componentClass>
 </object>
</extension>

vSphere Web Client SDK Documentation

VMware, Inc. 203

vise.home.shortcuts
Flex

Client
HTML
Client

Compatibility yes yes

Add a home screen shortcut to a global view or other data view.

Requires a data object of type ShortcutSpec with available properties:
n name - user-visible name of the shortcut.
n icon - (optional) resource ID of 32x32 shortcut icon.
n categoryUid - ID of the category this shortcut will be displayed in. Supported values are

"vsphere.core.controlcenter.inventoriesCategory" and "vsphere.core.controlcenter.monitoringCategory".
n targetViewUid - identifier of the extension to navigate to when the shortcut is clicked.

Accessibility on vSphere Client: Shortcuts.

Accessibility on vSphere Web Client: Home.

Example:

<extension id="com.vmware.samples.h5.globalview.shortcut">
 <extendedPoint>vise.home.shortcuts</extendedPoint>
 <object>
 <name>My Shortcut</name>
 <icon>#{appIcon}</icon>
 <categoryUid>vsphere.core.controlcenter.monitoringCategory</categoryUid>
 <targetViewUid>com.vmware.samples.h5.globalview.mainView</targetViewUid>
 </object>
</extension>

vise.dispose.namespace.inclusions
Flex

Client
HTML
Client

Compatibility yes no

Specifies a list of namespaces to the Dispose Manager that must be garbage-collected. All vSphere object types that have the
specified namespaces will be garbage-collected.

Accessibility: Not displayed.

vSphere Web Client SDK Documentation

VMware, Inc. 204

vsphere.core.objectTypes
Flex

Client
HTML
Client

Compatibility yes yes

Declares UI information that is associated with a custom object type.

Requires a data object of type com.vmware.core.specs.ObjectTypeSpec with available properties:
n types - list of type names applicable to the same type info.
n icon - resource ID of a 18x18 icon associated with this object type.
n label - localized type name.
n labelPlural - plural of the localized type name.
n listViewId - (optional) ID of the list view extension used to display multiple objects of this object type. If missing or null, the

default ${namespace}.list is used.

Accessibility: Not directly displayed, just declares the new object type.

Example:

<extension id="com.vmware.samples.chassisa.objectType">
 <extendedPoint>vsphere.core.objectTypes</extendedPoint>
 <object>
 <types>
 <String>samples:ChassisA</String>
 </types>
 <label>Chassis</label>
 <labelPlural>ChassisA's</labelPlural>
 <icon>#{chassis.icon}</icon>
 </object>
</extension>

vSphere Web Client SDK Documentation

VMware, Inc. 205

Object Navigator Extension Points
You can extend the object navigator by creating new nodes and categories on each page. You can
customize also any object collection node that you create by adding a new icon and label.

vise.navigator.nodespecs
Flex

Client
HTML
Client

Compatibility yes yes

Adds an object collection node, category, or pointer node extension to the object navigator.

Requires a data object of type ObjectNavigatorNodeSpec with available properties:
n title - user-visible node title.
n icon - (optional) 18x18 node icon resource ID.
n navigationTargetUid - (optional) ID of the extension to navigate to when the node is selected.
n parentUid - ID of the parent extension this node will be displayed in. Supported values are:

n "vsphere.core.navigator.solutionsCategory". Accessibility: Object Navigator root.
n "vsphere.core.navigator.virtualInfrastructure". Accessibility: Object Navigator → Global Inventory Lists.
n "vsphere.core.navigator.administration". Accessibility: Object Navigator → Administration.

Example:

<extension id="com.vmware.samples.chassisACategory">
 <extendedPoint>vise.navigator.nodespecs</extendedPoint>
 <object>
 <title>ChassisA Category</title>
 <parentUid>vsphere.core.navigator.virtualInfrastructure</parentUid>
 </object>
</extension>

vSphere Web Client SDK Documentation

VMware, Inc. 206

vise.inventory.representationspecs
Flex

Client
HTML
Client

Compatibility yes yes

Defines one or more new icon and label sets for an object collection node in the object navigator, along with the conditions under
which the icon and label sets appear.

Requires a data object of type ObjectRepresentationSpec with available properties:
n objectType - type of objects to which the specs apply.
n specCollection - array of IconLabelSpec objects, each of which contains:

n iconId - (optional) 18x18 icon resource ID.
n labelId - (optional) label or its resource ID.
n conditionalProperties - (optional) array of property names. The icon and label are applicable only if the values of all

properties evaluate to "true". Note: To test for "false" use the negation operator "!" in front of the property name.
n conditions - (optional) array of PropertyConstraint-s. The icon and label are applicable only if all constraints are satisfied.

Accessibility: Object Navigator → Global Inventory Lists.

Example:

<extension id="com.vmware.samples.chassisa.iconLabelSpecCollection">
 <extendedPoint>vise.inventory.representationspecs</extendedPoint>
 <object>
 <objectType>samples:ChassisA</objectType>
 <specCollection>
 <com.vmware.ui.objectrepresentation.model.IconLabelSpec>
 <iconId>#{chassis}</iconId>
 </com.vmware.ui.objectrepresentation.model.IconLabelSpec>
 </specCollection>
 </object>
</extension>

vSphere Web Client SDK Documentation

VMware, Inc. 207

vsphere.core.objectTypes
Flex

Client
HTML
Client

Compatibility yes yes

Declares UI information that is associated with a custom object type.

