vSphere Web Client Extensions
Programming Guide

vSphere 5.5 Update1

This document supports the version of each product listed and
supports all subsequent versions until the documentis replaced
by a new edition. To check for more recent editions of this
document, see http://www.vmware.com/support/pubs.

EN-001398-00

vmware

http://www.vmware.com/support/pubs

vSphere Web Client Extensions Programming Guide

You can find the most up-to-date technical documentation on the VMware Web site at:
http://www.vmware.com/support/

The VMware Web site also provides the latest product updates.

If you have comments about this documentation, submit your feedback to:

docfeedback@vmware.com

Copyright © 2013-2014 VMware, Inc. All rights reserved. Copyright and trademark information

VMware, Inc.

3401 Hillview Ave.
Palo Alto, CA 94304
www.vmware.com

2 VMware, Inc.

http://www.vmware.com/support/
http://www.vmware.com/support
mailto:docfeedback@vmware.com
http://pubs.vmware.com/copyright-trademark.html

Contents

Contents 3
About This Book 7

Introduction to the vSphere Web Client 9
Understanding the vSphere Web Client Architecture 9
User Interface Layer 9
Service Layer 10
Overview of the vSphere Web Client User Interface 10
Object Navigator 11
Main Workspace 13
Administration Application 15
Understanding Extensibility in the vSphere Web Client 15
User Interface Plug-In Modules 16
Adding Java Services 16
Plug-In Modules in a Complete Solution 17
Plug-In Packages 19
Requirements for Developing vSphere Web Client Extension Solutions 19
Flex Run-Time Version Dependencies 19
Naming Convention for vSphere Objects in the vSphere Web Client SDK 20

vSphere Web Client User Interface Layer 21
Understanding the User Interface Layer 21
User Interface Plug-In Modules 21
Creating the Plug-In Module Manifest 22
Types of vSphere Web Client Extensions 24
Adding a Global View 24
Adding Data Views to Virtual Infrastructure Objects 25
Enhancing the Object Navigator 25
Adding Actions 25
Creating a Relation Between vSphere Objects 26
Adding a Home Screen Shortcut 26
Extending Object List Views 26
Defining Extensions 26
Extension Point 26
Extension Object 27
Filtering Metadata 27
Extension Definition XML Schema 27
Filtering Extensions 28
Using Templates to Define Extensions 31

Adding a Global View Extension 33
Use Cases for Creating a Global View Extension 33
Defining a Global View Extension 34
Creating Global View Classes 34
Making a Global View Accessible to Users 34

VMware, Inc.

vSphere Web Client Extensions Programming Guide

Adding to vCenter Object Workspaces 37

Use Cases for Adding to an Object Workspace 37

Adding to an Existing Object Workspace 37
Types of Data Views 38
Defining a Data View Extension 38

Creating an Object Workspace for a Custom Object 39
Using the Object View Template to Create an Object Workspace 39
Creating the Data Views Within the Template 40
Using the Summary Tab Template 40

Creating Data View Classes 41

Architecting Data Views 43

About the MVC Architecture 43

The Frinje Framework MVC in the vSphere Web Client 44
View Components in Frinje 44
Model Components in Frinje 46
Controller Components in Frinje 47
About the Frinje Event-Driven APIs 48
Frinje Metadata Annotations 48

Using the Data Access Manager Library 51
Data Access Manager Workflow 51
Creating the Data Model Class 52
Sending Data Requests and Handling Data Responses 54
Data Refresh and Data Update Specifications 57

Extending the Object Navigator 59
Use Cases for Extending the Object Navigator 59
Global Views 59
Object Collections 60
Defining an Object Navigator Extension 60
Specifying the Object Navigator Page and Category 60
Adding a Category to the Object Navigator 60
Adding a Pointer Node to the Object Navigator 61
Adding an Object Collection Node to the Object Navigator 62
Using a Template to Define an Object Collection Node 63
Adding Custom Icons and Labels to an Object Collection Node 64
Defining an Object Representation Extension 64
Defining an Individual Icon and Label Set 64

Creating Action Extensions 67
Use Cases for Adding an Action Extension 67
About the Actions Framework and Action Sets 67
Action Controllers in Flex Extensions 68
Action Controllers for HTML Extensions 68
Defining an Action Set 68
Defining Individual Actions in an Action Set 68
Defining the <delegate> Object in HTML-Based Action Extensions 69
Example Action Extension Definitions 69
Using callActionsController To Invoke HTML Actions 72
Using Flex Command Classes To Handle Actions 72
Java Actions Controller Classes for HTML Extensions 74
Performing Action Operations on the vSphere Environment 75
Obtaining the Action Target Object 75
Updating the Client with Action Operation Results 75

VMware, Inc.

Contents

Organizing Your Actions in the User Interface 75
Extending an Action Menu 76
Prioritizing Actions in the User Interface 79

Creating a New Relation Between vSphere Objects 83
Use Cases for Adding a Relation Extension 83
Defining a Relation Extension 84
Describing the Relation Using the RelationSpec Object 84

Creating Home Screen Shortcuts 87
Use Cases for Adding a Home Screen Shortcut 87
Creating the Home Screen Shortcut Extension Definition 87

Extending vSphere Object List Views 89
Use Cases for Extending an Object List View 89
Defining an Object List View Extension 89

Extending a vSphere Object List View 90
Adding a List View for a New Object Type 90
Column Visibility 91

vSphere Web Client Service Layer 93

Understanding the vSphere Web Client Data Service 94

Extending the Data Service with a Data Service Adapter 95
Advantages of Providing a Data Service Adapter 95
Designing a Data Service Adapter 95
Property Provider Adapters 96
Data Provider Adapters 97

Creating a Custom Java Service 103
Making Java Services Available to Ul Components in the vSphere Web Client 103
Creating the Java Interface and Classes 103
Packaging and Exposing the Service 103

Importing a Service in a User Interface Plug-In Module 104
Specifying Flex-to-Java Service Parameters 104
Creating a Proxy Class with ActionScript 105

Creating and Deploying Plug-In Packages 107

Overview of Plug-In Packages 107

Creating a Plug-In Package 108
Creating the Package Manifest File 108

Deploying a Plug-In Package 110
Registering a Plug-In Package as a vCenter Server Extension 110
Creating the vCenter Server Extension Data Object 111
Verifying Your Plug-In Package Deployment 112
Unregistering a Plug-In Package 112

List of Extension Points 113

Using Legacy Script Plug-Ins with the vSphere Web Client 117
Enabling Script Plug-In Support in the vSphere Web Client 117
Where Script Plug-In Extensions Appear in the vSphere Web Client 117
Known Issues and Unsupported Features 118

Index 119

VMware, Inc. 5

vSphere Web Client Extensions Programming Guide

6 VMware, Inc.

About This Book

The vSphere Web Client Extensions Programming Guide provides information about developing extensions to the
vSphere Web Client in vSphere 5.5.

VMware provides many APIs and SDKs for different applications and goals. This book provides information
about the vSphere Web Client extensibility framework for developers that are interested in extending the
vSphere Web Client with custom functionality.

Revision History

This book is revised with each release of the product or when necessary. A revised version can contain minor
or major changes. Table 1 summarizes the significant changes in each version of this book.

Table 1. Revision History
Revision Date Description

03MAR2014 vSphere 5.5 Ul release adds HTML extensions.

03DEC2013 Add information about list view extension visibility.
20NOV2013 Correction and clarifications about how to register a plug-in.
19SEP2013 Release of the vSphere Web Client SDK for vSphere 5.5.

New features include:
® Action Sub-Menu Extensions
m Action Prioritization

Intended Audience

This book is intended for anyone who needs to extend the vSphere Web Client with custom functionality in
vSphere 5.5. Users typically include software developers who use Flex or ActionScript to create graphical user
interface components that work with VMware vSphere.

VMware Technical Communications Glossary

VMware Technical Communications provides a glossary of terms that might be unfamiliar to you. For
definitions of terms as they are used in VMware technical documentation go to
http://www.vmware.com/support/pubs.

Document Feedback

VMware welcomes your suggestions for improving our documentation. Send your feedback to
docfeedback@vmware.com.

VMware, Inc. 7

http://www.vmware.com/support/pubs
mailto:docfeedback@vmware.com
mailto:docfeedback@vmware.com

vSphere Web Client Extensions Programming Guide

8 VMware, Inc.

Introduction to the vSphere Web
Client

The VMware VSphere® Web Client is the primary method for system administrators and end users to interact
with the virtual data center environment created by vSphere. vSphere manages a collection of objects that
make up the virtual data center, including hosts, clusters, virtual machines, data storage, and networking
resources.

The vSphere Web Client is a Web browser-based application that you can use to manage, monitor, and
administer the objects that make up your virtualized data center. You can use the vSphere Web Client to
observe and modify the vSphere environment in the following ways.

B Viewing health, status, and performance information on vSphere objects
B [ssuing management and administration commands to vSphere objects
B Creating, configuring, provisioning, or deleting vSphere objects

You can extend vSphere in different ways to create a solution for your unique IT infrastructure. You can extend
the vSphere Web Client with additional GUI features to support these new capabilities, with which you can
manage and monitor your unique vSphere environment.

This chapter includes the following topics:

B “Understanding the vSphere Web Client Architecture” on page 9

B “Overview of the vSphere Web Client User Interface” on page 10

B “Understanding Extensibility in the vSphere Web Client” on page 15

B “Plug-In Packages” on page 19

B “Requirements for Developing vSphere Web Client Extension Solutions” on page 19

B “Naming Convention for vSphere Objects in the vSphere Web Client SDK” on page 20

Understanding the vSphere Web Client Architecture

The vSphere Web Client architecture consists of a user interface layer and a service layer. Both layers reside on
a Web application server, called the Virgo server. Each layer has a role in communicating with the vSphere
environment, retrieving data, and presenting that data to the user’s Web browser.

User Interface Layer

The user interface layer consists of an Adobe Flex application that is displayed in the user’s Web browser. The
Flex application contains all of the user interface elements with which the user interacts, such as menus,
navigation elements, data portlets, and commands. The user can navigate through the various Flex elements
in the user interface layer to view data on vSphere objects, send commands, and make changes to the vSphere
environment.

VMware, Inc. 9

vSphere Web Client Extensions Programming Guide

The exact configuration of the elements in the user interface layer depends on the unique properties of the
vSphere environment and other factors such as the level of privileges each user has.

Service Layer

The service layer is a collection of Java services that run in a framework on the vSphere Web Client application
server, called the Virgo server. These Java services communicate with vCenter Server and other parts of the
vSphere environment, as well as other remote data sources. The Java services gather monitoring data on the
virtual infrastructure, which is in turn displayed to the user by the Flex user interface layer. When the user
performs an action from the Flex user interface, such as a management or administration command, the Java
services perform that command on the virtual infrastructure.

The vSphere Web Client application server contains a Spring framework that manages communication
between the user interface layer and the service layer.

Figure 1-1. vSphere Web Client Architecture

End User
(Browser)

A
Y h
vSphere Client
Application Server Ul Plug-in (Flex)
A
Spring/Blaze

DS integration

Y

Service Plug-in (Java)

\. A J
Y

vSphere Environment
(vCenter Server, ESX/ESXi)

Overview of the vSphere Web Client User Interface

The user interface layer of the vSphere Web Client contains all of the Flex objects, such as data views, toolbars,
and navigation interfaces, that make up the vSphere Web Client graphical user interface.

10 VMware, Inc.

Chapter 1 Introduction to the vSphere Web Client

The major parts of the vSphere Web Client user interface are the object navigator, the main workspace, and the
tasks and alarms panel.

Mavigator Main Works

Object Navigator

The object navigator is the user’s primary means of browsing the virtual infrastructure and accessing other

=

ac

m

Tasks
and
Alarms
Panel

s Tonim v orw Tunin

& pwec-dn-danild
gl e ey
FEET 1
[frvirs Lo oo cink.
L RERRLERE
Ve HA B L
W ok i 1
L G el e
W antiascn O
DR L o4 O
ol enivaicnd 3y
orarms Lm g £ o

solutions and data views in the vSphere Web Client. The user’s selections in the object navigator drive the

content of the vSphere Web Client main workspace.

VMware, Inc.

8

1"

vSphere Web Client Extensions Programming Guide

12

Object Navigator Top Level

The top level of the object navigator contains links to the major features and solutions in the vSphere Web
Client, including the vCenter, Rules and Profiles, and Administration applications. You can extend the object

navigator top level with links to new solutions that you create, such as Global Views.

wCenter X
fa} Home
il vCenter >
7 Rules and Profiles b3
wCenter Orchestrator >
&% Administration >
[z] Tasks
[i= Log Browset
"1y Events
<7 Tags
), Mew Search >
[Saved Searches >

Object Navigator When Browsing the Virtual Infrastructure

When the user browses the virtual infrastructure, the object navigator is the user’s primary means of
interacting with the vSphere objects in the data center. In the object navigator vCenter level, vSphere objects
are organized into inventory trees and inventory lists. Users can browse and search the objects in the
inventories using the object navigator. When the user selects an object in the object navigator, information

about that object appears in the main workspace.

VMware, Inc.

Chapter 1 Introduction to the vSphere Web Client

When you extend the vSphere Web Client to support custom object types, you must extend the object
navigator vCenter level with new inventory lists or custom object lists. You can also add links to other

solutions to the vCenter level.

=

Hame

vCenter
=] wCenter Home

* Iventory Trees

[J Hosts and Clusters
&) ¥Ms and Templates

£l starage
€2 Metworking

* Imventory Lists
A wCenter Servers
Datacenters
g Hosts
0 clusters
51 Fesource Pools
B Datastares
B9 Datastore Clusters
€3 sStandard Metworks

o Distributed Switches
Distributed Port Groups

E4 Uplink Port Groups
5 Virtual Machines
A6 wAppS

L vm Templates

Main Workspace

WeOOW WY

LA A L L . L L

The main workspace is where the vSphere Web Client displays the home screen, solutions and applications,
and information about the virtual infrastructure. The main workspace is the center of the vSphere Web Client
graphical user interface and contains data views, navigation elements such as tabs and toolbars or context

menus for user actions.

VMware, Inc.

vSphere Web Client Extensions Programming Guide

14

Home Screen

The home screen is the initial view shown in the main workspace when the user logs in to the vSphere Web
Client. The home screen contains icon shortcuts to different solutions and inventories in the virtual
infrastructure. You can extend the home screen by adding additional shortcuts.

Browsing the Virtual Infrastructure

When the user browses the virtual infrastructure using the object navigator, the main workspace displays an
object workspace. An object workspace presents information about the selected vSphere object in a hierarchy
of nested Flex data views, which are displayed as top-level tabbed screens. Any given vSphere object has
associated Getting Started, Summary, Monitor, Manage, and Related Objects top-level tab screens. Some of
these tabs contain second-level tabs and views within the tabs.

w 0 _On HE ALl - _

alng Slared Susmasy Wit | Honage | RElEEd Qb
Balinge | Mostrkang Tieage Al wiimboss | Tag ST ER S el

- ESH Servor Licensa & Aspips Lcmse Ky
w Virliidl Mt

Dot aui Vi Conpatiziiny

Vi SEarfup SR o

fipent VR Sesngs

Seap Sle ncalion

Riboancid Syt Sellings
Syl Fassiice Alncalien
i By P ol
w Harthar e
SEONS
Yemory
Hpewer Ranasgemenl

Some of the nested data views are contextual. For example, the Monitor tab always contains a second-level
Issues tab, and might contain a second-level Events tab if any events are present for the selected object.

You can extend the object workspace for any given vSphere object type by adding second-level tabs or views
to the existing hierarchy. The object workspace for each vSphere object contains these top-level tabs:

B Getting Started
B Summary

B Monitor

B Manage

® Related Objects

Getting Started Tab

The Getting Started tab shows a basic description of the vSphere object and some contextual information on
how the object operates within the vSphere environment. The Getting Started tab might also provide links to
common tasks for that object.

The Getting Started tab might not appear or might be disabled for a vSphere object.

Summary Tab

The Summary tab shows basic, high-level information about the selected object. The Summary tab might also
show portlets with additional specific information about the object’s features. The Summary tab quickly and
clearly gives the user enough information to identify the specific object they have selected, and to see that
object’s role in the virtual infrastructure.

VMware, Inc.

Chapter 1 Introduction to the vSphere Web Client

Monitor Tab

The Monitor tab shows current and historical information about how the selected object is performing. The
Monitor tab shows alerts, issues, and other signals from the vSphere environment to which the user might
respond. The Monitor tab generally contains data views that show information about the object’s health,
performance statistics, and event logs, and any issues and alarms that were raised.

Manage Tab

The Manage tab displays settings and tasks that determine how the selected object behaves. Using the Manage
tab, users can perform operations on a vSphere object, such as provisioning or maintenance. Users can also
change object settings and issue management commands from the Manage tab.

Related Objects Tab

The Related Objects tab shows lists of vSphere objects related to the currently selected object. For example, a
Cluster object’s Related Objects tab can contain a list of the Host objects in the cluster, as well as the related
virtual machines, storage pods, networks, and other resources. Users can select a related object directly from
the Related Objects tab, and view the workspace for that related object.

Global Views

The main workspace can display global views. A global view is a data view that is not a part of an object
workspace for any vSphere object type. A global view is a free-form data view and need not follow a tab
hierarchy as an object workspace does.

You can extend the vSphere Web Client with your own global views. Your global views can collect or
summarize information from many different sources in the vSphere environment to create a dashboard or
quick access screen, or to display information from outside the vSphere environment.

Workspaces for Custom Objects

If you add a custom object type to the vSphere environment, you can extend the main workspace to display
an object workspace for that custom object. The vSphere Web Client SDK contains templates to help you create
the standard object workspace tabs, such as Getting Started, Summary, Monitor, Manage, and Related
Objects.

Administration Application

The Administration application allows users to change administrative settings and preferences for each
service in the vSphere environment, as well as for the vSphere Web Client itself.

When the user selects the Administration application, the object navigator displays different categories of
services such as Access, Licensing, Sign-On and Discovery, and Solutions. Information about specific services
appears in the main workspace. The vSphere Web Client and additional plug-in modules appear as a service
in the Administration navigation interface.

Understanding Extensibility in the vSphere Web Client

You extend the vSphere Web Client by creating plug-in modules. Each plug-in module extends either the user
interface layer or the service layer of the vSphere Web Client. The user interface plug-in modules and service
plug-in modules together form a complete solution to add new capabilities to the vSphere Web Client
graphical user interface.

In general, you extend the vSphere Web Client for one of the following reasons.

B You extended the vSphere environment in some way. You can extend vSphere by adding a new type of
object to the environment, or by adding more data to an existing object. If you extend vSphere in this way,
you can extend the vSphere Web Client with new user interface elements that allow users to observe,
monitor, and control these new objects.

VMware, Inc. 15

vSphere Web Client Extensions Programming Guide

16

B You want to view existing vSphere data in a different way. You can extend the vSphere Web Client
without having added new objects or data to the vSphere environment. For example, you might want to
collect existing vSphere data on a single screen or location in the user interface. Shortcuts, global views,
and object navigator inventory lists are examples of extensions that you can use for these purposes. You
can also create a new second-level tab, portlet, or other data view that displays existing vSphere data, such
as performance data, as a custom graph or chart.

Extending the vSphere Web Client can involve creating both user interface plug-in modules and service
plug-in modules.

User Interface Plug-In Modules

A user interface plug-in module adds one or more extensions to the vSphere Web Client user interface layer.
Extensions to the user interface layer can include new data views, either in the virtual infrastructure or as
global views. When you create a data view extension, you must also create the actual GUI objects in Adobe
Flex or in HTML and package them in the plug-in module. These GUI objects rely on data from the vSphere
Web Client service layer. You can use the libraries included with the vSphere Web Client SDK to enable
communication between your GUI objects and the service layer.

Other user interface extensions can include new workspaces for custom objects, shortcuts added to the object
navigator or home screen, new relations between vSphere objects, and new actions associated with vSphere
objects.

For a complete discussion of the types of extensions you can add to the vSphere Web Client user interface, see
Chapter 2, “vSphere Web Client User Interface Layer,” on page 21.

Adding Java Services

You can add new Java services to the vSphere Web Client service layer. The Java services you add can perform
any of the functions of a typical Java Web service. In general, however, Java services you add to the vSphere
Web Client service layer are used to retrieve data from the vSphere environment for display in the user
interface layer, or to make changes to the vSphere environment in response to actions in the user interface
layer.

Getting Data from the vSphere Environment

Service plug-in modules that gather data from the vSphere environment usually extend the native services on
the vSphere Web Client application server, such as the Data Service. You can create standalone custom Java
services for data gathering, but a best practice is to extend the built-in services in the vSphere Web Client SDK.
Extensions to the built-in services in the vSphere Web Client SDK are often simple wrappers around existing
Java services that you create.

In general, you must extend the vSphere Web Client Data Service if your extension solution meets any of the
following criteria.

B Your extension provides new data about existing vSphere objects. If your extension provides a GUI
element to display data that the vSphere Web Client services do not already provide, you must extend the
Data Service to provide this data.

B You want to add a new type of object to the vSphere environment. If you are adding a new type of object
to the vSphere environment, you can extend the Data Service to provide data for objects of the new type.

The service extensions you create can access data from any source, either inside or outside of the vSphere
environment. For example, you can create an extension to the Data Service that retrieves data from an external
Web server, rather than from vCenter Server.

Making Changes to the vSphere Environment

Service plug-in modules that make changes to the vSphere environment are standalone Java services that you
create. These services are used when the user starts an action in the vSphere Web Client user interface. If you
create an action extension, you must also create the Java service that performs the action operation on the
vSphere environment as a service plug-in module.

VMware, Inc.

Chapter 1 Introduction to the vSphere Web Client
Figure 1-2. Web Client Extensions Service Architecture

VMware plugins || Partner plugin (Flex) @ Partner plugin (Html)

Html views invoked by bridge.
Javascript callbacks available.

Web
Client Ul Flex Platform Himl
» Data Access API

» Extension points Bndge REST apis to get/post
data with Virgo server

secure AMF channel HTTPS Ajax
Spring MVC controllers

Java controllers dispatch REST calls to Java

Java Platform services
Virgo e Java services Data level integration is
Server independent of the Ul technology
VWC adapters Data adapters
s . VWC platform
vSphere Web Service SDK Any remote APl %

. VMware

. Partners

Back-end Server

Plug-In Modules in a Complete Solution

The plug-in modules you must create for your solution depend on the features your solution provides for the
user. Most extension solutions include at least one user interface plug-in module, to add a new feature to the
vSphere Web Client user interface. Depending on what types of extensions your user interface plug-in module
contains, you might also need to add a service to the service layer to support your user interface extensions.

Some common extension solutions for the vSphere Web Client are:

m Global views

B Adding data views to existing virtual infrastructure object workspaces
B Adding actions to existing vSphere objects

B Adding a Custom Object Type to the vSphere Environment

Global Views

A global view is a custom data view that appears in the vSphere Web Client main workspace. You can use a
global view to display any data from inside or outside the vSphere environment. Typical uses for global views
include dashboard applications that display information on vSphere objects, or complex monitoring or
management applications that are separate from the virtual infrastructure.

To add a global view to the vSphere Web Client, you must create a user interface plug-in module that contains
the following extensions.

B A global view extension. The global view extension specifies the objects that appear in the main
workspace when the user selects the global view.

B Anextension to the object navigator or home screen. This extension serves as the link or shortcut through
which the user can access the global view.

If your global view requires data from the vSphere environment that the vSphere Web Client Data Service does
not already provide, you must also create a Data Service Adapter to extend the Data Service.

VMware, Inc. 17

vSphere Web Client Extensions Programming Guide

18

Adding Data Views to Existing Virtual Infrastructure Object Workspaces

You can add data view extensions to the object workspace for any existing object in the vSphere Web Client.
The vSphere Web Client provides extension points to let you add custom elements to the existing Getting
Started, Summary, Monitor, Manage, and Related Objects tabs for each type of vSphere object, such as a host,
virtual machine, or cluster. These data view extensions are displayed as second-level tabs or tab views in the
object workspace hierarchy.

To add a data view to an existing object workspace for a vSphere object, you must create a user interface
plug-in module that contains a data view extension. The data view extension specifies the visual component
that appears in the main workspace in the object workspace hierarchy.

If your data view extension requires data from the vSphere environment that the vSphere Web Client Data
Service does not already provide, you must also create a Data Service Adapter to extend the Data Service.

