
vCenter Single Sign-On
Programming Guide

vCenter Single Sign-On SDK
vSphere 6.5

This document supports the version of each product listed and
supports all subsequent versions until the document is replaced
by a new edition. To check for more recent editions of this
document, see http://www.vmware.com/support/pubs.

EN-001413-00

http://www.vmware.com/support/pubs

VMware, Inc.
3401 Hillview Ave.
Palo Alto, CA 94304
www.vmware.com

2 VMware, Inc.

vCenter Single Sign On Programming Guide

You can find the most up-to-date technical documentation on the VMware Web site at:

http://www.vmware.com/support/

The VMware Web site also provides the latest product updates.

If you have comments about this documentation, submit your feedback to:

docfeedback@vmware.com

Copyright © 2012-2016 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and
intellectual property laws. VMware products are covered by one or more patents listed at
http://www.vmware.com/go/patents.

VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions. All other marks
and names mentioned herein may be trademarks of their respective companies.

http://www.vmware.com/support/
http://www.vmware.com/support
mailto:docfeedback@vmware.com
http://www.vmware.com/go/patents
http://www.vmware.com/go/patents

VMware, Inc. 3

Contents

About This Book 5

Single Sign-On in the vSphere Environment 7
vCenter Single Sign-On Overview 7
vCenter Single Sign-On Client API 9
Acquiring a SAML Token 9

vCenter Single Sign-On Security Policies 10
Connecting to a vCenter Single Sign-On Server 11
Token Delegation 12
Token Lifetime - Clock Tolerance 12
Challenge (SSPI) 12

vCenter Single Sign-On SOAP Message Structure 13
vCenter Single Sign-On SDK 13

vCenter Single Sign-On SDK Examples 14

vCenter Single Sign-On
API Reference 17

vCenter Single Sign-On Client API Methods 17
Issue 17
Renew 18
Validate 18
Challenge 19

vCenter Single Sign-On API Data Structures 19
RequestSecurityTokenType 19
RequestSecurityTokenResponseCollectionType 21
RequestSecurityTokenResponseType 21
LifetimeType 22
RenewingType 22
KeyTypeOpenEnum 22
UseKeyType 23
ParticipantsType 23
ParticipantType 23
EndpointReference 23
BinaryExchangeType 23
AdviceType 24
AttributeType 24

vCenter Single Sign-On
Client Example (.NET) 25

vCenter Single Sign-On Token Request Overview 25
Sample Code 25

Sending a Request for a Security Token 26
Solution Certificate Support 28

LoginByToken Example (.NET) 29
vCenter Server Single Sign-On Session 29

Persistent vCenter Server Sessions 29
Sample Code 30

vCenter Single Sign-On Programming Guide

4 VMware, Inc.

Using LoginByToken 30
LoginByTokenSample Constructor 30
Token Acquisition 30
Security Policies 31
Connection and Login 32

vCenter Single Sign-On
Client Example (JAX-WS) 35

vCenter Single Sign-On Token Request Overview 35
Using Handler Methods for SOAP Headers 36
Sending a Request for a Security Token 38

LoginByToken Example (JAX-WS) 41
vCenter Server Single Sign-On Session 41

HTTP and SOAP Header Handlers 41
Sample Code 42

Steps to Connect with a vSphere Server 43
Import the Necessary Packages 43
Get the VimPort 43
Retrieve the Service Content 44
Invoke the loginByToken method 44
Extract the Session Cookie 44
Inject the Session Cookie Back Into the Request 45
Additional Information 45

Index 47

VMware, Inc. 5

vCenter Single Sign-On Programming Guide describes how to use the VMware® vCenter Single Sign-On API.

VMware provides different APIs and SDKs for different applications and goals. The vCenter Single Sign-On
SDK supports the development of vCenter clients that use SAML token authentication for access to vSphere
environments.

To view the current version of this book as well as all VMware API and SDK documentation, go to
http://www.vmware.com/support/pubs/sdk_pubs.html.

Revision History
This book is revised with each release of the product or when necessary. A revised version can contain minor
or major changes. Table 1 summarizes the significant changes in each version of this book.

Intended Audience
This book is intended for anyone who needs to develop applications using the vCenter Single Sign-On SDK.
An understanding of Web Services technology and some programming background in one of the stub
languages (Java or C#) is required.

VMware Technical Publications Glossary
VMware Technical Publications provides a glossary of terms that might be unfamiliar to you. For definitions
of terms as they are used in VMware technical documentation go to http://www.vmware.com/support/pubs.

Document Feedback
VMware welcomes your suggestions for improving our documentation. Send your feedback to
docfeedback@vmware.com.

About This Book

Table 1. Revision History

Revision Date Description

15Nov2016 vSphere 6.5 release; vCenter Single Sign-On V2.0. Updated information about session creation
sequence.

12Mar2015 vSphere 6.0 release; vCenter Single Sign-On V2.0. Updated Chapter 6, “LoginByToken Example
(JAX-WS),” to reflect the change in session logic. Updated the STS Service specification in the SSO
server URL.

19Sep2013 vSphere 5.5 release; vCenter Single Sign-On V2.0. Added documentation for C# (.NET) samples.

08Nov2012 vCenter Single Sign-On SDK V1.0 documentation update – changed SOAP envelope description to
identify SSL/TLS (Transport Layer Security) correctly.

10Sep2012 vCenter Single Sign-On SDK V1.0 documentation.

http://www.vmware.com/support/pubs/sdk_pubs.html
mailto:docfeedback@vmware.com
mailto:docfeedback@vmware.com
http://www.vmware.com/support/pubs

vCenter Single Sign-On Programming Guide

6 VMware, Inc.

VMware, Inc. 7

1

A vCenter Single Sign-On client connects to the vCenter Single Sign-On server to obtain a security token that
contains authentication claims required for operations in the vSphere environment. The vCenter Single
Sign-On client API supports operations to acquire, renew, and validate tokens.

This chapter includes the following topics:

 vCenter Single Sign-On Overview

 vCenter Single Sign-On Client API

 Acquiring a SAML Token

 vCenter Single Sign-On SOAP Message Structure

 vCenter Single Sign-On SDK

vCenter Single Sign-On Overview
To support the requirements for secure software environments, software components require authorization to
perform operations on behalf of a user. In a single sign-on environment, a user provides credentials once, and
components in the environment perform operations based on the original authentication. vCenter Single
Sign-On authentication can use the following identity store technologies:

 Windows Active Directory

 OpenLDAP (Lightweight Directory Access Protocol)

 Local user accounts (vCenter Single Sign-On server resident on the vCenter server machine)

 vCenter Single Sign-On user accounts

For information about configuring identity store support, see vSphere Installation and Setup and vSphere Security
in the VMware Documentation Center.

In the context of single sign-on, the vSphere environment is a collection of services and solutions, each of
which potentially requires authentication of clients that use the service or solution. Examples of solutions that
might support single sign-on include vShield, SRM (Site Recovery Manager), and vCO (vCenter Orchestrator).
Because a service can use another service, single sign-on provides a convenient mechanism to broker
authentication during a sequence of vSphere operations.

A vCenter Single Sign-On client connects to the vCenter Single Sign-On server to obtain a token that represents
the client. The vCenter Single Sign-On server provides a Security Token Service (STS). A token uses the
Security Assertion Markup Language (SAML), which is an XML encoding of authentication data. It contains
a collection of statements or claims that support client authentication. Examples of token claims include name,
key, and group.

Single Sign-On in the vSphere
Environment 1

vCenter Single Sign-On Programming Guide

8 VMware, Inc.

There are two types of vCenter Single Sign-On tokens.

 Holder-of-key tokens provide authentication based on security artifacts embedded in the token.
Holder-of-key tokens can be used for delegation. A client can obtain a holder-of-key token and delegate
that token for use by another entity. The token contains the claims to identify the originator and the
delegate. In the vSphere environment, a vCenter server obtains delegated tokens on a user’s behalf and
uses those tokens to perform operations.

 Bearer tokens provide authentication based only on possession of the token. Bearer tokens are intended
for short-term, single-operation use. A bearer token does not verify the identity of the user (or entity)
sending the request. It is possible to use bearer tokens in the vSphere environment, however there are
potential limitations:

 The vCenter Single Sign-On server may impose limitations on the token lifetime, which would
require you to acquire new tokens frequently.

 Future versions of vSphere might require the use of holder-of-key tokens.

Figure 1-1 shows a vCenter client that uses a SAML token to establish a session with a vCenter server.

Figure 1-1. Single Sign-On in the vSphere Environment – vCenter Server LoginByToken

The vCenter client also operates as a vCenter Single Sign-On client. The vCenter Single Sign-On client
component handles communication with the vCenter Single Sign-On server.

1 The vCenter Single Sign-On client sends a token request to the vCenter Single Sign-On server. The request
contains information that identifies the principal. The principal has an identity in the identity store. The
principal may be a user or it may be a software component. In this scenario, the principal is the user that
controls the vCenter client.

2 The vCenter Single Sign-On server uses the identity store to authenticate the principal.

3 The vCenter Single Sign-On server sends a response to the token request. If authentication is successful,
the response includes a SAML token.

4 The vCenter client connects to the vCenter server and calls the SessionManager.LoginByToken method.
The login request contains the SAML token.

Figure 1-1 shows the vCenter server, vCenter Single Sign-On server, and identity store as components running
on separate machines. You can use different vCenter Single Sign-On configurations.

 A vCenter Single Sign-On server can operate as an independent component running on its own machine.
The vCenter Single Sign-On server can use a remote identity store or it can manage user accounts in its
own internal identity store.

VMware, Inc. 9

Chapter 1 Single Sign-On in the vSphere Environment

 A vCenter Single Sign-On server can operate as an embedded component running on the vCenter server
machine. In this configuration, the vCenter Single Sign-On server can use a remote identity store, its own
internal identity store, or it can access user accounts on the vCenter server machine.

For information about installing and configuring the vCenter Single Sign-On server, see vSphere Installation and
Setup and vSphere Security in the VMware Documentation Center.

vCenter Single Sign-On Client API
The vCenter Single Sign-On client API is described in the WSDL (Web Service Definition Language) file that
is included in the vCenter Single Sign-On SDK. This API defines a set of request operations that correspond to
the WS-Trust 1.4 bindings. The set of operations includes Issue, Renew, Validate, and Challenge requests.

 Issue – Obtains a token from a vCenter Single Sign-On server.

 Renew – Renews an existing token.

 Validate – Validates an existing token.

 Challenge – Part of a negotiation with a vCenter Single Sign-On server to obtain a token.

The vCenter Single Sign-On SDK includes Java and C# bindings for the vCenter Single Sign-On WSDL. The
SDK also contains sample code that demonstrates client-side support for the WS-SecurityPolicy standard.
Security policies specify the elements that provide SOAP message security. To secure SOAP messages, a client
inserts digital signatures, certificates, and SAML tokens into the SOAP headers for vCenter Single Sign-On
requests.

