
VMware Storage Policy SDK
Programming Guide

vSphere 6.0

This document supports the version of each product listed and
supports all subsequent versions until the document is replaced
by a new edition. To check for more recent editions of this
document, see http://www.vmware.com/support/pubs.

EN-001763-00

http://www.vmware.com/support/pubs

VMware, Inc.
3401 Hillview Ave.
Palo Alto, CA 94304
www.vmware.com

2 VMware, Inc.

VMware Storage Policy SDK Programming Guide

You can find the most up-to-date technical documentation on the VMware Web site at:

http://www.vmware.com/support/

The VMware Web site also provides the latest product updates.

If you have comments about this documentation, submit your feedback to:

docfeedback@vmware.com

Copyright © 2013-2015 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and
intellectual property laws. VMware products are covered by one or more patents listed at
http://www.vmware.com/go/patents.

VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions. All other marks
and names mentioned herein may be trademarks of their respective companies.

http://www.vmware.com/support/
http://www.vmware.com/support
mailto:docfeedback@vmware.com
http://www.vmware.com/go/patents
http://www.vmware.com/go/patents

VMware, Inc. 3

Contents

Contents

Contents 3

About This Book 5

VMware Storage Policies 7
Storage Capabilities 7
Virtual Machine Storage 7
Storage Profiles 7
Storage Policy Operations 8
Access to the VMware Storage Policy Server 8
Storage Profile Queries 9
VMware Storage Policy SDK 10

VMware Storage Policy SDK Examples 10

Storage Policy Server Connection 13
Establish a Connection with the VMware Storage Policy Server 13

Server URLs 14
Establish the vCenter Session Connection for the Local Instance 14
Create the Storage Policy Server Connection 15

 VSAN-Based Storage Profiles 17
Create a VSAN Requirements Profile 17

Create an Individual Storage Requirement 18
Create a Storage Profile 18

Virtual Machine Storage Profiles 21
Retrieve an Existing Storage Profile from the Storage Policy Server 21
Apply the Storage Profile to a Virtual Machine 22

 Tag-Based Storage Profiles 25
Create a Tag-Based Storage Profile 25

Retrieve Tag Metadata 26
Create a Storage Profile 26

Legacy Storage Profiles 29
VASA 1.0 Storage Capability Upgrade 29
vSphere Web Client User Label Conversion 30

vCenter Single Sign On
Client Example 33

vCenter Single Sign On Token Request Overview 33
Using Handler Methods for SOAP Headers 34
Sending a Request for a Security Token 36

vCenter LoginByToken Example 39
vCenter Server Single Sign On Session 39

VMware Storage Policy SDK Programming Guide

4 VMware, Inc.

HTTP and SOAP Header Handlers 39
Sample Code 40

Saving the vCenter Server Session Cookie 41
Using LoginByToken 42
Restoring the vCenter Server Session Cookie 43

Index 45

VMware, Inc. 5

About This Book

VMware Storage Policy Programming Guide describes how to use the VMware® Storage Policy API.

VMware provides different APIs and SDKs for different applications and goals. The VMware Storage Policy
SDK supports the development of vCenter clients that use vCenter storage profiles for virtual machine
configuration.

To view the current version of this book as well as all VMware API and SDK documentation, go to
http://www.vmware.com/support/pubs/sdk_pubs.html.

Revision History
This book is revised with each release of the product or when necessary. A revised version can contain minor
or major changes. Table 1 summarizes the significant changes in each version of this book.

Intended Audience
This book is intended for anyone who needs to develop applications using the VMware Storage Policy SDK.
An understanding of Web Services technology and some programming background in Java is required.

VMware Technical Publications Glossary
VMware Technical Publications provides a glossary of terms that might be unfamiliar to you. For definitions
of terms as they are used in VMware technical documentation go to http://www.vmware.com/support/pubs.

Document Feedback
VMware welcomes your suggestions for improving our documentation. Send your feedback to
docfeedback@vmware.com.

About This Book

Table 1. Revision History

Revision Date Description

12Mar2015 Released for VMware vSphere 6.0

11Mar2014 Supported on VMware vSphere 6.0 Beta.

19Sep2013 vSphere 5.5 release. First version.

http://www.vmware.com/support/pubs/sdk_pubs.html
mailto:docfeedback@vmware.com
mailto:docfeedback@vmware.com
http://www.vmware.com/support/pubs

VMware Storage Policy SDK Programming Guide

6 VMware, Inc.

VMware, Inc. 7

Chapter 1 VMware Storage Policies

1

A vSphere storage profile defines storage policy information that describes storage requirements for virtual
machines and storage capabilities of storage providers. You use VMware Storage Policies to manage the
association between virtual machines and datastores.

NOTE A Storage Policy API profile consists of a set of subprofiles. A subprofile defines a set of storage
capabilities. A subprofile corresponds to a rule set in the vSphere Web Client.

Storage Capabilities
Storage requirements are based on the storage capabilities available from a storage provider. A Storage Policy
Server obtains storage capability data from VASA 2.0 providers or from tag-based storage policies.

 VASA 2.0 providers - vSphere supports VMware VSAN storage capabilities only.
 Tag-based storage - You use the vSphere Web Client to define storage policy tags.

Virtual Machine Storage
 Virtual machine configuration and data are stored in datastores.

 Virtual machine configuration is stored in files with the .vmx file extension. The set of virtual machine
configuration files also includes other system files that support virtual machine operation. Examples of
these system files include log files (.log), BIOS state files (.nvram), paging files (.vmem), and snapshot data
files (.vmsd).

 Virtual machine data is stored on virtual disks, in files with the .vmdk file extension.

VMware Storage Policies allow you to distinguish between virtual machine configuration and data files and
to specify storage locations based on the distinction.

Storage Profiles
To use a storage profile, you define storage requirements and associate the profile with a virtual machine.
When you create a virtual machine, the vCenter Server will use the virtual machine’s storage profile and the
Storage Policy Server to determine a location for the virtual machine files.

VMware Storage Policies 1

VMware Storage Policy SDK Programming Guide

8 VMware, Inc.

Storage Policy Operations
 Use Storage Policy API methods to support virtual machine provisioning.

Access to the VMware Storage Policy Server
The VMware Storage Policy client API is described in the WSDL (Web Service Definition Language) file that
is included in the VMware Storage Policy SDK. This API defines a set of request operations that you use to
manipulate storage profiles. The VMware Storage Policy SDK includes Java bindings for the VMware Storage
Policy WSDL.

To gain access to the Storage Policy Server, your client connects to a vCenter Server and obtains the vCenter
session cookie. Then you can use the vCenter session cookie to establish the connection with the Storage Policy
Server. See “Establish a Connection with the VMware Storage Policy Server” on page 13.

After you establish a Storage Policy Server connection, your client uses language-specific Web Services access
objects and the PbmServiceInstance and PbmServiceInstanceContent objects to access the Storage Policy
managed objects and their methods.

The Storage Policy Web Services access objects are language-specific API binding objects that are generated
from the Storage Policy WSDL. The VMware Storage Policy SDK contains JAXWS bindings to the Storage
Policy API. The JAXWS bindings include the PbmService and PbmPortType Web Services access objects.

 PbmService – Provides access to the PbmPortType object and it provides support for the Storage Policy
Service connection.

 PbmPortType – Provides access to Storage Policy methods.

The following code fragment shows the sequence of calls that you use to obtain access to the Storage Policy
API methods.

Example 1-1. Access to Storage Policy API Methods

import com.vmware.pbm.PbmService;
import com.vmware.pbm.PbmPortType;
import com.vmware.pbm.PbmServiceInstanceContent;
[...]
PbmService = new PbmService()
PbmPortType pbmPort = PbmService.getPbmPort()
PbmServiceInstanceContent pbmServiceContent = pbmPort.pbmRetrieveServiceContent

The following figure shows the PbmServiceInstanceContent data object and the Storage Policy managed
objects that provide access to Storage Policy services.

Table 1-1. Storage Policy Operations and Virtual Machine Provisioning

Storage Policy Operation (Storage Policy API) Virtual Machine Provisioning (vSphere API)

Use the PbmProfileProfileManager methods to
create and update storage profiles.

Associate storage profiles with virtual machines and virtual disks.
See the description of the vSphere API data object properties
VirtualMachineConfigSpec.vmProfile and
FileBackedVirtualDiskSpec.profile in the vSphere API
Reference. You can also use the vSphere Web Client to associate a
storage profile with a virtual machine or virtual disk.

Use the PbmPlacementSolver methods to
identify candidate datastores for storage
locations.