Requires a data object of type com.vmware.core.specs.ObjectTypeSpec with available properties:
n types - list of type names applicable to the same type info.
n icon - resource ID of a 18x18 icon associated with this object type.
n label - localized type name.
n labelPlural - plural of the localized type name.
n listViewId - (optional) ID of the list view extension used to display multiple objects of this object type. If missing or null, the

default ${namespace}.list is used.

Accessibility: Not directly displayed, just declares the new object type.

Example:

<extension id="com.vmware.samples.chassisa.objectType">
 <extendedPoint>vsphere.core.objectTypes</extendedPoint>
 <object>
 <types>
 <String>samples:ChassisA</String>
 </types>
 <label>Chassis</label>
 <labelPlural>ChassisA's</labelPlural>
 <icon>#{chassis.icon}</icon>
 </object>
</extension>

Object Workspace Extension Points
Each vSphere object type’s object workspace provides a set of extension points. Each extension point
corresponds to a specific data view, such as the Summary tab view or the Configure tab view. Every
object workspace extension point requires a data object of type com.vmware.ui.views.ViewSpec.

Most object workspace extension points follow the format vsphere.core.${objectType}.${view}. The
${objectType} placeholder corresponds to the type of vSphere object, and the ${view} placeholder
corresponds to the specific view. For example, the extension point
vsphere.core.cluster.manageViews is the extension point for the Configure tab view for Cluster
objects. The following names are valid ${objectType} values.

n cluster: ClusterComputeResource object

n datacenter: Datacenter object

n dscluster: StoragePod object

n dvs: DistributedVirtualSwitch object

n dvPortgroup: DistributedVirtualPortgroup object

n folder: Folder object

n host: HostSystem object

n hp: HostProfile object

vSphere Web Client SDK Documentation

VMware, Inc. 208

n network: Network object

n resourcePool: ResourcePool object

n datastore: Datastore object

n vApp: VirtualApp object

n vm: VirtualMachine object

n template: Virtual Machine template object

vsphere.core.${objectType}.summarySectionViews.html
Flex

Client
HTML
Client

Compatibility no yes

Adds an HTML portlet to the Summary tab view.

Requires a data object of type ViewSpec with available properties:
n name - user-visible name of the global view.
n icon - (optional) 18x18 portlet icon resource ID.
n componentClass

n url - relative URL to the HTML page that loads the view content.
n dialogTitle - portlet title.
n dialogSize - portlet width and height.

Accessibility: {vSphere object} → Summary page.

Example:

<extension id="com.vmware.samples.vspherewssdk.vm.summary2">
 <extendedPoint>vsphere.core.vm.summarySectionViews.html</extendedPoint>
 <object>
 <name>#{summaryView.title}</name>
 <componentClass className="com.vmware.vsphere.client.htmlbridge.HtmlView">
 <object>
 <root>
 <url>/vsphere-client/vspherewssdk/resources/vm-summary.html</url>
 <dialogTitle>WSSDK Summary Sample</dialogTitle>
 <dialogSize>440,400</dialogSize>
 </root>
 </object>
 </componentClass>
 </object>
</extension>

vSphere Web Client SDK Documentation

VMware, Inc. 209

vsphere.core.${objectType}.summarySectionViews
Flex

Client
HTML
Client

Compatibility yes yes

Adds a Flex portlet to the Summary tab view.

Requires a data object of type ViewSpec with available properties:
n name - user-visible name of the global view.
n componentClass

n url - relative URL to the HTML page that loads the view content.
n dialogTitle - portlet title.
n dialogSize - portlet width and height.
n dialogIcon - (optional) 18x18 portlet icon resource ID.

Accessibility: {vSphere object} → Summary page.

Example:

<extension id="com.vmware.samples.vspherewssdk.vm.summary">
 <extendedPoint>vsphere.core.vm.summarySectionViews</extendedPoint>
 <object>
 <name>#{summaryView.title}</name>
 <componentClass
 className="com.vmware.samples.wssdkui.views.VsphereWsSdkVmMonitorView"/>
 </object>
</extension>

vsphere.core.${objectType}.monitorCategories
Flex

Client
HTML
Client

Compatibility no yes

Adds a sub-view category to the Monitor tab view.

Requires a data object of type CategorySpec with available properties:
n label - user-visible name of the Monitor view category.

Accessibility: {vSphere object} → Monitor page

Example:

<extension id="com.vmware.samples.vspherewssdk.vm.monitor.category">
 <extendedPoint>vsphere.core.vm.monitorCategories</extendedPoint>
 <object>
 <label>WSSDK Category</label>
 </object>
</extension>

vSphere Web Client SDK Documentation

VMware, Inc. 210

vsphere.core.${objectType}.monitorViews
Flex

Client
HTML
Client

Compatibility yes yes

Adds a sub-view to the Monitor tab view.