Adding Actions to Existing vSphere Objects

You can create actions associated with existing vSphere objects, such as hosts, clusters, or virtual machines.
When you create an action extension, your actions are added to the vSphere Web Client Actions Framework.
The Actions Framework displays the available actions for a given object to the user with toolbars and context
menus in the vSphere Web Client main workspace.

To add an action to an existing vSphere object, you must create a user interface plug-in module that contains
an action extension. The action extension specifies the details of the action, including when the action is
available and how the action is handled.

You must also add a Java service to the vSphere Web Client service layer. The service layer code that handles
the action execution must import the new Java service. The Java service is responsible for performing the
action operation on the vSphere environment.

Adding a Custom Object Type to the vSphere Environment

You can add new object types to the vSphere environment, and extend the vSphere Web Client to display
information about the new objects. The vSphere Web Client SDK includes templates that you can use to create
the standard object workspace, including the Getting Started, Summary, Monitor, Manage, and Related
Objects tabs, for your custom object type.

To add support for a custom object type to the vSphere Web Client, you must create a user interface plug-in
module that contains the following extensions.

B A templated object workspace extension. The object workspace extension creates the standard tab
hierarchy for the new custom object, including the Getting Started, Summary, Monitor, Manage, and
Related Objects tabs.

B A data view extension for each tab in your object workspace.
B An action extension for each action associated with the new object type.

B Anobject navigator extension that adds a new Inventory List. The Inventory List is a shortcut in the object
navigator virtual infrastructure level. The shortcut represents an aggregation of all of the instances of your
object type in the vSphere environment.

B ARelated Objects extension that describes the relationship between your custom object and other vSphere
objects in the virtual infrastructure.

In addition, you must create the following service plug-in modules for your custom object.

B A Data Service Adapter to extend the vSphere Web Client Data Service. The Data Service Adapter gives
the Data Service the capability to retrieve information about the new object type.

B AJavaservice for any actions associated with your new object type. The Java service performs the action
operations on your custom objects in the vSphere environment.

VMware, Inc.

Chapter 1 Introduction to the vSphere Web Client

Plug-In Packages

The plug-in modules you create for your extension solution, for the user interface layer and the service layer,
are deployed to vSphere in plug-in packages. A plug-in package bundles together one or more plug-in
modules. Each plug-in package represents a complete solution for the vSphere Web Client. The package
contains at least one user interface plug-in module, that adds new elements to the vSphere Web Client user
interface, and might contain one or more Java services that are required to provide the new elements with data.

You deploy plug-in packages to a vCenter server by registering with the server’s ExtensionManager APL
When the vSphere Web Client connects to a vCenter server, the vSphere Web Client downloads and deploys
any plug-in packages that are currently registered with the vCenter server.

Requirements for Developing vSphere Web Client Extension Solutions

To create plug-in modules for the vSphere Web Client, your development environment must include the
following items.

B A development environment capable of developing Web applications using ActionScript and MXML or
Javascript. A best practice is to use the Spring Tools Suite and the FlexBuilder plug-in for the Eclipse IDE.
The vSphere Web Client SDK includes tools and plug-ins for the Spring Tools Suite to aid you in creating
vSphere Web Client plug-in modules.

B A text editor for creating XML files. While you can use any text editor to create the required XML, a best
practice is to use an XML editor such as Altova XML Spy to ensure that you create well-formed XML files.

B A development environment capable of developing Java-based Web applications. A best practice is to use
the Spring Tools Suite. The vSphere Web Client contains tools and plug-ins for the Spring Tools Suite to
aid you in creating services compatible with the vSphere Web Client Virgo server framework.

B Abuild of the vSphere Web Client on a Web server, running the vSphere Web Client Virgo server
framework.

B A vCenter Server or vCenter Server Virtual Appliance, to which the vSphere Web Client can connect.

NOTE You can build out the virtualization stack you need to run vCenter Server and the Virgo server using
virtual machines, instead of providing dedicated hardware.

Flex Run-Time Version Dependencies

To achieve a richer user interface, the vSphere Web Client uses both Flex 3 (halo) and Flex 4 (spark) themes.
These dependencies are managed implicitly when you build your plug-in using the Eclipse IDE with the
FlexBuilder plug-in.

If you use Maven or other tools to build your plug-in, you must specify the dependencies on the halo and
spark component libraries. Even if your plug-in does not use halo components directly, parts of the VMware
framework do use halo components. If you omit a dependency, your project might compile but not render the
UI correctly at run time.

The flexmojos build artifact for Maven establishes a dependency for the spark component library, but not
for the halo component library. You must add an explicit halo dependency to the build.

To specify the halo dependency using Maven, add the following lines to your ui/pom.xml file:

<dependency>
<groupId>com.adobe. flex.framework</groupId>
<artifactId>halo</artifactId>
<version>${flex.sdk.version}</version>
<type>swc</type>
<classifier>theme</classifier>
<scope>theme</scope>

</dependency>

If you have a different build tool, use appropriate means to configure a halo dependency or build action.

VMware, Inc. 19

vSphere Web Client Extensions Programming Guide

Naming Convention for vSphere Objects in the vSphere Web Client

SDK

20

The vSphere Web Client user interface uses user-friendly names for the default types of vSphere-managed
objects. However, the service APIs, extension points, and libraries in the vSphere Web Client SDK refer to
vSphere objects using the naming convention established by the vSphere API. Table 1-1 contains a mapping of
names in the vSphere Web Client user interface to the object type names used in the vSphere Web Client SDK.

Table 1-1. vSphere Entity Names in the Ul and SDK Code
vSphere Entity Name in Web Client User Interface Entity Name in SDK Code

Cluster ClusterComputeResource
Datacenter Datacenter

Datastore Datastore

Distributed Port Group DistributedVirtualPortgroup
Distributed Switch DistributedVirtualSwitch
Folder Folder

Host HostSystem

Standard Network Network

Resource Pool ResourcePool

Storage Pod StoragePod

vApp VirtualApp

Virtual Machine VirtualMachine

VMware, Inc.

vSphere Web Client User Interface
Layer

The user interface layer represents the front end of the vSphere Web Client, and contains the GUI elements that
users view and click. The user interface is based on a modular Flex application, hosted on the vSphere Web
Client application server, that runs in the user’s Web browser. The user interface layer contains every visual
component of the application, including data views, portlets, and navigation controls.

You can add new features or elements to the Flex application by creating user interface plug-in modules. A
user interface plug-in module contains one or more extensions, which add Flex or HTML GUI elements to the
vSphere Web Client user interface.

This chapter contains the following topics:

B “Understanding the User Interface Layer” on page 21
B “User Interface Plug-In Modules” on page 21

B “Types of vSphere Web Client Extensions” on page 24
B “Defining Extensions” on page 26

B “Using Templates to Define Extensions” on page 31

Understanding the User Interface Layer

The user interface layer consists of a Flex application, called the container application, that serves as a
framework for a set of modular GUI elements. The container application supplies the structural components
of the vSphere Web Client user interface, such as major navigation controls, window frames, and menus. The
container application manages and renders each of the GUI elements that it contains. Together, the collected
GUI elements and the container application make up the vSphere Web Client user interface.

Each GUI element inside the container application is a self-contained object that communicates directly with
the vSphere environment. Each element can retrieve data for display, or send commands or make changes to
the virtual infrastructure. Each GUI element implements a version of the MVC architecture to manage
communication with the vSphere environment.

The container application uses a metadata framework to determine where to place each GUI element in the
interface, and how that element looks. Each GUI element has a metadata definition that you create using an
XML schema that is defined in the vSphere Web Client SDK. The container application uses the values in the
metadata definition to render the element at the appropriate place in the interface.

User Interface Plug-In Modules

A user interface plug-in module is a standard Web Application ARchive (WAR) bundle. The WAR bundle
contains all of the resources and classes required for each GUI element the module adds to the vSphere Web
Client interface. In a user interface plug-in module, the GUI elements you add to the interface are called
extensions.

VMware, Inc. 21

vSphere Web Client Extensions Programming Guide

In the SWF file that contains the Flex classes that make up the UI components of the plug-in module
extensions, the main class must be an MXML class that extends the mx.modules.Module class.

In the root folder of the WAR bundle, you must create a manifest file called plugin.xml. The plugin.xml
manifest file uses metadata to define the plug-in module’s extensions and resources.

Creating the Plug-In Module Manifest

The plug-in module manifest file, plugin.xml, is a metadata file that the vSphere Web Client container
application uses to integrate the extensions in the plug-in module with the rest of the interface. The
plugin.xml file fulfills the following functions.

B The manifest defines each individual extension in the user interface plug-in module.

B The manifest specifies the SWF file containing the Flex or ActionScript classes you have created for the
module extensions.

B If the user interface plug-in module contains an interface element defined in HTML, the manifest specifies
the HTML file.

B The manifest specifies the location of any included runtime resources in the module, such as localization
data.

m If the user interface plug-in module hosts any extension points, the manifest declares those extension
points.

XML Elements in the Manifest File

The metadata in the manifest file follows a specific XML schema. The major XML elements of a user interface
plug-in module manifest include the <plugin> element, the <resources> element, and one or more
<extension> elements. The vSphere Web Client SDK contains several examples of user interface plug-in
modules with complete plugin.xml manifest files.

<plugin> Element

The <plugin> element is the root element of any plug-in module manifest file. All other elements are
contained within the <plugin> element. The attributes of the <plugin> element contain information about
the entire plug-in module.

B id. The unique identifier that you choose for the plug-in module.

B moduleUri. A Uniform Resource Identifier (URI) for the SWF file in the plug-in module. The SWF file
contains the Flex or ActionScript classes used by the extensions in the plug-in module. The URI should be
specified relative to the root directory of the plug-in module WAR bundle.

B securityPolicyUri. A URI for a standard cross-domain security policy file. This optional element is used
when the plug-in module is hosted remotely and the domain of the plug-in module URL is different from
the domain vSphere Web Client application server. For more information on specifying a cross-domain
security policy file, go to http://www.adobe.com/devnet/articles/crossdomain_policy_file_spec.html.

B defaultBundle. The name of the default resource bundle for the plug-in module. The bundle name must

be unique to your plug-in module to avoid name clashing issues with other plug-in modules. Resources,
such as localization data and icons, can be dynamically loaded at runtime. See “Specifying Dynamic
Resources” on page 23.

The following XML fragment shows how the <plugin> element might appear in the plug-in module manifest
file.

<plugin id="com.acme.sampleplugin”
moduleUri="SampleModule.swf" defaultBundle="com_acme_sampleplugin">

<!—— additional plugin data ——>

</plugin>

22 VMware, Inc.

Chapter 2 vSphere Web Client User Interface Layer

<resources> Element

The <resources> element is used to specify the location of the plug-in module’s runtime resources, such as
localization data. In general, resources are bundled in separate SWF files from the SWF file that contains the
plug-in module Flex classes.

The vSphere Web Client supports the same set of locales as vCenter Server. The default locale is the locale set
by the user’s Web browser. If the user’s Web browser is not set to a locale that the vSphere Web Client supports,
the vSphere Web Client defaults to the English (United States) locale.

A best practice is to set the locale attribute in the <resource> element to the value {locale}, rather than
hard-coding a specific locale, in your plugin.xml manifest. Using the {1ocale} value instructs the vSphere
Web Client to use the locale that the user’s Web browser specifies at runtime.

For the vSphere Web Client to properly import the resource locale at runtime, resource bundles for all
supported locales must be included in the plug-in module. Currently supported locales include English
(United States) (en_US), French (fr_FR), German (de_DE), Japanese (ja_JP), Korean (ko_KR), and Mandarin
Chinese (zh_CN) locales. For testing purposes, you can make copies of the default locale for any languages for
which you do not have resources available. The sample plug-in modules included with the vSphere Web
Client SDK demonstrate this method.

The following XML fragment shows how the <resources> element might appear in the plug-in module
manifest file.

<resources>
<resource locale={locale}>
<module uri="locales/sample-plugin-{locale}.swf"/>
</resource>
</resources>

In the preceding example, the {locale} placeholder corresponds to a particular locale, such as en_US for
English. Your plug-in module must contain a separate .SWF resource bundle for each of the supported locales,
using the relative path in the preceding example.

Specifying Dynamic Resources

Your extension definitions can use the dynamic resource loader to load resources or localization data at
runtime. When you have specified a <resources> bundle in the manifest file, the <extension> elements in
the manifest file can specify that bundle by reference. Resource specifications in the <extension> elements
should use the expression #{bundle:key} when specifying resources, where bundle indicates the name of
the resource bundle, and key indicates the resource to use.

For example, in an <extension> elementin the plugin.xml file, you can specify an icon resource to be loaded
dynamically at runtime by using the following expression.

<icon>#{MyResourceBundle:MyIconImage}</icon>

Specifying a dynamic resources allows you to avoid using a static value for the icon resource. The bundle
name must specify a resource bundle that you made available in the <resources> element of plugin.xml.

You can also omit the bundle name from a resource expression:
<icon>#{MyIconImage}</icon>

Omitting the bundle name causes the vSphere Web Client to use the bundle name that the defaultBundle
attribute in the <plugin> element specifies.

<extension> Element

The plug-in module manifest file must define each extension that the plug-in module adds to the vSphere Web
Client. Each extension is defined using the <extension> element. The <extension> element contains
information about each feature, and its exact composition varies depending on the kind of user interface
element your plug-in module is adding. See “Defining Extensions” on page 26.

VMware, Inc. 23

vSphere Web Client Extensions Programming Guide

Extensions Ordering

You can use the <precedingExtension> element to specify the order in which the vSphere Web Client
renders the extensions in your plug-in module.

Within each <extension> element, you can specify a <precedingExtension> element that contains the ID
of another extension that is to be rendered before the current extension. Setting the value of
<precedingExtension> to NULL causes that extension to be rendered first.

If no <precedingExtension> value is specified, the extensions are rendered in the order they appear in the
plugin.xml module manifest file. If multiple extensions specify the same value for <precedingExtension>,
they are rendered after that specified extension in the order in which they appear in the manifest.

The following XML fragment shows how the <precedingExtension> element might appear in the extension
definitions in the plug-in module manifest file.

<extension id = "com.MyPluginPackage.MyPlugin.PerformanceView">
<extendedPoint>vsphere.core.vm.views</extendedPoint>
<precedingExtension>NULL</precedingExtension>
...(extension data)...

</extension>

<extension id = "UtilityView">
<extendedPoint>vsphere.core.vm.views</extendedPoint>
<precedingExtension>PerformanceView</precedingExtension>
...(extension data)...

</extension>

The <precedingExtension> elements in the example ensures that the PerformanceView extension is
rendered first, followed by the UtilityView extension.

Types of vSphere Web Client Extensions

24

You can create several types of extensions to the vSphere Web Client user interface. Each type of extension has
different requirements for its metadata definition, and some extensions can require you to provide visual
components to serve as new GUI elements.

To build a complete extension solution for the vSphere Web Client, you might need to include multiple types
of extensions in your user interface plug-in module. For a more complete discussion of the individual
extensions required for common solutions, see “Plug-In Modules in a Complete Solution” on page 17.

You can create these types of extensions to the vSphere Web Client user interface:
® Global view extension

® New data views

B Object navigator extensions

B Action extensions

m Relation extensions

B Home screen shortcuts

B Object list view extensions

Adding a Global View

A global view extension is a free-form, general-purpose data view that appears in the vSphere Web Client
main workspace. Unlike the object workspaces for objects in the virtual infrastructure, a global view extension
does not need to follow any particular tab structure. The structure of your global view can be simple or
complex, depending on how you create the components for the extension. For more information on creating
components for data view extensions, see Chapter 5, “Architecting Data Views,” on page 43.

VMware, Inc.

Chapter 2 vSphere Web Client User Interface Layer

Users can access global views through pointers in either the object navigator or the home screen. For users to
access your global view extension, you must also create extensions that add a pointer to the object navigator,
home screen, or both.

See Chapter 3, “Adding a Global View Extension,” on page 33.

Adding Data Views to Virtual Infrastructure Objects

When the user selects a vSphere object in the object navigator, that object’s workspace appears in the vSphere
Web Client main workspace. Each object workspace contains a hierarchy of nested data views in a series of
top-level tabs and second-level tabs. See “Browsing the Virtual Infrastructure” on page 14.

You can add new data views to the tabs in any object workspace. The vSphere Web Client provides extension
points for specific locations in each object workspace. For more information on extension points, see “Defining
Extensions” on page 26.

When you create a data view extension for an object workspace, you must also provide the Flex and HTML
classes that appear as the new GUI element in the interface. As a best practice, create these classes by using the
same architecture, libraries, and services as the existing data views in the vSphere Web Client. See Chapter 5,
“Architecting Data Views,” on page 43.

You can also add entirely new object workspaces, with the default structure and tab screens, to the interface.
In general you create object workspace extensions to support new object types that you add to the vSphere
environment.

See Chapter 4, “Adding to vCenter Object Workspaces,” on page 37.

Enhancing the Object Navigator

The object navigator is the main navigation interface in the vSphere Web Client. The object navigator control
always appears on the left side of the vSphere Web Client screen.

The object navigator control’s top level contains pointers to the major solutions and applications in the vSphere
Web Client, such as the vCenter browser and the Administration application. You can extend the top level of
the object navigator with a pointer to your own solution or global view.

The user browses the virtual infrastructure by using the object navigator vCenter page. The vCenter page
shows the objects in the vSphere environment in inventory trees and inventory lists. You can extend this level
of the object navigator with a new inventory list. In general, you add a new inventory list to represent a new
or custom type of object in the environment. You can also create your own categories of lists in the object
navigator vCenter page.

You create most object navigator extensions by defining the extensions using metadata, in the plugin.xml
manifest file. Most object navigator extensions do not require that you create new visual components.

See Chapter 6, “Extending the Object Navigator,” on page 59.

Adding Actions

Actions represent the commands and requests that the users can send to make changes to the virtual
infrastructure in the vSphere environment. All actions in the vSphere Web Client are governed by the Actions
Framework. The Actions Framework determines which actions appear in the vSphere Web Client user
interface, in toolbars and context menus. You can add actions to the vSphere Web Client by creating an
extension to the Actions Framework.

When you create an action extension, you must also provide the ActionScript classes that are called when the
user performs the action. You must also extend the vSphere Web Client service layer with a Java service. The
Java service performs the action operation in the vSphere environment.

See Chapter 7, “Creating Action Extensions,” on page 67.

VMware, Inc. 25

vSphere Web Client Extensions Programming Guide

Creating a Relation Between vSphere Objects

vSphere uses a graph of related objects to model the objects that make up the virtual infrastructure. When the
user selects an object in the GUI, the vSphere Web Client can provide a list of any objects that are related to the
currently selected object. For example, a user can access information about the virtual machines related to a
given host object. These lists appear in the object navigator control and in the Related Objects tab in the
selected object’s workspace.

You can create extensions that define new relationships between vSphere objects, or relationships between a
new type of vSphere object that you created and the existing objects in the vSphere environment. You create
relation extensions by using only the metadata definition. You do not need to create a Flex or HTML class.

See Chapter 8, “Creating a New Relation Between vSphere Objects,” on page 83.

Adding a Home Screen Shortcut

You can create extensions that add a shortcut to the vSphere Web Client home screen. Home screen shortcuts
can provide the user with a pointer to any data view in the vSphere Web Client, including global views,
specific inventory lists, or a top level solution application in the vSphere Web Client.

You create Home screen shortcut extensions by using only the metadata definition. You do not need to create
a Flex or HTML class.

See Chapter 9, “Creating Home Screen Shortcuts,” on page 87.

Extending Object List Views

Each object workspace in the vSphere Web Client contains a list view that displays information about each
individual object of that type in the virtual infrastructure. You can create a new list view extension for your
own custom object type, or extend the existing list views for any type of vSphere object. When you extend an
existing vSphere object list view, you can add new data columns to appear in the list.

See Chapter 10, “Extending vSphere Object List Views,” on page 89.

Defining Extensions

26

The metadata extension definition for a user interface extension specifies where the extension appears in the
vSphere Web Client GUI, and provides information about how the extension’s appearance, including which
Flex classes contain the actual GUI code.

The metadata that you must create is different depending on what kind of extension you are adding to the
vSphere Web Client, but all extension definitions share certain basic characteristics.

Extension Point

The extension point represents the specific location in the vSphere Web Client user interface where the
extension appears. The vSphere Web Client SDK publishes a set of extension points that correspond to specific
locations in the user interface. See Appendix A, “List of Extension Points,” on page 113.

Each extension definition must specify one of the provided extension points. The vSphere Web Client SDK
provides several extension points for adding new data view extensions to the Virtual Infrastructure object
workspaces. Each of these points corresponds to an existing top-level tab or second-level tab for a specific type
of vSphere object. The SDK also provides extension points for other extensible GUI features, including the
object navigator, Actions Framework, Related Objects specifications, and home screen shortcuts.

You can nest extensions. An extension can define its own extension points, creating a multilevel structure of
extensions. The Virtual Infrastructure object workspaces use a nested structure of extensions. For example,
top-level tab screen extensions in an object workspace define extension points for second-level tab extensions,
and second-level tab extensions define extension points for nested views or portlets.

VMware, Inc.

Chapter 2 vSphere Web Client User Interface Layer

Extension Object

The extension object is a data object that describes the properties of the extension. You must provide a specific
type of extension object for each extension point. Rather than instantiating the actual extension object, your
extension definition must use MXML or HTML to provide a description of the required object.

The extension objects associated with each extension point correspond to specific ActionScript classes in the
vSphere Web Client SDK. The properties of the ActionScript class are used in the data object to specify things
like labels and icons for the extension. In the cases of data views, actions, and certain extensions to the object
navigator, you also use the extension object properties to specify the Flex or HTML classes that you created for
those extensions.

Filtering Metadata

You can include filtering metadata in your extension definition. You can use filtering metadata to control when
the user has access to a given extension. For example, you can filter an extension to appear only for certain
types of objects, or when an object’s property has a specific value. Filtering metadata is optional and not
required for every extension definition.

Extension Definition XML Schema

In the plugin.xml manifest file, each extension is defined in its own <extension> element. The principal
characteristics of the extension are described in their own elements, the <extendedPoint> element for the
extension point, the <object> element for the extension object, and the <metadata> element for filtering
metadata.

The following example shows an example extension definition, starting with the <extension> element. The
extension that the XML definition describes adds a data view to the object workspace for a Virtual Machine
object. In the example, the data view is a section view for the Summary tab in the object workspace for Virtual
Machine objects. This example definition would appear in a plug-in module plugin.xml manifest file where
extensions are defined.

Example 2-1. Example Extension Definition in plugin.xml Manifest File

<!—— Add a summary Section View to the VirtualMachine Summary tab by
extending the extension point "vsphere.core.vm.summarySectionViews". ——>

<extension id="com.vmware.samples.viewspropertiesui.vm.summarySectionView">
<extendedPoint>vsphere.core.vm.summarySectionViews</extendedPoint>
<object>
<name>Sample Summary Section View</name>
<componentClass
className="com.vmware.samples.viewspropertiesui.views.VmSampleSummarySectionView" />
</object>
</extension>

In the example, the <extension> element contains an id attribute, which is a unique identifier that you create.
Other extensions, such as extensions to the object navigator, can reference this extension using the id attribute.

Specifying the Extension Point

The <extendedPoint> XML element contains the name of the extension point. The vSphere Web Client
renders the extension at the extension point when the new plug-in module is loaded. In Example 2-1, the
extension point is vsphere. core.vm.summarySectionViews.

Describing the Extension Object

The <object> element describes the required extension data object for the target extension point. The
<object> element uses standard XML syntax to describe a data object of the ActionScript class type that the
extension point requires and sets values for the properties in that object. Each type of extension requires a
specific extension data object. See Appendix A, “List of Extension Points,” on page 113.

VMware, Inc. 27

vSphere Web Client Extensions Programming Guide

28

NOTE In general, you do not explicitly specify the extension data object type. The <object> element is
assumed to be an object of the type that the extension point requires. The <object> element has an optional
type attribute that you can use to explicitly specify a type. You only need to explicitly specify a type if your
extension definition provides a subclass of the extension point’s required class, or if the extension point
requires an interface rather than a class.

In Example 2-1, the extension point vsphere.core.vm.summarySectionViews requires a class of type
com.vmware.ui.views.ViewSpec. The <object> element describes how the ViewSpec data object looks.