Specify the datastores when you create virtual machines and
virtual disks. See the description of the vSphere API data object
properties VirtualMachineFileInfo.vmPathName and
VirtualDeviceFileBackingInfo.datastore in the vSphere
API Reference.

Use the PbmComplianceManager methods to
check compliance between storage requirements
and capabilities.

After you associate a storage profile with a virtual machine or
virtual disk, the Server will identify non-compliance if the datastore
does not satisfy the requirements of the profile.

VMware, Inc. 9

Chapter 1 VMware Storage Policies

Figure 1-1. Storage Policy Service Instance Content

The PbmServiceInstanceContent object contains managed object references to the Storage Policy services.
The set of Storage Policy services include the profile manager, placement solver, and compliance manager.

Storage Profile Queries
The Storage Policy API includes several methods that you can use to query for profiles and vSphere entities
(datastores, virtual machines, and virtual disks). The following table provides an overview of these methods.
For more information, see the Storage Policy API Reference.

Table 1-2. Storage Policy Services

Service ManagedObject Usage

Profile Manager PbmProfileProfileManager Create and update VMware storage profiles. Storage profiles
define storage requirements.

Placement Solver PbmPlacementSolver Identify candidate datastores for storage locations.

Compliance Manager PbmComplianceManager Check compliance between storage requirements and
capabilities.

Table 1-3. Storage Profile API Query Methods

Method Description

PbmQueryAssociatedEntiy Returns references to entities associated with the specified profile.

PbmQueryAssociatedProfile Returns profiles associated with the specified entity. The type of profile is
determined by the type of entity that you specify.
 If you specify a datastore, the method returns one or more capability

(resource) profiles.
 If you specify a virtual machine or virtual disk, the method returns one or

more requirement profiles.

PbmQueryAssociatedProfiles Returns PbmQueryProfileResult objects. Each result object identifies an entity
and one or more profiles. Profile type is determined by entity type.
 If the entity is a datastore, the result object contains one or more capability

(resource) profiles.
 If the entity is a virtual machine or virtual disk, the result object contains one

or more requirement profiles.

PbmQueryMatchingHub Returns datastores and/or datastore clusters that satisfy the specified
requirement profile. To retrieve the profiles associated with a datastore, call
PbmQueryMatchingHub for each profile in the system. In the vSphere Web
Client, datastore clusters are called storage pods.

PbmQueryMatchingHubWithSpec Returns datastores and or datastore clusters that satisfy the criteria in the
capability create specification.

PbmQueryProfile Returns requirement profiles or resource profiles, or both.

VMware Storage Policy SDK Programming Guide

10 VMware, Inc.

VMware Storage Policy SDK
The VMware Storage Policy SDK is distributed as part of the VMware vSphere Management SDK. When you
extract the contents of the distribution kit, the VMware Storage Policy SDK is located in the spbm
sub-directory:

VMware-vSphere-SDK-build-num
eam
sms-sdk
spbm

docs
java
pbm-apiref

java
JAXWS

lib
samples

wsdl
ssoclient
vsphere-ws

The following table shows the locations of the contents of the VMware Storage Policy SDK.

VMware Storage Policy SDK Examples

The VMware Storage Policy SDK contains Java examples that show how to create and use VMware storage
policies.

This manual describes examples from the VMware Storage Policy SDK. It also describes examples from the
vCenter Single Sign-On SDK that support the client connection to the Storage Policy Server. This manual
includes the following single sign-on examples:

 “vCenter Single Sign On Client Example” on page 33. This example shows how to obtain a holder-of-key
token from the vCenter Single Sign On Server.

 “vCenter LoginByToken Example” on page 39. This example shows how to use the token to login to
vCenter Server.

The following table lists the sample files in the VMware Storage Policy SDK:

Table 1-4. VMware Storage Policy SDK Contents

VMware Storage Policy SDK Component Location

JAX-WS VMware Storage Policy client binding spbm/java/JAXWS/lib

Java Storage Policy samples spbm/java/JAXWS/samples/com/vmware/spbm/samples/

Java Storage Policy Server connection sample spbm/java/JAXWS/samples/com/vmware/spbm/connection/

VMware Storage Policy API Reference spbm/docs/pbm-apiref/index.html

Documentation for example code spbm/docs/java/JAXWS/samples/javadoc/index.html

WSDL files spbm/wsdl

Table 1-5. VMware Storage Profile SDK Sample File

Location Examples Description

SDK/spbm/java/JAXWS/samples/com/vmware/spbm/samples/

VMware, Inc. 11

Chapter 1 VMware Storage Policies

AboutInfo.java Obtains identifying data about the Storage Policy
Server.

CheckCompliance.java Checks the compliance of profiles associated with
virtual machines and virtual disks.

CreateProfile.java Creates a requirement profile.

DeleteProfile.java Deletes a requirement profile.

EditProfile.java Adds or deletes subprofiles from a tag-based
storage profile.

ListProfiles.java Retrieves all of the storage profiles known to the
system.

VMClone.java Deploys mutliple instances of a virtual machine
template to a datacenter. The clone specification
has an associated storage profile.

VMCreate.java Creates a virtual machine. The virtual machine
configuration specification has an associated
storage profile.

ViewProfile.java Prints the contents of a tag-based storage profile.

SDK/spbm/java/JAXWS/samples/com/vmware/spbm/connection/

BasicConnection.java Establishes an authenticated session with a
VMware SSO Server, vCenter Server, and Storage
Policy Server.

ConnectedServiceBase.java Connection base class for client application
implementations.

Connection.java Storage Policy sample support; utility class that
sets up a Storage Policy Server connection.

ConnectionException.java Base exception class for exceptions thrown by
connection classes.

ConnectionMalformedUrlException.java URL exception.

KeepAlive.java Keep-alive utility class; maintains the vCenter
Server connection.

VcSessionHandler.java Utility class; inserts vCenter session cookie into
SOAP header.

Table 1-5. VMware Storage Profile SDK Sample File

Location Examples Description

VMware Storage Policy SDK Programming Guide

12 VMware, Inc.

VMware, Inc. 13

Chapter 2 Storage Policy Server Connection

2

The connection between a Storage Policy client and the Storage Policy Server is based on the client’s connection
with a vCenter Server. A vCenter Server client uses an HTTP session cookie to maintain a persistent connection
with the Server. A Storage Policy client uses the vCenter Server session cookie to establish the connection with
the Storage Policy Server.

A client performs the following operations to establish vCenter Server and Storage Policy Server sessions.

 Obtain a SAML token from the VMware SSO Server.
See “vCenter Single Sign On Client Example” on page 33.

 Use the SAML token to login to the vCenter Server.
See “vCenter LoginByToken Example” on page 39.

 Use the the RetrieveServiceContent method to send the session cookie to the Storage Policy Server
and establish the connection with the Server.

The following figure shows a representation of the server connections and operations involved in establishing
a Storage Policy Server connection.

Figure 2-1. Storage Policy Server Connection

Establish a Connection with the VMware Storage Policy Server
Use the session cookie from the vCenter Server session to establish the Storage Policy session. The session
cookie represents the authenticated vCenter Server session, which is based on the SSO token.

The following code fragments establish connections both with the vCenter Server and the Storage Policy
Server. These examples are based on the BasicConnection sample which is located in the Storage Policy SDK
connection sample directory:

SDK/spbm/java/JAXWS/samples/com/vmware/spbm/connection/BasicConnection.java

Storage Policy Server Connection 2

token request

authentication token

vCenter session cookie

SSO Server

vCenter Server

Storage Policy Server

client
application

LoginByToken [token]

[vCenter session cookie]

token

cookie

RetrieveServiceContent

VMware Storage Policy SDK Programming Guide

14 VMware, Inc.

The BasicConnection sample uses an instance of the LoginByTokenSample class. See “vCenter
LoginByToken Example” on page 39. The LoginByToken example saves the HTTP cookie produced during
the intial connection sequence and then restores the cookie after the vCenter Server connection has been
established. Although the LoginByToken example creates a vCenter Server connection, the BasicConnection
sample establishes its own connection with the vCenter Server. A different implementation might integrate
those capabilities to reduce the number of vCenter Server connections.

Server URLs

The BasicConnection sample creates connections to three VMware Servers.

 SSO Server

 vCenter Server

 Storage Policy Server

In the example configuration, the SSO and Storage Policy Servers are located on the same system as the
vCenter Server. In other configurations, the SSO Server may be located on a different server.

Establish the vCenter Session Connection for the Local Instance

The following code fragment sets up the HTTP connection with the vCenter Server.

1 Retrieve the VimPort interface. This provides access to the vSphere API methods.

2 Retrieve the request context and set the vCenter Server endpoint address in the request context.

3 Set the session cookie in the request context. The cookie (cookieVal) is obtained from the vCenter
LoginByToken Example.