Requires a data object of type ViewSpec with available properties:
n name - user-visible name of the Monitor view.
n categoryUid - (optional) ID of the category this Monitor view belongs to.
n componentClass

n url - relative URL to the HTML page that loads the view content.

Accessibility: {vSphere object} → Monitor page

Example:

<extension id="com.vmware.samples.vspherewssdk.vm.monitor">
 <extendedPoint>vsphere.core.vm.monitorViews</extendedPoint>
 <object>
 <name>Monitor view</name>
 <categoryUid>com.vmware.samples.vspherewssdk.vm.monitor.category</categoryUid>
 <componentClass className="com.vmware.vsphere.client.htmlbridge.HtmlView">
 <object>
 <root>
 <url>/vsphere-client/vspherewssdk/resources/vm-monitor.html</url>
 </root>
 </object>
 </componentClass>
 </object>
</extension>

vsphere.core.${objectType}.manageCategories
Flex

Client
HTML
Client

Compatibility no yes

Adds a sub-view category to the Configure tab view.

Requires a data object of type CategorySpec with available properties:
n label - user-visible name of the Configure view category.

Accessibility: {vSphere object} → Configure page

Example:

<extension id="com.vmware.samples.vspherewssdk.vm.manage.category">
 <extendedPoint>vsphere.core.vm.manageCategories</extendedPoint>
 <object>
 <label>WSSDK Category</label>
 </object>
</extension>

vSphere Web Client SDK Documentation

VMware, Inc. 211

vsphere.core.${objectType}.manageViews
Flex

Client
HTML
Client

Compatibility yes yes

Adds a sub-view to the Configure tab view.

Requires a data object of type ViewSpec with available properties:
n name - user-visible name of the Configure view.
n categoryUid - (optional) ID of the category this Configure view belongs to.
n componentClass

n url - relative URL to the HTML page that loads the view content.

Accessibility: {vSphere object} → Configure page

Example:

<extension id="com.vmware.samples.vspherewssdk.vm.manage">
 <extendedPoint>vsphere.core.vm.manageViews</extendedPoint>
 <object>
 <name>Configure view</name>
 <categoryUid>com.vmware.samples.vspherewssdk.vm.manage.category</categoryUid>
 <componentClass className="com.vmware.vsphere.client.htmlbridge.HtmlView">
 <object>
 <root>
 <url>/vsphere-client/vspherewssdk/resources/vm-configure.html</url>
 </root>
 </object>
 </componentClass>
 </object>
</extension>

vSphere Web Client SDK Documentation

VMware, Inc. 212

vise.relateditems.specs
Flex

Client
HTML
Client

Compatibility yes yes

Creates a new relation between object types, either vSphere objects or custom objects

Requires a data object of type ObjectRelationSetSpec with available properties:
n type - vSphere/Custom object type.
n relationViewId - ID of a view that can display object relations.
n conditionalProperty - (optional) property name to introduce additional constraints on the object type for a relation.

Note: To test for "false" use the negation operator "!" in front of the property name.
n relationSpecs

n id - relation ID
n label - user-visible label of the relation.
n icon - 18x18 relation icon resource ID.
n listViewId - ID of a view that can display relation items.
n relation - (optional) property name wrapped into a RelationalConstraint.
n inverseRelation - (optional) property name used to check if an object applies to the relation.
n conditionalProperty - (optional) property name wrapped into a PropertyConstraint.

Note: To test for "false" use the negation operator "!" in front of the property name.
n targetType - (optional) target type name used in any kind of Constraint.
n constraint - (optional) general constraint used in case of relations that cannot be expressed in terms of targetType,

relation and conditionalProperty

Accessibility: {vSphere object} → {related object type} in case of single relation; {vSphere object} → More objects in case of
multiple relations.

Example:

<extension id="com.vmware.samples.relateditems.specs.host">
 <extendedPoint>vise.relateditems.specs</extendedPoint>
 <object>
 <type>HostSystem</type>
 <relationsViewId>vsphere.core.host.related</relationsViewId>
 <relationSpecs>
 <com.vmware.ui.relateditems.model.RelationSpec>
 <id>chassisForHost</id>
 <icon>#{chassis}</icon>
 <label>Chassis relation</label>
 <relation>chassis</relation>
 <targetType>samples:ChassisB</targetType>
 <listViewId>com.vmware.samples.chassisb.list</listViewId>
 </com.vmware.ui.relateditems.model.RelationSpec>
 </relationSpecs>
 </object>
</extension>

vSphere Web Client SDK Documentation

VMware, Inc. 213

vsphere.core.${objectType}.monitor.performanceViews
Flex

Client
HTML
Client

Compatibility yes yes
(depre-
cated)

Adds a view under the Performance second-level tab of the Monitor tab view.

Accessibility: {vSphere object} → Monitor → Performance

vsphere.core.${objectType}.manage.settingsViews
Flex

Client
HTML
Client

Compatibility yes yes
(depre-
cated)

Adds a view under the Settings second-level tab of the Configure tab view.