 The Java sample includes a JAX-WS implementation of SOAP header methods that support the vCenter
Single Sign-On security policies.

 The C# sample uses the .NET services for SOAP header manipulation.

See “vCenter Single Sign-On Security Policies” on page 10 and “vCenter Single Sign-On SDK” on page 13.

Acquiring a SAML Token
To obtain a security token from a vCenter Single Sign-On server, the vCenter Single Sign-On client calls the
Issue method, which sends a SOAP message that contains a token request and authentication data. This
section describes a token request that uses a certificate to obtain a holder-of-key token. When the client creates
the token request, it also inserts timestamp, signature, and certificate data into the SOAP security header.

The following figure represents the content of an Issue request and the response containing a SAML token.

Figure 1-2. Issue - vCenter Single Sign-On Token Request and Response

vCenter Single Sign-On Programming Guide

10 VMware, Inc.

The vCenter Single Sign-On SDK provides Java packages that support SOAP header manipulation. Clients
that use C# bindings use .NET services to perform SOAP header manipulation.

When the vCenter Single Sign-On server receives the issue request, it performs the following operations to
generate a token:

 Uses the timestamp to validate the request.

 Validates the certificate.

 Uses the certificate to validate the digital signature.

 Uses the certificate subject to authenticate the request. Authentication is obtained from the identity store
that is registered with the vCenter Single Sign-On server.

 Generates a token that specifies the principal – the vCenter Single Sign-On client – as the token subject.

vCenter Single Sign-On Security Policies

Web service security policies define the requirements for secure communication between a Web service and a
client. vCenter Single Sign-On security policies are based on the WS-Policy framework and WS-SecurityPolicy
specifications. A policy identifies specific elements for token requests. Based on the policy requirements, a
vCenter Single Sign-On client will insert data into the SOAP security header for the token request.

vCenter Single Sign-On defines security policies for end user access, solution access, and for token exchange.
The policies stipulate the following elements:

 Security certificates (x509V3, x509PKIPathV1, x509PKCS7, or WssSamlV20Token11)

 Message timestamps

 Security binding (transport)

 Encryption algorithm (Basic256Sha256)

vCenter Single Sign-On security policies specify that the body of the SOAP message for a holder-of-key token
must be signed. Bearer tokens require only the username and timestamp tokens.

NOTE The vCenter Single Sign-On server issues SAML tokens to represent client authentication. The
standards documentation also uses the term “token” to refer to claims and certificate data that is inserted into
SOAP security headers.

VMware, Inc. 11

Chapter 1 Single Sign-On in the vSphere Environment

The following table shows the vCenter Single Sign-On policies and identifies the requirements for each policy.
The vCenter Single Sign-On WSDL defines these policies for use with the vCenter Single Sign-On methods.

vCenter Single Sign-On SDK Support for vCenter Single Sign-On Security Policies

Security policy support is determined by the programming language that you use to write your client.

C# Clients

Your vCenter Single Sign-On client can use the .NET services that support web service security policies. See
“Security Policies” on page 31.

Java Clients

The vCenter Single Sign-On SDK provides Java utilities that support the vCenter Single Sign-On security
policies. Your vCenter Single Sign-On client can use these utilities to create digital signatures and supporting
tokens, and insert them into SOAP headers as required by the policies. The SOAP header utilities are defined
in files that are located in the samples directory:

SDK\sso\java\JAXWS\samples\com\vmware\sso\client\soaphandlers

See “Using Handler Methods for SOAP Headers” on page 36.

Connecting to a vCenter Single Sign-On Server

When a vCenter Single Sign-On client connects to a vCenter Single Sign-On server, it must specify the server
URL as the endpoint for the token request message. The endpoint specification uses the following format:

https://hostname|IPaddress/STS/STSService

Table 1-1. vCenter Single Sign-On Policies

Policy Description

STSSecPolicy Defines the transport policy and algorithm suite for all communication with the vCenter
Single Sign-On server:
 Certificate-based server-side SSL authentication.
 HTTPS transport binding using NIST (National Institute of Standards and Technology)

Basic256Sha256 encryption algorithm. The HTTPS token is used to generate the message
signature.

 Request security header must contain a timestamp.

IssueRequestPolicy Defines the security policy for Issue token requests. IssueRequestPolicy specifies either
username token (signed), username token (plaintext password), X509 certificate, or
holder-of-key token authentication. You specify username/password or X509 certificate
credentials to obtain a vCenter Single Sign-On token. If you obtain a holder-of-key token, you
can use that token for subsequent Issue requests.
Username token (signed) authentication:

 X509 endorsing supporting token (WssX509V3Token11, WssX509PkiPathV1Token11,
or WssX509Pkcs7Token10)

 WssUsernameToken11 signed supporting token
Username token (plaintext password) authentication:

 WssUsernameToken11 signed supporting token
X509 certificate authentication:

 X509 endorsing supporting token (WssX509V3Token11, WssX509PkiPathV1Token11,
or WssX509Pkcs7Token10)

Holder-of-Key token authentication:
 WssSamlV20Token11 assertion referenced by a KeyIdentifier
 Token must be used to sign the SOAP message body.

RenewRequestPolicy Defines the security policy for Renew token requests. The request must contain one of the
following endorsing supporting tokens. The SOAP message body must be included in the
signature generated with the token.
 WssX509V3Token11
 WssX509PkiPathV1Token11
 WssX509Pkcs7Token10

vCenter Single Sign-On Programming Guide

12 VMware, Inc.

The path suffix (STS/STSService) is required. See “Sending a Request for a Security Token” on page 38 for
an example of setting the endpoint for a token request.

Token Delegation

Holder-of-key tokens can be delegated to services in the vSphere environment. A service that uses a delegated
token performs the service on behalf of the principle that provided the token. A token request specifies a
DelegateTo identity. The DelegateTo value can either be a solution token or a reference to a solution token.

Components in the vSphere environment can use delegated tokens. vSphere clients that use the
LoginByToken method to connect to a vCenter server do not use delegated tokens. The vCenter server will
use a vSphere client’s token to obtain a delegated token. The vCenter server will use the delegated token to
perform operations on behalf of the user after the user’s vCenter session has ended. For example, a user may
schedule operations to occur over an extended period of time. The vCenter server will use a delegated token
to support these operations.

Token Lifetime - Clock Tolerance

A SAML token contains information about the lifetime of a token. A SAML token uses the NotBefore and
NotOnOrAfter attributes of the SAML Conditions element to define the token lifetime.

<saml2:Conditions NotBefore="2011-10-04T21:39:17.731Z" NotOnOrAfter="2011-10-04T21:39:47.731Z">

During a token’s lifetime, the vCenter Single Sign-On server considers any request containing that token to be
valid and the server will perform renewal and validation operations on the token. The lifetime of a token is
affected by a clock tolerance value that the vCenter Single Sign-On server applies to token requests. The clock
tolerance value accounts for differences between time values generated by different systems in the vSphere
environment. The clock tolerance is 10 minutes.

Challenge (SSPI)

The vCenter Single Sign-On server supports the use of SSPI (Security Support Provider Interface) for client
authentication. SSPI authentication requires that both the client and server use security providers to perform
authentication. At the beginning of a vCenter Single Sign-On server session, the vCenter Single Sign-On client
and vCenter Single Sign-On server exchange data. Each participant will use its security provider to
authenticate the data it receives. The authentication exchange continues until both security providers
authenticate the data.

The vCenter Single Sign-On client API provides a challenge request for client participation in SSPI
authentication. The following sequence describes the challenge protocol.

 vCenter Single Sign-On client sends an issue request to the vCenter Single Sign-On server. The request
contains the client credentials.

 vCenter Single Sign-On server uses its security provider to authenticate the client. The server returns a
RequestSecurityTokenResponseType object in response to the issue request. The response contains a
challenge.

 vCenter Single Sign-On client uses its security provider to authenticate the vCenter Single Sign-On server
response. To continue the authentication exchange, the client sends a challenge request to the vCenter
Single Sign-On server. The request contains the resolution to the server’s challenge and it can also contain
a challenge from the vCenter Single Sign-On client.

 vCenter Single Sign-On server uses its security provider to authenticate the client’s response. If there are
still problems, the server can continue the authentication exchange by returning a response with an
embedded challenge. If authentication is successful, the vCenter Single Sign-On server returns a SAML
token to complete the original issue request.

To exchange challenge data, the vCenter single Sign-On client and vCenter Single Sign-On server use the
following elements defined for both RequestSecurityTokenType and RequestSecurityTokenResponseType
objects.

VMware, Inc. 13

Chapter 1 Single Sign-On in the vSphere Environment

 Context attribute

 BinaryExchange element

vCenter Single Sign-On SOAP Message Structure
The requirements listed in the following table apply to the SOAP message structure in vCenter Single Sign-On
message exchange.

vCenter Single Sign-On SDK
The vCenter Single Sign-On SDK is distributed as part of the VMware vSphere Management SDK. When you
extract the contents of the distribution kit, the vCenter Single Sign-On SDK is located in the ssoclient
sub-directory:

VMware-vSphere-SDK-build-num
eam
sms-sdk
ssoclient

docs
dotnet

cs
samples

java
JAXWS

lib
samples

wsdl
vsphere-ws

The following table shows the locations of the contents of the vCenter Single Sign-On SDK.

Table 1-2. vCenter Single Sign-On SOAP Message Structure

Element Message Requirements

SOAP envelope All <wst:RequestSecurityToken>, <wst:RequestSecurityTokenResponse>, and
<wst:RequestSecurityTokenResponseCollection> elements must be sent as the single direct
child of the body of a SOAP 1.1 <S11:Envelope> element.

Use HTTP POST to send all vCenter Single Sign-On SOAP messages over an
SSL/TLS-protected channel. Set the SOAPAction HTTP header field to the appropriate
message binding.

The <wsse:Security> header in a vCenter Single Sign-On request must contain a
<wsu:Timestamp> element.

SOAP message signature If a signature is applied to a request then it must include:
 Either the <S11:Body>, or the WS-Trust element as a direct child of the <S11:Body>
 The <wsu:Timestamp>, if present, in the <S11:Header>.

Exclusive canonicalization without comments (xml-exc-c14n) must be used prior to
signature generation.

The signature certificate must either be carried either within a <wsse:BinarySecurityToken>
or a <saml:Assertion> within <wsse:Security> header of the <S11:Header>.

The signature must contain a <wsse:SecurityTokenReference> that uses an internal direct
reference to the <wsse:BinarySecurityToken>.