4 Call the RetrieveServiceContent method to establish the HTTP connection with the vCenter Server.

Example 2-1. vCenter Server Connection

// 1. Retrieve the VimPort interface.
vimService = new VimService();
vimPort = vimService.getVimPort();

// 2. Retrieve the request context and set the vCenter Server endpoint.
Map<String, Object> ctxt = ((BindingProvider) vimPort).getRequestContext();
ctxt.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY, vcurl.toString());
ctxt.put(BindingProvider.SESSION_MAINTAIN_PROPERTY, true);

// 3. Put the extracted vCenter session cookie into the VimPortType request header.
Map<String, List<String>> headers =

(Map<String, List<String>>) ctxt .get(MessageContext.HTTP_REQUEST_HEADERS);
if (headers == null) {

headers = new HashMap<String, List<String>>();
}
headers.put("Cookie", Arrays.asList(cookieVal));
ctxt.put(MessageContext.HTTP_REQUEST_HEADERS, headers);

// 4. Retrieve the vCenter Server service content. (Establishes the HTTP connection)
vimServiceContent = vimPort.retrieveServiceContent(this.getVimServiceInstanceReference());

Table 2-1. VMware Server URLs

VMware Server URL

vCenter Server https://server-name|IPaddress/sdk/vimService

SSO Server https://server-name|IPaddress/sts/STSService

Storage Policy Server https://server-name|IPaddress/pbm

VMware, Inc. 15

Chapter 2 Storage Policy Server Connection

Create the Storage Policy Server Connection

The following code fragment uses a vCenter session cookie to create a Storage Policy Server session.

1 Extract the actual cookie value from the name=value expression in the cookie string obtained from the
vCenter session connection.

2 Create a PbmService object.

3 Set up a header handler to support adding the vCenter session cookie to the Storage Policy Server
connection.

4 Retrieve the PbmPort object for access to the Storage Policy API methods.

5 Retreive the request context and set the endpoint to the Storage Policy Server URL.

6 Call the PbmRetrieveServiceContent method to establish the HTTP connection to the Storage Policy
Server.

Example 2-2. Storage Policy Server Connection

// 1. Set the extracted cookie in the PbmPortType
//
// Need to extract only the cookie value
String[] tokens = cookieVal.split(";");
tokens = tokens[0].split("=");
String extractedCookie = tokens[1];

// 2. Create a PbmService object.
pbmService = new PbmService();

// 3. Setting the header resolver for adding the VC session cookie to the
// requests for authentication
HeaderHandlerResolver headerResolver = new HeaderHandlerResolver();
headerResolver.addHandler(new VcSessionHandler(extractedCookie));
pbmService.setHandlerResolver(headerResolver);

// 4. Retrieve the PbmPort object for access to the Storage Policy API
pbmPort = pbmService.getPbmPort();

// 5. Set the Storage Policy Server endpoint
Map<String, Object> pbmCtxt = ((BindingProvider) pbmPort).getRequestContext();
pbmCtxt.put(BindingProvider.SESSION_MAINTAIN_PROPERTY, true);
pbmCtxt.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY, spbmurl.toString());

// 6. Retrieve the service content (creates the connection)
pbmServiceContent = pbmPort.pbmRetrieveServiceContent(getPbmServiceInstanceReference());

VMware Storage Policy SDK Programming Guide

16 VMware, Inc.

VMware, Inc. 17

Chapter 3 VSAN-Based Storage Profiles

3

Storage requirements are based on the storage capabilities available from a storage provider. vSphere supports
VMware VSAN storage capabilities. To create a requirements profile based on VSAN capabilities, you retrieve
metadata that describes the VSAN capabilities and create a subprofile that expresses the storage requirements
for virtual machine or virtual disk files. To perform these operations, you use a connection to the Storage Policy
Server.

Create a VSAN Requirements Profile
The following example demonstrates how to create a storage requirements profile based on vSphere VSAN
storage capabilities. The example creates a requirement profile for VSAN stripe width.

The following figure shows the data objects used for a profile specification.

Figure 3-1. Storage Profile Specification

The following example is based on the Storage Policy SDK sample file CreateVSANProfile.java.This
example is divided into two code fragments:

 VSAN-Based Storage Profiles 3

VMware Storage Policy SDK Programming Guide

18 VMware, Inc.

 Create an Individual Storage Requirement – The code fragment is a function that creates a single storage
capability instance for a subprofile (rule).

 Create a Storage Profile – The code fragment builds a profile specification and creates the profile.

Create an Individual Storage Requirement

The following example builds a property instance for a capability. The property instance represents a single
storage requirement. The code performs the following steps:

1 Verifies that the capability exists.

2 Creates a property instance for the requirement (PbmCapabilityPropertyInstance).

3 Creates a capability contraint for the property instance (PbmCapabilityConstraintInstance).

4 Create a capability instance for the constraint and add the subprofile (rule) to the capability.

Example 3-1.

PbmCapabilityInstance buildCapability(String capabilityName, Object value,
 List<PbmCapabilityMetadataPerCategory> metadata)
 throws InvalidArgumentFaultMsg {

// Retrieve the metadata for the capability (stripeWidth)
PbmCapabilityMetadata capabilityMeta = PbmUtil.getCapabilityMeta(capabilityName, metadata);
if (capabilityMeta == null)

throw new InvalidArgumentFaultMsg("Specified Capability does not exist", null);

// Create a New Property Instance based on the Stripe Width Capability
PbmCapabilityPropertyInstance prop = new PbmCapabilityPropertyInstance();
prop.setId(capabilityName);
prop.setValue(value);

// Associate Property Instance with a Rule (subprofile)
PbmCapabilityConstraintInstance rule = new PbmCapabilityConstraintInstance();
rule.getPropertyInstance().add(prop);

// Associate Rule (subprofile) with a Capability Instance
PbmCapabilityInstance capability = new PbmCapabilityInstance();
capability.setId(capabilityMeta.getId());
capability.getConstraint().add(rule);

return capability;
}

Create a Storage Profile

The example performs the following operations.

1 Retrieve a reference to the Storage Policy Profile Manger.

2 Verify that there is VSAN Storage Policy support.

3 Retrieve the VSAN storage capability metadata.

4 Add capabilities to be used as requirements.

5 Add the requirement capabilities to a subprofile. A subprofile corresponds to a rule set in the vSphere
Web Client.

6 Specify the subprofile as capability constraints.

7 Build a profile specification.

8 Create the storage profile.

VMware, Inc. 19

Chapter 3 VSAN-Based Storage Profiles

When you create a storage profile, the PbmCreate method returns a profile ID (PbmProfileId). The Profile
Manager maintains a list of profiles. To obtain a profile from the list, use the PbmQueryProfile and
PbmRetrieveContent methods. See “Retrieve an Existing Storage Profile from the Storage Policy Server” on
page 21.

Example 3-2. VSAN Storage Profile Creation

// 1: Get PBM Profile Manager & Associated Capability Metadata
spbmsc = connection.getPbmServiceContent();
ManagedObjectReference profileMgr = spbmsc.getProfileManager();

// 2: Verify that there is vSAN Storage Policy support
Boolean vSanCapabale = false;
List<PbmCapabilityVendorResourceTypeInfo> vendorInfo =

connection.getPbmPort().pbmFetchVendorInfo(profileMgr, null);
for (PbmCapabilityVendorResourceTypeInfo vendor : vendorInfo)

for (PbmCapabilityVendorNamespaceInfo vnsi : vendor.getVendorNamespaceInfo())
if (vnsi.getNamespaceInfo().getNamespace().equals("vSan")) {

vSanCapabale = true;
break;

}

if (!vSanCapabale)
throw new RuntimeFaultFaultMsg(

"Cannot create storage profile. vSAN Provider not found.", null);

// 3: Get PBM Supported Capability Metadata
List<PbmCapabilityMetadataPerCategory> metadata =

connection.getPbmPort().pbmFetchCapabilityMetadata(profileMgr,
PbmUtil.getStorageResourceType(), null);

// 4: Add Provider Specific Capabilities
List<PbmCapabilityInstance> capabilities = new ArrayList<PbmCapabilityInstance>();
capabilities.add(buildCapability("stripeWidth", stripeWidth, metadata));

// 5: Add Capabilities to a RuleSet (subprofile)
PbmCapabilitySubProfile ruleSet = new PbmCapabilitySubProfile();
ruleSet.getCapability().addAll(capabilities);

// 6: Add Rule-Set (subprofile) to Capability Constraints
PbmCapabilitySubProfileConstraints constraints = new PbmCapabilitySubProfileConstraints();
ruleSet.setName("Rule-Set " + (constraints.getSubProfiles().size() + 1));
constraints.getSubProfiles().add(ruleSet);

// 7: Build Capability-Based Profile
PbmCapabilityProfileCreateSpec spec = new PbmCapabilityProfileCreateSpec();
spec.setName(profileName);
spec.setDescription("Storage Profile Created by SDK Samples. Rule based on vSAN capability");
spec.setResourceType(PbmUtil.getStorageResourceType());
spec.setConstraints(constraints);

// 8: Create Storage Profile
PbmProfileId profile = connection.getPbmPort().pbmCreate(profileMgr, spec);
System.out.println("Profile " + profileName + " created with ID: " + profile.getUniqueId());

VMware Storage Policy SDK Programming Guide

20 VMware, Inc.

VMware, Inc. 21

Chapter 4 Virtual Machine Storage Profiles

4

The Storage Policy Server maintains a list of storage profiles. To apply a storage profile to a virtual machine,
perform the following operations:

 Retrieve an Existing Storage Profile from the Storage Policy Server

 Apply the Storage Profile to a Virtual Machine.