Accessibility: {vSphere object} → Configure → Settings

vsphere.core.${objectType}.manage.alarmDefinitionsViews
Flex

Client
HTML
Client

Compatibility yes yes
(depre-
cated)

Adds a view to the Alarm Definitions element in the Issues second-level tab of the Configure tab view.

Accessibility: {vSphere object} → Monitor → Alarm Definitions

vsphere.core.${objectType}.list.columns
Flex

Client
HTML
Client

Compatibility yes yes
(depre-
cated)

Creates a new column in the list of vSphere objects of type ${objectType} in the object workspace.

Requires a data object of type com.vmware.ui.lists.ColumnSetContainer.

Note: Only the XML representation is supported.

Accessibility: {vSphere object list}

vSphere Web Client SDK Documentation

VMware, Inc. 214

Actions Extension Points
Actions are invoked in the vSphere Web Client and the vSphere Client from menus or toolbars. The
actions extension points allow you to add actions to global or contextual menus, and to prioritize the
placement of actions within menus and toolbars.

vise.actions.sets
Flex

Client
HTML
Client

Compatibility yes yes

Defines a set of actions, each of which is represented by the class ActionSpec.

Requires a data object of type ActionSpec with available properties:
n uid - action ID.
n label - user-visible action label.
n actionUrl - URL of the action target.
n dialogTitle - target dialog title.
n dialogSize - target dialog width and height.

Accessibility: {object} → {menu} → {plugin sub-menu}

Example:

<extension id="com.vmware.samples.vspherewssdk.vmActionSet">
 <extendedPoint>vise.actions.sets</extendedPoint>
 <object>
 <actions>
 <com.vmware.actionsfw.ActionSpec>
 <uid>com.vmware.samples.vspherewssdk.myVmAction1</uid>
 <label>#{action1.label}</label>
 <delegate>
 <className>com.vmware.vsphere.client.htmlbridge.HtmlActionDelegate</className>
 <object><root>
 <actionUrl>/vsphere-client/vspherewssdk/resources/vm-action-dialog.html</actionUrl>
 <dialogTitle>#{action1.label}</dialogTitle>
 <dialogSize>500,250</dialogSize>
 </root></object>
 </delegate>
 </com.vmware.actionsfw.ActionSpec>
 </actions>
 </object>
 <metadata>
 <objectType>VirtualMachine</objectType>
 </metadata>
</extension>

vmware.prioritization.actions
Flex

Client
HTML
Client

Compatibility yes no

Defines and prioritizes actions in object menus and the object list toolbar.

Requires a data object of type com.vmware.actionsfw.model.ActionPriorityGroup.

Accessibility: {object list} → {action button bar} and {list menu}

vSphere Web Client SDK Documentation

VMware, Inc. 215

vmware.prioritization.listActions
Flex

Client
HTML
Client

Compatibility yes yes

Defines and prioritizes global list actions (not related to a particular object).

Requires a data object of type ActionPriorityGroup with available properties:
n prioritizedIds - list of action IDs to declare as global.

Note: the order of global action IDs is taken into account only in the vSphere Web Client (Flex). The vSphere HTML Client
does not support action prioritization.

n regionId - ID of the extension that contains the global actions.

Accessibility: {object list} → {action button bar} and {list menu}

Example:

<extension id="com.vmware.sample.chassis.listAction">
 <extendedPoint>vmware.prioritization.listActions</extendedPoint>
 <object>
 <prioritizedIds>
 <String>com.vmware.samples.chassisa.createChassis</String>
 </prioritizedIds>
 <regionId>com.vmware.samples.chassisa.list</regionId>
 </object>
</extension>

vSphere Web Client SDK Documentation

VMware, Inc. 216

vsphere.core.menus.solutionMenus
Flex

Client
HTML
Client

Compatibility yes yes

Defines a custom sub-menu including actions, separators, and nested menus.

Requires a data object of type ActionMenuItemSpec with available properties:
n uid - menu item ID.
n type - type of menu item. Supported values are "menu", "action" and "separator".
n label - (optional) user-visible label of the menu item.

If omitted and the type is "action", the label defined in the action declaration will be used.
n icon - (optional) 18x18 icon resource ID.

If omitted and the type is "action", the icon defined in the action declaration will be used.
n children - (optional) array of child menu items (ActionMenuItemSpec) if the type is "menu".

Accessibility: {object} → {menu}

Example:

<extension id="com.vmware.samples.vspherewssdk.vmMenu">
 <extendedPoint>vsphere.core.menus.solutionMenus</extendedPoint>
 <object>
 <label>WSSDK menu</label>
 <children>
 <Array>
 <com.vmware.actionsfw.ActionMenuItemSpec>
 <type>action</type>
 <uid>com.vmware.samples.vspherewssdk.myVmAction1</uid>
 </com.vmware.actionsfw.ActionMenuItemSpec>
 <com.vmware.actionsfw.ActionMenuItemSpec>
 <type>separator</type>
 </com.vmware.actionsfw.ActionMenuItemSpec>
 <com.vmware.actionsfw.ActionMenuItemSpec>
 <type>action</type>
 <uid>com.vmware.samples.vspherewssdk.myVmAction2</uid>
 </com.vmware.actionsfw.ActionMenuItemSpec>
 </Array>
 </children>
 </object>
 <metadata>
 <objectType>VirtualMachine</objectType>
 </metadata>
</extension>

vSphere Web Client SDK Documentation

VMware, Inc. 217

Extension Templates
When you add custom vSphere objects, use the extension templates to make the vSphere Web Client
user interface consistent.

vsphere.core.inventory.objectViewTemplate
Flex

Client
HTML
Client

Compatibility yes yes

Creates a complete object workspace for a given custom object type. When you create an instance of the objectViewTemplate,
the vSphere Web Client generates an extension point for each of the standard object workspace tabs, second-level tabs, and
views.