Table 1-3. vCenter Single Sign-On SDK Contents

vCenter Single Sign-On SDK Component Location

C# vCenter Single Sign-On samples ssoclient/dotnet/cs/samples

JAX-WS vCenter Single Sign-On client binding ssoclient/java/JAXWS/lib

Java samples ssoclient/java/JAXWS/samples/com/vmware/sso/client/samples

VMware SOAP header utilities ssoclient/java/JAXWS/samples/com/vmware/sso/client/soaphandlers

vCenter Single Sign-On Programming Guide

14 VMware, Inc.

vCenter Single Sign-On SDK Examples

The vCenter Single Sign-On SDK contains both C# and Java examples that show how to acquire, validate, and
renew tokens. This manual describes examples that show how to obtain a holder-of-key token from a vCenter
Single Sign-On server and how to use that token to login to a vCenter server.

vCenter Single Sign-On Examples - C#

Each example is implemented as a Visual Studio project that is contained in its own subdirectory in the
samples directory. Each project subdirectory contains an example implementation and the corresponding
Visual Studio project files. The following table lists the example projects.

vCenter Single Sign-On Examples - Java

This manual describes two of the Java examples provided by the VMware SSO Client SDK:

 “vCenter Single Sign-On Client Example (JAX-WS)” on page 35. This example shows how to obtain a
holder-of-key token from the vCenter Single Sign-On server.

 “LoginByToken Example (JAX-WS)” on page 41. This example shows how to use the token to login to
vCenter server.

The following table lists the sample files in the SDK:

General utilities for samples ssoclient/java/JAXWS/samples/com/vmware/sso/client/utils

WS-Security utilities for samples ssoclient/java/JAXWS/samples/com/vmware/sso/client/wssecurity

vCenter LoginByToken sample ssoclient/java/JAXWS/samples/com/vmware/vsphere/samples

VMware SOAP header utilties for
LoginByToken example

ssoclient/java/JAXWS/samples/com/vmware/vsphere/soaphandlers

Documentation for example code ssoclient/docs/java/JAXWS/samples/javadoc/index.html

WSDL files ssoclient/wsdl

Table 1-3. vCenter Single Sign-On SDK Contents (Continued)

vCenter Single Sign-On SDK Component Location

Table 1-4. VMware SSO Client SDK Sample Files – C#

Location Visual Studio Project Description

SDK/ssoclient/dotnet/cs/samples/

AcquireBearerTokenByUserCredentialSample Demonstrates how to use username and password
credentials to obtain a bearer token.

AcquireHoKTokenByHoKTokenSample Demonstrates how to use an existing holder-of-key
token to obtain a new holder-of-key token.

AcquireHoKTokenBySolutionCertificateSample Demonstrates how to use a solution certificate to
obtain a holder-of-key token.

AcquireHoKTokenByUserCredentialSample Demonstrates how to use username and password
credentials to obtain a holder-of-key token.

Table 1-5. VMware SSO Client SDK Sample Files – Java

Location Examples Description

SDK/ssoclient/java/JAXWS/samples/com/vmware/sso/client/samples/

VMware, Inc. 15

Chapter 1 Single Sign-On in the vSphere Environment

AcquireBearerTokenByUserCredentialSample.java Demonstrates how to use username and password
credentials to obtain a bearer token.

AcquireHoKTokenByHoKTokenSample.java Demonstrates how to exchange one holder-of-key
token for another.

AcquireHoKTokenBySolutionCertificateSample.java Demonstrates how a solution uses its private key
and certificate to acquire a holder-of-key token.

AcquireHoKTokenByUserCredentialSample.java Demonstrates how to use username, password,
and certificate credentials to obtain a
holder-of-key token. See “vCenter Single Sign-On
Client Example (JAX-WS)” on page 35.

RenewTokenSample.java Demonstrates how to renew a holder-of-key
token.

ValidateTokenSample.java Demonstrates how to validate a token.

SDK/ssoclient/java/JAXWS/samples/com/vmware/sso/client/soaphandlers/

HeaderHandlerResolver.java Provides methods to manage the set of header
handlers.

SamlTokenExtractionHandler.java Extracts a SAML token from the vCenter Single
Sign-On server response.

SamlTokenHandler.java Adds a SAML token to a SOAP security header.

SSOHeaderhandler.java Base class for header handler classes.

TimeStampHandler.java Adds a timestamp element to a SOAP security
header.

UserCredentialHandler.java Adds a username token to a SOAP security
header.

WsSecuritySignatureAssertionHandler.java Uses SAML token assertion ID, private key, and
certificate to sign a SOAP message. For use when
using an existing token to acquire a new token.

WsSecurityUserCertificateSignatureHandler.java Uses a private key and certificate to sign a SOAP
message.

SDK/ssoclient/java/JAXWS/samples/com/vmware/vsphere/samples/

LoginByTokenSample.java Demonstrates how to use a SAML token to login to
a vCenter server. See “LoginByToken Example
(JAX-WS)” on page 41.

SDK/ssoclient/java/JAXWS/samples/com/vmware/vsphere/soaphandlers/

HeaderCookieExtractionHandler.java Extracts the vCenter HTTP session cookie from the
response to a connection request.

HeaderCookieHandler.java Inserts an HTTP cookie into a request.

Table 1-5. VMware SSO Client SDK Sample Files – Java

Location Examples Description

vCenter Single Sign-On Programming Guide

16 VMware, Inc.

VMware, Inc. 17

2

This chapter contains descriptions of the methods and data structures defined for the vCenter Single Sign-On
client API.

 “vCenter Single Sign-On Client API Methods” on page 17

 “vCenter Single Sign-On API Data Structures” on page 19

vCenter Single Sign-On Client API Methods
The vCenter Single Sign-On client API consists of the following methods:

 Issue

 Renew

 Validate

 Challenge

Issue

Sends a security token request to a vCenter Single Sign-On server.

Method Signature

Issue (requestSecurityToken : RequestSecurityTokenType)
returns RequestSecurityTokenResponseCollectionType

Parameter

requestSecurityToken : RequestSecurityTokenType – The following RequestSecurityTokenType
elements are required for an Issue request; the remaining elements are optional.

 RequestType – Must be the URL “http://docs.oasis-open.org/ws-sx/ws-trust/200512/Issue”.

 Sig attribute (UseKey element) – Specifies a security token that contains an existing certificate key for
subject confirmation.

 Context attribute – Required if you include a BinaryExchangeType element for SSPI authentication.

Return Value

RequestSecurityTokenResponseCollectionType – Set of RequestSecurityTokenResponseType. A response
contains a SAML token or a challenge requiring additional authentication data.

vCenter Single Sign-On
API Reference 2

vCenter Single Sign-On Programming Guide

18 VMware, Inc.

Comments

Sends a token request to a vCenter Single Sign-On server. The request message must contain security artifacts
as determined by the vCenter Single Sign-On policy used for the request. The vCenter Single Sign-On server
will authenticate the user credentials in the request. For information about configuring user directory support
for authentication, see vSphere Installation and Setup and vSphere Security in the VMware Documentation
Center. If the vCenter Single Sign-On server requires information during SSPI authentication, it will negotiate
with the vCenter Single Sign-On client by embedding a challenge in the response.

Renew

Renews an existing SAML token.

Method Signature

Renew (token : RequestSecurityTokenType) returns RequestSecurityTokenResponseType

Parameter

token : RequestSecurityTokenType – Security token request containing a SAML token previously
obtained from a vCenter Single Sign-On server. The token must be valid (not expired). The following
RequestSecurityTokenType elements are required for a Renew request; the remaining elements are
optional.

 RequestType – Must be the URL “http://docs.oasis-open.org/ws-sx/ws-trust/200512/Renew”.

 RenewTarget – Identifies the SAML token to be renewed.

 Sig attribute (UseKey element) – Specifies a security token that contains an existing certificate key for
subject confirmation.

 Context attribute – Required if you include a BinaryExchangeType element for SSPI authentication.

Return Value

RequestSecurityTokenResponseType – Response containing the renewed token.

Comments

You can renew holder-of-key tokens only. In addition to the the required token request elements shown above,
the Renew request SOAP header must contain security elements according to the security policy.

Validate

Validates an existing SAML token.

Method Signature

Validate (token : RequestSecurityTokenType) returns RequestSecurityTokenResponseType

Parameter

token : RequestSecurityTokenType – Security token request containing a SAML token previously
obtained from a vCenter Single Sign-On server. The following RequestSecurityTokenType elements are
required for a Validate request; the remaining elements are optional.

 RequestType – Must specify the URL “http://docs.oasis-open.org/ws-sx/ws-trust/200512/Validate”.

 ValidateTarget – Identifies the SAML token to be validated.

 Sig attribute (UseKey element) – Specifies a security token that contains an existing certificate key.

 Context attribute – Required if you include a BinaryExchangeType element for SSPI authentication.

VMware, Inc. 19

Chapter 2 vCenter Single Sign-On API Reference

Return Value

RequestSecurityTokenResponseType – Response containing the validated token.

Comments

Performs validation of the token and its subject. It includes but is not limited to validations of the following
elements:

 Token signature

 Token lifetime

 Token subject

 Token delegates

 Group(s) to which the subject belongs

Challenge

Extends a token request to verify elements in the request.

Method Signature

Challenge (response : RequestSecurityTokenResponseType) returns RequestSecurityTokenResponseType

Parameter

response : RequestSecurityTokenResponseType – Contains SSPI data in the BinaryExchange element.

Return Value

RequestSecurityTokenResponseType – Response containing the validated token.

Comments

Part of a negotiation with a vCenter Single Sign-On server to resolve issues related to SSPI authentication.

vCenter Single Sign-On API Data Structures
Use the following objects for the vCenter Single Sign-On methods.

RequestSecurityTokenType

Defines a set of token characteristics requested by the vCenter Single Sign-On client. The vCenter Single
Sign-On client specifies this data object in a call to the Issue, Renew, and Validate methods. The vCenter Single
Sign-On server may satisfy a request for a particular characteristic or it may use a different value in the issued
token. The response to the token request contains the actual token values. See
“RequestSecurityTokenResponseType” on page 21.

RequestSecurityTokenType ParticipantsType

RequestSecurityTokenResponseCollectionType ParticipantType

RequestSecurityTokenResponseType EndpointReference

LifetimeType BinaryExchangeType

RenewingType AdviceType

KeyTypeOpenEnum AttributeType

UseKeyType

vCenter Single Sign-On Programming Guide

20 VMware, Inc.

The vCenter Single Sign-On API supports a subset of the RequestSecurityTokenType elements defined in
the WS-Trust specification. The following table shows the supported elements and attributes. An item in the
table is defined as an element in the WSDL unless explicitly identified as an attribute.
Table 2-1. RequestSecurityTokenType Elements (vCenter Single Sign-On)

Element Datatype Description

Context string RequestSecurityToken attribute specifying a URI (Uniform
Resource Identifier) that identifies the original request. If you include
this in a request, the vCenter Single Sign-On server will include the
context identifier in the response. This attribute is required when the
request includes a BinaryExchange property.

TokenType string Identifies the requested token type, specified as a URI (Uniform
Resource Identifier). The following list shows the valid token types:
 urn:oasis:names:tc:SAML:2.0:assertion – for issue and renew

requests.
 http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTR/Status –

for validation requests.