The code fragments in this chapter are based on the Storage Policy SDK sample file VMCreate.java.

Retrieve an Existing Storage Profile from the Storage Policy Server
The following code fragment shows the example function getPbmProfileSpec that uses the
PbmQueryProfile and PbmRetrieveContent methods to retrieve storage profiles. In the context of the
Storage Policy SDK example VMCreate.java, the function returns a VirtualMachineDefinedProfileSpec
to be used to configure storage for a virtual machine.

 The function performs the following operations:

1 Uses the connection to the Storage Policy Server to retrieve a reference to the Profile Manager.

2 Calls the PbmQueryProfile method to obtain the list of storage profile identifiers.

3 Calls the PbmRetrieveContent method to obtain the list of storage profiles.

4 Finds the profile that matches the specified profile name.

5 Creates a VirtualMachineDefinedProfileSpec and assigns the identifier from the named profile to the
VirtualMachineDefinedProfileSpec. You use the VirtualMachineDefinedProfileSpec when you
configure the virtual machine. See “Apply the Storage Profile to a Virtual Machine” on page 22.

Example 4-1. Retrieving a Storage Profile

VirtualMachineDefinedProfileSpec getPbmProfileSpec(String name)
 throws InvalidArgumentFaultMsg, com.vmware.pbm.RuntimeFaultFaultMsg,
 RuntimeFaultFaultMsg {

 // 1 Get PBM Profile Manager
 PbmServiceInstanceContent spbmsc = connection.getPbmServiceContent();
 ManagedObjectReference profileMgr = spbmsc.getProfileManager();

 // 2 Retrieve the list of profile identifiers.
 List<PbmProfileId> profileIds =
 connection.getPbmPort().pbmQueryProfile(profileMgr,
 PbmUtil.getStorageResourceType(),
 null);

 if (profileIds == null || profileIds.isEmpty())
 throw new RuntimeFaultFaultMsg("No storage Profiles exist.", null);

 // 3 Retrieve the list of storage profiles.
 List<PbmProfile> pbmProfiles =

Virtual Machine Storage Profiles 4

VMware Storage Policy SDK Programming Guide

22 VMware, Inc.

 connection.getPbmPort().pbmRetrieveContent(profileMgr, profileIds);

 // 4,5 Find the named profile and create a VirtualMachineDefinedProfileSpec
 // that will use the same profile identifier.
 for (PbmProfile pbmProfile : pbmProfiles) {
 if (pbmProfile.getName().equals(name)) {
 PbmCapabilityProfile profile = (PbmCapabilityProfile) pbmProfile;
 VirtualMachineDefinedProfileSpec spbmProfile =
 new VirtualMachineDefinedProfileSpec();

 spbmProfile.setProfileId(profile.getProfileId().getUniqueId());

 return spbmProfile;
 }
 }

 // Throw exception if none found
 throw new InvalidArgumentFaultMsg(
 "Specified storage profile name does not exist.", null);
}

Apply the Storage Profile to a Virtual Machine
To use a storage profile for a virtual machine, specify a VirtualMachineDefinedProfileSpec object for the
VirtualMachineConfigSpec.vmProfile property.

The following code fragment sets the storage profile and creates the virtual machine. The profile
(spbmProfile) is a VirtualMachineDefinedProfileSpec. See “Retrieve an Existing Storage Profile from
the Storage Policy Server” on page 21.

Example 4-2. Associating a Storage Profile with a Virtual Machine

[...]
VirtualMachineConfigSpec configSpec = new VirtualMachineConfigSpec();
// Set SPBM profile
configSpec.getVmProfile().add(spbmProfile);
[...]
ManagedObjectReference taskmor =

connection.getVimPort().createVMTask(vmFolderMor, vmConfigSpec, resourcepoolmor, hostmor);

The following figure shows how a storage profile is integrated into a virtual machine configuration
specification. Your client establishes the link between the storage profile (PbmCapabilityProfile) and the
VirtualMachineDefinedProfileSpec by setting the profileId property in the
VirtualMachineDefinedProfileSpec. The Server sets the profileData property when it configures the
virtual machine.

VMware, Inc. 23

Chapter 4 Virtual Machine Storage Profiles

Figure 4-1. Using a Storage Profile for Virtual Machine Provisioning

VirtualMachineConfigSpec

PbmCapabilityProfile
vmProfileVirtualMachineDefinedProfileSpec

profileIdprofile

Virtual Machine provisioning
vCenter Server Connection
(CreateVM_Task,
CreateChildVM_Task,
ReconfigVM_Task)

profileData

Storage Profile access
Storage Policy Server Connection
(PbmQueryProfile,
PbmRetrieveContent)

VMware Storage Policy SDK Programming Guide

24 VMware, Inc.

VMware, Inc. 25

Chapter 5 Tag-Based Storage Profiles

5

To use a tag-based storage profile, you assign a storage policy tag to a datacenter, define a storage requirement
profile based on the tag, and associate the profile with a virtual machine. When you create the virtual machine,
the vCenter Server will use the Storage Policy Server to resolve the tag reference in the profile and determine
a datastore for virtual machine storage.

 To associate a storage policy tag with a datacenter, use the vSphere Web Client.

 To create a tag-based storage requirements profile, you retrieve metadata associated with a storage policy
tag and create a storage profile that contains identifiers from the tag metadata.

 To associate the storage profile with a virtual machine, see “Apply the Storage Profile to a Virtual
Machine” on page 22.

Create a Tag-Based Storage Profile
The following figure shows a storage profile specification and the associated tag metadata.

 The subprofile capability instance identifier (PbmCapabilityInstance.id) is set to the storage policy tag
metadata identifier (PbmCapabilityMetadata.id).

 The capability property instance (PbmCapabilityPropertyInstance) specifies both an identifier and a
value. Both properties are set to the tag metadata id and allowedValue properties.

Figure 5-1. Tag-Based Storage Profile Specification

 Tag-Based Storage Profiles 5

subProfiles

PbmCapabilityProfileCreateSpec

PbmCapabilitySubProfileConstraints

capability
PbmCapabilitySubProfile

PbmCapabilityMetadata

PbmCapabilityPropertyMetadata

PbmCapabilityInstance

constraints

PbmCapabilityPropertyInstance

PbmCapabilityConstraintInstance

propertyMetadata

id

allowedValue value
id

propertyInstance

id
constraint

id

VMware Storage Policy SDK Programming Guide

26 VMware, Inc.

The following example demonstrates how to create a storage requirements profile based on a storage policy
tag. The example is divided into two sections:

 Retrieve Tag Metadata

 Create a Storage Profile

Retrieve Tag Metadata

The following example shows a code fragment that retrieves metadata for a tag category. Given the list of
metadata obtained from the Storage Policy Server, the function traverses the list and returns the metadata
associated with the specified category. This function is defined in the PbmUtil package in the Storage Policy
SDK.

Example 5-1. getTagCategoryMeta (PbmUtil Package)

public static PbmCapabilityMetadata getTagCategoryMeta(
String tagCategoryName, List<PbmCapabilityMetadataPerCategory> schema) {

for (PbmCapabilityMetadataPerCategory cat : schema)
if (cat.getSubCategory().equals("tag"))

for (PbmCapabilityMetadata cap : cat.getCapabilityMetadata())
if (cap.getId().getId().equals(tagCategoryName))

return cap;
return null;

 }

Create a Storage Profile

The example performs the following operations.

1 Create a property instance with tags from the specified tag category.

2 Associate the property instance with a constraint (rule).

3 Associate the constraint with a capability instance.

4 Add the capability instance to a subprofile (rule set).

5 Add the subprofile to the list of subprofile constraints.

6 Build a profile specification.

7 Create the storage profile.

The following example is based on the Storage Policy SDK sample file CreateProfile.java.