Requires the following variables:
n namespace - plugin-specific prefix to use in all extension IDs of the template. A best practice is to use reverse domain naming,

such as com.myCompany, to start the namespace name, followed by a unique extension name. For example, if your company
name is Acme, and you create a plug-in for a custom object called Rack, you could use the namespace
com.acme.plugin01.rack.

n objectType - custom object type of the instance. Should be qualified with its own namespace to avoid collisions.

The objectViewTemplate creates extension points in the format namespace.extension-point-name. To continue the previous
example, one extension point might be com.acme.plugin01.rack.monitorViews.

For the full list of object workspace extension points, see Custom Object Extension Points. A given tab does not appear in the
vSphere Client or vSphere Web Client user interface unless you explicitly create an extension that references that tab's extension
point.

Example:

<templateInstance id="com.vmware.samples.chassisb.viewTemplateInstance">
 <templateId>vsphere.core.inventory.objectViewTemplate</templateId>
 <variable name="namespace" value="com.vmware.samples.chassisb"/>
 <variable name="objectType" value="samples:ChassisB"/>
</templateInstance>

vSphere Web Client SDK Documentation

VMware, Inc. 218

vsphere.core.inventorylist.objectCollectionTemplate
Flex

Client
HTML
Client

Compatibility yes yes

Creates an object collection node in the object navigator for a given custom object type.

Requires the following variables:
n namespace - plugin-specific prefix to use in all extension IDs of the template. It must be different than the one in

objectViewTemplate.
n title - custom object title or its resource ID.
n icon - 18x18 custom object icon resource ID.
n objectType - custom object type of the instance. Should be qualified with its own namespace to avoid collisions.
n listViewId - container view ID for the current object collection.
n parentUid - extension ID of the category node which the current node belongs to.

Example:

<templateInstance id="com.vmware.samples.lists.allChassis">
 <templateId>vsphere.core.inventorylist.objectCollectionTemplate</templateId>
 <variable name="namespace" value="com.vmware.samples.chassisb_collection"/>
 <variable name="title" value="Chassis"/>
 <variable name="icon" value="#{chassis}"/>
 <variable name="objectType" value="samples:ChassisB"/>
 <variable name="listViewId" value="com.vmware.samples.chassisb.list"/>
 <variable name="parentUid" value="com.vmware.samples.chassisBCategory"/>
</templateInstance>

Custom Object Extension Points
When you instantiate a objectViewTemplate for your custom object, the template creates a number of
extension points that you can use to fill out the user interface for the object.

The extension points that are created for a custom object include some of the listed extension points in
Object Workspace Extension Points. In addition, the objectViewTemplate creates the following list of
extension points at runtime for a particular namespace.

You can use the extension points to define views and tabs for the custom object workspace. If you want a
specific view or tab to appear in the vSphere Web Client or the vSphere Client user interface for a custom
object, you must explicitly create an extension that references the extension point of the view or tab.

vSphere Web Client SDK Documentation

VMware, Inc. 219

${namespace}.views
Flex

Client
HTML
Client

Compatibility yes yes

Add a top-level tab view for custom objects.

Requires a data object of type ViewSpec with available properties:
n name - user-visible name of the Getting Started view.
n categoryUid - (optional) ID of the category this Getting Started view belongs to.
n componentClass

n url - relative URL to the HTML page that loads the view content.

Accessibility: {custom object root}

Example:

<extension id="com.vmware.samples.chassisa.MainView">
 <extendedPoint>com.vmware.samples.chassisa.views</extendedPoint>
 <object>
 <name>Chassis Main</name>
 <componentClass className="com.vmware.vsphere.client.htmlbridge.HtmlView">
 <object>
 <root>
 <url>/vsphere-client/chassisa/resources/chassis-main.html</url>
 </root>
 </object>
 </componentClass>
 </object>
</extension>

vSphere Web Client SDK Documentation

VMware, Inc. 220

${namespace}.summaryViews
Flex

Client
HTML
Client

Compatibility yes yes

Adds an HTML portlet to the Summary tab view for custom objects.

Requires a data object of type ViewSpec with available properties:
n name - user-visible name of the global view.
n icon - (optional) 18x18 portlet icon resource ID.
n componentClass

n url - relative URL to the HTML page that loads the view content.
n dialogTitle- portlet title.
n dialogSize- portlet width and height.