To find the required extension object type for any given extension point, see Appendix A, “List of Extension
Points,” on page 113.

Objects of type com.vmware.ui.views.ViewSpec have a <name> property and a <componentClass>
property. The <name> property contains the name that the vSphere Web Client displays for the new data view
extension. In Example 2-1, this name is “Sample Monitor View Title.” You can also specify a dynamic resource
string for any <name> property.

The <componentClass> property specifies the Flex class that implements the new data view. If you are
implementing an HTML component, you specify one of the htmlbridge Flex classes supplied by the SDK.
Otherwise, you must create the Flex component. In Example 2-1, this class is
com.vmware.samples.viewpropertiesui.views.VmSampleSummarySectionView, which appears under
the Summary tab for virtual machine objects.

You can use the ActionScript API reference included with the vSphere Web Client SDK to obtain detailed
information on the extension data object that you must create for each type of extension.

Providing Filtering Metadata

The <metadata> element contains filtering data that determines when the extension is available to the user.
See “Filtering Extensions” on page 28.

Filtering Extensions

In your extension definition, you can use filtering metadata to control when the extension appears in the
vSphere Web Client GUI. You can filter extensions based on the selected object type, on the value of any
property associated with the selected object, or on the user’s privilege level. You set the filter type and the
specific filter values by using the appropriate XML elements inside your extension definition’s <metadata>
element.

Filtering Based on Selected Object Type

You can filter your extension to only appear when the user selects one or more specific types of vSphere
objects. You specify the types of objects for which the extension is valid by creating an <objectType> element
in the <metadata> element in the extension definition. The extension appears only when the user selects an
object whose type matches the value of the <objectType> element.

Example 2-2 shows an example extension definition with filtering based on the selected object type. In the
example, the extension actions appear only when the user has selected a Virtual Machine object.

Example 2-2. Extension Filtered by Entity Type

<extension id="com.vmware.samples.actions.vmActionSet">
<extendedPoint>vise.actions.sets</extendedPoint>
<object>
<actions>
<com.vmware.actionsfw.ActionSpec>
<uid>com.vmware.samples.actions.myVmActionl</uid>
<label>#{actionl.label}</label>
<command className="com.vmware.samples.actions.VmActionCommand" />
</com.vmware.actionsfw.ActionSpec>
</actions>
</object>
<metadata>
<!— This filters the action to be visible only on VMs ——>

VMware, Inc.

Chapter 2 vSphere Web Client User Interface Layer

<objectType>VirtualMachine</objectType>
</metadata>
</extension>

You can use any vSphere or custom object type name as the value for the <objectType> element. To specify
multiple object types, include two or more object type names in the <objectType> element, separated by
commas. You can also use the * symbol to specify all object types. See “Naming Convention for vSphere
Objects in the vSphere Web Client SDK” on page 20.

Filtering Based on the Value of a Property of the Selected Object

You can filter your extension to appear or not appear depending on the value of a property of the selected
object. You must use the property value filter in conjunction with the object type filter.

You create the property value filter by describing one or more property value comparisons to be made on the
selected object by using the <propertyConditions> element. You include the <propertyConditions>
element in the <metadata> element in the extension definition. You can define a single comparison, or define
multiple comparisons and conjoin those comparisons together.

In the <propertyConditions> element, you must describe a data object of type
com.vmware.data.query.CompositeConstraint using MXML syntax. Using the CompositeConstraint
data object, you specify the names of the object properties used in the filter, the desired value for each object
property, and the comparison operator. You can also specify a conjoiner if your CompositeConstraint data
object has multiple comparisons.

Defining Comparison Conditions Using Comparisoninfo

In CompositeConstraint data object, you describe each property value comparison using the
<nestedConstraints> element. The <nestedConstraints> element contains an array of data objects of
type com.vmware.data.query.PropertyConstraint. Each PropertyConstraint data object represents
one comparison between a given object property and a value you specify.

When you create a PropertyConstraint data object, you specify the object property to compare by using the
<propertyName> element, the value to compare against using the <comparableValue> element, and the
comparison operator using the <comparator> element.

The value of the <propertyName> element must match the name of the object property to compare. You can
set the value of the <comparableValue> element depending on the type of property you are comparing, but
the value must be a primitive type. You can use a string value, an integer value, or a Boolean value of true or
false in the <comparableValue> element.

You use the <comparator> element to choose how the property is compared against the value you specify in
the filter. You can use values of EQUALS, NOT_EQUALS, GREATER, SMALLER, CONTAINS, EQUALS_ANY_OF or
CONTAINS_ANY_OF. If you use the CONTAINS operator, you must provide an array of values. If you use the
operators EQUALS_ANY_OF or CONTAINS_ANY_OF, you must provide a string containing multiple values in the
<comparableValue> element, each separated by a comma.

Conjoining Multiple Comparisons

If your CompositeConstraint data object defines multiple comparisons, you can choose how those
comparisons are conjoined by using the <conjoiner> element. You can use a value of AND or OR in the
<conjoiner> element.

Example Property Value Filter

Example 2-3, on page 30, shows an example extension definition for an action extension. The extension is
filtered based on the value of the property isRootFolder, and whether the selected object has child objects of
a particular type. In the example, the extension appears only when the value of the isRootFolder property is
true, and the selected object contains child objects that are Virtual Machines.

VMware, Inc. 29

vSphere Web Client Extensions Programming Guide

Example 2-3. Extension Filtered by Entity Property Value

<extension id="com.vmware.samples.actions.vmActionSet">
<extendedPoint>vise.actions.sets</extendedPoint>
<object>
<actions>
<com.vmware.actionsfw.ActionSpec>
<uid>com.vmware.samples.actions.myVmActionl</uid>
<label>#{actionl.label}</label>
<command className="com.vmware.samples.actions.VmActionCommand" />
</com.vmware.actionsfw.ActionSpec>
</actions>
</object>
<metadata>
<objectType>Folder</objectType>
<propertyConditions>
<com.vmware.data.query.CompositeConstraint>
<nestedConstraints>
<com.vmware.data.query.PropertyConstraint>
<propertyName>isRootFolder</propertyName>
<comparator>EQUALS</comparator>
<comparableValue>
<String>false</String>
</comparablevValue>
</com.vmware.data.query.PropertyConstraint>
<com.vmware.data.query.PropertyConstraint>
<propertyName>childType</propertyName>
<comparator>CONTAINS</comparator>
<comparableValue>
<String>VirtualMachine</String>
</comparableValue>
</com.vmware.data.query.PropertyConstraint>
</nestedConstraints>
<conjoiner>AND</conjoiner>
</com.vmware.data.query.CompositeConstraint>
</propertyConditions>
</metadata>
</extension>

Filtering Based on User Privilege Level

You can filter your extension to only appear for users that have specific privileges. You can base your filter on
global privilege settings in the vSphere Web Client, such as settings or licenses. For example, you can use a
filter to make your extension available only to users that have global privileges to change settings.

You can also filter your extension based on privileges related to specific types of vSphere objects. For example,
you can use a filter to make your extension available only to users who have privileges to create or delete
Datastore objects.

You specify the privilege for which the object is valid by creating a <privilege> element inside the
<metadata> element in the extension definition. The extension appears only for users whose privileges
include the value specified by the <privilege> element. You can specify multiple privilege values in the
<privilege> element, separated by commas. If you specify multiple privileges, the user must have all of the
specified privilege values for the extension to appear.

Example 2-4, on page 31, shows an example extension definition with filtering based on the user’s privileges.
In the example, the extension appears only when the user’s privileges include Global.Licenses.

30 VMware, Inc.

Chapter 2 vSphere Web Client User Interface Layer

Example 2-4. Extension Filtered by User Privileges

<extension id="vsphere.core.hosts.sampleMonitorView">
<extendedPoint>vsphere.core.hosts.monitorViews</extendedPoint>
<object>
<name>Sample Monitor View Title</name>
<componentClass className="com.vmware.vsphere.client.sampleplugin.SampleObjectView"/>
</object>
<metadata>
<privilege>Global.Licenses</privilege>
</metadata>
</extension>

You can filter your extension by using any standard vCenter privilege.

Using Templates to Define Extensions

You can use extension templates to define extensions in your user interface plug-in module. The vSphere Web
Client SDK provides XML templates that you can include in the plugin.xml file. The templates use variable
values that you provide to automatically create extension definitions.

The vSphere Web Client SDK provides templates for a number of extension types, including the data views in
a vSphere object workspace and for inventory list extensions in the object navigator. You can find examples of
templates among the sample material for each extension type. See Chapter 4, “Adding to vCenter Object
Workspaces,” on page 37, and Chapter 6, “Extending the Object Navigator,” on page 59.

VMware, Inc. 31

vSphere Web Client Extensions Programming Guide

32 VMware, Inc.

Adding a Global View Extension

In the vSphere Web Client, a global view extension is a way to create a free-form data view. You can use a
global view extension to create your own custom solution for the vSphere Web Client user interface. A global
view extension can have nearly any function, including aggregating data about different types of vSphere
objects onto a single screen, or displaying data from sources outside the vSphere environment.

A global view can be a simple single-level data view that uses the entire vSphere Web Client main workspace,
or a complex nested view with its own internal navigation structure and organization. Creating a global view
extension has a few restrictions.

Global views are displayed in the vSphere Web Client main workspace, but exist outside of the virtual
infrastructure hierarchy. The user selects a global view directly, either through a pointer in the object navigator
or a shortcut on the vSphere Web Client home screen.

To create a global view extension, you must define the extension using XML in the plug-in module manifest
file, and create the Flex or HTML code that appears in the main workspace.

This chapter contains the following topics:

B “Use Cases for Creating a Global View Extension” on page 33
B “Defining a Global View Extension” on page 34

B “Creating Global View Classes” on page 34

B “Making a Global View Accessible to Users” on page 34

Use Cases for Creating a Global View Extension

Global view extensions can be used to create dashboard-style data views or console-style applications.

Dashboards

You can use a global view extension to create a dashboard-style data view. A dashboard aggregates data from
different sources in the vSphere environment together in one unified data view. For example, you can create
a dashboard that provides status information about all custom company-branded objects in the vSphere
environment.

Consoles

You can use a global view extension to create a console-style application that is displayed in the vSphere Web
Client main content area. The vSphere Web Client Tasks Console and Events Console are examples of this kind
of global view.

VMware, Inc. 33

vSphere Web Client Extensions Programming Guide

Defining a Global View Extension

The vSphere Web Client provides an extension point for all global view extensions, named
vise.global.views. The extension definition must reference the vise.global.views extension point, and
provide an extension object of type com.vmware.ui.views.GlobalViewSpec.

Example 3-1 shows an example extension definition for a global view extension. In the example, the
<extendedPoint> element specifies the global view extension point. The <object> element defines a data
object of type com.vmware.ui.views.GlobalViewSpec.

Example 3-1. Example Global View Extension

<extension id="mySolution.myPlugin.myConsoleApp">
<extendedPoint>vise.global.views</extendedPoint>
<object>
<name>My Console App</name>
<componentClass className="com.mySolution.myPlugin.MyConsoleApp" />
<applyDefaultChrome>true</applyDefaultChrome>
</object>
</extension>

Table 3-1 lists the properties that you provide for the com.vmware.ui.views.GlobalViewSpec extension
data object, using the <object> element in your extension definition.

Table 3-1. GlobalViewSpec Extension Object Properties

Property Type Description

<name> string String that appears as the global view title in the main workspace. In
Example 3-1, the value is hard coded as "My Console App". You can also
use a dynamic resource string from your plug-in module.

<componentClass> string Flex class that implements the global view. This Flex class appears in the
vSphere Web Client main workspace. If you implement the view in HTML,
specify the Htm1View container class. You must set the value of the
<componentClass> element className attribute to the fully qualified
name of the Flex view class. In Example 3-1, the class is
com.mySolution.myPlugin.MyConsoleApp.

<applyDefaultChrome> boolean A Boolean value. If you set this property to true, the global view appears
with the default header, footer, title, and icon graphics provided by the
vSphere Web Client. This property is optional and defaults to true if
omitted.

Creating Global View Classes

Each global view extension is an independent Flex or HTML element that must communicate with the vSphere
environment to retrieve data, or send commands, that the view requires. The vSphere Web Client SDK
includes an MVC framework and a Flex library that you can use when creating global view Flex classes. Both
Flex and HTML classes can use the Data Access Manager library to retrieve data from the vSphere
environment and to send commands to the virtual infrastructure.

You can create a global view class using any pattern or framework, but using the vSphere Web Client SDK
MVC framework and Data Access Manager is a best practice for Flex classes. See Chapter 5, “Architecting Data
Views,” on page 43.

Making a Global View Accessible to Users

34

To make your global view extension accessible to users, you must create a pointer to the global view
somewhere in the vSphere Web Client user interface. You can create a pointer as either an object navigator
extension or a home screen shortcut extension. If you create a pointer in the object navigator, you can add the
pointer to either the top level Solutions category, or to the virtual infrastructure level.

VMware, Inc.

Chapter 3 Adding a Global View Extension

See Chapter 6, “Extending the Object Navigator,” on page 59, and Chapter 9, “Creating Home Screen
Shortcuts,” on page 87.

VMware, Inc. 35

vSphere Web Client Extensions Programming Guide

36 VMware, Inc.

Adding to vCenter Object
Workspaces

The vSphere Web Client displays a standard object workspace for each type of vSphere object. The object
workspace is a collection of data views with a tabbed navigation structure. The workspace for a given vSphere
object appears in the vSphere Web Client main workspace when the user selects an object when browsing the
virtual infrastructure.

Each vSphere object type has a Summary, Monitor, Manage, and Related Objects top-level tab view, and may
contain additional sub-views within each tab. You can add extensions to create your own sub-views within
any of the top-level tab views, or within specific sub-views. You can also create new object workspaces with
the default top-level tab and sub-view structure.

This chapter contains the following topics:

B “Use Cases for Adding to an Object Workspace” on page 37

B “Adding to an Existing Object Workspace” on page 37

B “Creating an Object Workspace for a Custom Object” on page 39

B “Creating Data View Classes” on page 41

Use Cases for Adding to an Object Workspace

You can either add a new data view to the existing object workspace for any type of vSphere object, or you can
create an object workspace for a custom vSphere object.

In general, you add a data view extension to an existing object workspace to convey additional information
about a vSphere object that is not included in an object’s standard workspace. You might need to create an
extension to the vSphere Web Client service layer, such as a Data Service adapter, to provide the data for your
data view extension. See Chapter 11, “vSphere Web Client Service Layer,” on page 93.

The vSphere Web Client SDK provides a set of extension points for each type of object in the vSphere
environment, such as a virtual machine or host. Each extension point corresponds to a specific view in that
object’s workspace, to which you can add your own subordinate view extension.

When you create an object workspace, you use the XML extension templates included with the vSphere Web
Client SDK. The XML extension templates create all of the standard top-level tabs and subordinate views in a
standard object workspace, as well as defining a set of extension points for each. You then create data view
extensions that reference the extension points that the template created to complete your object workspace.

Adding to an Existing Object Workspace

The vSphere Web Client SDK provides a unique extension point for each of the default tabs and subordinate
views for every type of object in the vSphere environment. When you define a data view extension that
references one of these extension points, your extension appears as a subordinate view inside that tab or view.

Extension points use the following naming convention:

vsphere.core.${objectType}.${view}

VMware, Inc. 37

vSphere Web Client Extensions Programming Guide

The ${objectType} value denotes the type of vSphere object for which to extend the object workspace. The
${view} value specifies the exact view to which to add the extension, such as a top-level tab or specific
subordinate view.

For example, if you define an extension that specifies the vsphere.core.vm.manageViews extension point,
your extension appears as a subordinate view on the Manage tab in the object workspace for virtual machine
objects.

For a complete list of virtual infrastructure object workspace extension points, see Appendix A, “List of
Extension Points,” on page 113.

Types of Data Views

A data view extension appears in a slightly different fashion depending on which extension point that you
specify in the extension definition. Data views can appear as the following structures.

B Second-level tabs. A data view extension appears as a second-level tab if you specify an extension point
for a top-level tab, such as Summary, Monitor, or Manage in an object workspace.

B Second-level tab views. A data view extension appears as a view within an existing second-level tab if
you specify one of the preexisting second-level tab extension points, such as the Performance view inside
the Monitor tab in an object workspace.

B Portlets. A data view extension appears as a portlet if you specify the Summary tab extension point in an
object workspace.

When you design the user interface for your data view extension, keep in mind the extension point where the
extension appears. The extension point data view type affects the amount of available screen space and the
layout of your data view.

Defining a Data View Extension

An extension to an existing object workspace must specify the target extension point in the extension
definition, and provide a data object of type com.vmware.ui.views.ViewSpec.

Example 4-1 shows an example extension definition for an extension that adds a data view to the workspace
for Host objects. In the example, the <extendedPoint> element references the extension point for the
Summary tab, vsphere.core.host.summarySectionViews. The extension appears as a portlet under the
Summary tab for Host objects. The <object> element defines a data object of type
com.vmware.ui.views.ViewSpec.

Example 4-1. Example Portlet Extension for Host Summary Tab

<extension id="mySolution.myPlugin.MySummaryPortlet">
<extendedPoint>vsphere.core.host.summarySectionViews</extendedPoint>
<object>
<name>My Summary Portlet</name>
<componentClass className="com.mySolution.myPlugin.MyPortletView" />
</object>
</extension>

Table 4-1, on page 39, lists the properties that you provide for the com.vmware.ui.views.ViewSpec
extension data object, using the <object> element in your extension definition.

38 VMware, Inc.

Chapter 4 Adding to vCenter Object Workspaces

Table 4-1. ViewSpec Extension Object Properties
Property Type Description

<name> string String value that appears as the view title where appropriate in the user
interface, such as on the second-level tab button or in the portlet title bar.
The value of the <name> property can be a hard-coded string or a dynamic
resource included in your plug-in module. In Example 4-1, the string is
hard coded as "My Summary Portlet".

<componentClass> string Flex class that you created for your data view extension. This Flex class
appears at the user interface location corresponding to the extension point
you specify. If you implement the view in HTML, specify the Htm1View
container class. You must set the value of the <componentClass> element
className attribute to the fully qualified name of the Flex view class. In
Example 4-1, the class is com.mySolution.myPlugin.MyPortletView.

Creating an Object Workspace for a Custom Object

If you added a new type of object to the vSphere environment, you can create a complete workspace for that
object in the vSphere Web Client by using an XML template. You instantiate the XML template in the plug-in
module’s plugin.xml manifest file.

The vSphere Web Client SDK includes a standard object view template for an object workspace. The object
view template uses variable values that you provide to create extension definitions and extension points for
the object workspace tabs and subordinate views, including Summary, Monitor, Manage, and Related
Objects.

Using the Object View Template to Create an Object Workspace

To create an instance of the standard object view template, you use the <templateInstance> elementin your
plug-in module’s plugin.xml file. Inside the <templateInstance> element, you define the variables that
describe the specific instance of the template.

Example 4-2 shows an example of how to instantiate the object view template for a new object called a Rack.
The <templateInstance> shown in the example cam appear anywhere inside the root <plugin> element in
the plugin.xml file, but a best practice is to include the template definition with any other extension
definitions.

Example 4-2. Instantiating the Standard Template in plugin.xml

<templateInstance id="com.vmware.samples.rack.viewTemplateInstance">
<templateId>vsphere.core.inventory.objectViewTemplate</templateId>
<variable name="namespace" value="com.vmware.samples.rack"/>
<variable name="objectType" value="samples:Rack"/>
</templateInstance>

In Example 4-2, the <templateInstance> element contains an id attribute, which is a unique identifier of
your choice.

The <templateId> element contains the identifier of the template you want to create. To use the standard
object view template included with the vSphere Web Client SDK, this identifier must be
vsphere.core.inventory.objectViewTemplate. To use the objectViewTemplate, you must define a
namespace variable and an objectType variable.

Namespace

The namespace variable sets the naming convention for the object workspace extension points. When the
vSphere Web Client creates the extension points for the object workspace, it prepends the value of the
namespace variable onto the default extension point names for each data view.

VMware, Inc. 39

vSphere Web Client Extensions Programming Guide

40

In Example 4-2, the namespace variable has a value of com.vmware.samples. rack. The vSphere Web Client
uses the value to create an extension point for each data view included in the standard object workspace. The
extension point for the Monitor tab for the Rack object workspace is named
com.vmware.samples.rack.monitorViews. The other extension points in the Rack object workspace are
named using the same convention.

The following list shows the extension points that you create when you instantiate the standard object view
template.

namespace.gettingStartedViews
namespace.summaryViews
namespace.monitorViews
namespace.monitor.issuesViews
namespace.monitor.performanceViews
namespace.monitor.performance.overviewViews
namespace.monitor.performance.advancedViews
namespace.monitor.tasksViews
namespace.monitor.eventsViews
namespace.manageViews
namespace.manage.settingsViews
namespace.manage.alarmDefinitionsViews
namespace.manage . tagsViews
namespace.manage.permissionsViews
namespace.relatedViews
namespace.list.columns

Object Type

You use the objectType variable to associate the object workspace with your custom entity type. Your custom
entity type name should include a namespace prefix, such as your company name, to avoid clashing with other
object type names in the vSphere environment. The vSphere Web Client displays the object workspace when
the user selects an object of the specified type. In Example 4-2, the objectType variable has the value
samples:Rack. The object workspace created by the template appears in the vSphere Web Client when the
user selects a Rack object.

Creating the Data Views Within the Template

After you create an object workspace using the standard template, you can create data views at the resulting
extension points in the same way that you do for other extension points in the Virtual Infrastructure. See
“Defining a Data View Extension” on page 38.

Top-level tabs, second-level tabs, and views created using the standard object view template do not appear in
the vSphere Web Client main workspace unless you define a data view extension at that extension point. For
example, if you do not define a data view extension at the
com.vmware.samples.rack.monitor.performanceViews extension point, the Performance Views
second-level tab in the Monitor tab does not appear for Rack objects.

Using the Summary Tab Template

The vSphere Web Client SDK contains a template that you can use to create a standard Summary tab view for
your custom object. The standard Summary tab view contains a Summary header view displayed at the top
of the main workspace, and an extension point for any number of Portlet views below the header. The
extension point that the template creates for Portlet views is named namespace. summarySectionViews.

To use the standard Summary tab template, you must create an instance of the template in your plug-in
module plugin.xml file, using the <templateInstance> element. The <templateInstance> element can
appear anywhere in the root <plugin> element, but after the definition for the standard object workspace
template.

Example 4-3, on page 41, shows an example of how to instantiate the Summary tab template for a custom
object called a Rack.

VMware, Inc.

Chapter 4 Adding to vCenter Object Workspaces

Example 4-3. Instantiating the Summary Tab Template in plugin.xml

<!—— Object Workspace Template for Rack ——>

<templateInstance id="com.vmware.samples.rack.viewTemplateInstance">
<templateId>vsphere.core.inventory.objectViewTemplate</templateId>
<variable name="namespace" value="com.vmware.samples.rack"/>
<variable name="objectType" value="samples:Rack"/>

</templateInstance>

<!—— Summary Tab Template for Rack ——>
<templateInstance id="com.vmware.samples.chassis.summaryViewTemplateInstance">
<templateId>vsphere.core.inventory.summaryViewTemplate</templateId>
<variable name="namespace" value="com.vmware.samples.rack"/>
<variable name="summaryHeaderView" value="com.vmware.samples.rack.views.RackSummaryView" />
</templateInstance>

In Example 4-3, the <templateInstance> element contains an id attribute, which is a unique identifier of
your choice.

The <templateId> element contains the identifier of the template to create. To use the standard Summary tab
template included with the vSphere Web Client SDK, this identifier must be
vsphere.core.inventory.summaryViewTemplate. To use the summaryViewTemplate, you must define a
namespace variable and a summaryHeaderView variable.

Namespace

The value you supply for the namespace variable must match the namespace for the Summary tab’s parent
object workspace. The Summary tab created by the Summary tab template uses the extension point
namespace. summaryViews, as defined by the object workspace template.

The Summary tab template also creates the extension point namespace.summarySectionViews. You can use
the namespace.summarySectionViews extension point to add portlet data views to your custom object
Summary tab.

In Example 4-3, the namespace variable has a value of com.vmware. samples. rack, matching the namespace
variable in the Rack object workspace template.