Example 5-2. Tag-Based Storage Profile Creation

// Get PBM Profile Manager and PBM Capability Metadata
spbmsc = connection.getPbmServiceContent();
ManagedObjectReference profileMgr = spbmsc.getProfileManager();

List<PbmCapabilityMetadataPerCategory> metadata =
connection.getPbmPort().pbmFetchCapabilityMetadata(

profileMgr,PbmUtil.getStorageResourceType(), null);

// Step 1: Create Property Instance with tags from the specified Category
PbmCapabilityMetadata tagCategoryInfo = PbmUtil.getTagCategoryMeta(tagCategoryName, metadata);

// Fetch Property Metadata of the Tag Category
List<PbmCapabilityPropertyMetadata> propMetaList = tagCategoryInfo.getPropertyMetadata();
PbmCapabilityPropertyMetadata propMeta = propMetaList.get(0);

// Create a New Property Instance based on the Tag Category ID
PbmCapabilityPropertyInstance prop = new PbmCapabilityPropertyInstance();
prop.setId(propMeta.getId());

VMware, Inc. 27

Chapter 5 Tag-Based Storage Profiles

// Fetch Allowed Tag Values Metadata; cast the xsd:any property (allowedValue) to a discrete set
PbmCapabilityDiscreteSet tagSetMeta = (PbmCapabilityDiscreteSet) propMeta.getAllowedValue();

// Create a New Discrete Set for holding Tag Values
PbmCapabilityDiscreteSet tagSet = new PbmCapabilityDiscreteSet();
for (Object obj : tagSetMeta.getValues()) {
 tagSet.getValues().add(((PbmCapabilityDescription) obj).getValue());
}
prop.setValue(tagSet);

// Step 2: Associate Property Instance with a Rule
PbmCapabilityConstraintInstance rule = new PbmCapabilityConstraintInstance();
rule.getPropertyInstance().add(prop);

// Step 3: Associate Rule with a Capability Instance
PbmCapabilityInstance capability = new PbmCapabilityInstance();
capability.setId(tagCategoryInfo.getId());
capability.getConstraint().add(rule);

// Step 4: Add Rule to a RuleSet
PbmCapabilitySubProfile ruleSet = new PbmCapabilitySubProfile();
ruleSet.getCapability().add(capability);

// Step 5: Add Rule-Set to Capability Constraints
PbmCapabilitySubProfileConstraints constraints = new PbmCapabilitySubProfileConstraints();
ruleSet.setName("Rule-Set " + (constraints.getSubProfiles().size() + 1));
constraints.getSubProfiles().add(ruleSet);

// Step 6: Build Capability-Based Profile
PbmCapabilityProfileCreateSpec spec = new PbmCapabilityProfileCreateSpec();
spec.setName(profileName);
spec.setDescription("Tag Based Storage Profile Created by SDK Samples. Rule based on tags from

Category "
 + tagCategoryName);
spec.setResourceType(PbmUtil.getStorageResourceType());
spec.setConstraints(constraints);

// Step 7: Create Storage Profile
PbmProfileId profile = connection.getPbmPort().pbmCreate(profileMgr, spec);

VMware Storage Policy SDK Programming Guide

28 VMware, Inc.

VMware, Inc. 29

Chapter 6 Legacy Storage Profiles

6

vSphere 5.0/5.1 systems support limited storage capability and requirement profiles. In vsphere 5.5, the
Storage Policy Server supports more complex storage profiles. vSphere 5.5 will upgrade legacy capability and
requirement profiles for Storage Policy Server operations.

 “VASA 1.0 Storage Capability Upgrade” on page 29.

 “vSphere Web Client User Label Conversion” on page 30

VASA 1.0 Storage Capability Upgrade
A Storage Policy Server can obtain storage capability data from VASA providers. In vSphere 2013, this
generally implies VMware VSAN storage capabilities. A Storage Policy Server can also obtain capability data
from a VASA provider that was implemented for the vSphere 5.0/5.1 environment.

The early architecture (vSphere 5.0/5.1) supports a simple expression of storage capability. A VASA 1.0
provider can advertise one system label per datastore. A system label has an associated description.

The Storage Policy Server performs a runtime conversion of VASA 1.0 system labels. The Storage Policy API
presents the system label as a storage capability profile. The Server also generates a capability schema for the
storage label. The generated storage capability profile references the generated schema.

The following figure shows the Storage Policy data objects that are generated from a vSphere 5.0/5.1 legacy
profile.

Legacy Storage Profiles 6

VMware Storage Policy SDK Programming Guide

30 VMware, Inc.

Figure 6-1. Converted Legacy Capability Profile

vSphere Web Client User Label Conversion
A vSphere 5.0/5.1 storage profile can reference user labels displayed in the vSphere Web Client. Users can
associate a datastore with a user label. When you upgrade to vSphere 5.5, any existing 5.0/5.1 user labels will
be converted into datastore tags.

A converted policy profile contains one subprofile for each label referenced by the original vSphere 5.0/5.1
profile.

 A system label reference is converted to a reference to the appropriate vendor-specific “legacy system
label” capability generated from that label.

 A user label reference is converted to a reference to the appropriate datastore tag generated from that
label.

The following figure shows the conversion of a vSphere 5.0/5.1 profile that references a system label
“Vendor1Gold” and a user label “MyDatastores”. When you upgrade to vSphere 5.5, the system converts the
profile into Storage Policy API elements.

 The legacy system label identifies the original source as a VASA 1.0 provider.

 The legacy user label identifies the original source as a 5.0/5.1 user label in the vSphere Web Client.

PbmCapabilityProfile

PbmCapabilitySchema

PbmCapabilitySubProfile

name = “SystemLabel”

capability

PbmCapabilitySubProfileConstraints

subProfiles

5.0/5.1 system label / description

Vendor1Gold / This is our best storage

PbmCapabilityPropertyMetadata
PbmCapabilityInstance

id

PbmCapabilityMetadataUniqueId

id

PbmCapabilityMetadataPerCategory

PbmCapabilityMetadata

propertyMetadata

capabilityMetadata

capabilityMetadataPerCategory

5.5 runtime
conversion

5.5 update
conversion

subCategory = “legacy”

namespaceInfo

vendorInfo

name = “Vendor1Gold”

constraints

[...]

[...]

id

type = XSD_STRING

summary.description =
 “This is our best storage”

VMware, Inc. 31

Chapter 6 Legacy Storage Profiles

Figure 6-2. Converted Legacy Requirement Profile

PbmCapabilityProfile

PbmCapabilitySubProfile

capability

PbmCapabilitySubProfileConstraints

subProfiles

5.0/5.1

system label = “Vendor1Gold”

user label = “MyDatastore”

PbmCapabilityInstance

constraint

PbmCapabilityConstraintInstance

propertyInstance

5.5 update
conversion

constraints

[...]

PbmCapabilitySubProfile

capability

PbmCapabilityPropertytInstance

id = “vendor1 legacy system label”

value = “Vendor1Gold”

PbmCapabilityInstance

constraint

PbmCapabilityConstraintInstance

propertyInstance

PbmCapabilityPropertytInstance

id = “legacy user label”

value = “MyDatastore”

[...] [...]

VMware Storage Policy SDK Programming Guide

32 VMware, Inc.

VMware, Inc. 33

Chapter A vCenter Single Sign On Client Example

A

This chapter describes a Java example of acquiring a vCenter Single Sign On security token.

 “vCenter Single Sign On Token Request Overview” on page 33

 “Using Handler Methods for SOAP Headers” on page 34

 “Sending a Request for a Security Token” on page 36

vCenter Single Sign On Token Request Overview
The code examples in the following sections show how to use the Issue method to acquire a holder-of-key
security token. To see an example of using the token to login to a vCenter Server, see “vCenter LoginByToken
Example” on page 39. The code examples in this chapter are based on the following sample file located in the
vCenter Single Sign On SDK JAX-WS client samples directory:

.../JAXWS/samples/com/vmware/sso/client/samples/AcquireHoKTokenByUserCredentialSample.java

The AcquireHoKTokenByUserCredentialSample program creates a token request and calls the issue
method to send the request to a vCenter Single Sign On Server. The program uses a sample implementation of
Web services message handlers to modify the SOAP security header for the request message.

This example uses the username-password security policy (STSSecPolicy_UserPwd). This policy requires
that the SOAP security header include a timestamp, username and password, and a digital signature and
certificate. The sample message handlers embed these elements in the message.