Accessibility: {custom object root}

Example:

<extension id="com.vmware.samples.chassisa.SummaryView">
 <extendedPoint>com.vmware.samples.chassisa.summaryViews</extendedPoint>
 <object>
 <name>Chassis Summary</name>
 <componentClass className="com.vmware.vsphere.client.htmlbridge.HtmlView">
 <object>
 <root>
 <url>/vsphere-client/chassisa/resources/chassis-summary.html</url>
 </root>
 </object>
 </componentClass>
 </object>
</extension>

vSphere Web Client SDK Documentation

VMware, Inc. 221

${namespace}.monitorViews
Flex

Client
HTML
Client

Compatibility yes yes

Adds a sub-view to the Monitor tab view for custom objects.

Requires a data object of type ViewSpec with available properties:
n name - user-visible name of the Monitor view.
n categoryUid - (optional) ID of the category this monitor view belongs to.
n componentClass

n url - relative URL to the HTML page that loads the view content.

Accessibility: {custom object root} → Monitor page

Example:

<extension id="com.vmware.samples.chassisa .monitor">
 <extendedPoint>com.vmware.samples.chassisa.monitorViews</extendedPoint>
 <object>
 <name>Monitor view</name>
 <categoryUid>com.vmware.samples.chassisa.monitor.category</categoryUid>
 <componentClass className="com.vmware.vsphere.client.htmlbridge.HtmlView">
 <object>
 <root>
 <url>/vsphere-client/vspherewssdk/resources/vm-monitor.html</url>
 </root>
 </object>
 </componentClass>
 </object>
</extension>

vSphere Web Client SDK Documentation

VMware, Inc. 222

${namespace}.manageViews
Flex

Client
HTML
Client

Compatibility yes yes

Adds a sub-view to the Configure tab view for custom objects.

Requires a data object of type ViewSpec with available properties:
n name - user-visible name of the Configure view.
n categoryUid - (optional) ID of the category this Configure view belongs to.
n componentClass

n url - relative URL to the HTML page that loads the view content.

Accessibility: {custom object root} → Configure page

Example:

<extension id="com.vmware.samples.chassisa.manage">
 <extendedPoint>com.vmware.samples.chassisa.manageViews</extendedPoint>
 <object>
 <name>Configure view</name>
 <categoryUid>com.vmware.samples.chassisa.manage.category</categoryUid>
 <componentClass className="com.vmware.vsphere.client.htmlbridge.HtmlView">
 <object>
 <root>
 <url>/vsphere-client/vspherewssdk/resources/vm-configure.html</url>
 </root>
 </object>
 </componentClass>
 </object>
</extension>

vSphere Web Client SDK Documentation

VMware, Inc. 223

${namespace}.list.columns
Flex

Client
HTML
Client

Compatibility yes yes

Creates a new column in the list of custom objects.

Requires a data object of type com.vmware.ui.lists.ColumnSetContainer which is a collection of columns with available
properties:
n headerText - column header text.
n requestedProperties - object properties whose value representation will be displayed in the column (commonly a 1-element

array).
n requestedParameters - parameters of the requested object properties.
n sortProperty - enables column sorting by header selection.
n exportProperty - enables exporting column data.

Note Only the XML representation is supported.

Accessibility: {custom object list}

Example:

<extension id="com.vmware.samples.chassisa.list.sampleColumns">
 <extendedPoint>com.vmware.samples.chassisa.list.columns</extendedPoint>
 <object>
 <items>
 <com.vmware.ui.lists.ColumnContainer>
 <uid>com.vmware.samples.chassisa.column.name</uid>
 <dataInfo>
 <com.vmware.ui.lists.ColumnDataSourceInfo>
 <headerText>Name</headerText>
 <requestedProperties>
 <String>name</String>
 </requestedProperties>
 <sortProperty>name</sortProperty>
 <exportProperty>name</exportProperty>
 </com.vmware.ui.lists.ColumnDataSourceInfo>
 </dataInfo>
 </com.vmware.ui.lists.ColumnContainer>
 ...
 </items>
 </object>
</extension>

${namespace}.gettingStartedViews
Flex

Client
HTML
Client

Compatibility yes yes
(depre-
cated)

Adds a Getting Started tab view for custom objects.

Requires a data object of type ViewSpec with available properties:
n name - user-visible name of the Getting Started view.
n categoryUid - (optional) ID of the category this Getting Started view belongs to.
n componentClass - parameters of the requested object properties.

n url - relative URL to the HTML page that loads the view content.

Accessibility: {custom object root}

vSphere Web Client SDK Documentation

VMware, Inc. 224

${namespace}.monitor.issuesViews
Flex

Client
HTML
Client

Compatibility yes yes
(depre-
cated)

Adds a sub-view under the Issues second-level tab of the Monitor tab view for custom objects.

Requires a data object of type ViewSpec.

Accessibility: {custom object root} → Monitor → Issues

${namespace}.monitor.performanceViews
Flex

Client
HTML
Client

Compatibility yes yes
(depre-
cated)

Adds a sub-view under the Performance second-level tab of the Monitor tab view for custom objects.

Requires a data object of type ViewSpec.