Summary Header View

You use the summaryHeaderView variable to specify the data view that appears at the top of the Summary tab.
The value you supply for the summaryHeaderView variable must be the fully qualified class name for an
MXML data view class in your plug-in module. If you omit the summaryHeaderView variable, no header
appears in the Summary tab, and the main workspace displays the portlet data views you create at the
namespace. summarySectionViews extension point, if any.

Adding Portlets to the Summary Tab

After you create a Summary tab for your custom object workspace by using the Summary tab template, you
can add portlet data views to the Summary tab. You create the portlet data views at the

namespace. summarySectionViews extension point that the template creates, in the same way that you do for
any other extension point in the Virtual Infrastructure. See “Defining a Data View Extension” on page 38.

Creating Data View Classes

Each data view extension in an object workspace is an independent Flex or HTML element that must
communicate with the vSphere environment to retrieve data, or send commands, that the view requires. The
vSphere Web Client SDK includes an MVC framework and a Flex library that you can use when creating data
view Flex classes. Both Flex and HTML classes can use the Data Access Manager library to retrieve data from
the vSphere environment and to send commands to the virtual infrastructure.

VMware, Inc. 41

vSphere Web Client Extensions Programming Guide

You can create a data view class using any pattern or framework you want, but using the vSphere Web Client
SDKMVC framework and Data Access Manager is a best practice for Flex classes. See Chapter 5, “Architecting
Data Views,” on page 43.

42 VMware, Inc.

Architecting Data Views

When you create a data view extension to the vSphere Web Client user interface layer, you must provide user
interface classes for the GUI elements that appear in the main workspace area of the interface. Data view
extensions that require you to provide classes include global view extensions, extensions to existing object
workspaces in the virtual infrastructure browser, and custom object workspaces that you create.

Flex classes for GUI elements in the vSphere Web Client are implemented using the MVC software architecture
pattern. In the MVC pattern, the business logic and graphics components of a GUI element are separated into
different classes. The Flex classes in vSphere Web Client data views use an internal MVC framework called
Frinje to create the associations between the classes used in the MVC pattern.

The vSphere Web Client SDK provides an event-driven API, based on the Frinje framework, called the Data
Access Manager. Data view classes can use the Data Access Manager library to query data from sources inside
or outside of the vSphere environment.

You can use any framework to build vSphere Web Client data view extensions in Flex, but using the Frinje
framework is a best practice. By using the Frinje framework and implementing a compatible MVC
architecture, your extensions can use the built-in Data Access Manager library provided with the vSphere Web
Client SDK to retrieve data and send commands to the virtual infrastructure.

The MVC architecture pattern applies only to vSphere Web Client extensions that add data views to the GUL
Other extensions, such as shortcuts for the home screen or object navigator, are defined only in metadata and
do not require you to create MVC code.

This chapter contains the following topics:
B “About the MVC Architecture” on page 43
B “The Frinje Framework MVC in the vSphere Web Client” on page 44

B “Using the Data Access Manager Library” on page 51

About the MVC Architecture

The Model-View-Controller architecture separates the domain logic of the software from the user interface
elements. This decoupling of components allows each part of the software to be developed, tested, and
maintained independently.

In the MVC architecture, the model component manages the business logic of the software, including
calculations, data access, and communications with external data sources. The view component manages only
the graphics-related functions of the user interface. The controller component contains the control logic that
governs communication between the model component and the view component.

The model, view, and controller components can be implemented as a single class or as a collection of different
classes.

VMware, Inc. 43

vSphere Web Client Extensions Programming Guide

The Frinje Framework MVC in the vSphere Web Client

44

The vSphere Web Client uses the Frinje framework to implement the concepts of the MVC architecture. Frinje
uses Flex to build on the MVC architecture in several ways by including additional features.

Understanding how Frinje implements MVC is essential to reading and making use of the sample data view
extensions code written in Flex and included with the vSphere Web Client SDK and the associated tutorials.

The vSphere Web Client SDK contains a plug-in for the Eclipse development environment that can create Flex
and Java projects for a vSphere Web Client plug-in module.

The Frinje framework uses metadata annotations to describe the relationships between the different classes
that make up the MVC model. Frinje does not require you to subclass specific foundational classes to use the
functionality of the Frinje framework. This results in source code with no direct dependency on the Frinje
framework, so the same class definitions can be compiled into any Flex environment.

View Components in Frinje

Frinje implements the View component of the MVC architecture as two separate classes. The View
component’s graphic elements are implemented in an MXML view class, and the View component’s logic
elements are implemented in an ActionScript mediator class. The Frinje framework refers to the MXML class
as a view class, and the ActionScript class as a mediator class.

Overview of View and Mediator Classes

The view class and the mediator class are associated using metadata tags. The MXML view class uses the
[DefaultMediator] tag to specify the associated mediator class. Example 5-1 shows a sample MXML view
class with an associated mediator. The name of the associated mediator class in the example is
com.acme.myPlugin.views.MyPluginMediator.

Example 5-1. Sample Frinje View Class

<?xml version="1.0" encoding="utf-8"7>
<mx:Box xmlns:mx="http://www.adobe.com/2006/mxml">

<mx:Metadata>
[DefaultMediator("com.acme.myPlugin.views.MyPluginMediator")]

</mx:Metadata>

<mx:Label text="Hello World!"/>
<mx:Button id="showSelected" label="Show Selected"/>

</mx:Box>

The ActionScript mediator class uses the [View] tag to specify the associated view class. Example 5-2 shows
a sample ActionScript mediator class with functions to set and retrieve the associated view. The name of the
associated view class in the example is MyPluginView.

Example 5-2. Sample Frinje Mediator Class

public class MyPluginMediator extends EventDispatcher

{

private var _view:MyPluginView;

[View]
/** The view associated with this mediator. */
public function set view(value:MyPluginView):void {
_view = value;
}
public function get view():MyPluginView {
return _view;

}

VMware, Inc.

Chapter 5 Architecting Data Views

The view class contains the graphic elements that the user sees and clicks, such as buttons, text fields, and
menus. The mediator class contains the logic that drives those elements, for example the actions taken when
auser clicks a particular button. A mediator class interacts with the other elements in the Frinje framework by
dispatching events in response to user actions. To gain this functionality, each mediator class must extend the
EventDispatcher base class.

Creating View Components with the vSphere Web Client SDK

When you create data view or global view extensions to the vSphere Web Client, you must provide the Ul view
that appears in the main workspace, and the mediator class that contains the interaction logic for that view.

The view class is typically an MXML class that encapsulates the visual Flex components for the data view. The
view class specifies the data view mediator using the [DefaultMediator] annotation, and contains little
business logic, if any.

The mediator class in a vSphere Web Client data view contains the logic used to populate the view
components, make data requests, and handle data responses. The vSphere Web Client SDK provides libraries
and interfaces that your mediator class can use to obtain the object that the user has currently selected in the
vSphere Web Client, and to request data from the vSphere environment.

Obtaining the Currently Selected vSphere Object

Some data views, such as those you add to the object workspace for a specific vSphere object type, need to track
which object the user has selected using the object navigator. For example, if you add a data view to the object
workspace for Virtual Machine objects, that data view must track which Virtual Machine the user has selected
to request the appropriate data for display.

Your mediator class can use the Frinje framework to obtain the object that the user currently has selected in the
object navigator. To make use of this functionality, your mediator class must implement the
com.vmware.ui.IContextObjectHolder interface.

When your mediator class implements the IContextObjectHolder interface, you must provide get and set
methods for the contextObject property. You do not need to set the contextObject property directly. The
Frinje framework calls the mediator class set contextObject() method when the view becomes active. The
currently selected vSphere object is passed to set contextObject() as the parameter value.

A best practice is to place your data view’s initial data requests and other initialization code in the set
contextObject () method. That way, you can initialize the view when the framework passes the currently
selected object as the view becomes active.

Example 5-3, on page 46, shows an example mediator class. The example mediator contains the logic for a data
view for a custom object type called Chassis. The example mediator implements the IContextObjectHolder
interface, and uses set contextObject() to obtain the currently selected Chassis object.

VMware, Inc. 45

vSphere Web Client Extensions Programming Guide

Example 5-3. Example Mediator Class Implementing IContextObjectHolder

public class ChassisSummaryViewMediator extends EventDispatcher implements IContextObjectHolder {
private var _view:ChassisSummaryView;
private var _contextObject:IResourceReference;

public function set contextObject(value:Object):void {
_contextObject = IResourceReference(value);
if (_contextObject == null) {

clearData(Q);
return;
}
// Initialize the view's data once the current context is known.
requestData();
}
[Bindable]

public function get contextObject():0bject {
return _contextObject;

}

In the example, the framework invokes the set contextObject () method, which in turn sends an initial data
request, or clears the interface if no object is selected.

Requesting Data from the vSphere Environment

To obtain the data needed to populate the view, your mediator class must communicate with data sources.
These data sources can be in vSphere, or they can be external Web sources. Your mediator class can use the
Data Access Manager Flex library in the vSphere Web Client SDK to request data from either type of data
source. To use Data Access Manager, your mediator must use the DAM API, which is based on Frinje events.
See “About the Frinje Event-Driven APIs” on page 48.

Your mediator class can also communicate with a data source by importing a Java service that you create. If
you create a Java service and add it to the vSphere Web Client Virgo server framework, you can use an
ActionScript proxy class to access the service from your mediator class. See “Model Components in Frinje” on
page 46.

Model Components in Frinje

Frinje implements the Model component of the MVC architecture as an Actionscript proxy class and
associated data objects. The proxy class handles communication with Java services that run on the vSphere
Web Client Virgo server framework, as part of the vSphere Web Client service layer.

For most data view extensions that you create, you do not need to implement the proxy class yourself. The
vSphere Web Client SDK provides a Flex library called the Data Access Manager, which handles all
communications tasks with the Java services running in the vSphere Web Client service layer. For more
information about the Data Access Manager library, see “Using the Data Access Manager Library” on page 51.

You only need to implement the proxy class if you created your own custom Java service and added that
service to the vSphere Web Client service layer. Any proxy class you create must extend the

com.vmware. flexutil.proxies.BaseProxy class in the vSphere Web Client SDK. Example 5-4, on page 47,
shows a sample proxy class that calls a simple “echo” service in the vSphere Web Client service layer.

46 VMware, Inc.

Chapter 5 Architecting Data Views

Example 5-4. Sample Frinje Proxy Class

public class EchoServiceProxy extends BaseProxy {
private static const SERVICE_NAME:String = "EchoService";

// channelUri uses the Web-ContextPath define in MANIFEST.MF (globalview-ui)
private static const CHANNEL_URI:String =
"/" + GlobalviewModule.contextPath + "/messagebroker/amfsecure";

/%%
Create a EchoServiceProxy with a secure channel.
/
public function EchoServiceProxy() {

super (SERVICE_NAME, CHANNEL_URI);

Sk ok

}

/7“::’:

* Call the "echo" method of the EchoService java service.

* @param message Single argument to the echo method

* @param callback Callback in the form <code>function(result:0Object,
* error:Error, callContext:0bject)</code>

* @param context Optional context object passed back with the result
*/

public function echo(message:String, callback:Function = null, context:Object = null):void {
callService("echo", [message], callback, context);

}

Controller Components in Frinje

Frinje implements the Controller component of the MVC architecture using the Frinje event bus and command
classes.

Frinje Event Bus

The Frinje event bus is a global event bus that extends and improves the capabilities of the native Flex event
model. Rather than requiring each component class to dispatch and receive events directly to and from one
another, the Frinje event bus lets you use metadata annotations to specify the events relevant to your classes.
The Frinje event bus routes events for your application to classes that are registered to subscribe to those
events.

The view, mediator, command, and proxy classes in the Frinje framework work together with the Frinje event
bus to drive the vSphere Web Client user interface. Classes that dispatch events, typically views and
mediators, use metadata annotations to specify the events they generate. Likewise, classes that handle events,
typically command classes, use metadata annotations to specify the events they can receive. The Frinje event
bus is responsible for routing the events and instantiating the receiving class at runtime.

By using the Frinje event bus, event-dispatching classes, such as views or mediators, and event-handling
classes, such as command classes, can be developed independently without those classes explicitly referencing
one another.

Command Classes

In the Frinje framework, a command class is responsible for handling events generated by changes in the state
of the user interface. When the user clicks a button, for example, the View containing that button dispatches
an event on the Frinje event bus. A command object is instantiated to handle that event using the appropriate
business logic.

Events can be dispatched from any part of the Frinje framework, but are commonly generated from view or
mediator classes in response to user actions. For example, if the user clicks an action for which you previously
created an action extension, the vSphere Web Client generates a Frinje event using the appropriate action ID.
As part of your action extension, you must provide a command class with a method annotated to handle the
generated Frinje event. See “Organizing Your Actions in the User Interface” on page 75.

VMware, Inc. 47

vSphere Web Client Extensions Programming Guide

48

About the Frinje Event-Driven APIls

Some libraries and frameworks in the vSphere Web Client SDK, specifically the Data Access Manager (DAM)
and the Actions Framework, make use of the Frinje framework. These features provide APIs in the vSphere
Web Client SDK that are based on Frinje events. The DAM, for example, provides specific events that are sent
over the Frinje event bus, and you use the DAM by sending and receiving these events.

A mediator class can use the Data Access Manager library by dispatching the request events in the DAM AP],
and handling the response events. The classes do not need to explicitly include the libraries or subclass any
specific class. They need only the proper Frinje metadata annotations to make use of the Frinje event bus.

Frinje Metadata Annotations

Your classes and methods make use of the Frinje framework by including metadata annotations with the class
or method declaration. You can use the following metadata annotations when constructing your classes. Each
annotation has certain required attributes you must include.

m [DefaultMediator]
m [Event]

B [Model]

m [RequestHandler]
m [ResponseHandler]
®m [EventHandler]

B [View]

IMPORTANT String arguments in metadata annotations are not validated at compile time. Review your
metadata annotations carefully if you encounter errors or your plug-in modules do not function correctly. In
addition, it is a best practice to use the fully qualified class name for any class arguments included in your
metadata annotations.

DefaultMediator

You use the [DefaultMediator] tag to declare the mediator class associated with a particular view
component. You typically use this tag in your view MXML class, to specify the ActionScript class that contains
the Ul'logic. The [DefaultMediator] tag has one argument, which must be the fully qualified class name for
the mediator class.

[DefaultMediator("fully_qualified_class_name")]

To use the [DefaultMediator] tag in an MXML class, you must enclose the tag in <mx:Metadata> elements.
Example 5-5 shows an example [DefaultMediator] tag.

Example 5-5. Example [DefaultMediator] Metadata Tag in MXML view

<mx:VBox xmlns:mx="http://www.adobe.com/2006/mxml">
<mx:Metadata>
[DefaultMediator("com.vmware.samples.chassisui.views.ChassisSummaryViewMediator")]
<mx:Metadata>

In the example, the [DefaultMediator] tag declares the ChassisSummaryViewMediator class as the
mediator class for the view described in MXML.

Event

You use the [Event] tag to define any events that your class generates. You must insert the [Event] tag before
the ActionScript class definition for any class that dispatches events.

VMware, Inc.

Chapter 5 Architecting Data Views

The [Event] tag is a native Flex metadata tag that contains the arguments name and type. You use the name
argument to specify the name of the event that your class can dispatch, and the type argument to specify the
data type for the event object.

[Event(name="event_name", type="event_type")]

In the vSphere Web Client SDK, you typically use the [Event] tag to specify events from the SDK’s Data
Access Manager library. Your classes can dispatch these events to request data from the vSphere environment.
See “Using the Data Access Manager Library” on page 51.

Example 5-6 shows an example mediator class annotated to dispatch a Data Access Manager event. The event
class is included in the com.vmware.data.query library in the vSphere Web Client SDK.

Example 5-6. Example [Event] Metadata Tag in Mediator Class

// Declares the data request event sent from this UI class.

[Event(name="{com.vmware.data.query.events.DataByModelRequest.REQUEST_ID}",
type="com.vmware.data.query.events.DataByModelRequest")]

public class ChassisSummaryViewMediator extends EventDispatcher implements IContextObjectHolder {

private function requestData():void {
// Dispatch an event to fetch the _contextObject data from the server along the specified
model.
dispatchEvent(DataByModelRequest.newInstance(_contextObject, ChassisSummaryDetails));

In the example, the name attribute in the [Event] tag has the value
{com.vmware.data.query.events.DataByModelRequest.Request_ID}. The REQUEST_ID corresponds to
a specific event identifier defined in the DataByModelRequest class, rather than a hard-coded event name.

Model

You use the [Model] tag to annotate a data model class. Data model classes are used to specify information
being retrieved through the vSphere Web Client SDK Data Access Manager library. See “Using the Data Access
Manager Library” on page 51.

RequestHandler

You use the [RequestHandler] tag to annotate a method to handle a particular action in the vSphere Web
Client. Typically, you create a command class for your action and annotate a method in that command class
with the [RequestHandler] tag.

The [RequestHandler] tag has one parameter, which is the UID for the action that the method handles. The
action UID in the [RequestHandler] tag must match the action UID that you specified in the action’s
extension definition. See Chapter 7, “Creating Action Extensions,” on page 67.

[RequestHandler("action_uid")]

ResponseHandler

You use the [ResponseHandler] tag to annotate a method to handle a specific type of event generated by the
Data Access Manager library in response to a data request.

The method you annotate with the [ResponseHandler] tag listens for specific, named events that are
dispatched from its parent component class. When writing a Ul component class, such as a mediator, you
typically annotate the class with the [Event] tag to specify the events named events that the class can
generate. You can then annotate specific methods within that class with [ResponseHandler] to handle each
event.

The [ResponseHandler] tag has a single argument, which you use to specify the event name that the method
expects.

[ResponseHandler (name="response_event_name")]

VMware, Inc. 49

vSphere Web Client Extensions Programming Guide

50

The method you annotate with [ResponseHandler] must accept the parameters request and result,
representing the type of data request and the result of the data request, respectively. The request type must
match that of the dispatched event. The method you annotate with [ResponseHandler] can also accept the
optional parameters error and resultInfo.

Example 5-7 shows an example method annotated to handle a Data Access Manager data response event. The
event class is included in the com.vmware.data.query library in the vSphere Web Client SDK.

Example 5-7. Example [ResponseHandler] Metadata Tag in Event Handler Method

[ResponseHandler (name="{com.vmware.data.query.events.DataByModelRequest.RESPONSE_ID}")]
public function onData(request:DataByModelRequest, result:ChassisSummaryDetails):void {
_view.chassisDetails = result;

}

In the example, the onData function is annotated to receive the event

com.vmware.data.query.events.DataByModelRequest.Response_ID. The event mustbe generated from
the onData function’s parent class, and the parent class must be annotated with an [Event] tag that specifies
that the class dispatches the com.vmware.data.query.events.DataByModelRequest.RESPONSE_ID event.

EventHandler

You use the [EventHandler] tag to annotate a method to handle a general, application-wide notification
event. An example of such an event is the DataRefreshInvocationEvent that is generated when the user
clicks the global refresh button in the vSphere Web Client UL

The [EventHandler] tag has one argument, which specifies the name of the event for which the method is
listening.

[EventHandler (name="event_name")]

The method you annotate with [EventHandler] must accept an event parameter. The event parameter
contains the generated event.

You can annotate a method with [EventHandler] to handle data responses from the Data Access Manager.
However, a method annotated with [ResponseHandler] is more suited to handling data requests. The Frinje
framework extracts the request type and result data automatically for [ResponseHandler] methods.

Example 5-8 shows an example method annotated to handle the global DataRefreshInvocationEvent.

Example 5-8. Example [EventHandler] Metadata Tag in Event Handler Method

[EventHandler (name="{com.vmware.core.events.DataRefreshInvocationEvent.EVENT_ID}")]

public function onGlobalRefreshRequest(event:DataRefreshInvocationEvent):void {
requestData();

}

View

You use the [View] tag to inject a view component object into the view’s associated mediator class. When you
use the [View] tag, you can reference the view component with a generic view variable, and the Frinje
framework will associate the mediator with the specific view at creation time. The associated view must be
annotated with the [DefaultMediator] tag for the framework to make the association. See
“DefaultMediator” on page 48.

Example 5-9, on page 50, shows an example of a mediator class that declares a generic variable for the view
class, and uses the [View] tag to inject the view component in the mediator get and set methods for the view.

Example 5-9. Example [View] Metadata Tag in Mediator Class
/7“:7“:

* The mediator for the ChassisSummaryView view.
*/

public class ChassisSummaryViewMediator extends EventDispatcher implements IContextObjectHolder {

VMware, Inc.

Chapter 5 Architecting Data Views

private var _view:ChassisSummaryView;

[View]
public function get view():ChassisSummaryView {
return _view;

}

public function set view(value:ChassisSummaryView):void {
_view = value;

}

Using the Data Access Manager Library

When you create your data view Flex classes using the MVC architecture pattern and Frinje framework, you
can use the Data Access Manager library included in the vSphere Web Client SDK. The DAM library is a Flex
library that communicates with the vSphere Web Client Data Service. Using DAM and the Data Service is the
principal way to retrieve information about objects in the vSphere environment.

In general, the mediator class in a data view extension uses the DAM library to request data from the vSphere
environment. The mediator class then updates the extension’s view class to reflect the new information. The
DAM also includes a data refresh mechanism that you can use to handle data changes implicitly. You can
include a data update specification with your data request, so that DAM can assign updated data to GUI
elements in your view class without the need for extra code to do so.

Data view extensions implemented in HTML communicate with the Data Service indirectly. To use the Data
Service library from an HTML extension, you must install an adapter process on the Virgo application server.
For more information about HTML bridge adapters, see “Creating Action Extensions” on page 67.

Data Access Manager Workflow

The DAM API consists of Frinje events, such as requests for data or responses to data requests. To use DAM,
your Flex classes must dispatch the request events and listen for the associated responses. You indicate which
events your classes can receive by using Frinje metadata annotations.

To use the Data Access Manager library, you must build your extension Flex classes as follows.

1 Create an annotated data model class in your plug-in module. The data model class must extend the
DataObject base class. The data model class describes the information that the extension’s mediator class
must retrieve using the DAM. The mediator references the data model class when dispatching data
request events or receiving data response events.

To query for a single property of a given vSphere object, you do not need to create a data model class, and
can proceed to Step 2.

2 Inyour extension’s mediator class, create and dispatch one or more data request events. Data request
events include both a reference to the target vSphere object, and a data model class as described in Step 1.
Optionally, the data request can also include a data update specification that will cause the DAM to send
notifications whenever the values of the requested properties change.

For data requests events that retrieve a single property, you specify the property name using a string
value and do not need to include a data model class.

3 The DAM sends a data response event, which contains a DataObject with the values of the requested
properties, as specified in the data model class in Step 1. You must annotate a method in your extension’s
mediator class to receive the data response event.

4 Inyour data response event handler method, update your extension’s user interface elements using the
data in the data response event.

VMware, Inc. 51

vSphere Web Client Extensions Programming Guide

Creating the Data Model Class

You create a data model class in your extension to describe the information needed from the DAM. When you
create a data model class, you specify the type of vSphere or custom object to which the request pertains, and
the specific properties of that object that you need to retrieve. For example, you can create a data model class
to request information on a Virtual Machine object, and include the name and powerState properties in the
data request.

Example 5-10 shows an example data model class.

Example 5-10. Data Model Class

package com.myExtension.model {
import com.vmware.core.model.DataObject

// data model class annotation and declaration
[Model (type="VirtualMachine")]
public class MyVmData extends DataObject {

//properties to retrieve, specified by annotation
[Model(property="name")]
public var myVmName:String;

[Model(property="runtime.powerState")]
public var myVmPowerState:String;

Class Declaration

The data model class must extend the DataObject class and use the [Model] annotation tag. Typically, you
create the data model class as a separate class or package in your plug-in module. This package must import
the package com.vmware.core.model.DataObject from the vSphere Web Client SDK.

The type tag in the [Model] annotation is optional. If you specify the type tag in the annotation, the data
model class can retrieve properties only for objects of the specified type. You can create a data model class to
request common properties for multiple object types, or you can use the type tag in the [Model] annotation
to make the data model class specific to a particular vSphere object type.

In Example 5-10, the class MyVmData has a [Model] annotation and extends DataObject. In the example, the
object type VirtualMachine is specified, indicating that the data model retrieves information on Virtual
Machine objects.