RequestType string Identifies the request type, specified as a URI. The RequestType
property is required.
The following list shows the valid request types:
 http://docs.oasis-open.org/ws-sx/ws-trust/200512/Issue
 http://docs.oasis-open.org/ws-sx/ws-trust/200512/Renew
 http://docs.oasis-open.org/ws-sx/ws-trust/200512/Validate

Lifetime LifetimeType Time period during which a token is valid. The vCenter Single
Sign-On server can ignore the requested lifetime and assign a different
lifetime to the token. The lifetime specifies creation and expiration
values. This property is optional – used with Issue and Renew
requests.

ValidateTarget Specifies the token to be validated. This property can contain either a
reference to the token or it can contain the token itself. The property is
required for and used only with the Validate method.

RenewTarget Specifies the token to be renewed. This property can contain either a
reference to the token or it can contain the token itself. This property is
required for and used only with the Renew method.

Renewing RenewingType Specifies a request for a renewable token. This property is optional. If
you do not specify the Renewing property, the vCenter Single Sign-On
server will issue a renewable token. This property is optional.

DelegateTo Specifies a security token or token reference for an identity to which
the requested token will be delegated. The DelegateTo value must
identify a solution.

Delegatable xs:boolean Indicates whether the requested token can be delegated to an identity.
Use this property together with the DelegateTo property. The default
value for the Delegatable property is false.

UseKey UseKeyType References a token for subject confirmation. Required for Issue,
Renew, and Validate methods.

KeyType string String value corresponding to a KeyTypeOpenEnum value. The value
is a URI (Uniform Resource Identifier) that specifies the requested key
cryptography type. This property is optional.

SignatureAlgorithm string Specifies a URI (Uniform Resource Identifier) for an algorithm that
produces a digital signature for the token. The following list shows the
valid values:
 http://www.w3.org/2000/09/xmldsig#rsa-sha1

 http://www.w3.org/2001/04/xmldsig-more#rsa-sha256

 http://www.w3.org/2001/04/xmldsig-more#rsa-sha384

 http://www.w3.org/2001/04/xmldsig-more#rsa-sha512

BinaryExchange BinaryExchangeType Contains data for challenge negotation between the vCenter Single
Sign-On client and vCenter Single Sign-On server.

VMware, Inc. 21

Chapter 2 vCenter Single Sign-On API Reference

RequestSecurityTokenResponseCollectionType

Returned by the Issue method. This type contains a response to the request or the requested token. .

RequestSecurityTokenResponseType

Describes a single token.

Participants ParticipantsType Specifies the identities of participants that are authorized to use the
token.

AdviceSet AdviceSetType List of AdviceType.

Table 2-1. RequestSecurityTokenType Elements (vCenter Single Sign-On)

Element Datatype Description

Table 2-2. RequestSecurityTokenResponseCollectionType

Element Datatype Description

RequestSecurityTokenResponse RequestSecurityTokenResponseType[] List of token request response objects. The
current architecture supports a single
token response only

Table 2-3. RequestSecurityTokenResponseType Properties (vCenter Single Sign-On)

Element Datatype Description

Context string

RequestSecurityTokenResponse attribute specifying a URI (Uniform Resource Identifier)
that identifies the original request. This attribute is included in the response if it was
specified in the request.

TokenType string

Identifies the type of token in the response. TokenType is specified as a URI (Uniform
Resource Identifier), one of the following:
 urn:oasis:names:tc:SAML:2.0:assertion – for issue and renew operations.
 http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTR/Status – for validation

operations.

Lifetime LifetimeType

Time period during which a token is valid. The lifetime in the token response is the actual
lifetime assigned by the vCenter Single Sign-On server. The lifetime specifies creation and
expiration values.

RequestedSecurityToken RequestedSecurityTokenType

SAML token.

Renewing RenewingType

Indicates whether or not the token can be renewed. By default, the vCenter Single Sign-On
server will issue a renewable token.

BinaryExchange BinaryExchangeType

Contains data for challenge negotiation between vCenter Single Sign-On client and vCenter
Single Sign-On server.

KeyType string

Indicates whether or not key cryptography is used. The KeyType is a string value
corresponding to an enumerated type value. See KeyTypeOpenEnum. The value is a URI
(Uniform Resource Identifier) that specifies the key type.

vCenter Single Sign-On Programming Guide

22 VMware, Inc.

LifetimeType

Specifies the token lifetime. Used in RequestSecurityTokenType and RequestSecurityTokenResponseType.

RenewingType

Specifies token renewal.

KeyTypeOpenEnum

Specifies a set of enumerated type values that identify the supported types of key cryptography used for
security tokens. The values are URIs (Universal Resource Identifiers).

SignatureAlgorithm string

Indicates a URI (Uniform Resource Identifier) for an algorithm that produces a digital
signature for the token. The following list shows the valid values:
 http://www.w3.org/2000/09/xmldsig#rsa-sha1

 http://www.w3.org/2001/04/xmldsig-more#rsa-sha256

 http://www.w3.org/2001/04/xmldsig-more#rsa-sha384

 http://www.w3.org/2001/04/xmldsig-more#rsa-sha512

Delegatable xs:boolean

Indicates whether the requested token can be delegated to an identity.

Status StatusType

Indicates the status of the request. The property specifies Code and Reason values.

Table 2-3. RequestSecurityTokenResponseType Properties (vCenter Single Sign-On) (Continued)

Element Datatype Description

Table 2-4. LifetimeType Properties

Property Datatype Description

created wsu:AttributedDateTime Creation time of the token. XML date and time, expressed as a
standard time value (Gregorian calendar).

expires wsu:AttributedDateTime Time interval during which the token is valid, starting at the
created time. The time interval is an absolute value specified in
seconds.

Table 2-5. RenewingType Properties

Property DataType Description

Allow xsd:boolean Specifies a request for a token for which the lifetime can be extended. This property
is optional. The default value is true.

OK xsd:boolean Indicates that the vCenter Single Sign-On client will accept a token that can be
renewed after it has expired. This property is optional. The default value is false.
If you specify this property, you must specify a value of false. A token that can be
renewed after expiration does not provide adequate security.

Table 2-6. KeyType Properties

Enumerated type value Description

http://docs.oasis-open.org/ws-sx/ws-trust/200512/PublicKey Specifies asymmetric key cryptography using a
combination of public and private keys. Use this key
type for holder-of-key tokens.

http://docs.oasis-open.org/wssx/wstrust/200512/Bearer Indicates a bearer token, which does not require a key to
authenticate the token.

VMware, Inc. 23

Chapter 2 vCenter Single Sign-On API Reference

UseKeyType

Specifies the URI for an existing key.

ParticipantsType

Identifies users and services who are allowed to use the token.

ParticipantType

ParticipantType is an end point reference.

EndpointReference

Participant identification. The ReferenceParameters, Metadata, and any elements are not used.

BinaryExchangeType

Specifies a blob (binary large object) that contains data for negotation between the vCenter Single Sign-On client and server.

Table 2-7. UseKeyType Properties

Property Datatype Description

Sig string URI (Universal Resource Identifer) that refers to a security token which contains an
existing key. If specified, the vCenter Single Sign-On server will use the associated
certificate for subject confirmation.

Table 2-8. ParticipantsType Properties

Property Datatype Description

Primary ParticipantType Primary user of the token.

Participant ParticipantType List of participants who are allowed to use the token.

Table 2-9. ParticipantType Property

Property Datatype Description

EndpointReference Specifies a participant represented as a URI.

Table 2-10. EndpointReference Property

Property Datatype Description

name tns:AttributedURIType URI that identifies a participant allowed to use a token.

Table 2-11. BinaryExchangeType Attributes

Attribute Datatype Description

ValueType xsd:anyURI Identifies the type of negotiation.

EncodingType xsd:anyURI Identifies the encoding format of the blob.

vCenter Single Sign-On Programming Guide

24 VMware, Inc.

AdviceType

Specifies additional informational attributes to be included in the issued token. The vCenter Single Sign-On
client can ignore this data. Advice data will be copied to delegate tokens. This type is used in
RequestSecurityTokenType.

AttributeType

Attribute providing advice data. Used in AdviceType.

Table 2-12. AdviceType Properties

Element/Attribute Datatype Description

Advicesource string AdviceType attribute specifying a URI representing the identity
that provides the advice Attribute elements. This attribute is
required.

Attribute AttributeType Advice data.

Table 2-13. AttributeType Properties

Element/Attribute Datatype Description

Name string AttributeType attribute specifying a URI that is the unique
name of the attribute. This attribute is required.

FriendlyName string AttributeType attribute specifying a human-readable form of
the name. This attribute is optional.

AttributeValue string List of values associated with the attribute.
The AttributeValue structure depends on the following
criteria:
 If the attribute has one or more values, the AttributeType

contains one AttributeValue for each value. Empty
attribute values are represented by empty AttributeValue
elements.

 If the attribute does not have a value, the AttributeType
does not contain an AttributeValue.

VMware, Inc. 25

3

This chapter describes a C# example of acquiring a vCenter Single Sign-On security token.

 “vCenter Single Sign-On Token Request Overview” on page 25

 “Sending a Request for a Security Token” on page 26

 “Solution Certificate Support” on page 28

vCenter Single Sign-On Token Request Overview
The code examples in the following sections show how to use the Issue method to acquire a holder-of-key
security token. To see a C# example that shows how to use the token to login to a vCenter server, see
“LoginByToken Example (.NET)” on page 29. The code examples in this chapter are based on the following
Visual Studio project located in the vCenter Single Sign-On SDK .NET samples directory:

.../SDK/ssoclient/dotnet/cs/samples/AcquireHoKTokenByUserCredentialSample

The AcquireHoKTokenByUserCredentialSample program creates a token request and calls the Issue
method to send the request to a vCenter Single Sign-On server.

 The program uses a sample implementation of a SOAP filter to modify the SOAP security header for the
request message. The SOAP filter implementation overrides the Microsoft WSE (Web Services
Enhancement) method CreateClientOutputFilter.

 The program uses the username-password security policy (STSSecPolicy_UserPwd). This policy
requires that the SOAP security header include a timestamp, username and password, and a digital
signature and certificate. The sample SOAP filter embeds these elements in the message.

Sample Code

The code examples in the following sections show how to obtain a holder-of-key security token. The code
examples are based on the AcquireHokTokenByUserCredentialSample project contained in the vCenter
Single Sign-On SDK. The project is located in the dotnet samples directory
(SDK/ssoclient/dotnet/cs/samples/AcquireHokTokenByUserCredentialSample).

 Project file – AcquireHokTokenByUserCredentialSample.csproj

 Sample code – AcquireHokTokenByUserCredential.cs

 Declarations that override the .NET SecurityPolicyAssertion – CustomSecurityAssertion.cs

 SOAP header manipulation code – CustomSecurityClientOutputFilter.cs

vCenter Single Sign-On
Client Example (.NET) 3

vCenter Single Sign-On Programming Guide

26 VMware, Inc.

Sending a Request for a Security Token
To send a request for a security token, the sample specifies username and password assertions to satisfy the
security policy, creates a request token, and calls the Issue method. The following sequence shows these
operations.