Accessibility: {custom object root} → Monitor → Performance

${namespace}.monitor.performance.overviewViews
Flex

Client
HTML
Client

Compatibility yes yes
(depre-
cated)

Adds a sub-view under the Performance/Overview section of the Monitor tab view for custom objects.

Requires a data object of type ViewSpec.

Accessibility: {custom object root} → Monitor → Performance → Overview

${namespace}.monitor.performance.advancedViews
Flex

Client
HTML
Client

Compatibility yes yes
(depre-
cated)

Adds a sub-view under the Performance/Advanced section of the Monitor tab view for custom objects.

Requires a data object of type ViewSpec.

Accessibility: {custom object root} → Monitor → Performance → Advanced

${namespace}.monitor.taskViews
Flex

Client
HTML
Client

Compatibility yes yes
(depre-
cated)

Adds a sub-view under the Tasks second-level tab of the Monitor tab view for custom objects.

Requires a data object of type ViewSpec.

Accessibility: {custom object root} → Monitor → Tasks

vSphere Web Client SDK Documentation

VMware, Inc. 225

${namespace}.monitor.eventsViews
Flex

Client
HTML
Client

Compatibility yes yes
(depre-
cated)

Adds a sub-view under the Events second-level tab of the Monitor tab view for custom objects.

Requires a data object of type ViewSpec.

Accessibility: {custom object root} → Monitor → Events

${namespace}.manage.settingsViews
Flex

Client
HTML
Client

Compatibility yes yes
(depre-
cated)

Adds a sub-view under the Settings second-level tab of the Configure tab view for custom objects.

Requires a data object of type ViewSpec.

Accessibility: {custom object root} → Configure → Settings

${namespace}.manage.alarmDefinitionsViews
Flex

Client
HTML
Client

Compatibility yes yes
(depre-
cated)

Adds a sub-view under the Issues/Alarm Definitions section of the Configure tab view for custom objects.

Requires a data object of type ViewSpec.

Accessibility: {custom object root} → Configure → Alarm Definitions

${namespace}.manage.permissionsViews
Flex

Client
HTML
Client

Compatibility yes yes
(depre-
cated)

Adds a sub-view to the Permissions tab view for custom objects.

Requires a data object of type ViewSpec.

Accessibility: {custom object root} → Configure → Permissions

vSphere Web Client SDK Documentation

VMware, Inc. 226

	vSphere Web Client SDK Documentation
	Contents
	vSphere Web Client SDK Documentation
	Revision History
	About vSphere Web Client SDK
	Knowledge Requirements for Using the vSphere Web Client SDK
	vSphere Web Client SDK Contents
	SDK Versions and Compatibility
	Naming Convention for vSphere Objects in the vSphere Web Client SDK

	About the vSphere Web Client and the vSphere Client
	Introduction to the vSphere Web Client
	Understanding the vSphere Web Client Architecture
	Overview of the vSphere Web Client User Interface Layer Components
	Object Navigator
	Main Workspace
	Administration Application

	Introduction to the vSphere Client
	Understanding the vSphere Client Architecture
	Overview of the User Interface Layer Components

	Understanding Extensibility in the vSphere Client and the vSphere Web Client
	Extending the User Interface Layer
	Extending the Java Service Layer

	vSphere Web Client SDK Installation and Setup Guide
	Software Requirements
	Development Environment Requirements Overview
	Setting Up for HTML-Based Plug-In Development
	Download the vSphere Web Client SDK
	Set Up for Java Development
	Automate the Plug-In Build Process
	Set Up the Eclipse Integrated Development Environment
	Install the vSphere Web Client Tools Eclipse Plug-In
	Register Your Local vSphere Client with the vCenter Server Instance
	Configure the Virgo Server in Your Eclipse IDE
	Set Up the Adobe Flex 4.6 Software Development Kit

	vSphere Web Client SDK Upgrade
	Upgrading Plug-Ins Created with the vSphere Web Client SDK 6.0 Update 2
	Upgrading Plug-Ins Created with the vSphere Web Client SDK 6.0 Update 1
	Upgrading Plug-Ins Created with the vSphere Web Client SDK 6.0
	Upgrading Plug-Ins Created with the vSphere Web Client SDK 5.5.x

	Quick Startup Guide for Developing HTML-Based Plug-Ins
	Before Creating an HTML Plug-In
	Creating an HTML Plug-In Project
	Generate an HTML Plug-In Project with a Script
	Create an HTML Plug-In Project with Eclipse
	Contents of the HTML Plug-In Project Template

	Building a Plug-In Package from the Project Template
	Testing the Generated Plug-Ins
	Deploy the Plug-In on a Local vSphere Client
	Deploy Your Plug-In on a Local vSphere Web Client
	Deploying Your Plug-In on a Remote vSphere Client or vSphere Web Client

	Developing Flex-Based User Interface Extensions
	Understanding the User Interface Layer
	User Interface Plug-In Module Manifest
	XML Elements in the Manifest File
	Specifying Dynamic Resources
	Defining Extensions
	Extension Definition XML Schema
	Ordering Extensions
	Filtering Extensions
	Using Templates to Define Extensions