The example performs the following operations:

1 Create a security token service client object (STSService_Service). This object manages the vCenter
Single Sign On header handlers and it provides access to the vCenter Single Sign On client API methods.
This example uses the issue method.

2 Create a vCenter Single Sign On header handler resolver object (HeaderHandlerResolver). This object
acts as a container for the different handlers.

3 Add the handlers for timestamp, user credentials, certificate, and token extraction to the handler resolver.

4 Add the handler resolver to the security token service.

5 Retrieve the STS port (STS_Service) from the security token service object.

6 Create a security token request.

7 Set the request fields.

8 Set the endpoint in the request context. The endpoint identifies the vCenter Single Sign On Server.

9 Call the issue method, passing the token request.

10 Handle the response from the vCenter Single Sign-On server.

vCenter Single Sign On
Client Example A

VMware Storage Policy SDK Programming Guide

34 VMware, Inc.

Using Handler Methods for SOAP Headers
The VMware vCenter Single Sign On SDK provides sample code that is an extension of the JAX-WS XML Web
services message handler (javax.xml.ws.handler). The sample code consists of a set of SOAP header
handler methods and a header handler resolver, to which you add the handler methods. The handler methods
insert timestamp, user credential, and message signature data into the SOAP security header for the request.
A handler method extracts the SAML token from the vCenter Single Sign On Server response.

The VMware vCenter Single Sign On client SOAP header handler files are located in the soaphandlers
directory:

SDK/sso/java/JAXWS/samples/com/vmware/sso/client/soaphandlers

To access the SOAP handler implementation, the example code contains the following import statements:

import com.vmware.sso.client.soaphandlers.HeaderHandlerResolver;
import com.vmware.sso.client.soaphandlers.SSOHeaderHandler;
import com.vmware.sso.client.soaphandlers.SamlTokenExtractionHandler
import com.vmware.sso.client.soaphandlers.TimeStampHandler;
import com.vmware.sso.client.soaphandlers.UserCredentialHandler;
import com.vmware.sso.client.soaphandlers.WsSecurityUserCertificateSignatureHandler;

This example uses the following handler elements:

 HeaderHandlerResolver

 SamlTokenExtractionHandler

 TimestampHandler

 UserCredentialHandler

 WsSecurityUserCertificateSignatureHandler (SSOHeaderHandler)

The following sequence shows the operations and corresponding Java elements for message security.

1 Create an STS service object
(STSService_Service). This object will bind
the handlers to the request and provide access
to the issue method.

2 Create a handler resolver object
(HeaderHandlerResolver). This object acts as
a receptacle for the handlers.

3 Add the header handlers:
 Timestamp – The handler will use system

time to set the timestamp values.
 User credential – The handler requires a

username and a password; it will create a
username token for the supplied values.

 User certificate signature – The handler
requires a private key and an x509
certificate. The handler will use the private
key to sign the body of the SOAP message
(the token request), and it will embed the
certificate in the SOAP security header.

 SAML token extraction – The handler
extracts the SAML token directly from
vCenter Single Sign On Server response to
avoid token modification by the JAX-WS
bindings.

4 Add the handler resolver to the STS service.

STSService_Service

HeaderHandlerResolver

TimestampHandler

UserCredentialHandler

HeaderHandler Resolver

WsSecurityUserCertificateSignatureHandler
(SSOHeaderHandler)

SamlTokenExtractionHandler

STSService_Service

handlerResolver HeaderHandler Resolver

VMware, Inc. 35

Chapter A vCenter Single Sign On Client Example

The following code fragment creates a handler resolver and adds the handler methods to the handler resolver.
After the handlers have been established, the client creates a token request and calls the Issue method. See
“Sending a Request for a Security Token” on page 36.

Example A-1. Acquiring a vCenter Single Sign On Token – Soap Handlers

/*
 * Instantiate the STS Service
 */
STSService_Service stsService = new STSService_Service();

/*
 * Instantiate the HeaderHandlerResolver.
 */
HeaderHandlerResolver headerResolver = new HeaderHandlerResolver();

/*
 * Add handlers to insert a timestamp and username token into the SOAP security header
 * and sign the message.
 *
 * -- Timestamp contains the creation and expiration time for the request
 * -- UsernameToken contains the username/password
 * -- Sign the SOAP message using the combination of private key and user certificate.
 *
 * Add the TimeStampHandler
 */
headerResolver.addHandler(new TimeStampHandler());

/*
 * Add the UserCredentialHandler. arg[1] is the username; arg[2] is the password.
 */
UserCredentialHandler ucHandler = new UserCredentialHandler(args[1],args[2]);
headerResolver.addHandler(ucHandler);

/*
 * Add the message signature handler (WsSecurityUserCertificateSignatureHandler);
 * The client is responsible for supplying the private key and certificate.
 */
SSOHeaderHandler ssoHandler =

new WsSecurityUserCertificateSignatureHandler(privateKey, userCert);
headerResolver.addHandler(ssoHandler);

/*
 * Add the token extraction handler (SamlTokenExtractionHandler).
 */
SamlTokenExtractionHandler sbHandler = new SamlTokenExtractionHandler;
headerResolver.addHandler(sbHandler);

/*
 * Set the handlerResolver for the STSService to the HeaderHandlerResolver created above.
 */
stsService.setHandlerResolver(headerResolver);

IMPORTANT You must perform these steps for message security before retrieving the STS service port. An
example of retrieving the STS service port is shown in “Sending a Request for a Security Token” on page 36.

VMware Storage Policy SDK Programming Guide

36 VMware, Inc.

Sending a Request for a Security Token
After setting up the SOAP header handlers, the example creates a token request and calls the issue method.
The following sequence shows the operations and corresponding Java elements.

The following example shows Java code that performs these operations.

Example A-2. Acquiring a vCenter Single Sign On Token – Sending the Request

/*
 * Retrieve the STSServicePort from the STSService_Service object.
 */
STSService stsPort = stsService.getSTSServicePort();

/*
 * Create a token request object.
 */
RequestSecurityTokenType tokenType = new RequestSecurityTokenType();

/*
 * Create a LifetimeType object.
 */
LifetimeType lifetime = new LifetimeType();

/*
 * Derive the token creation date and time.
 * Use a GregorianCalendar to establish the current time,

5 Retrieve the STS service port (STSService). The service port
provides access to the vCenter Single Sign On client API methods.
The vCenter Single Sign On handler resolver must be associated
with the STS service before you retrieve the service port. See “Using
Handler Methods for SOAP Headers” on page 34.

6 Create a token request (RequestSecurityTokenType). Your
vCenter Single Sign On client will pass the token request to the
Issue method. The Issue method will send the token request in
the body of the SOAP message. This example sets the token request
fields as appropriate for a holder-of-key token request.

7 Set the token request fields.
 lifetime – Creation and expiration times.
 token type – urn:oasis:names:tc:SAML:2.0:assertion
 request type –

http://docs.oasis-open.org/ws-sx/ws-trust/200512/Issue
 key type –

http://docs.oasis-open.org/ws-sx/ws-trust/200512/PublicKey
(for holder-of-key token type)

 signature algorithm –
http://www.w3.org/2001/04/xmldsig-more#rsa-sha256

 renewable status

8 Set the endpoint address for the token request.

9 Call the Issue method.

10 Handle the response from the vCenter Single Sign On Server.

STSServiceSTSService_Service

RequestSecurityTokenType

RequestSecurityTokenType

tokenType

requestType

lifetime

keyType

signatureAlgorithm

renewing

STSService Request Context

Issue(RequestSecurityTokenType)

STSService

RequestSecurityTokenResponseType

VMware, Inc. 37

Chapter A vCenter Single Sign On Client Example

 * then use a DatatypeFactory to map the time data to XML.
 */
DatatypeFactory dtFactory = DatatypeFactory.newInstance();
GregorianCalendar cal = new GregorianCalendar(TimeZone.getTimeZone("GMT"));
XMLGregorianCalendar xmlCalendar = dtFactory.newXMLGregorianCalendar(cal);
AttributedDateTime created = new AttributedDateTime();
created.setValue(xmlCalendar.toXMLFormat());

/*
 * Specify a time interval for token expiration (specified in milliseconds).
 */
AttributedDateTime expires = new AttributedDateTime();
xmlCalendar.add(dtFactory.newDuration(30 * 60 * 1000));
expires.setValue(xmlCalendar.toXMLFormat());

/*
 * Set the created and expires fields in the lifetime object.
 */
lifetime.setCreated(created);
lifetime.setExpires(expires);