Declaring the Properties to Retrieve

In the data model class, you must specify a class property for each data property to retrieve through DAM.
When you declare each property, you must include a [Model] annotation with a property tag. The [Model]
annotation on a property differs from the [Model] annotation on the class.

The [Model] annotation on a property associates the property with a data property belonging to a vSphere
object. The property tag of the annotation specifies the name of the property to retrieve from the vSphere
object. When you use the data model class in a data request, DAM retrieves the property specified in the
annotation from the vSphere environment, and assigns the value to the associated class property.

When you use the data model class in a data request, the DAM returns values only for class properties that
have the [Model] annotation. Class properties without the annotation are ignored.

In Example 5-10, the class MyVmData includes the myVmName and myVmPowerState annotated properties. Each
property includes an annotation that specifies to the DAM the vSphere property to associate with the class

property.

52 VMware, Inc.

Chapter 5 Architecting Data Views

Retrieving Properties for Related Objects

You can specify and annotate class properties to retrieve data on related objects, such as the host associated
with a given virtual machine object. You use the relation tag in the [Mode1] annotation for the class property
to specify that the property requested from the DAM is for a related object.

Example 5-11 shows a data model class with a property annotated for the DAM to retrieve data from a related
object. In the example, the class property myVmHostName is annotated for the DAM to retrieve the name
property of the vSphere host object related to the target virtual machine object.

Example 5-11. Data Model Class with a Related Object Property Annotation

[Model (type="VirtualMachine")]

public class MyVmData extends DataObject {
[Model(relation="runtime.host", property="name")]
public var myVmHostName:String;

You can retrieve properties over multi-hop relationships by specifying each hop separated by a comma.
Example 5-12 shows a property annotated to retrieve data over a multi-hop relationship. In the example, the
myDatacenterName property is annotated to retrieve the name property for a datacenter object associated with
the host for a given virtual machine.

Example 5-12. Data Model Class with a Multi-hop Relationship Annotation

[Model (type="VirtualMachine™")]

public class MyVmData extends DataObject{
[Model(relation="runtime.host,cluster", property="name")]
public var myDatacenterName:String;

You can also retrieve properties for an object relationship with multiple cardinality, where the relationship is
one-to-many. For example, one such relationship is that of a virtual machine object to multiple related network
objects. When you retrieve a related property of this type, the associated class property in the data model class
must be of type Array or ArrayCollection.

Nested Data Models

The annotated properties in a data model class can be single properties, or they can be nested data model
classes. To specify a class property as a nested data model class, as opposed to a single property, you omit the
property tag from the [Model] annotation when declaring the class property.

Omitting the property tag implicitly declares that the class member variable is a data model of the same object
type as the parent data model. If the relation tag is specified, however, the class property is assumed to be a
data model for the object type specified in the relation tag.

Example 5-13 shows a data model class with two class properties that are nested data models. The first
property, myVmHardwareData, is another data model for Virtual Machine objects, the same as the parent data
model. The second property, myHostDetails, is a data model for Host objects.

Example 5-13. Nested Data Model Classes

[Model(type="VirtualMachine")]
public class MyVmData extends DataObject{
[Model]
public var myVmHardwareData:VmHardwareData; // VmHardwareData is a VM data model
[Model(relation="runtime.host")]
public var myHostDetails:HostData; // HostData is a Host data model

VMware, Inc. 53

vSphere Web Client Extensions Programming Guide

54

You can use a nested data model to create an array of data model objects. Example 5-14 shows a data model
class that uses a nested data model to create an array of objects based on the Host data model.

Example 5-14. Nested Data Model Used to Create Array

[Model(relation="runtime.host")]
public var HostlList:Array; // array of Host objects using the HostData model

IMPORTANT If the related object for which you want to retrieve data is a user-defined custom object, you must
use a different syntax in your [Model(relation="..."] annotation. Your [Model] annotation must
explicitly specify both the custom object type, and the nested data model that you use to define that type.
Example 5-15 shows a data model class that uses a nested data model for a user-defined custom Chassis object.

Example 5-15. Related Data Model for Custom Object Type

[Model(relation="Chassis as comexample:Chassis", nestedModel="com.example.ChassisModelData"]
public var myChassisDetails:ChassisModelData; // Chassis object using the ChassisModelData
model

In the example, the [Model(relation="..."] annotation specifies the exact object type for Chassis as
comexample:Chassis. The annotation also includes an explicit nestedModel attribute that specifies the
fully-qualified class name for the Chassis data model. Use this syntax for any custom object type that you
include in a data model class.

Sending Data Requests and Handling Data Responses

Your extension’s mediator class can use the DAM API to create requests for data. Your mediator class creates
data requests by dispatching one or more data request Frinje events specified in the API. The DAM responds
to each data request by generating a data response event. You can annotate a method in your mediator class
to handle the data response event and update the associated view class with the new information.

Data Request Events

The DAM API contains several different kinds of data request events. Requests can retrieve a single property
for a single object in the vSphere environment, or requests can retrieve multiple properties for an object by
using a data model class to specify those properties. Requests can be targeted to a specific vSphere object, or
you can specify a constraint to request data on all objects that match your defined criteria.

Your mediator requests data from DAM by dispatching data request events. To dispatch the events in the
DAM AP], your mediator class declaration must include an [Event] annotation for each type of event it
dispatches, and the class must extend the base SDK class EventDispatcher. See Example 5-16, on page 56. In
the class methods, you use the dispatchEvent () method to dispatch each data request event.

For data requests that retrieve a single property, you must specify the name of the property to retrieve using a
String type.

Data Response Events

The DAM can return either a response with data about a single vSphere object, or a response with data about
multiple vSphere objects. The DAM always returns one of these two responses, depending on the type of
request. For requests sent using a data model class, the DAM returns a data response with an object of the data
model class type, or an array of such objects for multiple objects. For requests sent for a single property, the
DAM returns the property value in a generic DataObject wrapper, or an array of generic DataObjects for
multiple objects.

Your mediator class can listen for, and handle, data response events by annotating a class method with the
[ResponseHandler] annotation. You specify the type of event for which the method listens in the
[ResponseHandler] annotation. See Example 5-16, on page 56.

VMware, Inc.

Request-to-Response Mapping

Chapter 5 Architecting Data Views

Table 5-1 contains the types of data request events, the resulting data response events, and the associated result

types included in the DAM APL
Table 5-1. Data Request and Data Response Events

Request Event Result Type Description
DataByModelRequest Instance of specified datamodel class ~ Get multiple properties for a given vSphere
or custom object, specified by a data model
class.
PropertyRequest Appropriate subtype of DataObject Get a single property for a given vSphere or
with the property value in the value custom object. The property name is
field specified using a String value.
DataByConstraintRequest ArrayCollection of instances of Get properties specified by data model for

specified data model class

vSphere or custom objects that match the
given constraint.

DataByQuerySpecRequest ArrayCollection of
ObjectDataObject (property-value

map)

Get data specified by query specification.

Examples of Data Request and Data Response Events

Example 5-16, on page 56, shows an example mediator class that interfaces with the DAM by dispatching data
request events and handling data response events. The class MyDataViewMediator extends the
EventDispatcher base class, and the declaration has an [Event] annotation for each of the data request

events that the class can dispatch.

Each of the methods that the class uses to handle data response events contains a [ResponseHandler]

annotation with the method declaration.

VMware, Inc.

55

vSphere Web Client Extensions Programming Guide

Example 5-16. Example Mediator Class Using DAM Interface

[Event(name="{com.vmware.data.query.events.DataByModelRequest.REQUEST_ID}",
type="com.vmware.data.query.events.DataByModelRequest")]

[Event(name="{com.vmware.data.query.events.PropertyRequest.REQUEST_ID}",
type="com.vmware.data.query.events.PropertyRequest")]

[Event(name="{com.vmware.data.query.events.DataByConstraintRequest.REQUEST_ID}",
type="com.vmware.data.query.events.DataByConstraintRequest")]

public class MyDataViewMediator extends EventDispatcher {

// Requests
private function requestData(event:Event): void {

// data-model request event

var VmDataRequest:DataByModelRequest = DataByModelRequest.newInstance(vmRef, MyVmData);
// vmRef is the target object reference; MyVmData is the data model class
dispatchEvent(VmDataRequest) ;

// single-property request event

var VmGuestInfoRequest:PropertyRequest = PropertyRequest.newInstance(vmRef, "guest");
// vmRef is the target object reference; single property specified as String
dispatchEvent(VmGuestInfoRequest);

// request by constraint
var VmListRequest:DataByConstraintRequest = DataByConstraintRequest.newInstance(
QuerySpecUtil.createConstraintForRelationship(hostRef, "vm"), MyVmData);
dispatchEvent(vmListRequest);
}

// Responses

[ResponseHandler (name="{com.vmware.data.query.events.DataByModelRequest.RESPONSE_ID}")]

public function onMyVmDataRetrieved(request:DataByModelRequest, result:MyVmData):void {

// use MyVmData result

}

[ResponseHandler (name="{com.vmware.data.query.events.PropertyRequest.RESPONSE_ID}")]

public function onVmGuestInfoRetrieved(request:PropertyRequest, result:StringDataObject) :void
{

// use string result from result.value

}

[ResponseHandler (name="{com.vmware.data.query.events.DataByConstraintRequest.RESPONSE_ID}")]

public function onVmListRetrieved(request:DataByConstraintRequest,
result:ArrayCollection):void {

// result is an ArrayCollection of MyVmData objects

}

In the example, the MyDataViewMediator class dispatches a DataByModelRequest event, a
PropertyRequest event, and a DataByConstraintRequest event in the requestData method.

The DataByConstraintRequest specifies the constraint using the createConstraintForRelationship
method. In the example, the constraint specifies the virtual machine objects related to the host object specified
by hostRef, which represent all virtual machines related to the given host.

Error Checking and Troubleshooting Your Data Requests

Data response events contain an additional error property that you can use to obtain more information about
the results of a failed data request. The error property is available as an optional parameter to the response
handler method. Example 5-17, on page 57, shows a code excerpt that demonstrates the use of this property.

56 VMware, Inc.

Chapter 5 Architecting Data Views

Example 5-17. Example Mediator Class Using error Property

[Event(name="{com.vmware.data.query.events.DataByConstraintRequest.REQUEST_ID}",
type="com.vmware.data.query.events.DataByConstraintRequest")]

public class MyDataViewMediator extends EventDispatcher {
// Skip request method; show only response method.
[ResponseHandler (name="{com.vmware.data.query.events.DataByConstraintRequest.RESPONSE_ID}")]
public function onDataRetrieved(request:DataByConstraintRequest,
result:ArrayCollection,
error:Error):void {
if (error != null) {
_logger.debug(“onDataRetrieved error:
return;

+ error.message);

}
// Valid result has been received.
_view.datastoreItems = result;

For more information, see the ActionScript API reference included with the vSphere Web Client SDK.

Data Refresh and Data Update Specifications

You can use the DAM'’s data refresh mechanism to subscribe your component to receive updated data from
the vSphere environment. You can bind the requested data directly to elements in the view class, causing those
elements to be updated whenever the requested data changes. To perform this binding, you must include a
data update specification when you dispatch your data request event.

A data update specification is included in the SDK base class DataRequestInfo. You must create an instance
of DataRequestInfo and set the DataUpdateSpec property, and then pass the DataRequestInfo object
when you create your data request. See Example 5-18, on page 58.

The DAM data refresh mechanism has different modes of operation. You specify the mode of operation with
your choice of constructor for the DataUpdateSpec object that you pass to your DataRequestInfo object.

B implicit. The DAM refreshes the data when the user performs an operation on the relevant object, or
when the user clicks on the vSphere Web Client global Refresh button.

B explicit. The DAM refreshes the data only if explicitly requested, such as when the user clicks the
vSphere Web Client global Refresh button.

To create an implicit binding, you use the newImplicitInstance() method to construct the
DataUpdateSpec object. To create an explicit binding, you use the newExplicitInstance() method.

Example 5-18, on page 58, shows an example mediator class that includes the DataRequestInfo and
DataUpdateSpec objects to create an automatic binding in the data request. In the example, the
DataUpdateSpec is constructed using the newImplicitInstance() method, resulting in an implicit binding.

VMware, Inc. 57

vSphere Web Client Extensions Programming Guide

58

Example 5-18. Mediator Class Using DAM Binding Specification for Data Refresh

import com.vmware.data.query.events.DataByModelRequest;
import com.vmware.data.query.DataUpdateSpec;
import com.vmware.data.query.events.DataRequestInfo;

[Event(name="{com.vmware.data.query.events.DataByModelRequest.REQUEST_ID}",
type="com.vmware.data.query.events.DataByModelRequest")]

public class MyVmViewMediator extends EventDispatcher {
private function onStart():void {
var requestInfo:DataRequestInfo =
new DataRequestinfo(DataUpdateSpec.newImplicitInstance());
// create a DataRequestInfo with an implicit-mode DataUpdateSpec

var myRequest:DataByModelRequest = DataByModelRequest.newInstance(
vmRef,
MyVmData, // data model
requestInfo); // include the DataRequestInfo object when constructing the request
dispatchEvent(myRequest);
}

[ResponseHandler (name="{com.vmware.data.query.events.DataByModelRequest.RESPONSE_ID}")]
public function onDataRetrieved(request:DataByModelRequest, result:MyVmData):void {
_view.vmData = result;

}

In the example, the function onStart dispatches the initial DataByMode1Request. The initial request
includes a DataRequestInfo object with an implicit DataUpdateSpec. The function onDataRetrieved is
annotated to handle the response, and updates a UI control with the returned data. Because of the data update
specification, the DAM calls onDataRetrieved when the data changes.

VMware, Inc.

Extending the Object Navigator

The object navigator is the user’s primary navigation interface for reaching solutions and applications in the

vSphere Web Client, and for finding and focusing on objects in the virtual infrastructure. The object navigator
control contains a collection of nodes, which can be simple pointers to global views and other solutions that

can appear in the vSphere Web Client main workspace. Nodes can also be expandable collections for vSphere
object types.

The object navigator home page appears when the user logs in to the vSphere Web Client, and contains a
pointer node for the home screen, an entry point to your environment’s virtual infrastructure through vCenter,
and pointer nodes for other major solutions in the vSphere Web Client. The object navigator Administration
page appears when the user clicks the Administration application, and contains categories and pointer nodes
specific to that application. The object navigator vCenter page appears when the user browses the objects in
the virtual infrastructure. On the vCenter page, the object navigator displays the available objects in the
vSphere environment in collections, such as inventory tree nodes and inventory list nodes.

You can extend the object navigator by creating new nodes and categories on each page. You can add both
pointer nodes and object collection nodes to the object navigator control.

This chapter contains the following topics:

B “Use Cases for Extending the Object Navigator” on page 59

B “Defining an Object Navigator Extension” on page 60

B “Using a Template to Define an Object Collection Node” on page 63

B “Adding Custom Icons and Labels to an Object Collection Node” on page 64

Use Cases for Extending the Object Navigator

Extensions to the object navigator provide access to other extensions or areas of interest in the vSphere Web
Client, such as global views and object workspaces. You create different object navigator extensions depending
on what access you want to give the user.

Global Views

You can add a pointer node to the object navigator that causes a global view extension to appear in the vSphere
Web Client main workspace. Global views are generally consoles, dashboards, applications. A best practice is
to create pointer node extensions on the object navigator home page only for major applications and solutions.
You can create pointers to other global views and dashboards on the vSphere Web Client Home screen. See
Chapter 9, “Creating Home Screen Shortcuts,” on page 87.

VMware, Inc. 59

vSphere Web Client Extensions Programming Guide

Object Collections

The object navigator vCenter page organizes vSphere objects using object collection nodes called inventory
lists. Each inventory list node is an aggregate collection of all objects of a particular type in the vSphere
environment. The Virtual Machine inventory list, for example, is an object collection node that contains all
Virtual Machines in the vSphere environment.

Entity collection nodes are expandable lists. When the user clicks an object collection node, a list of every object
in the collection appears in the object navigator control. The user can focus on any specific object in the
collection to view that object’s workspace and data views.

You can create an extension to add a new object collection node to the object navigator. A best practice is to
add your object collection node to the object navigator vCenter page, and to create a new category for the object
collection node.

Object collection nodes rely on relation extensions to display information about that object type’s relationship
to other objects in the vSphere environment. See Chapter 8, “Creating a New Relation Between vSphere
Objects,” on page 83.

Defining an Object Navigator Extension

All object navigator extensions must reference a common extension point, named
vise.navigator.nodespecs. object navigator extensions must specify this extension point in the extension
definition, and provide a data object of type
com.vmware.ui.objectnavigator.model.ObjectNavigatorNodeSpec.

An object navigator extension can add a category to the object navigator control, it can add a simple pointer
node, or it can add an object collection node. You determine which type of node you add to the object navigator
by which properties you include in the ObjectNavigatorNodeSpec data object, and how you set those
properties. Some properties of the ObjectNavigatorNodeSpec data object are optional and not used for
certain node types.

Specifying the Object Navigator Page and Category

When you add any type of extension to the object navigator, you specify where the extension appears by using
the <parentUid> property in the extension definition. Your extension can appear beneath one of the
predefined categories in the object navigator, or under a new category that you create with an extension.

Table 6-1 lists the pre-defined categories in the object navigator and the corresponding id values to which you
must set the <parentUid> property.

Table 6-1. Object Navigator Categories and IDs

Category Type Category ID

Object Navigator Home Page > Solution vsphere.core.navigator.solutionsCategory
Nodes

Object Navigator vCenter Page vsphere.core.navigator.virtualInfrastructure

Object Navigator vCenter Page > Inventory ~ vsphere.core.navigator.vilnventoryLists
Lists Category

Object Navigator Administration Page vsphere.core.navigator.administration

Adding a Category to the Object Navigator

Your extension can add a category, rather than a node, to the object navigator. Table 6-2, on page 61, lists the
properties of the ObjectNavigatorNodeSpec data object that you must set to add a category to the object
navigator.

60 VMware, Inc.

Chapter 6 Extending the Object Navigator

Table 6-2. ObjectNavigatorNodeSpec Extension Object Properties for Category Extension
Property Type Description

<title> string A string that appears as the text label for the category in the object navigator
control. The string can be hard coded, or it can be a dynamic resource string
included in your plug-in module.

<parentUid> string A string value that determines where the extension appears in the object
navigator control. The value of <parentUid> property must match the
extension id attribute of the parent category. The extension appears in the
category that you specify in the <parentUid> property. See “Specifying the
Object Navigator Page and Category” on page 60.

Example 6-1 shows an example extension definition for an object navigator extension that adds a new
category. In the example, the category is named “Admin Sample”, and the extension category is added to the
object navigator Administration page.

Example 6-1. Example Category Extension to Object Navigator

<extension id="mySolution.myPlugin.myAdminSampleCategory">
<extendedPoint>vise.navigator.nodespecs</extendedPoint>
<object>
<title>Admin Sample</title>
<parentUid>vsphere.core.navigator.administration</parentUid>
</object>
</extension>

Adding a Pointer Node to the Object Navigator

Your extension can add a pointer node to the object navigator. A pointer node extension causes a specific
application, object workspace, or global view to appear in the vSphere Web Client main workspace when the
user clicks the pointer node.

Table 6-3 lists the properties of the ObjectNavigatorNodeSpec data object that you must set to add a pointer
node to the object navigator.

Table 6-3. ObjectNavigatorNodeSpec Extension Object Properties for Pointer Node Extension

Property Type Description

<title> string A string that appears as the text label for the pointer node in the object
navigator control. The string can be hard coded, or it can be a dynamic
resource string included in your plug-in module.

<parentUid> string A string value that determines where the extension appears in the object
navigator control. The value of <parentUid> property must match the
extension id attribute of the parent category. The extension appears in the
category that you specify in the <parentUid> property. See “Specifying the
Object Navigator Page and Category” on page 60.

<navigationTargetUid> string A string value that specifies the global view, application, or object
workspace that appears in the main workspace when the user clicks the
pointer node. The value of the <navigationTargetUid> property must
match the extension id attribute for the target view.

<icon> resource The icon that appears for the pointer in the object navigator control. The
value of the <icon> property typically references a dynamic resource in
your plug-in module.

Example 6-2, on page 62, shows an example extension definition for an object navigator extension that adds a
new pointer node. In the example, the pointer node has the name label “Sample Dashboard” and causes the
extension mySolution.myPlugin.myDashboardApp to appear in the main workspace. The pointer node
appears in the object navigator control in the top-level Solutions category.

VMware, Inc. 61

vSphere Web Client Extensions Programming Guide

Example 6-2. Example Pointer Extension to Object Navigator

<extension id="mySolution.myPlugin.myDashboardPointer">
<extendedPoint>vise.navigator.nodespecs</extendedPoint>
<object>
<title>Sample Dashboard</title>
<parentUid>vsphere.core.navigator.solutionsCategory</parentUid>
<navigationTargetuid>mySolution.myPlugin.myDashboardApp</navigationTargetUid>
<icon>#{samplePluginImages:sample}</icon>
</object>
</extension>

Adding an Object Collection Node to the Object Navigator

Your extension can add a new object collection node to the object navigator. You typically add an object
collection node to the object navigator if you have introduced a new type of object to the vSphere environment,
and you want to provide direct access to the instances of that object.

An object collection node extension represents an aggregation of object instances, such as data centers or hosts.
When the user clicks an object collection node, the node can expand to show a list of all instances of that object
in the vSphere environment.

When you create an object collection node, part of your extension definition must reference a relation
extension. The vSphere Web Client uses data from the relation extension to populate the expandable list of
object instances. See Chapter 8, “Creating a New Relation Between vSphere Objects,” on page 83.

Table 6-4 lists the properties of the ObjectNavigatorNodeSpec data object that you must set to add an object
collection node to the object navigator.

Table 6-4. ObjectNavigatorNodeSpec Object Properties for Object Collection Node Extension

Property Type Description

<title> string A string that appears as the text label for the pointer node in the object
navigator control. The string can be hard coded, or it can be a dynamic
resource string included in your plug-in module.

<parentUid> string A string value that determines where the extension appears in the object
navigator control. The value of <parentUid> property must match the
extension id attribute of the parent category. The extension appears inside
the category that you specify in the <parentUid> property. See “Specifying
the Object Navigator Page and Category” on page 60.
Typically, most object collection nodes are found in the Inventory Lists
category of the object navigator vCenter page. A best practice is to either
add your object collection node to the Inventory Lists category, or to create
a new category extension.

<navigationTargetUid> string A string value that specifies the global view, application, or object
workspace that appears in the main workspace when the user clicks the
pointer node. The value of the <navigationTargetUid> property must
match the extension 1id attribute for the target view.
For an object collection node, a best practice is to set this value to an object
collection data view. You can create an object collection data view by using
the standard template when you create an object workspace for your
custom object type. See Chapter 4, “Adding to vCenter Object Workspaces,”
on page 37.

<icon> resource The icon that appears for the pointer in the object navigator control. The
value of the <icon> property typically references a dynamic resource in
your plug-in module.

62 VMware, Inc.

Chapter 6 Extending the Object Navigator

Table 6-4. ObjectNavigatorNodeSpec Object Properties for Object Collection Node Extension (Continued)
Property Type Description

<isFocusable> boolean A Boolean value. If you set this value to true, when the user clicks the
collection node, the object navigator control will slide to display a new page
with an expandable list of every object in the collection.

<nodeObjectType> string A string that indicates the type of object collection the node represents. The
value you specify in the <nodeObjectType> property must match the
extension id of an ObjectRelationSetSpec that you create in a Relation
extension for your object.

Example 6-3 shows an example extension definition for an object navigator extension that adds an object
collection node for a custom object type called a Rack. In the example, the Rack object collection node appears
under the Inventory Lists category in the object navigator vCenter page.

The Rack object collection node extension references an object workspace collection data view with the
identifiermySolution.myPlugin.Rack.objectCollectionView, and arelation extension with the identifier
RackNodeCollection.

Example 6-3. Example Entity Collection Node Extension

<extension id="mySolution.myPlugin.myRackCollectionNode">
<extendedPoint>vise.navigator.nodespecs</extendedPoint>
<object>
<title>Rack</title>
<icon>#{myPluginImages:Rack}</icon>
<parentUid>vsphere.core.navigator.vilnventorylLists</parentUid>
<navigationTargetUid>mySolution.myPlugin.Rack.objectCollectionView</navigationTargetUid>
<isFocusable>true</isFocusable>
<nodeObjectType>RackNodeCollection</nodeObjectType>
</object>
</extension>

Using a Template to Define an Object Collection Node

You can use an XML template included in the vSphere Web Client SDK to quickly create an object collection
node extension for a new object type. The object collection template generates an extension definition for an
object collection node that contains an expandable sliding view in the object navigator for all objects in the
collection. The variables in the template reference the necessary relation and object workspace extensions that
the object collection node needs to function.