1 Create the STSService client-side object. This object provides access to vCenter Single Sign-On request
objects and methods.

2 Specify the URL of the vCenter Single Sign-On server.

3 Create a SoapContext object for the security headers.

4 Specify username and password assertions to satisfy the security policy.

5 Provide a remote certificate validation callback. The sample version of this callback does not validate the
certificate; it just returns a true value.

IMPORTANT This is suitable for a development environment, but you should implement certificate
validation for a production environment.

6 Create a token request (RequestSecurityTokenType) and set the token request fields:

 Lifetime – Creation and expiration times.

 Token type – urn:oasis:names:tc:SAML:2.0:assertion.

 Request type – http://docs.oasis-open.org/ws-sx/ws-trust/200512/Issue.

 Key type – http://docs.oasis-open.org/ws-sx/ws-trust/200512/PublicKey (for holder-of-key token
type).

 Signature algorithm – http://www.w3.org/2001/04/xmldsig-more#rsa-sha256.

 Renewable status.

7 Call the Issue method. The SSO server returns a response structure that contains the token.

Example 3-1 shows C# code that performs these operations.

Example 3-1. Acquiring a vCenter Single Sign-On Token – Sending the Request

public static XmlElement GetToken(String[] args)
{
 // 1. Create an SSO server client-side object
 service = new STSService();

 // 2. Set the SSO server URL
 service.Url = args[0];

 // 3. SOAP Request Context - Required to add secruity headers
 SoapContext requestContext = service.RequestSoapContext;

 // 4. Create a CustomSecurityAssertion object that specifies username and password
 CustomSecurityAssertion objCustomSecurityAssertion = new CustomSecurityAssertion();
 objCustomSecurityAssertion.Username = args[1].Trim();
 objCustomSecurityAssertion.Password = args[2].Trim();

 // Use the assertions to set the policy
 Policy policy = new Policy();
 policy.Assertions.Add(objCustomSecurityAssertion);
 service.SetPolicy(policy);

 // 5. Establish a validation callback for the token certificate
 ServicePointManager.ServerCertificateValidationCallback +=
 new RemoteCertificateValidationCallback(ValidateRemoteCertificate);

VMware, Inc. 27

Chapter 3 vCenter Single Sign-On Client Example (.NET)

 // 6. Create a token request
 RequestSecurityTokenType tokenType = new RequestSecurityTokenType();

 // Specify the token type, request type, key type, and signature algorithm
 tokenType.TokenType = TokenTypeEnum.urnoasisnamestcSAML20assertion;
 tokenType.RequestType = RequestTypeEnum.httpdocsoasisopenorgwssxwstrust200512Issue;
 tokenType.KeyType = KeyTypeEnum.httpdocsoasisopenorgwssxwstrust200512PublicKey;
 tokenType.SignatureAlgorithm = SignatureAlgorithmEnum.httpwwww3org200104xmldsigmorersasha256;

 // Set the token creation date/time
 LifetimeType lifetime = new LifetimeType();
 AttributedDateTime created = new AttributedDateTime();
 String createdDate =
 XmlConvert.ToString(System.DateTime.Now, XmlDateTimeSerializationMode.Utc);
 created.Value = createdDate;
 lifetime.Created = created;

 // Set the token expiration time
 AttributedDateTime expires = new AttributedDateTime();
 TimeSpan duration = new TimeSpan(1, 10, 10);
 String expireDate =
 XmlConvert.ToString(DateTime.Now.Add(duration), XmlDateTimeSerializationMode.Utc);
 expires.Value = expireDate;
 lifetime.Expires = expires;

 tokenType.Lifetime = lifetime;

 RenewingType renewing = new RenewingType();
 renewing.Allow = true;
 renewing.OK = true;
 tokenType.Renewing = renewing;

 // 7. Call Issue
 try
 {
 RequestSecurityTokenResponseCollectionType responseToken =

service.Issue(tokenType);
 RequestSecurityTokenResponseType rstResponse =

responseToken.RequestSecurityTokenResponse;

 return rstResponse.RequestedSecurityToken;
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.ToString());
 throw ex;
 }
}

Example 3-2 shows the custom output filter for the custom security assertion. The
CustomSecurityClientOutputFilter class provides three methods:

 CustomSecurityClientOutputFilter constructor – Creates a token for the username and password.
It also calls the GetSecurityToken method and creates a message signature for the security token.

 SecureMessage – An override method for the .NET method SendSecurityFilter.SecureMessage.
The override method adds tokens and the message signature to the .NET Security element.

 GetSecurityToken – creates an X509 security token from a PFX certificate file. PFX is a Public-Key
Cryptography Standard format that is used to store a private key and the corresponding X509 certificate.

Example 3-2. Custom Output Filter

internal class CustomSecurityClientOutputFilter : SendSecurityFilter
{
 UsernameToken userToken = null;
 X509SecurityToken signatureToken = null;
 MessageSignature sig = null;

vCenter Single Sign-On Programming Guide

28 VMware, Inc.

 public CustomSecurityClientOutputFilter(CustomSecurityAssertion parentAssertion)
 : base(parentAssertion.ServiceActor, true)
 {
 userToken = new UsernameToken(parentAssertion.Username.Trim(),

parentAssertion.Password.Trim(), PasswordOption.SendPlainText);
 signatureToken = GetSecurityToken();
 sig = new MessageSignature(signatureToken);
 }

 /// SecureMessage
 public override void SecureMessage(SoapEnvelope envelope, Security security)
 {
 security.Tokens.Add(userToken);
 security.Tokens.Add(signatureToken);
 security.Elements.Add(sig);
 }

 /// GetSecurityToken - creates the security token from certificate from pfx file
 internal static X509SecurityToken GetSecurityToken()
 {
 X509Certificate2 certificateToBeAdded = new X509Certificate2();
 string certificateFile = ConfigurationManager.AppSettings["PfxCertificateFile"];
 certificateToBeAdded.Import(certificateFile, "", X509KeyStorageFlags.MachineKeySet);
 return new X509SecurityToken(certificateToBeAdded);
 }
}

Solution Certificate Support
Solutions that are integrated into the vSphere environment must perform authentication with the vCenter
Single Sign-On server to obtain a SAML token for use in the environment.

The vCenter Single Sign-On SDK contains a C# sample that demonstrates how to use a solution certificate to
obtain a token (AcquireHoKTokenBySolutionCertificateSample). The sample uses a PFX file to obtain the
certificate and private key. When you run the sample, you specify the PFX file location and the private key
password on the command line:

AcquireHoKTokenBySolutionCertificateSample sso-server-url path-to-pfx-file private-key-password

 The PFX file is located in the following directory on a vCenter server:

/etc/vmware-vpx/ssl/rui.pfx

Copy the rui.pfx file from the server to the system on which you are running the sample.

 The password for the private key is located in the catalina.properties file on the vCenter server:

/usr/lib/vmware-vpx/tomcat/conf/catalina.properties

The catalina.properties file contains the following definition for the private key password:

bio-vmssl.SSL.password=testpassword

The solution certificate sample uses the X509Certificate2 constructor to load the certificate. See the sample
file AcquireHoKTokenBySolutionCertificate.cs in the vCenter Single Sign-On SDK.

VMware, Inc. 29

4

This chapter describes a C# example of using the LoginByToken method.

 “vCenter Server Single Sign-On Session” on page 29

 “Using LoginByToken” on page 30

vCenter Server Single Sign-On Session
After you obtain a SAML token from the vCenter Single Sign-On server, you can use the vSphere Web Services
API method LoginByToken to establish a single sign-on session with a vCenter Server. See “vCenter Single
Sign-On Client Example (.NET)” on page 25 for a description of how to obtain a vCenter Single Sign-On token.

To establish a vCenter Server session that is based on SAML token authentication, the client must embed the
SAML token in the SOAP header of the LoginByToken request. The C# LoginByToken example uses the .NET
services in Table 4-1 to support a single sign-on session.

Persistent vCenter Server Sessions

A persistent vCenter Server session relies on a session cookie. When the vCenter Server receives a login
request, the server creates a session cookie and returns it in the HTTP header of the response. The client-side
.NET framework embeds the cookie in HTTP messages that the client sends to the server.

The LoginByToken request includes the SAML token and client certificate security assertions for client
authentication. After successful login, the authentication overhead is no longer needed. The client resets the
VimService context to eliminate the security overhead. Subsequent client requests will contain the session
cookie, which is enough to support the persistent, authenticated session.

LoginByToken Example (.NET) 4

Table 4-1. Microsoft .NET Elements for vCenter Single Sign-On Sessions

.NET Element /
 Namespace vCenter Single Sign-On Usage

SecurityPolicyAssertion

Microsoft.Web.Services3.Security

The sample creates a custom policy assertion derived from the
SecurityPolicyAssertion class. The custom assertion contains the
SAML token and X509 certificate.

SendSecurityFilter

Microsoft.Web.Services3.Security

The sample defines a custom output filter derived from the
SendSecurityFilter class. The custom filter adds the token and
certificate to the outgoing SOAP message.

ServicePointManager

System.net

The sample uses the ServicePointManager to specify SSL3 and HTTP
100-Continue behavior.

ConfigurationManager

System.Configuration

The sample uses the ConfigurationManager to specify certificate
metadata (password and certificate type).

CookieContainer

System.Net

The sample uses the CookieContainer class to manage vCenter session
cookies.

vCenter Single Sign-On Programming Guide

30 VMware, Inc.

Sample Code

The code examples in the following sections show how to use the LoginByToken method with a holder-of-key
security token. The code examples are based on the LoginByTokenSample project contained in the vCenter
Single Sign-On SDK. The project is located in the dotnet samples directory
(SDK/ssoclient/dotnet/cs/samples/LoginByToken).

 Project file – LoginByToken.csproj

 Sample code – LoginByTokenSample.cs

 SOAP header manipulation code – CustomSecurityAssertionHok.cs

Using LoginByToken
The example program uses the following elements and general steps:

 LoginByTokenSample Constructor

 Token Acquisition

 Security Policies

 Connection and Login

LoginByTokenSample Constructor

The LoginByTokenSample class constructor creates the following elements to set up access to the vCenter
server.

 VimService object – Provides access to vSphere Web Services API methods and support for security
policies and session cookie management. It also stores the vCenter Server URL.

 CookieContainer – Provides local storage for the vCenter Server session cookie.

 ManagedObjectReference – Manually created ManagedObjectReference to retrieve a
ServiceInstance at the beginning of the session.

Example 4-1 shows the LoginByTokenSample constructor.

Example 4-1. LoginByTokenSample Constructor

// Global variables
private VimService _service;
private ManagedObjectReference _svcRef;
private ServiceContent _sic;
private string _serverUrl;

public LoginByTokenSample(string serverUrl)
{
 _service = new VimService();
 _service.Url = serverUrl;
 _serverUrl = serverUrl;
 _service.CookieContainer = new System.Net.CookieContainer();
 _svcRef = new ManagedObjectReference();
 _svcRef.type = "ServiceInstance";
 _svcRef.Value = "ServiceInstance";
}

Token Acquisition

The client must obtain a SAML token from a vCenter Single Sign-On server. See “vCenter Single Sign-On
Client Example (.NET)” on page 25.