/*
 * Set the token request fields.
 */
tokenType.setTokenType("urn:oasis:names:tc:SAML:2.0:assertion");
tokenType.setRequestType("http://docs.oasis-open.org/ws-sx/ws-trust/200512/Issue");
tokenType.setLifetime(lifetime);
tokenType.setKeyType("http://docs.oasis-open.org/ws-sx/ws-trust/200512/PublicKey");
tokenType.setSignatureAlgorithm("http://www.w3.org/2001/04/xmldsig-more#rsa-sha256");

/*
 * Specify a token that can be renewed.
 */
RenewingType renewing = new RenewingType();
renewing.setAllow(Boolean.TRUE);
renewing.setOK(Boolean.FALSE); // WS-Trust Profile: MUST be set to false
tokenType.setRenewing(renewing);

/* Get the request context and set the endpoint address. */
Map<String, Object> reqContext = ((BindingProvider) stsPort).getRequestContext();
reqContext.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY, args[0]);

/*
 * Use the STS port to invoke the "issue" method to acquire the token
 * from the vCenter Single Sign On Server.
 */
RequestSecurityTokenResponseCollectionType issueResponse = stsPort.issue(tokenType);

/*
 * Handle the response - extract the SAML token from the response. The response type
 * contains the token type (SAML token type urn:oasis:names:tc:SAML:2.0:assertion).
 */
RequestSecurityTokenResponseType rstResponse = issueResponse.getRequestSecurityTokenResponse();
RequestedSecurityTokenType requestedSecurityToken = rstResponse.getRequestedSecurityToken();

/*
 * Extract the SAML token from the RequestedSecurityTokenType object.
 * The generic token type (Element) corresponds to the type required
 * for the SAML token handler that supports the call to LoginByToken.
 */
Element token = requestedSecurityToken.getAny();

VMware Storage Policy SDK Programming Guide

38 VMware, Inc.

VMware, Inc. 39

Chapter B vCenter LoginByToken Example

B

This chapter describes a Java example of using the LoginByToken method.

 “vCenter Server Single Sign On Session” on page 39

 “Saving the vCenter Server Session Cookie” on page 41

 “Using LoginByToken” on page 42

 “Restoring the vCenter Server Session Cookie” on page 43

vCenter Server Single Sign On Session
After you obtain a SAML token from the vCenter Single Sign On Server, you can use the vSphere API method
LoginByToken to establish a single sign on session with a vCenter Server. See “vCenter Single Sign On Client
Example” on page 33 for an example of obtaining a vCenter Single Sign On token.

At the beginning of a vCenter Single Sign On session, your client is responsible for the following tasks:

 Maintain the vCenter session cookie. The vSphere architecture uses an HTTP cookie to support a
persistent connection between a vSphere client and a vCenter Server. During the initial connection, the
Server produces a session cookie. Operations during the login sequence will reset the request context so
your client must save this cookie and re-introduce it at the appropriate times.

 Insert the vCenter Single Sign On token and a timestamp into the SOAP header of the LoginByToken
message.

The example program uses these general steps:

1 Call the RetrieveServiceContent method to establish an HTTP connection with the vCenter Server and
save the HTTP session cookie. The client uses an HTTP header handler method to extract the cookie from
the vCenter Server response.

2 Call the LoginByToken method to authenticate the vCenter session. To send the token to the vCenter
Server, the client uses a handler to embed the token and a time stamp in the SOAP header for the message.
To identify the session started with the RetrieveServiceContent method, the client uses a handler to
embed the session cookie in the HTTP header.

3 Restore the session cookie.

HTTP and SOAP Header Handlers

To use a vCenter Single Sign On token to login to a vCenter Server, the example uses header handlers to
manipulates the HTTP and SOAP header elements of the login request. After establishing a handler,
subsequent requests automatically invoke the handler.

 An extraction handler obtains the HTTP session cookie provided by the vCenter Server. After setting up
the handler, a call to the RetrieveServiceContent method will invoke the handler to extract the cookie
from the Server response.

vCenter LoginByToken Example B

VMware Storage Policy SDK Programming Guide

40 VMware, Inc.

 Insertion handlers put the vCenter Single Sign On token and a timestamp into the SOAP header and the
session cookie into the HTTP header of the login request.

The following figure shows the use of handlers to manipulate header elements when establishing a vCenter
Single Sign On session with a vCenter Server.

Figure B-1. Starting a vCenter Session

Sample Code

The code examples in the following sections show how to use the LoginByToken method with a holder-of-key
security token. The code examples are based on the sample code contained in the vCenter Single Sign On SDK.
The files are located in the Java samples directory (SDK/ssoclient/java/JAXWS/samples):

 LoginByToken sample:

samples/com/vmware/vsphere/samples/LoginByTokenSample.java

 Header cookie handlers:

samples/com/vmware/vsphere/soaphandlers/HeaderCookieHandler.java
samples/com/vmware/vsphere/soaphandlers/HeaderCookieExtractionHandler.java

 SOAP header handlers. These are the same handlers that are used in “vCenter LoginByToken Example”
on page 39. The SOAP handler files are located in the vCenter Single Sign On client soaphandlers
directory:

samples/com/vmware/sso/client/soaphandlers

IMPORTANT Every call to the vCenter Server will invoke any message handlers that have been established.
The overhead involved in using the SOAP and HTTP message handlers is not necessary after the session has
been established. The example saves the default message handler before setting up the SOAP and HTTP
handlers. After establishing the session, the example will reset the handler chain and restore the default
handler.

The example code also uses multiple calls to the VimPortType.getVimPort method to manage the request
context. The getVimPort method clears the HTTP request context. After each call to the getVimPort method,
the client resets the request context endpoint address to the vCenter Server URL. After the client has obtained
the session cookie, it will restore the cookie in subsequent requests.

timestamp

vCenter Single
Sign On token

vCenter
client

RetrieveServiceContent()

session cookie

session cookieHTTP header:

session cookie

HTTP header:

LoginByToken()

SOAP header:
timestamp

vCenter Single
Sign On token

extraction handler

insertion handler

insertion handler

insertion handler

vCenter
Server

VMware, Inc. 41

Chapter B vCenter LoginByToken Example

Saving the vCenter Server Session Cookie
The code fragment in this section establishes an HTTP session with the vCenter Server and saves the HTTP
session cookie.

The following sequence describes these steps and shows the corresponding objects and methods.

The following example shows Java code that saves the session cookie.

Example B-1. Saving the vCenter Server Session Cookie

/*
 * The example uses a SAML token (obtained from a vCenter Single Sign On Server)
 * and the vCenter Server URL.
 * The following declarations indicate the datatypes; the token datatype (Element) corresponds
 * to the token datatype returned by the vCenter Single Sign On Server.
 *
 * Element token; -- from vCenter Single Sign On Server
 * String vcServerUrl; -- identifies vCenter Server
 *
 * First, save the default message handler.
 */

HandlerResolver defaultHandler = vimService.getHandlerResolver();

/*
 * Create a VIM service object.
 */
vimService = new VimService();

/*
 * Construct a managed object reference for the ServiceInstance.

1 Use the getHandlerResolver method to
save the default message handler. To use the
HTTP and SOAP message handlers, you
must first save the default message handler
so that you can restore it after login. The
HTTP and SOAP message handlers impose
overhead that is unneccessary after login.

2 Set the cookie handler. The
HeaderCookieExtractionHandler
method retrieves the HTTP cookie.

3 Get the VIM port. The VIM port provides
access to the vSphere API methods,
including the LoginByToken method.

4 Set the request context endpoint address to
the vCenter Server URL.

5 Retrieve the ServiceContent. This method
establishes the HTTP connection and sets the
session cookie.

6 Extract the cookie and save it for later use.

VimService.getHandlerResolver()

HeaderHandler Resolver

VimService

HeaderCookieExtractionHandler

VimPortTypeVimService

Request ContextVimService

VimPortType ServiceContent

HeaderCookieExtractionHandler.getCookie ()

VMware Storage Policy SDK Programming Guide

42 VMware, Inc.

 */
ManagedObjectReference SVC_INST_REF = new ManagedObjectReference();
SVC_INST_REF.setType("ServiceInstance");
SVC_INST_REF.setValue("ServiceInstance");

/*
 * Create a handler resolver.
 * Create a cookie extraction handler and add it to the handler resolver.
 * Set the VIM service handler resolver.
 */
HeaderCookieExtractionHandler cookieExtractor = new HeaderCookieExtractionHandler();
HeaderHandlerResolver handlerResolver = new HeaderHandlerResolver();
handlerResolver.addHandler(cookieExtractor);
vimService.setHandlerResolver(handlerResolver);

/*
 * Get the VIM port for access to vSphere API methods. This call clears the request context.
 */
vimPort = vimService.getVimPort();

/*
 * Get the request context and set the connection endpoint.
 */
Map<String, Object> ctxt = ((BindingProvider) vimPort).getRequestContext();
ctxt.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY, vcServerUrl);
ctxt.put(BindingProvider.SESSION_MAINTAIN_PROPERTY, true);

/*
 * Retrieve the ServiceContent. This call establishes the HTTP connection.
 */
serviceContent = vimPort.retrieveServiceContent(SVC_INST_REF);

/*
 * Save the HTTP cookie.
 */
String cookie = cookieExtractor.getCookie();

Using LoginByToken
The code fragment in this section sets up the message handlers and calls the LoginByToken method. The
following sequence describes the steps and shows the corresponding objects and methods.