Example 6-4 shows an example of how to instantiate the object collection template for a new object type called
a Chassis.

Example 6-4. Example Usage of Object Collection Template

<templateInstance id="com.vmware.samples.lists.allChassis">
<templateId>vsphere.core.inventorylist.objectCollectionTemplate</templateId>
<variable name="namespace" value="com.vmware.samples.chassisCollection"/>
<variable name="title" value="#{chassisLabel}"/>
<variable name="icon" value="#{chassis}"/>
<variable name="objectType" value="samples:Chassis"/>
<variable name="1listViewId" value="com.vmware.samples.chassis.list"/>
<variable name="parentUid" value="com.vmware.samples.chassisAppCategory"/>
</templateInstance>

In the example, the <variable> elements correspond to the properties of the ObjectNavigatorNodeSpec
data object. To avoid name clashes with other extensions, such as object view templates, the namespace
variable must be unique.

The template instance ID must be unique for every object collection you define.

VMware, Inc. 63

vSphere Web Client Extensions Programming Guide

Adding Custom Icons and Labels to an Object Collection Node

You can customize any object collection node that you create, by adding a new icon and label. To add an icon
or label representation to an object collection node, you must create a separate extension called an object
representation extension. An object representation extension can specify one or more icons and labels to
display for a given object type, and the conditions under which each icon and label are displayed. For example,
you can specify three different icons for a single object type, and have each icon appear under different

conditions.

Defining an Object Representation Extension

Object representation extensions must reference a common extension point, named

vise.inventory.representationspecs. Object representation extensions must specify this extension point

in the extension definition, and provide a data object of type
com.vmware.ui.objectrepresentation.model.ObjectRepresentationSpec.

An object representation extension specifies the target object type and an array of objects of type

com.vmware.ui.objectrepresentation.model.IconLabelSpec. Each IconLabelSpec objectin the array
represents one icon and label set for the object, and can define the conditions for when that icon and label set

appears.

Example 6-5 shows an example extension definition for an object representation extension. In the example, the

extension adds one new icon and label set for a custom object called a Rack.

Example 6-5. Object Representation Extension for Rack Object

<extension id="com.vmware.samples.rack.iconLabelSpecCollection">
<extendedPoint>vise.inventory.representationspecs</extendedPoint>
<object>
<objectType>samples:Rack</objectType>
<specCollection>
<com.vmware.ui.objectrepresentation.model.IconLabelSpec>
<iconId>#{rack-empty}</iconId>
<labelId>#{empty}</labelId>
<conditionalProperties>
<String>!chassis</String>
</conditionalProperties>
</com.vmware.ui.objectrepresentation.model.IconlLabelSpec>
</specCollection>
</object>
</extension>

Table 6-5 lists the properties of the ObjectRepresentationSpec data object that you must set.

Table 6-5. ObjectRepresentationSpec Extension Object Properties
Property Type Description

<objectType> string The object type for which the icon and label sets apply. In Example 6-5, the

object type is samples:Rack.

<specCollection> array An array of objects of type

com.vmware.ui.objectrepresentation.model.IconLabelSpec. Each
IconLabelSpec object defines a single icon and label pair, along with the

conditions under which that icon and label set appear.

Defining an Individual Icon and Label Set

Each IconLabelSpec object contains an icon ID, a label ID, and one or more conditional properties. The icon

ID and label ID values specify the icon and label resources from your plug-in resource .SWF file.

64

VMware, Inc.

Chapter 6 Extending the Object Navigator

Conditional properties govern when the icon and label appear in the object navigator. The
<conditionalProperties> property of the IconLabelSpec object contains an array of properties to be
evaluated as simple Boolean properties. You can use the negation operator (!) to evaluate against the reverse
of the boolean value.

In Example 6-5, the property chassis is evaluated as a simple Boolean, and the (!) operator is used. The icon
and label set in the example is only displayed for Rack objects without an associated Chassis.

You can also use a more advanced <conditions> property in an IconLabelSpec object to describe more
complex display conditions for your icon and label set. The <conditions> property functions identically to
property query constraints in the vSphere Web Client Data Service. See “Handling Constraints” on page 98

VMware, Inc. 65

vSphere Web Client Extensions Programming Guide

66 VMware, Inc.

Creating Action Extensions

In the vSphere Web Client, actions represent commands that the user can issue to manage, administer, or
otherwise manipulate the objects in the vSphere environment. Each action in the vSphere Web Client is
associated with one or more specific vSphere object types. For example, the user might perform an action to
change the power state of a selected Virtual Machine object, or to cause a Host object to enter or exit
maintenance mode.

You can extend the vSphere Web Client by adding new actions. You can add actions to existing vSphere
objects, or create actions associated with a new type of vSphere object.

When you add an action extension to the vSphere Web Client user interface layer, you must also extend the
vSphere Web Client service layer with a new Java service. The Java service is responsible for performing the
action operation on the target vSphere object.

This chapter contains the following topics:

B “Use Cases for Adding an Action Extension” on page 67

B “About the Actions Framework and Action Sets” on page 67

B “Defining an Action Set” on page 68

B “Defining Individual Actions in an Action Set” on page 68

B “Using Flex Command Classes To Handle Actions” on page 72

B “Performing Action Operations on the vSphere Environment” on page 75

B “Organizing Your Actions in the User Interface” on page 75

Use Cases for Adding an Action Extension

You can extend the vSphere Web Client by adding actions associated with an existing type of vSphere object,
or with a new type of vSphere object. You might add actions to an existing object type if you have created a
custom version of that vSphere object, such as a custom host.

In addition to creating the action extension in the user interface layer, you must also add a Java service to the
vSphere Web Client service layer. This Java service is used to perform the action operation on the target
vSphere object.

About the Actions Framework and Action Sets

The Actions Framework governs all available actions in the vSphere Web Client. Each action in the Actions
Framework is associated with one or more specific types of objects in the vSphere environment. Actions
associated with virtual machines, for example, are available only when the user has selected a virtual machine
object. Available actions are displayed in the actions drop-down menu at the top of the main workspace, or in
a context menu when the user right-clicks on an object in the object navigator.

VMware, Inc. 67

vSphere Web Client Extensions Programming Guide

All actions in the Actions Framework are organized into groups called action sets. When you create action
extensions to the vSphere Web Client, you must define one or more new action sets in the Actions Framework.

Action Controllers in Flex Extensions

In the plug-in module that contains your action extension, you must create a Flex command class. The Flex
command class contains a handler method for each action. When the user invokes your action, the vSphere
Web Client generates a Frinje event, which is then routed to the appropriate handler method in your command
class.

Action Controllers for HTML Extensions

In the plug-in module that contains your action extension, you must create a Java actions controller. The
controller runs on the Virgo application server and acts as a dispatcher for commands. The HTML Ul
component sends commands to the actions controller using a REST API, and the controller routes the
commands to services that implement the actions.

Defining an Action Set

An extension that adds one or more actions to the vSphere Web Client must define an action set. You add each
action set extension to a specific extension point in the vSphere Web Client user interface layer, named
vise.actions.sets.

Your extension definition must define an action set and the individual actions within that action set. An action
set is a data object of type com.vmware.actionsfw.ActionSetSpec. The ActionSetSpec object contains an
<actions> property, which is an array of action data objects. You specify each individual action in the set
inside the <actions> property, using a separate data object for each.

You associate each action set extension with a particular type of vSphere object. A best practice is to use the
vSphere Web Client extension filtering mechanism to ensure that the actions are only visible when the user
selects the relevant type of vSphere object. See “Filtering Extensions” on page 28.

IMPORTANT If you omit the <metadata> element for extension filtering in your action set extension definition,
your action is shown for all vSphere objects. Use the <metadata> element to ensure that your actions appear
only for the correct type of vSphere or custom objects.

Defining Individual Actions in an Action Set

68

Each action data object in a set is a data object of type com.vmware.actionsfw.ActionSpec. You must create
an ActionSpec data object for every action to add to the action set.

You create each ActionSpec data object using a <com.vmware.actionsfw.ActionSpec> XML element. In
this element, you set the properties for the action. Table 7-1 lists the properties that you set for each
ActionSpec object.

Table 7-1. ActionSpec Object Properties

Property Type Description

<uid> string Unique identifier of the action. Using namespace style is a best practice,
for example com.mySolution.myPlugin.chassis.chassisPowerAction.

<label> string String containing the text label for the action, suitable for a button or
context menu in the vSphere Web Client user interface.

<description> string String containing a short description of the action, suitable for a tooltip.
<icon> resource Icon class or dynamic resource for the action. This property is optional.
<acceptsMultipleTargets> boolean Boolean value. If you set this value to true, the action can be made

available when the user selects multiple vSphere objects. This property
is optional.

VMware, Inc.

Chapter 7 Creating Action Extensions

Table 7-1. ActionSpec Object Properties
Property Type Description

<conditionalProperty> string Name of a Boolean property on the target vSphere or custom object. You
can use the value of the property specified to define whether the action
is available on the target object. For example, you can specify a Boolean
property on a Virtual Machine object, and make your action available
only when that property is true. This property is optional.

<command> string Command class for a Flex-based action. The command class contains a
method annotated to handle the event that the vSphere Web Client
generates when the user invokes your action. The handler method must
then perform the actual action operation on the vSphere environment.
See “Using Flex Command Classes To Handle Actions” on page 72.

HTML-based extensions do not use the <command> property. Instead they contain a <delegate> object.

Defining the <delegate> Object in HTML-Based Action Extensions

HTML-based extensions use delegated actions instead of the command classes used by Flex-based extensions.
The <delegate> object requires a <className> property and an <object> element that contains only an
embedded <root> object. Example 7-2, “Example Action Set for an HTML-Based Extension,” on page 70
shows the structure of the <delegate> object for an HTML-based extension.

The <className> property must specify the HtmlActionDelegate class for HTML-based extensions:
<className>com.vmware.vsphere.client.htmlbridge.HtmlActionDelegate</className>
The <root> object specifies the UI dialog box used to initiate the HTML-based action.

Table 7-2 lists the properties that you set in the <root> object.

Table 7-2. Root Object Properties for HTML Action Extension
Property Type Description

<actionURL> string Identifies the HTML resource to be displayed. Can be an absolute
HTTPS URL or a bundle context path. If it is a bundle context path, a
relative URL, it must end with the . html extension to enable session
authentication. For absolute URLs, the framework does not use session
authentication.

<dialogTitle> string Title string for dialog box. Must be present, or the action is treated as
headless. Can be localized.

<dialogSize> string Width and height of the dialog box, in pixels, separated by comma.

Example Action Extension Definitions

You define the client part of your action extension using ActionSpec objects in your plugin.xml file. The
properties you use to define an ActionSpec object depend on the type of extension.

Flex-based action extensions specify a command class, implemented in ActionScript. HTML-based extensions
specify instead a delegate class, provided by the framework.

There are two types of HTML-based action extensions. One type, known as a Ul action, displays a modal
dialog box for user input or confirmation before submitting a service request. The other type, known as a
headless action, initiates a request to a service without additional user input. An extension definition for a UI
action specifies the size and title of the dialog box, while a headless action definition omits the dialog box
properties.

Flex-Based Action Extension Definition

Example 7-1 shows an example extension definition for a Flex-based action set extension. In the example, the
extension adds a set of two actions to the vSphere Web Client Actions Framework. The actions are associated
with a custom object type called a Chassis.

VMware, Inc. 69

vSphere Web Client Extensions Programming Guide

Example 7-1. Example Action Set for a Flex-Based Extension

<extension id="mySolution.myPlugin.myActionSet">
<extendedPoint>vise.actions.sets</extendedPoint>
<object>
<actions>
<!— first action ——>
<com.vmware.actionsfw.ActionSpec>
<uid>com.mySolution.myPlugin.chassis.createChassis</uid>
<label>Create Chassis</label>
<description>Create a Chassis object.</description>
<icon>#{myPluginImages:samplel}</icon>
<acceptsMultipleTargets>false</acceptsMultipleTargets>
<command className="com.mySolution.myPlugin.ChassisCommand"/>
</com.vmware.actionsfw.ActionSpec>
<!-- second action —-—>
<com.vmware.actionsfw.ActionSpec>
<uid>com.mySolution.myPlugin.chassis.editChassis</uid>
<label>Edit Chassis</label>
<description>Edit a Chassis object.</description>
<icon>#{myPluginImages:sample2}</icon>
<acceptsMultipleTargets>true</acceptsMultipleTargets>
<conditionalProperty>actions.isEditAvailable</conditionalProperty>
<command className="com.mySolution.myPlugin.ChassisCommand"/>
</com.vmware.actionsfw.ActionSpec>
</actions>
</object>
<metadata>
<!—— filters the actions in the set to be visible only for Chassis ——>
<objectType>samples:Chassis</objectType>
</metadata>
</extension>

HTML-Based Ul Action Extension Definition

Example 7-2 shows an example extension definition for an HTML-based UI action extension. The extension
must use a <delegate> object instead of the <command> object used by a Flex-based extension. The action in
this definition is associated with a custom object type called a Chassis.

Example 7-2. Example Action Set for an HTML-Based Extension

<extension id="com.vmware.samples.chassis.listActionSet">
<extendedPoint>vise.actions.sets</extendedPoint>
<object>
<actions>
<com.vmware.actionsfw.ActionSpec>
<uid>com.vmware.samples.chassis.createChassis</uid>
<label>#{chassis.createAction}</label>
<icon>#{addChassis}</icon>
<delegate>
<className>com.vmware.vsphere.client.htmlbridge.HtmlActionDelegate</className>
<object><root>

<actionUrl>/vsphere-client/chassis/resources/createChassisDialog.html</actionUrl>
<dialogTitle>#{chassis.createAction}</dialogTitle>
<dialogSize>500,400</dialogSize>

</root></object>
</delegate>
<privateAction>true</privateAction>
</com.vmware.actionsfw.ActionSpec>
</actions>
</object>
</extension>

70 VMware, Inc.

Chapter 7 Creating Action Extensions

When the action is invoked the platform opens a modal dialog containing the HTML document specified in
the actionUr1 property. The following parameters are added to the URL:

B actionUid: the <uid> of the ActionSpec object defined in the plugin.xml file
B targets: a comma-separated list of objectlds
® Jocale: the current locale used

By default, the targets parameter takes only one objectId. To specify more than one objectId, set the flag
acceptsMultipleTargets to true.

In this example, the full URL takes the following form:

/vsphere-client/chassis/resources/createChassisDialog.html?actionUid=com.vmware.sample
s.chassis.createChassis&targets=objectIa&locale=en

The dialog script uses the REST API to GET or POST data requests. For instance, to get object properties using
the Data Access AP, you use a request similar to the following;:

/vsphere-client/htmltest/rest/data/properties/objectId?properties=properties-1list
After the dialog form is submitted or the operation is canceled, the Javascript code calls
WEB_PLATFORM. closeDialog().

HTML-Based Headless Action Extension Definition

Example 7-3 shows an example extension definition for an HTML-based headless action extension. The
extension must use a <delegate> object instead of the <command> object used by a Flex-based extension. The
action in this definition is associated with a custom object type called a Chassis.

Example 7-3. Example Action Set for a Headless HTML-Based Extension

<extendedPoint>vise.actions.sets</extendedPoint>
<object>
<actions>
<com.vmware.actionsfw.ActionSpec>
<uid>com.vmware.samples.chassis.deleteChassis</uid>
<label>#{chassis.deleteAction}</label>
<icon>#{deleteChassis}</icon>
<delegate>
<className>com.vmware.vsphere.client.htmlbridge.HtmlActionDelegate</className>
<object><root>
<actionUrl>/vsphere-client/chassis/rest/actions.html</actionUrl>
</root></object>
</delegate>
</com.vmware.actionsfw.ActionSpec>

When the headless action is invoked the HTML bridge makes a POST request to the actions controller on the
Virgo server, using the actionUr1 property. The following parameters are added to the URL:

B actionUid: the <uid> of the ActionSpec object defined in the plugin.xml file
B targets: a comma-separated list of objectlds

By default, the targets parameter takes only one objectId. To specify more than one objectId, set the flag
acceptsMultipleTargets to true.

In this example, the full URL takes the following form:

/vsphere-client/chassis/rest/actions.html?actionUid=com.vmware.samples.chassis.deleteC
hassis&targets=objectid

VMware, Inc. 7

vSphere Web Client Extensions Programming Guide

Using callActionsController To Invoke HTML Actions

Your HTML-based action extension can invoke headless actions on its own initiative, by calling the Javascript
method WEB_PLATFORM. callActionsController(url, jsonData).

B The value of url has the form /vsphere-client/chassis/rest/actions.html?actionUid=action Uid

B The value of jsonData is a JSON map of parameters passed to the actions controller, or null if no
parameters are needed.

Using Flex Command Classes To Handle Actions

72

In a Flex-based action extension, you use a command class to provide the code that performs the action
operation in the vSphere environment when the user clicks your action.

When the user starts your action, the vSphere Web Client generates an ActionInvocationEvent using the ID
you specified using the <uid> property in the ActionSpec object in your extension definition. The vSphere
Web Client then instantiates the command class you specified in the <command> property. Your command class
must contain a method annotated to handle the ActionInvocationEvent that is generated when the action
is started. A single command class can contain handler methods for multiple actions, if those methods have
the necessary annotations.

You annotate a method to handle an ActionInvocationEvent by using the [RequestHandler] metadata tag
when you declare the method. In the [RequestHandler] tag, you must specify the <uid> property for the
action to handle. To annotate a method to handle the “Create Chassis” command in Example 7-1, you must
include the following [RequestHandler] tag in your method declaration.

[RequestHandler ("com.mySolution.myPlugin.createChassis")]
Your method must also accept the ActionInvocationEvent as a parameter.

Example 7-4, on page 73, shows an example Flex command class. In the example, the ChassisCommand class
contains a handler method for each of the actions defined in Example 7-1.

VMware, Inc.

Chapter 7 Creating Action Extensions

Example 7-4. Example Flex Command Class

package com.vmware.samples.chassisui {

import com.vmware.actionsfw.ActionContext;

import com.vmware.actionsfw.events.ActionInvocationEvent;
import com.vmware.core.model.IResourceReference;

import com.vmware.data.common.ObjectChangeInfo;

import com.vmware.data.common.OperationType;

import flash.events.EventDispatcher;

import mx.controls.Alert;

[Event(name="{com.vmware.data.common.events.ModelChangeEvent.MODEL_CHANGE}",
type="com.vmware.data.common.events.ModelChangeEvent")]

public class ChassisCommand extends EventDispatcher {
private var _proxy:ChassisServiceProxy = new ChassisServiceProxy();

/** Create Chassis action handler **/

[RequestHandler("com.mySolution.myPlugin.chassis.createChassis™)]

public function onCreateChassisActionInvocation(event:ActionInvocationEvent):void {
_proxy.createChassis(onCreateChassisComplete);

}

/** Edit Chassis action handler **/

[RequestHandler("com.mySolution.myPlugin.chassis.editChassis")]

public function onEditChassisActionInvocation(event:ActionInvocationEvent):void {
var chassisReference:IResourceReference = getIResourceReference(event);
_proxy.editChassis(chassisReference, onEditChassisComplete, chassisReference);

}
private function onEditChassisComplete(event:MethodReturnEvent):void {
if (event.error != null) {
Alert.show(event.error.message);
return;
}

var chassisReference:IResourceReference = event.callContext as IResourceReference;
var mce:ModelChangeEvent = ModelChangeEvent.newSingleObjectChangeEvent

chassisReference,
OperationType.CHANGE) ;
dispatchEvent(mce);
}
private function onCreateChassisComplete(event:MethodReturnEvent):void {
if (event.error != null) {
Alert.show(event.error.message);
return;
}

var chassisReference:IResourceReference = event.result as IResourceReference;
var mce:ModelChangeEvent = ModelChangeEvent.newSingleObjectChangeEvent
chassisReference,
OperationType.ADD) ;
dispatchEvent(mce);
}

private function getIResourceReference(event:ActionInvocationEvent) :IResourceReference {
// actionContext.targetObjects is an array of objects on which the action is called
// so actionContext.targetObjects[0] is the selected Chassis for this action.
var actionContext:ActionContext = event.context;
if (actionContext == null || (actionContext.targetObjects.length <= 0)
|| (!(actionContext.targetObjects[0] is IResourceReference))) {
return null;
}

return (actionContext.targetObjects[0] as IResourceReference);

VMware, Inc. 73

vSphere Web Client Extensions Programming Guide

In the example, the onCreateChassisActionInvocationand onEditChassisActionInvocation methods
are annotated to handle the actions defined in the action set in Example 7-1. The actual action operations are
performed by an imported Java service. In Example 7-4, ChassisServiceProxy refers to a proxy class for a
Java service that performs the action operations. See “Performing Action Operations on the vSphere
Environment” on page 75.

Java Actions Controller Classes for HTML Extensions

74

When you create an HTML-based action extension to the vSphere Web Client, you must create an actions
controller class on the Virgo server to respond to REST API requests from the client code. A best practice is to
implement the controller class as a simple dispatcher that maps the action UIDs to Java services. You can
invoke custom services or translate REST API requests to Data Manager requests.

Example 7-5. Example Java Actions Controller Class

@RequestMapping(method = RequestMethod.POST)

@ResponseBody

public Map invoke(
@RequestParam(value = "actionUid", required = true) String actionuUid,
@RequestParam(value = "targets", required = false) String targets,
@RequestParam(value = "json", required = false) String json)

throws Exception {

ActionResult actionResult = new ActionResult(actionUid, RESOURCE_BUNDLE);

if (actionUid.equals("com.vmware.samples.chassis.editChassis™)) {
boolean result = _chassisService.updateChassis(objectRef, chassisInfo);
actionResult.setObjectChangedResult(result, "editAction.notFound");

} else if (actionUid.equals("com.vmware.samples.chassis.deleteChassis™)) {
boolean result = _chassisService.deleteChassis(objectRef);
actionResult.setObjectDeletedResult(result, "deleteAction.notFound");

} else if (actionUid.equals("com.vmware.samples.chassis.createChassis™)) {
Object result = _chassisService.createChassis(chassisInfo);
if (result != null) {
actionResult.setObjectAddedResult((URI)result, "samples:Chassis", null);
} else {
// Case where the name is already taken
String[] params = new String[] { chassisInfo.name };
actionResult.setErrorMessage("createAction.nameTaken", params);

}

} else {
String warning = "Action not implemented yet! "+ actionUid;
_logger.warn(warning);
actionResult.setErrorLocalizedMessage(warning);

}

return actionResult.getJsonMap(Q);

In the example, the invoke method must return a JSON map that signals the framework to update its object
lists in the client. The map must contain a result key whose value is the result of the service call. A utility
class ActionResult is provided to define additional result parameters.

If the action adds, updates, or deletes objects, you should use an instance of ActionResult to notify the Web
Client framework, so it can update object lists in the client. Use the ActionResult methods
setObjectAddedResult, setObjectChangedResult, or setObjectDeletedResult. Pass the result
returned by the service as the first parameter to the method.

VMware, Inc.

Chapter 7 Creating Action Extensions

The ActionResult methods accept an optional second parameter that contains a message key that the client
code can use to report an error in the Ul if the result is false or null. Alternatively, you can use the
setErrorMessage method to add the error message key to the results map.

NOTE Headless actions cannot display error messages or otherwise report the results of the action. To display
results in the U, you must handle your action request from a Ul action dialog.

Performing Action Operations on the vSphere Environment

Typically, an action requires you to make a change to the vSphere environment, such as changing the power
state of a Virtual Machine, creating a new Host object, or deleting a vSphere object. You make changes to the
vSphere environment using a Java service in the vSphere Web Client service layer. A command class for an
action extension must either import the Java service, or use a service proxy class. Methods in the Java service
perform the actual operations in the vSphere environment.

A best practice is to create a new Java service for your action extensions, and add that service to the vSphere
Web Client service layer. You can then create a proxy class for the Java service, and use the service proxy in a
command class. See Chapter 11, “vSphere Web Client Service Layer,” on page 93.