VMware, Inc. 31

Chapter 4 LoginByToken Example (.NET)

Security Policies

The LoginByToken sample creates a custom policy assertion that is derived from the .NET class
SecurityPolicyAssertion. The assertion class gives the .NET framework access to the SAML token and the
X509 certificate.

The sample performs the following operations to set up the security policy and message handling.

 Sets the ServicePointManager properties to specify SSL3 and HTTP 100-Continue response handling.
100-Continue response handling supports more efficient communication between the client and vCenter
server. When the client-side .NET framework sends a request to the server, it sends the request header and
waits for a 100-Continue response from the server. After it receives that response, it sends the request
body to the server.

 Creates an X509Certificate2 object, specifies the certificate file, and imports the certificate. The
certificate file specification indicates a PKCS #12 format file (Public-Key Cryptography Standards) –
PfxCertificateFile. The file contains the client’s private key and public certificate. The
PfxCertificateFile setting is defined in the app.config file in the LoginByToken project. The
definition specifies the location of the file.

 Creates a custom security assertion to store the SAML token and the certificate. The token and certificate
will be included in the policy data for the LoginByToken request.

 Defines a custom output filter that is derived from the .NET class SendSecurityFilter.

Custom Security Assertion

Example 4-2 shows the LoginByTokenSample class method GetSecurityPolicyAssertionForHokToken.
The method returns a CustomSecurityAssertionHok instance which overrides the .NET class
SecurityPolicyAssertion. The security assertion contains the SAML token and the X509 certificate token.
This code is taken from the LoginByToken project file
samples/LoginByToken/CustomSecurityAssertionHok.cs.

Example 4-2. Setting Up Security Policies

private SecurityPolicyAssertion GetSecurityPolicyAssertionForHokToken(XmlElement xmlToken)
{

 //When this property is set to true, client requests that use the POST method
 //expect to receive a 100-Continue response from the server to indicate that
 //the client should send the data to be posted. This mechanism allows clients
 //to avoid sending large amounts of data over the network when the server,
 //based on the request headers, intends to reject the request
 ServicePointManager.Expect100Continue = true;
 ServicePointManager.SecurityProtocol = SecurityProtocolType.Ssl3;

 X509Certificate2 certificateToBeAdded = new X509Certificate2();
 string certificateFile = ConfigurationManager.AppSettings["PfxCertificateFile"];
 string password = ConfigurationManager.AppSettings["PfxCertificateFilePassword"];
 certificateToBeAdded.Import(certificateFile, password ?? string.Empty,

X509KeyStorageFlags.MachineKeySet);

 var customSecurityAssertion = new CustomSecurityAssertionHok();
 customSecurityAssertion.BinaryToken = xmlToken;
 customSecurityAssertion.TokenType = strSamlV2TokenType;
 customSecurityAssertion.SecurityToken = new X509SecurityToken(certificateToBeAdded);

 return customSecurityAssertion;
}

Custom Output Filter

Example 4-3 shows the custom output filter for the custom security assertion. The custom filter provides three
methods:

vCenter Single Sign-On Programming Guide

32 VMware, Inc.

 CustomSecurityClientOutputFilterHok class constructor – Creates token and message signature objects
for the SOAP message.

 SecureMessage—An override method for the .NET method SendSecurityFilter.SecureMessage. The
override method adds the SAML token and message signature to the .NET Security element.

 CreateKeyInfoSignatureElement – Creates an XML document that specifies the SAML token type and ID.

Example 4-3. Output Filter for the Custom SecurityPolicyAssertion

internal class CustomSecurityClientOutputFilterHok : SendSecurityFilter
 {
 IssuedToken issuedToken = null;
 string samlAssertionId = null;
 MessageSignature messageSignature = null;

 /// Create a custom SOAP request filter.
 /// (Save the token and certificate.)
 public CustomSecurityClientOutputFilterHok(CustomSecurityAssertionHok parentAssertion)
 : base(parentAssertion.ServiceActor, true)
 {
 issuedToken = new IssuedToken(parentAssertion.BinaryToken,

parentAssertion.TokenType);
 samlAssertionId = parentAssertion.BinaryToken.Attributes.GetNamedItem("ID").Value;
 messageSignature = new MessageSignature(parentAssertion.SecurityToken);
 }

 /// Secure the SOAP message before its sent to the server.
 public override void SecureMessage(SoapEnvelope envelope, Security security)
 {
 //create KeyInfo XML element
 messageSignature.KeyInfo = new KeyInfo();
 messageSignature.KeyInfo.LoadXml(CreateKeyInfoSignatureElement());

 security.Tokens.Add(issuedToken);
 security.Elements.Add(messageSignature);
 }

 /// Helper method to create a custom key info signature element.
 /// Returns Key info XML element.
 private XmlElement CreateKeyInfoSignatureElement()
 {
 var xmlDocument = new XmlDocument();
 xmlDocument.LoadXml(@"<root><SecurityTokenReference

xmlns=""http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-
1.0.xsd""

 xmlns:wsse=""http://docs.oasis-open.org/wss/oasis-wss-wssecurity-secext-1.1.xsd""

wsse:TokenType=""http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.1#S
AMLV2.0"">

 <KeyIdentifier
xmlns=""http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-
1.0.xsd""

ValueType=""http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.1#SAMLID
"">" + samlAssertionId +

 @"</KeyIdentifier></SecurityTokenReference></root>");
 return xmlDocument.DocumentElement;
 }
 }

Connection and Login

The following code fragment performs the following actions:

VMware, Inc. 33

Chapter 4 LoginByToken Example (.NET)

 Calls the LoginByTokenSample class method GetSecurityPolicyAssertionForHokToken (see
“Security Policies” on page 31) and adds the security policy to the VimService object.

The VimService object contains the following data:

 vCenter server URL.

 SAML token (stored in the security policy assertion).

 X509 certificate (stored in the security policy assertion).

 Calls the RetrieveServiceContent method. The method establishes the connection with the vCenter
Server and provides access to the SessionManager managed object..

 Calls the LoginByToken method. The .NET framework uses the security policy assertion to construct the
login request. The response includes a session cookie.

 Calls the LoginByTokenSample class method resetService to create a new VimService object. The
session cookie is stored in the cookie container in the VimService object.

Example 4-4. Connection and Login

// Construct the security policy assertion
SecurityPolicyAssertion securityPolicyAssertion = null;
securityPolicyAssertion = GetSecurityPolicyAssertionForHokToken(xmlToken);

// Setting up the security policy for the request
Policy policySAML = new Policy();
policySAML.Assertions.Add(securityPolicyAssertion);

// Setting policy of the service
_service.SetPolicy(policySAML);

_sic = _service.RetrieveServiceContent(_svcRef);
if (_sic.sessionManager != null)
{
 _service.LoginByToken(_sic.sessionManager, null);
}
resetService();

The following code fragment shows the resetService method. The method creates a new VimService object
and a new cookie container. The method also adds the session cookie to the cookie container.

Example 4-5. The resetService method

/// Resetting the VimService without the security policies
/// as we need the policy only for the LoginByToken method
/// and not the other method calls. resetService also maintains the
/// authenticated session cookie post LoginByToken.
///
/// This method needs to be called only after successful
/// login
private void resetService()
{
 var _cookie = getCookie();
 _service = new VimService();
 _service.Url = _serverUrl;
 _service.CookieContainer = new CookieContainer();
 if (_cookie != null)
 {
 _service.CookieContainer.Add(_cookie);
 }
}

vCenter Single Sign-On Programming Guide

34 VMware, Inc.

/// Method to save the session cookie
private Cookie getCookie()
{
 if (_service != null)
 {
 var container = _service.CookieContainer;
 if (container != null)
 {
 var _cookies = container.GetCookies(new Uri(_service.Url));
 if (_cookies.Count > 0)
 {
 return _cookies[0];
 }
 }
 }
 return null;
}

VMware, Inc. 35

5

This chapter describes a Java example of acquiring a vCenter Single Sign-On security token.

 “vCenter Single Sign-On Token Request Overview” on page 35

 “Using Handler Methods for SOAP Headers” on page 36

 “Sending a Request for a Security Token” on page 38

vCenter Single Sign-On Token Request Overview
The code examples in the following sections show how to use the Issue method to acquire a holder-of-key
security token. To see an example of using the token to login to a vCenter server, see “LoginByToken Example
(JAX-WS)” on page 41. The code examples in this chapter are based on the following sample file located in the
vCenter Single Sign-On SDK JAX-WS client samples directory:

.../JAXWS/samples/com/vmware/sso/client/samples/AcquireHoKTokenByUserCredentialSample.java

The AcquireHoKTokenByUserCredentialSample program creates a token request and calls the issue
method to send the request to a vCenter Single Sign-On server. The program uses a sample implementation of
Web services message handlers to modify the SOAP security header for the request message.

This example uses the username-password security policy (STSSecPolicy_UserPwd). This policy requires
that the SOAP security header include a timestamp, username and password, and a digital signature and
certificate. The sample message handlers embed these elements in the message.

The example performs the following operations:

1 Create a security token service client object (STSService_Service). This object manages the vCenter
Single Sign-On header handlers and it provides access to the vCenter Single Sign-On client API methods.
This example uses the issue method.

2 Create a vCenter Single Sign-On header handler resolver object (HeaderHandlerResolver). This object
acts as a container for the different handlers.

3 Add the handlers for timestamp, user credentials, certificate, and token extraction to the handler resolver.

4 Add the handler resolver to the security token service.

5 Retrieve the STS port (STS_Service) from the security token service object.

6 Create a security token request.

7 Set the request fields.

8 Set the endpoint in the request context. The endpoint identifies the vCenter Single Sign-On server.

9 Call the issue method, passing the token request.

10 Handle the response from the vCenter Single Sign-On server.

vCenter Single Sign-On
Client Example (JAX-WS) 5

vCenter Single Sign-On Programming Guide

36 VMware, Inc.

Using Handler Methods for SOAP Headers
The VMware vCenter Single Sign-On SDK provides sample code that is an extension of the JAX-WS XML Web
services message handler (javax.xml.ws.handler). The sample code consists of a set of SOAP header
handler methods and a header handler resolver, to which you add the handler methods. The handler methods
insert timestamp, user credential, and message signature data into the SOAP security header for the request.
A handler method extracts the SAML token from the vCenter Single Sign-On server response.