1 Create a new HeaderHandlerResolver.
Then set the message security handlers for
cookie insertion and for inserting the
SAML token and credentials in the SOAP
header.

2 Get the VIM port.

3 Set the connection endpoint in the HTTP
request context.

4 Call the LoginByToken method. The
method invocation executes the handlers
to insert the elements into the message
headers. The method authenticates the
session referenced by the session cookie.

HeaderHandler Resolver

WsSecurityUserCertificateSignatureHandler (key, certificate, ID)

TimestampHandler

SamlTokenHandler (SAML token)

HeaderCookieHandler (session cookie)

VimPortTypeVimService

Request ContextVimService

VimPortType.LoginByToken ()

VMware, Inc. 43

Chapter B vCenter LoginByToken Example

The following examples shows Java code that calls the LoginByToken method.

Example B-2. Using LoginByToken

/*
 * Create a handler resolver and add the handlers.
 */
HeaderHandlerResolver handlerResolver = new HeaderHandlerResolver();
handlerResolver.addHandler(new TimeStampHandler());
handlerResolver.addHandler(new SamlTokenHandler(token));
handlerResolver.addHandler(new HeaderCookieHandler(cookie));
handlerResolver.addHandler(new WsSecuritySignatureAssertionHandler(

 userCert.getPrivateKey(),
 userCert.getUserCert(),
 Utils.getNodeProperty(token, "ID")));

vimService.setHandlerResolver(handlerResolver);

/*
 * Get the Vim port; this call clears the request context.
 */
vimPort = vimService.getVimPort();

/*
 * Retrieve the request context and set the server URL.
 */
Map<String, Object> ctxt = ((BindingProvider) vimPort).getRequestContext();
ctxt.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY, vcServerUrl);
ctxt.put(BindingProvider.SESSION_MAINTAIN_PROPERTY, true);

/*
 * Call LoginByToken.
 */
UserSession us = vimPort.loginByToken(serviceContent.getSessionManager(), null);

Restoring the vCenter Server Session Cookie
After you log in, you must restore the standard vCenter session context. The code fragment in this section
restores the default message handler and the session cookie. As the cookie handler has been replaced by the
default handler, the client resets the session cookie by calling request context methods to access the context
fields directly. The following sequence describes these steps and shows the corresponding objects and
methods.

The following example shows Java code that restores the vCenter session. This code requires the vCenter URL
and the cookie and default handler that were retrieved before login. See “Sample Code” on page 40.

1 Restore the default message handler. The
handlers used for LoginByToken are not
used in subsequent calls to the vSphere
API.

2 Get the VIM port.

3 Set the connection endpoint in the HTTP
request context.

4 Set the HTTP request header (vCenter
session cookie).

VimService.setHandlerResolver ()

VimPortTypeVimService

Request ContextVimService

RequestContext.get ()
RequestContext.put ()

VMware Storage Policy SDK Programming Guide

44 VMware, Inc.

Example B-3. Restoring the vCenter Server Session

/*
 * Reset the default handler. This overwrites the existing handlers, effectively removing them.
 */
vimService.setHandlerResolver(defaultHandler);
vimPort = vimService.getVimPort();

/*
 * Restore the connection endpoint in the request context.
 */
// Set the validated session cookie and set it in the header for once,
// JAXWS will maintain that cookie for all the subsequent requests

Map<String, Object> ctxt = ((BindingProvider) vimPort).getRequestContext();
ctxt.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY, vcServerUrl);
ctxt.put(BindingProvider.SESSION_MAINTAIN_PROPERTY, true);

/*
 * Reset the cookie in the request context.
 */
Map<String, List<String>> headers = (Map<String, List<String>>)

ctxt.get(MessageContext.HTTP_REQUEST_HEADERS);
if (headers == null) {
 headers = new HashMap<String, List<String>>();
}
headers.put("Cookie", Arrays.asList(cookie));
ctxt.put(MessageContext.HTTP_REQUEST_HEADERS, headers);

VMware, Inc. 45

Index

Index

Symbols
.vmdk file 7

.vmx file 7

A
access to methods 9

acquire a token

Java example 33

C
capabilities, storage 7, 17, 25

capability metadata 17

certificate

X509 34

client SDK 10

client-server connection

Storage Policy Server 13

vCenter Server 13, 39

VMware Single Sign-On server 33

create a storage profile 17, 26

E
example

access to Storage Policy API methods 8

acquire a token (Java) 33

create a storage profile 18, 26

create an individual storage requirement 18

LoginByToken (Java) 39

F
FileBackedVirtualDiskSpec 8

H
holder-of-key token

example 33

HTTP header methods

Java example 43

LoginByToken (Java) 39

I
Issue method

Java example 33

J
Java

sample project

acquire token 33

LoginByToken 39

JAX-WS

SDK

contents 10

SOAP header methods

example 34

L
legacy storage profile 29

LoginByToken method

Java example 39

M
metadata 17

retrieving 19

P
PbmComplianceManager 9

PbmPlacementSolver 9

PbmPortType 8

PbmProfileProfileManager 8, 9

PbmService 8

PbmServiceInstanceContent 9

Q
queries, storage profile 9

R
requirements, storage 7, 17, 25

retrieving metadata 19

S
SDK

examples 10

SDK contents 10

SDK, VMware Storage Policy 10

server URLs 14

session cookie 40, 41, 43

SOAP header methods

example 34

LoginByToken (Java) 39

SSO Server URL 14

storage capabilities and requirements 7, 17, 25

storage policy managed objects

PbmComplianceManager 8

PbmPlacementSolver 8

VMware Storage Policy SDK Programming Guide

46 VMware, Inc.

PbmProfileProfileManager 8

storage policy operations 8

Storage Policy Server

connection 13

URL 14

storage policy tag 25

storage profile

creation 17, 26

legacy 29

queries 9

T
tag, storage policy 25

tag-based storage 7, 25

token

holder-of-key example 33

LoginByToken example (Java) 39

U
URLs for SSO, vCenter, and Storage Policy

servers 14

V
VASA

1.0 providers 29

2.0 providers 7

vCenter Server session 39

vCenter Server URL 14

virtual machine files 7

VirtualDeviceFileBackingInfo 8

VirtualMachineConfigSpec 8

VirtualMachineFileInfo 8

VMware Storage Policy

client SDK 10

VMware Storage Policy API

client methods 8

VMware Storage Policy SDK 10

VSAN 7, 17

vSphere Web Client 25

W
Web Service access object 8

X
X509 certificate 34

	VMware Storage Policy SDK Programming Guide
	Contents
	About This Book
	VMware Storage Policies
	Storage Capabilities
	Virtual Machine Storage
	Storage Profiles
	Storage Policy Operations
	Access to the VMware Storage Policy Server
	Storage Profile Queries
	VMware Storage Policy SDK
	VMware Storage Policy SDK Examples

	Storage Policy Server Connection
	Establish a Connection with the VMware Storage Policy Server
	Server URLs
	Establish the vCenter Session Connection for the Local Instance
	Create the Storage Policy Server Connection

	VSAN-Based Storage Profiles
	Create a VSAN Requirements Profile
	Create an Individual Storage Requirement
	Create a Storage Profile

	Virtual Machine Storage Profiles
	Retrieve an Existing Storage Profile from the Storage Policy Server
	Apply the Storage Profile to a Virtual Machine

	Tag-Based Storage Profiles
	Create a Tag-Based Storage Profile
	Retrieve Tag Metadata
	Create a Storage Profile

	Legacy Storage Profiles
	VASA 1.0 Storage Capability Upgrade
	vSphere Web Client User Label Conversion

	vCenter Single Sign On Client Example
	vCenter Single Sign On Token Request Overview
	Using Handler Methods for SOAP Headers
	Sending a Request for a Security Token

	vCenter LoginByToken Example
	vCenter Server Single Sign On Session
	HTTP and SOAP Header Handlers
	Sample Code

	Saving the vCenter Server Session Cookie
	Using LoginByToken
	Restoring the vCenter Server Session Cookie

	Index