Obtaining the Action Target Object

For some actions, such as the Edit Chassis action in Example 7-4, you must obtain a reference to the target
vSphere object that the user selected before performing the action. You can obtain a reference to the target
vSphere object by using the ActionInvocationEvent that the Actions Framework generates when an action
is triggered.

The ActionInvocationEvent contains an object of type ActionContext in the Actions Framework library.
The ActionContext object contains an array named targetObjects, from which you can obtain references
to all vSphere objects that the user has selected in the user interface. In Example 7-4, the method
getIResourceReference shows an example of how to obtain a reference to the target object.

Your Flex command class must import the packages com.vmware.actionsfw.ActionContext and
com.vmware.actionsfw.events.ActionInvocationEvent to use these vSphere Web Client SDK features.

Updating the Client with Action Operation Results

When your Java service completes the action operation, you must update the vSphere Web Client with the
results of that operation. You update the vSphere Web Client by dispatching a Mode1ChangeEvent in your
command class.

To dispatch a Mode1ChangeEvent, your Flex command class must import the packages
com.vmware.data.common.OperationType, com.vmware.data.common.ObjectChangeInfo, and
com.vmware.data.common.events.ModelChangeEvent. You must also annotate your command class as
follows.

[Event(name="{com.vmware.data.common.events.ModelChangeEvent.MODEL_CHANGE}",
type="com.vmware.data.common.events.ModelChangeEvent")]

You can use a callback method to ensure that your command class dispatches the necessary
ModelChangeEvent. Your service proxy class can invoke the callback method in your command class when
the action operation finishes. In Example 7-4, the command class passes references to the appropriate callback
methods, onEditChassisComplete and onCreateChassisComplete, when it invokes the action operations
in the service proxy. The callback methods then process the results of the action operation and dispatch the
ModelChangeEvent as necessary.

Organizing Your Actions in the User Interface

You can control some aspects of how the actions you add appear in the vSphere Web Client user interface. In
addition to choosing the objects for which your actions appear, you can display actions in nested menus, add
nested menus and separators to action menus, and prioritize which actions appear highest in an action menu.

VMware, Inc. 75

vSphere Web Client Extensions Programming Guide

76

Extending an Action Menu

You can extend an object’s action menu by adding a nested solution menu. The solution menu can contain
actions, additional nested menus, and separators. You can extend an action menu by defining a Solution Menu
extension in your plug-in module’s plugin.xml manifest file.

Defining a Solution Menu Extension

All Solution Menu extensions that you create use a common extension point in the vSphere Web Client
extension framework, called vsphere.core.menus.solutionMenus. The extension definition must provide
an extension object of type com.vmware.actionsfw.ActionMenuItemSpec.

The ActionMenuItemSpec object represents the new solution menu nested in an object’s action menu. In the
solution menu object, you define an array of additional ActionMenuItemSpec objects to represent actions,
nested menus, and separators.

Table 7-3 lists the properties of the ActionMenuItemSpec object that you must set for your nested solution
menu extension.

Table 7-3. ActionMenultemSpec Extension Object Properties for a Nested Solution Menu

Property Type Description

<label> string String that appears as the text label for the nested solution menu. The string
can be hard coded, or it can be a dynamic resource string included in your
plug-in module.

<uid> string The unique identifier for the nested solution menu. A best practice is to use
the English label for the nested solution menu, in camel case.

<children> array An array of additional ActionMenuItemSpec objects. Each
ActionMenuItemSpec child object can represent an action, a nested menu,
or a separator.

You associate your Solution Menu extension with a particular type of vSphere or custom object. A best practice
is to use the vSphere Web Client extension filtering mechanism to ensure that the actions are only visible when
the user selects the relevant type of vSphere object. See “Filtering Extensions” on page 28.

IMPORTANT If you omit the <metadata> element for extension filtering in your Solution Menu extension
definition, your Solution Menu is shown for all vSphere objects. Use the <metadata> element in your Solution
Menu extension definition to ensure that your Solution Menu appears only for the correct type of vSphere or
custom objects.

Example 7-6, on page 77, shows an example Solution Menu extension definition. In the example, the extension
adds a nested solution menu to the action menu for VirtualMachine objects.

VMware, Inc.

Chapter 7 Creating Action Extensions

Example 7-6. Example Solution Menu Extension Definition

<!—— Defines a solution sub-menu on VirtualMachine objects ——>
<extension id="com.vmware.samples.actions.submenus">

<extendedPoint>vsphere.core.menus.solutionMenus</extendedPoint>
<object>
<label>#{allSampleActions.label}</label>
<uid>allSampleVMActions</uid>
<children>
<Array>
<!— array of ActionMenuIltemSpec objects, which are items in the Solution Menu ——>
<com.vmware.actionsfw.ActionMenuIltemSpec>

</com.vmware.actionsfw.ActionMenuItemSpec>
<com.vmware.actionsfw.ActionMenuItemSpec>

</com.vmware.actionsfw.ActionMenuItemSpec>
</Array>
</children>
</object>
<metadata>
<objectType>VirtualMachine</objectType>
</metadata>

</extension>

Adding Items to a Nested Solution Menu

You can add items to a nested solution menu by using the <children> property in your Solution Menu
extension’s ActionMenuItemSpec object. In the <children> property, you can add one or more additional
ActionMenuItemSpec objects to represent each item.

Adding an Action

To add an action to your solution sub-menu, you create a child ActionMenuItemSpec object with the
properties listed in Table 7-4.

Table 7-4. ActionMenultemSpec Child Object Properties for an Action

Property Type Description

<label> string String that appears as the text label for the action. The string can be hard
coded, or it can be a dynamic resource string included in your plug-in
module.

<uid> string Unique identifier for the action. The action UID must match the UID you set

for the action when you defined it using the ActionSpec object. See
“Defining Individual Actions in an Action Set” on page 68.

<type> string Type parameter for the item to add to the nested solution menu. For an

action, <type> must be set to the string action.

Example 7-7, on page 78, shows an example of a nested solution menu with two action items as child objects.

VMware, Inc.

7

vSphere Web Client Extensions Programming Guide

78

Example 7-7. Nested Solution Menu Extension with Actions

<!—— Defines a solution sub-menu on VirtualMachine objects ——>
<extension id="com.vmware.samples.actions.submenus">
<extendedPoint>vsphere.core.menus.solutionMenus</extendedPoint>
<object>
<label>#{allSampleActions.label}</label>
<uid>allSampleVMActions</uid>

<children>
<Array>
<!— array of ActionMenuIltemSpec objects, which are items in the Solution Menu ——>
<com.vmware.actionsfw.ActionMenuIltemSpec>
<!— first action ——>

<type>action</type>
<uid>com.vmware.samples.actions.myVmActionl</uid>
<label>#{actionl.label}</1label>
</com.vmware.actionsfw.ActionMenuItemSpec>
<com.vmware.actionsfw.ActionMenuIltemSpec>
<!-- second action —-—>
<type>action</type>
<uid>com.vmware.samples.actions.myVmActionl</uid>
<label>#{actionl.label}</1label>
</com.vmware.actionsfw.ActionMenuItemSpec>
</Array>
</children>
</object>
<metadata>
<objectType>VirtualMachine</objectType>
</metadata>
</extension>

Adding a Separator

To add a separator to your nested solution menu, you create a child ActionMenuItemSpec object with the
properties listed in Table 7-5.

Table 7-5. ActionMenultemSpec Child Object Properties for a Separator

Property Type Description

<type> string Type parameter for the item to add to the nested solution menu. For a
separator, <type> must be set to the string separator.

Adding a Nested Menu

To add an action to your nested solution menu, you create a child ActionMenuItemSpec object with the
properties listed in Table 7-6. For menus nested to another level, you must omit the <type> property and
include a <children> property.

Table 7-6. ActionMenultemSpec Child Object Properties for a Nested Sub-Menu

Property Type Description

<label> string String that appears as the text label for the nested menu. The string can be
hard coded, or it can be a dynamic resource string included in your plug-in
module.

<uid> string Unique identifier for the nested menu. A best practice is to use the English

label for the menu in camel case.

<children> array Array of additional ActionMenuItemSpec objects. Each
ActionMenuItemSpec child object can represent an action, a nested menu,
or a separator.

Example 7-8, on page 79, shows an example solution menu that adds a Solution Menu extension for
VirtualMachine objects. The nested solution menu includes a subordinate nested menu called “Configuration”
with two actions, a separator, and an additional action.

VMware, Inc.

Chapter 7 Creating Action Extensions

Example 7-8. Example Solution Menu Extension with Nested Menu and Separator

<!—— Defines a solution sub-menu on VirtualMachine objects ——>
<extension id="com.vmware.samples.actions.submenus">
<extendedPoint>vsphere.core.menus.solutionMenus</extendedPoint>
<object>
<label>#{allSampleActions.label}</label>
<uid>allSampleVMActions</uid>

<children>
<Array>
<!— array of ActionMenuIltemSpec objects, which are items in the Solution Menu ——>
<!—— add a nested sub-menu called "configuration" ——>

<com.vmware.actionsfw.ActionMenuIltemSpec>
<uid>configuration</uid>
<label>#{configurationMenu.label}

<children>
<array>
<!— first action in sub-menu -->
<com.vmware.actionsfw.ActionMenuItemSpec>
<type>action</type>

<uid>com.vmware.samples.actions.myVmActionl</uid>
<label>#{actionl.label}</1label>
</com.vmware.actionsfw.ActionMenuIltemSpec>

<!-— second action in sub-menu —-->

<com.vmware.actionsfw.ActionMenuItemSpec>
<!-- second action —-—>
<type>action</type>

<uid>com.vmware.samples.actions.myVmActionl</uid>
<label>#{actionl.label}</1label>
</com.vmware.actionsfw.ActionMenuItemSpec>
</array>
</children>
</com.vmware.actionsfw.ActionMenuItemSpec>

<!—— add a separator after the sub-menu ——>
<com.vmware.actionsfw.ActionMenuItemSpec>
<type>separator</type>
</com.vmware.actionsfw.ActionMenultemSpec>

<!—— add an additional action ——>
<com.vmware.actionsfw.ActionMenuItemSpec>
<type>action</type>

<uid>com.vmware.samples.actions.myVmAction3</uid>
<label>#{action3.1label}</1label>
</com.vmware.actionsfw.ActionMenuItemSpec>
</Array>
</children>
</object>
<metadata>
<objectType>VirtualMachine</objectType>
</metadata>
</extension>

Prioritizing Actions in the User Interface

If your plug-in module adds actions to the vSphere Web Client, you can change the order in which those
actions appear at different points in the user interface. You can prioritize the action order in the global action
menu for all vSphere actions, or in the context-specific action menu for a vSphere or custom object.

To change your actions’ display order, you must create a Prioritization extension. You must define the
Prioritization extension in the same plug-in package that contains your action extensions. You must create
different extensions depending on whether you want to promote actions in the action menu for a certain object
type, or to set the action priority in the global action list.

VMware, Inc. 79

vSphere Web Client Extensions Programming Guide

80

Prioritizing Context-Specific Actions

To change how actions are prioritized in the action menu for a specific object type, you must create a
Prioritization extension at the extension point vmware.prioritization.actions. Your extension must
provide a data object of type com.vmware.vsphere.client.prioritization.ActionPriorityGroup.

The ActionPriorityGroup object defines the priority order for the actions in the action menu, and the target
object type. The actions listed first in your extension definition appear at the top of the action menu and to the
right side of the actions toolbar. You can promote a maximum of five actions on the actions toolbar.

Table 7-7 lists the properties of the ActionPriorityGroup object that you must set in your Prioritization
extension.

Table 7-7. ActionPriorityGroup Extension Object Properties

Property Type Description

<prioritizedIds> array Array of <string> elements. Each <string> element contains the UID of
an action. You list each action UID string in order from highest priority to
lowest priority, depending on how you want the actions to appear in the
action menu.

<actionTargetTypes> array <string> element that contains the target object type, such as
samples:Chassis or VirtualMachine. The Prioritization extension sets the
display priority for the target object type’s action menu.

<regionId> string Optional parameter you can use to specify a specific subset of actions in an
action menu. If a vSphere or custom object has a different action list
depending on that object’s state, you can specify the UID of that action list
in the <regionId> parameter to promote actions in that action list.

Example 7-9 shows an example Prioritization action that sets the display priority for actions in the default
actions menu for a custom object called a Chassis.

Example 7-9. Prioritizing Items in the Chassis Action Menu

<extension id="com.vmware.samples.chassis.actionMenuPrioritization.editAction">
<extendedPoint>vmware.prioritization.actions</extendedPoint>
<object>
<prioritizedIds>
<string>com.vmware.samples.chassis.editChassis</string>
<string>com.vmware.samples.chassis.deleteChassis</string>
<string>com.vmware.samples.chassis.moveChassis</string>
<string>com.vmware.samples.chassis.poweronChassis</string>
<string>com.vmware.samples.chassis.poweroffChassis</string>
</prioritizedIds>
<actionTargetTypes>
<string>samples:Chassis</string>
</actionTargetTypes>
</object>
</extension>

Prioritizing Global Actions Toolbar

To change how actions are prioritized in the global actions menu, you must create a Prioritization extension at
the extension point vmware.prioritization.listActions. Your extension must provide a data object of
type com.vmware.vsphere.client.prioritization.ActionPriorityGroup.

The ActionPriorityGroup object defines the priority order for the actions in the global actions toolbar, which
is the toolbar that appears to the left of the context toolbar. The actions listed first in your extension definition
appear farthest left in the global actions toolbar.

Table 7-8, on page 81, lists the properties of the ActionPriorityGroup object that you must set in your
Prioritization extension.

VMware, Inc.

Chapter 7 Creating Action Extensions

Table 7-8. ActionPriorityGroup Extension Object Properties
Property Type Description

<prioritizedIds> array Array of <string> elements. Each <string> element contains the UID of
an action. You list each action UID string in order from highest priority to
lowest priority, depending on how you want the actions to appear in the
global action list.

<regionId> string UID of the region of the global action list to modify.

Example 7-10 shows an example Prioritization action that sets the display priority for actions in the default
actions menu for a custom object called a Chassis.

Example 7-10. Prioritizing Items Added to Global Actions Toolbar for Chassis Objects

<extension id="com.vmware.samples.chassis.actionListPrioritization.createAction">
<extendedPoint>vmware.prioritization.listActions</extendedPoint>
<object>
<prioritizedIds>
<string>com.vmware.samples.chassis.createChassis</string>
<string>com.vmware.samples.chassis.createRack</string>
</prioritizedIds>
<regionId>com.vmware.samples.chassis.list</regionId>
</object>
</extension>

VMware, Inc. 81

vSphere Web Client Extensions Programming Guide

82 VMware, Inc.

Creating a New Relation Between
vSphere Objects

The vSphere objects that make up the virtual infrastructure are organized as a graph of related objects. Each
type of vSphere object maintains parent-child relationships with adjacent objects. For example, a host object
can have several related virtual machine objects as children, while many host objects might have a single
cluster object as a parent. The relationships between vSphere objects are reflected in different places in the
vSphere Web Client GUI, including the object navigator and on the Related Objects tab in an object
workspace. The object navigator and object workspaces can display the related items for a vSphere object, such
as the virtual machine objects associated with a given host object.

The vSphere Web Client uses relation extensions to represent the relationships between objects. A relation
extension defines a relationship between a vSphere object and any other objects in the hierarchy of the virtual
infrastructure. Certain extensions, such as some object navigator nodes and object list views, reference relation
extensions to obtain their information. You can create relation extensions to add new relationships between
vSphere objects in your vSphere environment, and to have other areas of the vSphere Web Client reflect those
relationships.

This chapter contains the following topics:
B “Use Cases for Adding a Relation Extension” on page 83
B “Defining a Relation Extension” on page 84

B “Describing the Relation Using the RelationSpec Object” on page 84

Use Cases for Adding a Relation Extension

You create a relation extension when you want the user to receive information about other vSphere or custom
objects, either in a list view or in the object navigator, when they select or focus on a given vSphere or custom
object. For example, if you created a chassis object type, it might contain one or more host objects. You can
create a relation extension for the chassis object so that information about any related host objects also appears
in the object workspace or object navigator when the user selects a chassis object.

You can add a relation extension to the vSphere Web Client to create a new relationship between a given type
vSphere object and any other object type in the virtual infrastructure hierarchy. If you add a new type of object
to the vSphere environment, you must create a relation extension to place your new object in the graph of
vSphere objects, and to populate the Related Items views.

You can also create a relation extension for two existing vSphere objects that do not have an existing
relationship. You might create such a relation to take advantage of the Related Items views in the object
navigator and object workspaces for those objects, or if you created an object collection node for an existing
object in the object navigator.

VMware, Inc. 83

vSphere Web Client Extensions Programming Guide

Defining a Relation Extension

To create a relation extension, you need to create the metadata extension definition in your user interface
plug-in module plugin.xml file. You do not need to create a Flex class. Relation extensions use a single
common extension point in the vSphere Web Client user interface layer, named vise.relateditems.specs.
Relation extensions must specify this extension point, and provide a data object of type
com.vmware.ui.relateditems.model.ObjectRelationSetSpec.

The ObjectRelationSetSpec object specifies the object type to which the relation pertains, and a list of
RelationSpec objects that describe the current object’s relationship to other vSphere objects. The
ObjectReltaionSetSpec contains other optional properties that you can use to set the data view in which
relations are displayed, and to further refine when relations appear.

Table 8-1 lists the properties you set for the ObjectRelationSetSpec object.

Table 8-1. ObjectRelationSetSpec Extension Object Properties
Property Type Description

<type> string Type of object to which the relation pertains. For example, if you are
creating a relation for the Host object type, you set the <type> property
to the string HostSystem.

<relationSpecs> array Array of objects of type
com.vmware.ui.relateditems.model.RelationSpec. Each
RelationSpec object describes the relation between the current object,
specified in the <type> property, and a target object that you specify. See
“Describing the Relation Using the RelationSpec Object” on page 84.

<relationsViewId> string Extension ID of the Related Items data view for the current object. When
the user selects the object node using the object navigator, the Related
Items data view you specify in the <relationsViewId> property
appears in the main workspace in the vSphere Web Client GUI This
property is optional. If you do not include the <relationsViewId>
property in your extension definition, no Related Items data view
appears for that object.

<conditionalProperty> string Optional property that you can include as an additional constraint for
the relation. To use this property, you specify the name of a Boolean
property on the target object. For example, if you are creating a relation
extension for a virtual machine object, you can additionally specify a
Boolean property, such as the power-on state, on that virtual machine
using <conditionalProperty>. The relation appears in the vSphere
Web Client only if both the relation conditions are met and
<conditionalProperty> is satisfied.

Describing the Relation Using the RelationSpec Object

84

You describe each of the relations for the vSphere object using RelationSpec objects, which you must create
inside the <relationSpecs> property of the ObjectRelationSetSpec extension object. Each RelationSpec
object contains information on the relation target object type, display properties such as icons and labels, and
any relevant list extensions for the relation target object.

Table 8-2 lists the properties you set for each RelationSpec object.

VMware, Inc.

Chapter 8 Creating a New Relation Between vSphere Objects

Table 8-2. RelationSpec Extension Object Properties

Property

<id>

Type

string

Description

Unique identifier for the relation. The best practice for creating an ID
value for a relation is to use the format [relation target
object]For[relation object]. For example, if the parent
ObjectRelationSetSpec object defines the relations for Chassis
objects, you might use the value hostForChassis as the ID for the
RelationSpec object that describes the relation to host objects.

<icon>

array

Icon resource for the relation. This icon appears in the Related Objects
data view and in the object navigator. You can specify a dynamic
resource from your plug-in module for the relation icon.

<label>

string

Text label for the relation. This label appears in the Related Objects data
view and in the object navigator. You can hard code a string value or

include a dynamic resource string from your plug-in module resources
file.

<listViewId>

string

Extension ID for a list view that can display the relation target object
type. For example, a hostForChassis relation can specify the extension
ID of a host list view. The vSphere Web Client uses this list view
extension to display the list of related target objects.

<relation>

string

Property name that is included in the relation constraint.

<conditionalProperty>

string

Additional property on the relation target object that can be used to
constrain which related items are displayed in the vSphere Web Client
GUL You specify the name of a Boolean property on the target object
using this property, and only objects for which the property is true
appear in the vSphere Web Client GUI

<targetType>

string

Relation target object type. For example, in the hostForChassis
relation, which displays Host objects related to a selected Chassis object,
you specify the <targetType> as HostSystem.

Example 8-1, on page 86, presents an example extension definition for a relation extension. In the example, the
extension defines relations for the Chass1is object type. When the user selects a chassis object, the vSphere Web
Client provides related items information for the relations defined in the example. In the example, relations
are defined for Rack and Host object types.

VMware, Inc.

85

vSphere Web Client Extensions Programming Guide

86

Example 8-1. Example Relation Extension for Chassis Entity

<!—— Chassis relations ——>
<extension id="com.vmware.samples.relateditems.specs.chassis">
<extendedPoint>vise.relateditems.specs</extendedPoint>
<object>
<type>samples:Chassis</type>
<!— relationsViewId references the "related items view" extension created
by the object template. It must be defined for the related items view to
be shown on the right-hand side.
-_>
<relationsViewId>com.vmware.samples.chassis.related</relationsViewId>
<relationSpecs>
<com.vmware.ui.relateditems.model.RelationSpec>
<id>rackForChassis</id>
<icon>#{rack}</icon>
<label>#{rackLabel}</1label>
<relation>rack</relation>
<targetType>samples:Rack</targetType>
<!— 1listViewId must be defined for the chassis' related items tab
to show the rack 1list. The extension itself gets created as part of
the object view template. Here we use ${namespace}.list for id.
-_>
<listViewId>com.vmware.samples.rack.list</1listViewId>
</com.vmware.ui.relateditems.model.RelationSpec>
<com.vmware.ui.relateditems.model.RelationSpec>
<id>hostForChassis</id>
<icon>#{CommonImages:hostsystem}</icon>
<label>#{Common:typeResource.hostPlural}</label>
<relation>host</relation>
<targetType>HostSystem</targetType>
<!—— T1listViewlId below is the id defined by vSphere client for the HostSystem
type. This 1list is shown as one of the items in the chassis Related Items tab.
Other vSphere types like VirtualMachine, ClusterComputeResource, etc., have
similar lists are predefined.
—-_>
<listViewId>vsphere.core.host.list</listViewId>
</com.vmware.ui.relateditems.model.RelationSpec>
</relationSpecs>
</object>
</extension>

VMware, Inc.

Creating Home Screen Shortcuts

The home screen appears in the vSphere Web Client main workspace when the user first logs in to the system.
The home screen serves as an entry point to key features in the vSphere Web Client, and contains information
about getting started with common tasks in the vSphere environment. The home screen provides shortcuts to
solutions and global views in several categories, including Monitoring Tools, Inventories, and Setup.

You can extend the home screen by adding a shortcut. A shortcut extension can provide access to a global view,
an inventory list in the Virtual Infrastructure, or other solution in the vSphere Web Client. You can use a home
screen shortcut to provide faster access to a data view or application that is not accessible through the top level
pages of the object navigator.

This chapter includes the following topics:
B “Use Cases for Adding a Home Screen Shortcut” on page 87

B “Creating the Home Screen Shortcut Extension Definition” on page 87

Use Cases for Adding a Home Screen Shortcut

You can add a home screen shortcut extension to make your other extension solutions more visible and
accessible to vSphere Web Client users. For example, home screen shortcuts are one of only two methods
available to make global view extensions accessible to users.

Home screen shortcut extensions can be added for almost any solution or inventory in the vSphere Web Client.
Their uses are flexible and will vary for different deployments of the vSphere environment.

Creating the Home Screen Shortcut Extension Definition

All home screen shortcut extensions must reference the vise.home.shortcuts extension point. The
extension definition must provide an extension object of type
com.vmware.vsphere.client.views.ShortcutSpec.

Example 9-1 shows an example extension definition for a home screen shortcut extension. In the example, the
<extendedPoint> element specifies the home screen shortcut extension point. The <object> element defines
a data object of type com.vmware.vsphere.client.views.ShortcutSpec.