The VMware vCenter Single Sign-On client SOAP header handler files are located in the soaphandlers
directory:

SDK/sso/java/JAXWS/samples/com/vmware/sso/client/soaphandlers

To access the SOAP handler implementation, the example code contains the following import statements:

import com.vmware.sso.client.soaphandlers.HeaderHandlerResolver;
import com.vmware.sso.client.soaphandlers.SSOHeaderHandler;
import com.vmware.sso.client.soaphandlers.SamlTokenExtractionHandler
import com.vmware.sso.client.soaphandlers.TimeStampHandler;
import com.vmware.sso.client.soaphandlers.UserCredentialHandler;
import com.vmware.sso.client.soaphandlers.WsSecurityUserCertificateSignatureHandler;

This example uses the following handler elements:

 HeaderHandlerResolver

 SamlTokenExtractionHandler

 TimestampHandler

 UserCredentialHandler

 WsSecurityUserCertificateSignatureHandler (SSOHeaderHandler)

The following sequence shows the operations and corresponding Java elements for message security.

VMware, Inc. 37

Chapter 5 vCenter Single Sign-On Client Example (JAX-WS)

Example 5-1 creates a handler resolver and adds the handler methods to the handler resolver. After the
handlers have been established, the client creates a token request and calls the Issue method. See “Sending a
Request for a Security Token” on page 38.

Example 5-1. Acquiring a vCenter Single Sign-On Token – Soap Handlers

/*
 * Instantiate the STS Service
 */
STSService_Service stsService = new STSService_Service();

/*
 * Instantiate the HeaderHandlerResolver.
 */
HeaderHandlerResolver headerResolver = new HeaderHandlerResolver();

/*
 * Add handlers to insert a timestamp and username token into the SOAP security header
 * and sign the message.
 *
 * -- Timestamp contains the creation and expiration time for the request
 * -- UsernameToken contains the username/password
 * -- Sign the SOAP message using the combination of private key and user certificate.
 *
 * Add the TimeStampHandler
 */
headerResolver.addHandler(new TimeStampHandler());

/*
 * Add the UserCredentialHandler. arg[1] is the username; arg[2] is the password.
 */
UserCredentialHandler ucHandler = new UserCredentialHandler(args[1],args[2]);
headerResolver.addHandler(ucHandler);

/*
 * Add the message signature handler (WsSecurityUserCertificateSignatureHandler);
 * The client is responsible for supplying the private key and certificate.
 */
SSOHeaderHandler ssoHandler =

new WsSecurityUserCertificateSignatureHandler(privateKey, userCert);
headerResolver.addHandler(ssoHandler);

/*
 * Add the token extraction handler (SamlTokenExtractionHandler).
 */
SamlTokenExtractionHandler sbHandler = new SamlTokenExtractionHandler;
headerResolver.addHandler(sbHandler);

/*
 * Set the handlerResolver for the STSService to the HeaderHandlerResolver created above.
 */
stsService.setHandlerResolver(headerResolver);

IMPORTANT You must perform these steps for message security before retrieving the STS service port. An
example of retrieving the STS service port is shown in “Sending a Request for a Security Token” on page 38.

vCenter Single Sign-On Programming Guide

38 VMware, Inc.

Sending a Request for a Security Token
After setting up the SOAP header handlers, the example creates a token request and calls the issue method.
The following sequence shows the operations and corresponding Java elements.

Example 5-2 shows Java code that performs these operations.

Example 5-2. Acquiring a vCenter Single Sign-On Token – Sending the Request

/*
 * Retrieve the STSServicePort from the STSService_Service object.
 */
STSService stsPort = stsService.getSTSServicePort();

/*
 * Create a token request object.
 */
RequestSecurityTokenType tokenType = new RequestSecurityTokenType();

/*
 * Create a LifetimeType object.
 */
LifetimeType lifetime = new LifetimeType();

/*
 * Derive the token creation date and time.
 * Use a GregorianCalendar to establish the current time,
 * then use a DatatypeFactory to map the time data to XML.
 */

VMware, Inc. 39

Chapter 5 vCenter Single Sign-On Client Example (JAX-WS)

DatatypeFactory dtFactory = DatatypeFactory.newInstance();
GregorianCalendar cal = new GregorianCalendar(TimeZone.getTimeZone("GMT"));
XMLGregorianCalendar xmlCalendar = dtFactory.newXMLGregorianCalendar(cal);
AttributedDateTime created = new AttributedDateTime();
created.setValue(xmlCalendar.toXMLFormat());

/*
 * Specify a time interval for token expiration (specified in milliseconds).
 */
AttributedDateTime expires = new AttributedDateTime();
xmlCalendar.add(dtFactory.newDuration(30 * 60 * 1000));
expires.setValue(xmlCalendar.toXMLFormat());

/*
 * Set the created and expires fields in the lifetime object.
 */
lifetime.setCreated(created);
lifetime.setExpires(expires);

/*
 * Set the token request fields.
 */
tokenType.setTokenType("urn:oasis:names:tc:SAML:2.0:assertion");
tokenType.setRequestType("http://docs.oasis-open.org/ws-sx/ws-trust/200512/Issue");
tokenType.setLifetime(lifetime);
tokenType.setKeyType("http://docs.oasis-open.org/ws-sx/ws-trust/200512/PublicKey");
tokenType.setSignatureAlgorithm("http://www.w3.org/2001/04/xmldsig-more#rsa-sha256");

/*
 * Specify a token that can be renewed.
 */
RenewingType renewing = new RenewingType();
renewing.setAllow(Boolean.TRUE);
renewing.setOK(Boolean.FALSE); // WS-Trust Profile: MUST be set to false
tokenType.setRenewing(renewing);

/* Get the request context and set the endpoint address. */
Map<String, Object> reqContext = ((BindingProvider) stsPort).getRequestContext();
reqContext.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY, args[0]);

/*
 * Use the STS port to invoke the "issue" method to acquire the token
 * from the vCenter Single Sign-On server.
 */
RequestSecurityTokenResponseCollectionType issueResponse = stsPort.issue(tokenType);

/*
 * Handle the response - extract the SAML token from the response. The response type
 * contains the token type (SAML token type urn:oasis:names:tc:SAML:2.0:assertion).
 */
RequestSecurityTokenResponseType rstResponse = issueResponse.getRequestSecurityTokenResponse();
RequestedSecurityTokenType requestedSecurityToken = rstResponse.getRequestedSecurityToken();

/*
 * Extract the SAML token from the RequestedSecurityTokenType object.
 * The generic token type (Element) corresponds to the type required
 * for the SAML token handler that supports the call to LoginByToken.
 */
Element token = requestedSecurityToken.getAny();

vCenter Single Sign-On Programming Guide

40 VMware, Inc.

VMware, Inc. 41

6

This chapter describes a Java example of using the LoginByToken method. A vCenter Server session begins
with the call to the LoginByToken method after receiving the token from the SSO Server.

 “vCenter Server Single Sign-On Session” on page 41

 “Steps to Connect with a vSphere Server” on page 43

vCenter Server Single Sign-On Session
After you obtain a SAML token from the vCenter Single Sign-On server, you can use the vSphere Web Services
API method LoginByToken to establish a single sign-on session with a vCenter Server. See “vCenter Single
Sign-On Client Example (JAX-WS)” on page 35 for an example of obtaining a vCenter Single Sign-On token.

At the beginning of a vCenter Single Sign-On session, your client is responsible for the following tasks:

 Insert the vCenter Single Sign-On token and a timestamp into the SOAP header of the LoginByToken
message.

 Maintain the vCenter Server session cookie. During the login sequence, the server produces an HTTP
session cookie to support the persistent connection. Your client must save this cookie and re-introduce it
at the appropriate times.

 If at a later time your client invokes the LoginByToken method, or other login method, the Server issues
a new session cookie in response. You must have a cookie handler in place to save the cookie for
subsequent requests.

The example program uses these general steps:

1 Call the RetrieveServiceContent method. The method establishes the connection with the vCenter
Server and provides access to the SessionManager managed object.

2 Call the LoginByToken method to authenticate the vCenter session. To send the token to the vCenter
Server, the client uses a handler to embed the token and a time stamp in the SOAP header for the message.
The client uses an HTTP header handler method to extract the cookie from the vCenter Server response.

3 Restore the session cookie for future requests. To identify the session started with the LoginByToken
method, the client uses a handler to embed the session cookie in the HTTP header.

HTTP and SOAP Header Handlers

To use a vCenter Single Sign-On token to login to a vCenter server, the example uses header handlers to
manipulates the HTTP and SOAP header elements of the login request. After establishing a handler,
subsequent requests automatically invoke the handler.

 Insertion handlers put the vCenter Single Sign On token and a timestamp into the SOAP header into the
HTTP header of the login request.

LoginByToken Example (JAX-WS) 6

vCenter Single Sign-On Programming Guide

42 VMware, Inc.

 An extraction handler obtains the HTTP session cookie provided by the vCenter Server. After setting up
the handler, a call to the LoginByToken method will invoke the handler to extract the cookie from the
Server response.

The following figure shows the use of handlers to manipulate header elements when establishing a vCenter
Single Sign On session with a vCenter Server.

Figure 6-1. Starting a vCenter Session

Sample Code

The code examples in the following sections show how to use the LoginByToken method with a holder-of-key
security token. The code examples are based on the sample code contained in the vCenter Single Sign-On SDK.
The files are located in the Java samples directory (SDK/ssoclient/java/JAXWS/samples):

 LoginByToken sample:

samples/com/vmware/vsphere/samples/LoginByTokenSample.java

 Header cookie handlers:

samples/com/vmware/vsphere/soaphandlers/HeaderCookieHandler.java
samples/com/vmware/vsphere/soaphandlers/HeaderCookieExtractionHandler.java

 SOAP header handlers. These are the same handlers that are used in “vCenter Single Sign-On Client
Example (JAX-WS)” on page 35. The SOAP handler files are located in the vCenter Single Sign-On client
soaphandlers directory:

samples/com/vmware/sso/client/soaphandlers

IMPORTANT Every call to the vCenter Server will invoke any message handlers that have been established.
The overhead involved in using the SOAP and HTTP message handlers is not necessary after the session has
been established. The example saves the default message handler before setting up the SOAP and HTTP
handlers. After establishing the session, the example will reset the handler chain and restore the default
handler.

The example code also uses multiple calls to the VimPortType.getVimPort method to manage the request
context. The getVimPort method clears the HTTP request context. After each call to the getVimPort method,
the client resets the request context endpoint address to the vCenter server URL. After the client has obtained
the session cookie, it will restore the cookie in subsequent requests.

VMware, Inc. 43

Chapter 6 LoginByToken Example (JAX-WS)

Steps to Connect with a vSphere Server
For a connection with a vSphere server, use the following steps:

1 Get the VimPort object for access to the vSphere services.

2 Call the RetrieveServiceContent method.

3 Call the LoginByToken method; insert a SAML token into the request header..

4 Extract the session cookie from the response.

5 Use the session cookie to set the request context for future requests.

The following sections describe these steps.