	Types of User Interface Extensions
	Global View Extensions
	Object Workspace Extensions
	Object Navigator Extensions
	Action Extensions
	Relation Extensions
	Home Screen Shortcut Extensions
	Object List View Extensions

	Adding Global View Extensions
	Properties of the GlobalViewSpec Extension Object

	Extending the vCenter Object Workspaces
	Extending an Existing Object Workspace
	Properties of the ViewSpec Extension Object

	Creating an Object Workspace for a Custom Object
	Using the objectViewTemplate to Create an Object Workspace
	Using the Summary Tab Template

	Creating Data View Extensions
	Understanding the Frinje Framework
	View Components in Frinje
	Model Components in Frinje
	Controller Components in Frinje
	Frinje Event-Driven APIs
	Frinje Metadata Annotations

	Using the Data Access Manager Library
	Create a Data Access Manager Workflow
	Creating the Data Model Class
	Sending Data Requests and Handling Data Responses
	Data Refresh and Data Update Specifications

	Extending the Object Navigator
	Defining an Object Navigator Extension
	Specifying the Object Navigator Page and Category
	Adding a Category to the Object Navigator
	Adding a Pointer Node to the Object Navigator
	Adding an Object Collection Node to the Object Navigator

	Using a Template to Create an Object Collection Node Extension
	Adding Custom Icons and Labels to an Object Collection Node

	Creating Action Extensions
	Actions Framework Overview
	Defining an Action Set
	Defining Individual Actions for Flex-Based Action Extensions
	Handling Actions with Flex Command Classes
	Performing Action Operations on the vSphere Environment
	Organizing Your Actions in the User Interface
	Extending an Action Menu
	Prioritizing Actions in the User Interface

	Creating Relation Extensions
	Defining a Relation Extension
	Describing a Relation by Using the RelationSpec Object

	Creating Home Screen Shortcuts
	Properties of the ShortcutSpec Extension Object

	Creating Object List View Extensions
	Defining Object List View Extensions

	Developing HTML-Based User Interface Extensions
	Overview
	Global View Extensions
	Properties of the HtmlView Extension Object
	Adding a vCenter Server Selector

	Extending the vCenter Object Workspace
	Extending an Existing Object Workspace
	Creating an Object Workspace for a Custom Object
	Using the objectViewTemplate to Create an Object Workspace
	Creating Extensions to the Summary Tab

	Creating Data View Extensions
	Creating Object List View Extensions
	Creating Actions Extensions
	Actions Framework Overview
	Defining an Action Set
	Defining Individual Actions for HTML-Based Action Extensions
	Handling Actions for HTML-Based Action Extensions

	Handling Locales
	Guidelines for Creating Plug-Ins Compatible with the vSphere Client
	Hybrid Plug-Ins
	vSphere Client JavaScript APIs
	Mapping the JavaScript to the Flex APIs

	Developing Extensions to the Service Layer
	Understanding the vSphere Web Client Data Service
	Extending the Service Layer with Custom Components
	Custom Component Types
	Interfaces to the Service Layer
	Communications with the Virgo Service Layer

	Overview of Data Service Queries
	When To Use Data Service Queries
	RequestSpec Data Structure in Data Service Queries
	ResultSet Data Structure in Data Service Queries

	Extending the Data Service with a Data Service Adapter
	Advantages of Providing a Data Service Adapter
	Designing a Data Service Adapter
	Processing Data Service Queries

	Property Provider Adapters
	Data Provider Adapters
	DataProviderAdapter Interface
	Resolving a Custom Target Object
	Registering a Data Provider Adapter
	Data Provider Adapter Example

	Creating a Custom Java Service
	Make Java Services Available to the UI Components in the vSphere Web Client and the vSphere Client
	Creating the Java Interface and Classes
	Persisting Data from Your Plug-Ins to the vCenter Server Appliance and the vCenter Server System
	Packaging and Exposing the Service

	Importing a Service in a User Interface Plug-In Module

	Creating and Deploying Plug-In Packages
	Plug-In Package Overview
	XML Elements of the Plug-In Package Manifest File
	Plug-Ins Compatibility Matrix
	Deploying a Plug-In Package
	Deploying a Plug-In Package From a Remote Server
	Register a Plug-In Package as a vCenter Server Extension
	Creating the vCenter Server Extension Data Object
	Verifying Your Plug-In Package Deployment
	Unregister a Plug-In Package

	Sample Plug-Ins Overview
	HTML Sample Plug-Ins

	Best Practices for Developing Extensions for the vSphere Web Client
	Best Practices for Creating Plug-In Packages
	Best Practices for Plug-In Modules Implementation
	Best Practices for Developing HTML-Based Extensions
	Best Practices for Extending the User Interface Layer
	Best Practices for Extending the Service Layer
	OSGi-Specific Recommendations
	DataService -Specific Best Practices

	Best Practices for Deploying and Testing Your vSphere Web Client Extensions

	List of Extension Points
	Global Extension Points
	Object Navigator Extension Points
	Object Workspace Extension Points
	Actions Extension Points
	Extension Templates
	Custom Object Extension Points