Import the Necessary Packages

Example 6-1 describes the packages that you need to import into your application to use the new
LoginByToken method:

Example 6-1. Import the Packages that Are Needed

package com.vmware.vsphere.samples;
import java.util.Arrays;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import javax.xml.ws.BindingProvider;
import javax.xml.ws.handler.HandlerResolver;
import javax.xml.ws.handler.MessageContext;
import org.w3c.dom.Element;
import com.vmware.sso.client.soaphandlers.HeaderHandlerResolver;
import com.vmware.sso.client.soaphandlers.SamlTokenHandler;
import com.vmware.sso.client.soaphandlers.TimeStampHandler;
import com.vmware.vim25.InvalidLocaleFaultMsg;
import com.vmware.vim25.InvalidLoginFaultMsg;
import com.vmware.vim25.ManagedObjectReference;
import com.vmware.vim25.RuntimeFaultFaultMsg;
import com.vmware.vim25.ServiceContent;
import com.vmware.vim25.VimPortType;
import com.vmware.vim25.VimService;

import com.vmware.vsphere.soaphandlers.HeaderCookieExtractionHandler;

Get the VimPort

Example 6-2 describes getting the VimPort:

Example 6-2. Getting the VimPort

package com.vmware.vsphere.samples;

/**
* Sample program demonstrating the usage of the new loginByToken method,
* introduced to authenticate the client using the SAML token obtained from the
* SSO server.
*
* @author VMware, Inc.
*/
public class LoginByTokenExample {
/**
* This method invokes the loginByToken method for authentication. Once this
* method is called the established session is authenticated and operations
* can be performed on the connected vCenter server
*
* @param token
* {@link Element} representing the SAML token that needs to be
* used for the authentication

vCenter Single Sign-On Programming Guide

44 VMware, Inc.

* @param vcServerUrl
* The vCenter server URL that needs to be connected
* @return String authenticated session cookie used by the connection
* @throws RuntimeFaultFaultMsg
* @throws InvalidLocaleFaultMsg
*/
public static String loginUsingSAMLToken(Element token, String vcServerUrl)
throws RuntimeFaultFaultMsg, InvalidLocaleFaultMsg,
InvalidLoginFaultMsg {
VimService vimService = new VimService();
HandlerResolver defaultHandler = vimService.getHandlerResolver();

// Step 1 Get the VimPort object
vimService = new VimService();
VimPortType vimPort = vimService.getVimPort();

Retrieve the Service Content

Example 6-3 shows the call to retrieveServiceContent.

Example 6-3. Call retrieveServiceContent

// Step 2 Retrieve the service content
Map<String, Object> ctxt = ((BindingProvider) vimPort)
.getRequestContext();
ctxt.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY, vcServerUrl);
ctxt.put(BindingProvider.SESSION_MAINTAIN_PROPERTY, false);
ManagedObjectReference SVC_INST_REF = new ManagedObjectReference();
SVC_INST_REF.setType("ServiceInstance");
SVC_INST_REF.setValue("ServiceInstance");
ServiceContent serviceContent = vimPort.retrieveServiceContent(SVC_INST_REF);

Invoke the loginByToken method

In Example 6-4, you make the loginByToken call.

Example 6-4. Call the loginByToken Method

// Step 3 Invoking the loginByToken method
HeaderHandlerResolver handlerResolver = new HeaderHandlerResolver();
handlerResolver.addHandler(new TimeStampHandler());
handlerResolver.addHandler(new SamlTokenHandler(token));
HeaderCookieExtractionHandler cookieExtractor = new
HeaderCookieExtractionHandler();
handlerResolver.addHandler(cookieExtractor);
vimService.setHandlerResolver(handlerResolver);
vimPort = vimService.getVimPort();
Map<String, Object> ctxt2 = ((BindingProvider) vimPort)
.getRequestContext();
ctxt2.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY, vcServerUrl);
ctxt2.put(BindingProvider.SESSION_MAINTAIN_PROPERTY, true);
vimPort.loginByToken(serviceContent.getSessionManager(), null);

Extract the Session Cookie

After the calling the loginByToken, you extract the session cookie (See Example 6-5)..

Example 6-5. Extract the Session Cookie

// Step 4 Extract the session cookie that is established in the previous
// call to the server.
String cookie = cookieExtractor.getCookie();
// Clear the HandlerResolver chain setup in step 3 as that is
// required only one time for the invocation of the LoginByToken method.
// After login we do not need this handler thus reverting to the
// original (default) handler.
vimService.setHandlerResolver(defaultHandler);
vimPort = vimService.getVimPort();

VMware, Inc. 45

Chapter 6 LoginByToken Example (JAX-WS)

Inject the Session Cookie Back Into the Request

Before making another call to the server, inject the session cookie back into the request as shown in
Example 6-5.

Example 6-6. Inject the Session Cookie Back Into the Request

// Step 5 Inject the session cookie back into the request once before
// making another call to the server. JAXWS will maintain that cookie
// for all subsequent requests.
Map<String, Object> ctxt3 = ((BindingProvider) vimPort)
.getRequestContext();
ctxt3.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY, vcServerUrl);
ctxt3.put(BindingProvider.SESSION_MAINTAIN_PROPERTY, true);
// One time setting of the cookie
@SuppressWarnings("unchecked")
Map<String, List<String>> headers = (Map<String, List<String>>) ctxt3
.get(MessageContext.HTTP_REQUEST_HEADERS);
if (headers == null) {
headers = new HashMap<String, List<String>>();
}
headers.put("Cookie", Arrays.asList(cookie));
ctxt3.put(MessageContext.HTTP_REQUEST_HEADERS, headers);
// Authentication complete. Proceed with rest of the API calls
// that are required for your functionality.
return cookie;
}
}

Additional Information

Please refer to the LoginByTokenSample Java sample source in the vSphere Management SDK for more
information. Also refer to the VMware vSphere API Reference Documentation and the vSphere Web Services SDK
Developer’s Setup Guide.

Not affected by this change are :

1. Existing vSphere 5.x client applications that do not extract the session cookie before login in to vSphere 5.x
servers.

2. Existing vSphere 5.x client applications.

vCenter Single Sign-On Programming Guide

46 VMware, Inc.

VMware, Inc. 47

Index

A
acquiring a token 9

C# example 25

Java example 35

API reference 17

authentication

local user account 7

OpenLDAP 7

SSPI 12

vCenter Single Sign On user account 7

Windows Active Directory 7

B
bearer token 8

C
C#

sample project

acquire token 25

LoginByToken 30

SOAP header methods 9

certificate

file 27

types 10

X509 27, 31

Challenge function

SSPI authentication 12

Challenge method 19

client SDK 13

clock tolerance 12

connecting to a vCenter Single Sign On Server 11

D
data structures

KeyTypeOpenEnum 22

LifetimeType 22

ParticipantsType 23

RenewingType 22

RequestSecurityTokenResponseCollectionTyp
e 21

RequestSecurityTokenResponseType 21

RequestSecurityTokenType 19

UseKeyType 23

delegation, token 12

digital certificate 9

digital signature 9

E
example

acquiring a token (C#) 25

acquiring a token (Java) 35

calling LoginByToken (C#) 29

calling LoginByToken (Java) 41

H
holder-of-key token 8

example 25, 35

HTTP header methods

LoginByToken (Java) 41

I
Issue function

request-response 9

Issue method 17

C# example 25

example 25

Java example 35

J
Java

sample project

acquire token 35

LoginByToken 41

JAX-WS

SDK contents 13

SOAP header methods 9

example 36

SDK location 11

K
KeyTypeOpenEnum 22

L
LifetimeType 22

local user account 7

LoginByToken method 8, 12

C#

example 29

sample project 30

C# example 29

Java example 41

vCenter Single Sign-On Programming Guide

48 VMware, Inc.

M
methods, vCenter Single Sign On

Challenge 19

Issue 17

Renew 18

Validate 18

O
OpenLDAP 7

P
ParticipantsType 23

PFX certificate file 27

policy, security 10

R
Renew method 18

RenewingType 22

RequestSecurityTokenResponseCollectionType 21

RequestSecurityTokenResponseType 21

RequestSecurityTokenType 19

S
SAML token 7

SDK, vCenter Single Sign On 13

security policy 10

Security Token Service (STS) 7

server configuration 8

server connection 11

session cookie 29

single sign on 7

SOAP header methods 9

example 36

LoginByToken (Java) 41

LoginByToken output filter (C#) 31

SDK location 11

SOAP message structure 13

SSPI authentication 12

STSService endpoint 11

T
timestamp 9

token

acquisition 9

bearer 8

delegation 12

holder-of-key 8, 12

holder-of-key example 25, 35

lifetime 12

LoginByToken example (C#) 29

LoginByToken example (Java) 41

SAML 7

U
URL, STSService 11

UseKeyType 23

user accounts 7

V
Validate method 18

vCenter Server session 29, 41

vCenter Single Sign On 7

API reference 17

client methods 9

client SDK 13

server configuration 8

server connection 11

user account 7

W
Windows Active Directory 7

WS-Policy 10

WS-SecurityPolicy 10

WS-Trust 9

X
X509 certificate 27, 31

	vCenter Single Sign-On Programming Guide
	Contents
	About This Book
	Single Sign-On in the vSphere Environment
	vCenter Single Sign-On Overview
	vCenter Single Sign-On Client API
	Acquiring a SAML Token
	vCenter Single Sign-On Security Policies
	Connecting to a vCenter Single Sign-On Server
	Token Delegation
	Token Lifetime - Clock Tolerance
	Challenge (SSPI)

	vCenter Single Sign-On SOAP Message Structure
	vCenter Single Sign-On SDK
	vCenter Single Sign-On SDK Examples

	vCenter Single Sign-On API Reference
	vCenter Single Sign-On Client API Methods
	Issue
	Renew
	Validate
	Challenge

	vCenter Single Sign-On API Data Structures
	RequestSecurityTokenType
	RequestSecurityTokenResponseCollectionType
	RequestSecurityTokenResponseType
	LifetimeType
	RenewingType
	KeyTypeOpenEnum
	UseKeyType
	ParticipantsType
	ParticipantType
	EndpointReference
	BinaryExchangeType
	AdviceType
	AttributeType

	vCenter Single Sign-On Client Example (.NET)
	vCenter Single Sign-On Token Request Overview
	Sample Code

	Sending a Request for a Security Token
	Solution Certificate Support

	LoginByToken Example (.NET)
	vCenter Server Single Sign-On Session
	Persistent vCenter Server Sessions
	Sample Code

	Using LoginByToken
	LoginByTokenSample Constructor
	Token Acquisition
	Security Policies
	Connection and Login

	vCenter Single Sign-On Client Example (JAX-WS)
	vCenter Single Sign-On Token Request Overview
	Using Handler Methods for SOAP Headers
	Sending a Request for a Security Token

	LoginByToken Example (JAX-WS)
	vCenter Server Single Sign-On Session
	HTTP and SOAP Header Handlers
	Sample Code

	Steps to Connect with a vSphere Server
	Import the Necessary Packages
	Get the VimPort
	Retrieve the Service Content
	Invoke the loginByToken method
	Extract the Session Cookie
	Inject the Session Cookie Back Into the Request
	Additional Information

	Index