Example 9-1. Example Home Screen Shortcut Extension

<extension id = "mySolution.myPlugin.sampleGVShortcut">
<extendedPoint>vise.home.shortcuts</extendedPoint>
<object>

<name>Sample Shortcut to Global View</name>
<categoryUid>vsphere.core.controlcenter.inventoriesCategory</categoryUid>
<icon>#{samplePluginImages:logo}</icon>
<targetViewUid>mySolution.myPlugin.myConsoleApp</targetViewUid>
</object>
</extension>

VMware, Inc. 87

vSphere Web Client Extensions Programming Guide

Table 9-1 lists the properties you set for the com.vmware.vsphere.client.views.ShortcutSpec object.

Table 9-1. ShortcutSpec Extension Object Properties
Property Type Description

<name> string String value that appears as the title for the shortcut on the vSphere Web
Client home screen. The string can be hard coded, or it can be a dynamic
resource from your plug-in module.

<categoryUid> string Home screen category in which the shortcut extension appears. Home
screen shortcut extensions must be added to one of the preexisting
categories on the home screen. The following are valid values for the
<categoryUid> property:
m vsphere.core.controlcenter.inventoriesCategory for

Inventories
m vsphere.core.controlcenter.monitoringCategory for
Monitoring
m vsphere.core.controlcenter.administrationCategory for
Administration
<icon> string Icon that appears for the shortcut. You can specify the icon as a dynamic

resource from the resource SWF file in your plug-in module.

<targetViewUid> string Extension, such as a global view, object workspace, or other solution,
that appears in the vSphere Web Client main workspace when the user
clicks the shortcut. The value of <targetViewUid> property must
match the <extension id="..."> attribute in the target extension’s
definition.

In Example 9-1, the <targetViewUid> property has the value mySolution.myPlugin.myConsoleApp. This
value matches the extension ID of the example global view extension defined in Chapter 3, “Adding a Global
View Extension,” on page 33. When the user clicks the shortcut created by the example extension, the
mySolution.myPlugin.myConsoleApp extension appears in the vSphere Web Client main workspace, and
the object navigator displays the appropriate pointer or virtual infrastructure node.

88 VMware, Inc.

Extending vSphere Object List Views

The vSphere Web Client provides a list view for each type of object in the vSphere environment. The list view
appears in the main workspace when the user selects an inventory list in the object navigator, or when the user
selects the Related Objects data view in an object’s workspace. Each list view is a table containing the names

of all objects of the relevant type, along with information on status, properties, and related items. For example,
the virtual machine object list view contains the names of all virtual machines in your vSphere environment,
the power state of each virtual machine object, the related host object for each virtual machine object, and other
relevant information.

You can extend the list view for any given vSphere object type by adding one or more columns to the list view
table. You can also create a list view for a new type of vSphere object by using the standard template to create
an object workspace. See Chapter 4, “Adding to vCenter Object Workspaces,” on page 37.

This chapter contains the following topics:
B “Use Cases for Extending an Object List View” on page 89

B “Defining an Object List View Extension” on page 89

Use Cases for Extending an Object List View

You can extend an existing vSphere object’s list view to include additional information about each object in the
list. The following are some examples of new information you might add to an object list view.

B You added a new object type to the vSphere environment that is related to the target object, and you want
the related object to appear in the target object list view. For example, if you add a new object type called
Backup to the vSphere environment, you can extend the Virtual Machine object list to show Backup
objects related to a given Virtual Machine.

B You extended the vSphere Web Client Data Service to provide additional properties for the target object
type, and you want those properties to appear in the object list view. For example, if you add additional
properties to a virtual machine object, you can extend the virtual machine list view to display those
properties.

B You want the vSphere Web Client to show an existing property or other information that does not appear
as a column in the default object list view.

Defining an Object List View Extension

You extend an object list view by creating an <extension> element in your plugin.xml file. The extension point
you specify depends on whether you extend a vSphere object or create a new object type.

VMware, Inc. 89

vSphere Web Client Extensions Programming Guide

90

Extending a vSphere Object List View

The vSphere Web Client provides an extension point for the list view for each type of vSphere object. The
extension point names follow the format vsphere.core. objectType.list.columns, where the
objectType placeholder corresponds to the type of vSphere object. For a list of extension points, see
Appendix A, “List of Extension Points,” on page 113.

Example 10-1 shows part of an example extension definition for an extension that adds a column to the virtual
machine object list view. The column shows the name of the host object related to a virtual machine object.

Example 10-1. Example Extension to Object List View

<!—— Define the host name column for the vm object list view ——>
<extension id="com.mySolution.myPlugin.vm.columns">
<extendedPoint>vsphere.core.vm.list.list.columns</extendedPoint>
<object>
<items>

<!—— Host name column ——>
<com.vmware.ui.lists.ColumnContainer>
<uid>com.mySolution.myPlugin.vm.column.hostame</uid>
<dataInfo>
<com.vmware.ui.lists.ColumnDataSourceInfo>
<headerText>#{hostName}</headerText>
<!—— Object property whose text value will be displayed (1l-element array) ——>
<requestedProperties>
<String>n{["hostName']}</String>
</requestedProperties>
<sortProperty>hostName</sortProperty>
<exportProperty>hostName</exportProperty>
</com.vmware.ui.lists.ColumnDataSourceInfo>
</dataInfo>
</com.vmware.ui.lists.ColumnContainer>

</extension>

The <object> element type attribute specifies the column or columns to add to the target object list view. The
properties referenced in the <requestedProperties> elements are requested by the platform, with no Ul
code involved. On the Virgo application server, the Data Access Manager retrieves the requested property for
you and returns it to the client.

Adding a List View for a New Object Type

If you added a new object type to the vSphere environment, and you used the standard object view template
to create an object workspace for that object, that object workspace contains a list view. For more information
on the object view template, see Chapter 4, “Adding to vCenter Object Workspaces,” on page 37.

You can extend a new object’s list view in the same way as you extend the pre-existing list views in the vSphere
Web Client. In your extension definition, you must specify the list extension point created by the new object’s
template namespace. The format for a new object’s list extension point is typically namespace.1list.columns.
The list extension point for a new object called a Chassis, for example, might appear as follows, where the
template namespace is myExtension.core.Chassis:

myExtension.core.Chassis.list.columns

Example 10-2 shows a partial example of an extension definition for an extension that adds a chassis object list
view. The list view shows the name of a custom Chassis object, in addition to any other properties specified
inside ColumnContainer elements.

Example 10-2. Example Extension to Object List View

<!—— Define the chassis list columns ——>

<extension id="com.vmware.samples.chassis.list.sampleColumns">
<extendedPoint>com.vmware.samples.chassis.list.columns</extendedPoint>
<object>

VMware, Inc.

Chapter 10 Extending vSphere Object List Views

<items>
<!— Chassis name column ——>
<com.vmware.ui.lists.ColumnContainer>
<uid>com.vmware.samples.chassis.column.name</uid>
<dataInfo>
<com.vmware.ui.lists.ColumnDataSourceInfo>
<headerText>#{name}</headerText>
<!— Object property whose text value will be displayed (1-element array) ——>
<requestedProperties>
<String>name</String>
</requestedProperties>
<sortProperty>name</sortProperty>
<exportProperty>name</exportProperty>
</com.vmware.ui.lists.ColumnDataSourceInfo>
</datalnfo>
</com.vmware.ui.lists.ColumnContainer>

</extension>

The <object> element type attribute specifies the column or columns in the target object list view. The
properties referenced in the <requestedProperties> elements are requested by the platform, with no UI
code involved. On the Virgo application server, you need to implement a Data Service Adapter to retrieve data
and return it to the client.

Column Visibility

When you extend a list view with a new column, your users will not see the new column when they first install
your plug-in. To see the extension, each user must select the new column to appear in the vSphere Web Client
list view. The column selection is saved in the user’s preferences so that the new column will be visible in future
sessions.

VMware, Inc. 91

vSphere Web Client Extensions Programming Guide

92 VMware, Inc.

vSphere Web Client Service Layer

The vSphere Web Client service layer is a collection of Java services that run on the vSphere Web Client
application server, called the Virgo server. The Java services on the Virgo server communicate with vCenter
Server, ESX hosts, and other data sources within and outside of the vSphere environment.

The principal Java service included in the vSphere Web Client service layer is the Data Service. The Data
Service provides data on objects that vCenter Server manages, using a query-based information model.
Components in the vSphere Web Client user interface layer, such as Flex data views, send queries to the Data
Service for specific objects or attributes. The Data Service processes each query and returns responses.

Flex components in the user interface layer can use a Flex library called the Data Access Manager to
communicate with the Data Service in the service layer. The Data Access Manager library is included with the
vSphere Web Client SDK. See Chapter 5, “Architecting Data Views,” on page 43.

HTML components in the user interface layer communicate with a controller service in the service layer, using
a REST APL The controller service can use the Data Service to access data about vSphere objects, or extend the
Data Service to access objects outside vSphere. The controller service can also use custom or third-party
services to access objects outside vSphere.

You can extend the vSphere Web Client Data Service to process queries for new data sources. The new data
can come from other sources inside the vSphere environment, such as specific ESXi hosts, or from external
Web sources. When you extend the vSphere Web Client Data Service, your extensions in the user interface
layer can communicate with new data sources by using the existing methods and libraries, such as the Data
Access Manager.

You extend the Data Service by creating a Java service called a Data Service Adapter. A Data Service Adapter
can either retrieve new properties for existing vSphere objects, or it can retrieve information on new custom
objects. You must create different types of Data Service Adapters, depending on whether your environment
adds new data to existing vSphere objects, or adds custom objects to the virtual infrastructure.

You can create custom Java services to work with your UI components. These custom Java services are
typically used for performing action operations that make changes to the vSphere environment. Custom Java
services are generally used as pass-throughs to back-end processes or external data sources. A best practice is
to limit your Java service to dispatching requests from the vSphere Web Client and returning data, and
implementing extensive or resource-intensive logic on your own external server.

Figure 11-1, on page 94, shows the relationship between Flex components in the vSphere Web Client, Java
components on the Virgo server, and data sources in the vSphere environment.

VMware, Inc. 93

vSphere Web Client Extensions Programming Guide

Figure 11-1. vSphere Web Client Data Flow

p
vSphere Web Client Flex
front-end (browser)

Flex Component Flex Component Flex Component Flex Component
(Portlet/Tab) (Portlet/Tab) (Portlet/Tab) (Portlet/Tab)
A A A A

\ 4 Y Y

Data Access Manager
(Flex library)

L A

-
vSphere Web Client

Application Server ’ v
A User-created
Data Service Custom Service
(Java service) (Java)
A A A A
\ 4 Y
Data Service Adapter Data Service Adapter
(extension to Data Service) (extension to Data Service)
A
. J
vCenter Server v v v
(VMware Inventory Service J Remote Data Source
(web/host)

This chapter includes the following topics:

B “Understanding the vSphere Web Client Data Service” on page 94

m “Extending the Data Service with a Data Service Adapter” on page 95
B “Creating a Custom Java Service” on page 103

B “Importing a Service in a User Interface Plug-In Module” on page 104

Understanding the vSphere Web Client Data Service

The default Data Service provides a stateless, query-based interface to retrieve information about VMODL
objects, as defined by the vSphere Web Services API. The default Data Service interface can access data from

vCenter Server. The Data Service accesses various services on vCenter Server, including the Inventory and
Property Collector services.

User interface components, such as Flex data views, act as Data Service clients. These clients retrieve

information by creating Data Service queries. The Data Service processes each query and returns a set of result
objects.

If your vSphere Web Client extensions require data from a different source, either within vCenter Server or
outside vCenter Server, you can extend the Data Service by creating a Data Service Adapter. A Data Service

Adapter provides a way for you to use Data Service queries to retrieve non-VMODL data, such as custom
object data.

94 VMware, Inc.

Chapter 11 vSphere Web Client Service Layer

Extending the Data Service with a Data Service Adapter

If the components in your user interface extensions require data that is not available through the vSphere Web
Client Data Service, you can extend the Data Service by creating a Data Service Adapter. A Data Service
Adapter is a Java service that integrates with the Data Service, and gives the Data Service the ability to process
and respond to Data Service queries for new object types or properties. Data Service Adapters can access data
sources within vSphere, or outside data sources.

A Data Service Adapter must implement the same interface and information model as the Data Service. When
you create a Data Service Adapter, it must handle Data Service queries and return information as a result set
consisting of objects with associated properties.

Advantages of Providing a Data Service Adapter
Extending the Data Service by creating a Data Service Adapter has several advantages.

B The Flex components in your user interface extensions can use the Data Access Manager interface to
access the new data. The Data Access Manager provides a consistent data access model throughout the
component, easing maintenance and improving code consistency and re-use.

B The Data Service routes queries to the appropriate Data Service Adapters. This mechanism removes any
distinction between data sources inside or outside of vSphere, and your extension components can access
multiple data sources in a single call.

B Centralizing data access through the Data Service lets your extension components take advantage of
services such as logging and error handling.

Designing a Data Service Adapter

To create a Data Service Adapter, you must create a Java service that implements one of the adapter interfaces
published by the Data Service. The Data Service publishes interfaces for Property Provider Adapters and Data
Provider Adapters. The type of Data Service Adapter you must create depends on the information you want
to make available through the Data Service.

Property Provider Adapters

You create a Property Provider Adapter to allow the Data Service to access new properties for existing vSphere
objects, such as virtual machines or hosts. For example, your vSphere environment might contain custom
virtual machines or hosts that provide extra properties not normally available through the Data Service. You
can create a Property Provider Adapter to extend the Data Service to fetch these additional properties.

Data Provider Adapters

You can use a Data Provider Adapter to extend the Data Service to fetch data that is not associated with an
existing vSphere object. Typically, you create a Data Provider adapter for one of the following purposes.

B To retrieve information about a new type of object that you have added to the vSphere environment
B To retrieve information from a source outside the vSphere environment

For example, you might create a Data Provider Adapter to handle queries for a new type of vSphere object
called a Chassis. You might also use a Data Provider Adapter to display data in the vSphere Web Client from
an external Web source separate from vCenter Server.

Implementing an Adapter

To implement one of the adapter interfaces, your Java service must import the package
com.vmware.vise.data.query from the vSphere Web Client Java SDK.

After you create the adapter service, you must add the adapter service to Virgo Server framework and register
the adapter with the Data Service. You register an adapter by using the vSphere Web Client SDK
DataServiceExtensionRegistry service, typically within your adapter’s constructor method. See
“Registering a Property Provider Adapter” on page 96 and “Registering a Data Provider Adapter” on page 99.

VMware, Inc. 95

vSphere Web Client Extensions Programming Guide

96

The registration process declares what types of objects and properties the Data Service Adapter can provide.
When the Data Service receives a query for one of the registered object or property types, the Data Service
routes the query to the proper Data Service Adapter.

Property Provider Adapters

Queries to a Property Provider Adapter accept one or more specific vSphere objects, and return one or more
properties for those objects. A Property Provider Adapter registers with the Data Service to advertise which
types of properties it can return. When the Data Service receives a query for one of the registered property
types, the Data Service routes the query to the appropriate Property Provider Adapter for processing.

PropertyProviderAdapter Interface

A Property Provider Adapter must implement the PropertyProviderAdapter interface in the
com.vmware.vise.data.query Java SDK package. The PropertyProviderAdapter interface publishes a
single method named getProperties(). Your Property Provider Adapter service must provide an
implementation of this method. The Data Service calls your adapter’s getProperties () method in response
to an appropriate query for the properties your adapter is registered to provide.

The method implementation in your service must accept as its parameter an object of type
com.vmware.vise.data.query.PropertyRequestSpec, and must return an object of type
com.vmware.vise.data.query.ResultSet.

public ResultSet getProperties(PropertyRequestSpec propertyRequest)

Your service’s implementation of the getProperties() method can retrieve and format data in any way you
choose. However, your implementation must return the results as a ResultSet object. You use the
PropertyRequestSpec object to obtain the query’s list of target vSphere objects and desired properties. The
PropertyRequestSpec object contains an objects array and a properties array, which respectively contain
the target vSphere objects and requested properties.

For additional information on ResultSet, PropertyRequestSpec, and other features in the
com.vmware.vise.data.query package, see the Java API reference included in the vSphere Web Client SDK.

Registering a Property Provider Adapter

You must register your Property Provider Adapter for the adapter to work with the Data Service. You register
your Property Provider Adapter with the Data Service by using the DataServiceExtensionRegistry
service. The DataServiceExtensionRegistry service contains a method named registerDataAdapter()
that you must call to register your Property Provider Adapter.

A best practice for registering your adapter is to pass DataServiceExtensionRegistry as a parameter to
your Property Provider Adapter class constructor, and call registerDataAdapter () from that constructor.
Example Property Provider Adapter

Example 11-1, on page 97, shows an example of a Property Provider Adapter class. The class constructor
method registers the adapter with the Data Service.

VMware, Inc.

Chapter 11 vSphere Web Client Service Layer

Example 11-1. Example Property Provider Adapter Class

package com.myAdapter.PropertyProvider;

import com.vmware.vise.data.query;

import com.vmware.vise.data.query.PropertyProviderAdapter;
import com.vmware.vise.data.query.ResultSet;

import com.vmware.vise.data.query.type;

public class MyAdapter implements PropertyProviderAdapter {

public MyAdapter(DataServiceExtensionRegistry extensionRegistry) {
TypeInfo vmTypeInfo = new TypeInfo();
vmTypeInfo.type = "VirtualMachine";
vmTypeInfo.properties = new String[] { "myVMdata" };
TypeInfo[] providerTypes = new TypeInfo[] {vmTypeInfo};

extensionRegistry.registerDataAdapter(this, providerTypes);

}

@Override
public ResultSet getProperties(PropertyRequestSpec propertyRequest) {
// Logic to retrieve properties and return as result set

}

In Example 11-1, the class constructor method MyAdapter () constructs an array of property types that the
adapter can supply to the Data Service in the array named providerTypes. The constructor then calls the Data
Service Extension Registry method named registerDataAdapter to register the Property Provider Adapter
with the Data Service.

The Data Service calls the override method getProperties() when the Data Service receives a query for the
kinds of properties that were specified at registration. The getProperties () method must retrieve the
necessary properties, format them as a ResultSet object, and return that ResultSet.

Data Provider Adapters

A Data Provider Adapter is responsible for all aspects of data retrieval, including parsing a query, computing
the results of access operations, finding the matching objects or properties, and formatting results as responses
compatible with the Data Service. You can use a Data Provider Adapter to retrieve almost any data, including
data agnostic to vSphere, provided that you can format it as a set of objects and related properties.

Typically, you use a Data Provider Adapter to retrieve data on custom objects that you added to your vSphere
environment. The specific implementation of the Data Provider Adapter’s data access depends on the data
source for your custom object. Your Data Provider Adapter might query a database for configuration data, or
retrieve operational data directly from a particular device.

When designing a Data Provider Adapter, consider the following requirements:

B You must be able to represent the external data using the same object and property model as the vSphere
Web Client Data Service.

B The Java service that you create to act as the Data Provider Adapter must perform all necessary data
fetching operations from your remote data source.

® The service you create must process Data Service queries and return Data Service result sets.

VMware, Inc. 97

vSphere Web Client Extensions Programming Guide

98

DataProviderAdapter Interface

A Data Provider Adapter must implement the DataProviderAdapter interface in the
com.vmware.vise.data.query Java SDK package. The DataProviderAdapter interface publishes a single
method named getData(). Your Data Provider Adapter service must provide an implementation of this
method. The Data Service calls your adapter’s getData() method in response to the queries your adapter is
registered to process.

Your implementation of the getData() method must accept an object of type
com.vmware.vise.data.query.RequestSpec as a parameter, and must return an object of type
com.vmware.vise.data.query.Response.

public Response getData(RequestSpec request)

The RequestSpec object parameter to the getData () method contains an array of Data Service query objects.
Each query contains a target object and one or more constraints that define the information that the client
requests, as well as the expected format for results.

Your getData() method determines what information it must fetch by processing each Data Service query
and handling the included constraints. The getData() method must then retrieve that information, through
whatever means your data source provides, such as a database query or a remote device method.

Your getData() method must format the retrieved information as a specific result type for each query, and
then return those results as an array, packaged in a Response object.

Processing Data Service Queries

Data Service queries are passed to your Data Service Adapter through the
com.vmware.data.query.RequestSpec object parameter. A RequestSpec object consists of an array of
objects of type com.vmware.data.query.QuerySpec, each of which represents an individual query.

Each QuerySpec object defines the query target, the query constraints, and the expected formatting for the
query results.

Query Target Object

The query target is the object for which your getData() method must retrieve information. In the QuerySpec
object, the target is represented as an object of type com.vmware.data.query.ResourceSpec

Your getData() method can determine what information it must retrieve by using the values in the
ResourceSpec object. The ResourceSpec object specifies the target object as a String type, which contains a
URI for the target object. The requested properties are contained in an object of type
com.vmware.data.query.PropertySpec.

Handling Constraints

Within the QuerySpec object, the query constraints are represented as an object of type
com.vmware.data.query.Constraint. A query can specify the following types of constraints, each of which
is a subclass of the base Constraint class.

B ObjectldentityConstraint. Queries based on this constraint retrieve the properties of a known target
object. For example, a query might retrieve the powered-on state of a given virtual machine. The object
identifier can be any type that implements the IResourceReference interface.

B PropertyConstraint. Queries based on this constraint retrieve all objects with a given property value. For
example, a query might retrieve all virtual machine objects with a power state of on. This constraint
accepts the property name and comparator as strings, and the property value as an Object.
PropertyConstraint is roughly analogous to a SELECT statement in a database query.

® RelationalConstraint. Queries based on this constraint retrieve all objects that match the specified
relationship with a given object. For example, a query might retrieve all virtual machine objects related to
a given host object. RelationalConstraint is roughly analogous to a JOIN statement in a database

query.

VMware, Inc.

Chapter 11 vSphere Web Client Service Layer

B CompositeConstraint. Composite queries allow the combination of multiple constraints using the and or
or operator, passed as a string. The combined subconstraints in CompositeConstraint are contained in
an array of Constraint objects.

When processing constraints, a best practice is to read the entire set of constraints and then determine the most
efficient processing order. For example, you can process relational constraints first to retrieve a smaller
number of objects that meet any included property constraints.

Specifying Result Sets

In the QuerySpec object, the expected formatting for the query results are included in an object of type
com.vmware.data.query.ResultSpec. The properties of the ResultSpec object specify a maximum
number of results for the query to return, provide an offset into the returned results, and set ordering for the
returned results. Your getData () method must use the values of the ResultSpec properties to format the
information it has retrieved.

Resolving the Target Object

The target object for a query is identified by a Uniform Resource Identifiers (URI) string, which is a unique
identifier for a specific custom object. In your Data Provider Adapter, you must resolve the URI for a query
target object to the correct custom object type.

Implementing a Resource Type Resolver

A best practice is to use a Resource Type Resolver to resolve a URI to the correct custom object type. To use a
Resource Type Resolver, you must create a Java class that implements the interface
com.vmware.vise.data.uri.ResourceTypeResolver.

The class you create to implement ResourceTypeResolver must support the following methods.

String getResourceType(URI uri) The getResourceType() method must parse a URI and return a String
containing the type of custom object to which the URI pertains. For example, for a URI that referred to a custom
Chassis object, the getResourceType () method must return the String samples:Chassis.

String getServerGuid(URI uri) The getServerGuid() method must parse a URI and return a String
containing the server global unique identifier for the URI target object. For example, for the URI string
urn:cr:samples:Chassis:serverl/ch-2, the getServerGuid() method must return the string serverl.

Registering a Resource Type Resolver

To use your Resource Type Resolver, you must register the resolver with the Data Service. You typically
register the Resource Type Resolver in your Data Provider Adapter class constructor by using the Resource
Type Resolver Registry service, an OSGI service included with the vSphere Web Client. You must use the
vSphere Web Client Spring framework to pass the Resource Type Resolver Registry OSGI service as an
argument to your class constructor method. See “Passing Arguments to Your Class Constructor” on page 100.

Example 11-2, “Example Data Provider Adapter Class,” on page 102, shows an example of how to register a
Resource Type Resolver.

Registering a Data Provider Adapter

You must register your Data Provider Adapter for the adapter to work with the Data Service. You can register
an adapter implicitly by declaring the Java service as an OSGI bundle, or you can register an adapter explicitly
by using the Data Service Extension Registry service.

Registering Implicitly

You can register your Data Provider Adapter implicitly when you add the adapter to the Virgo server
framework. To use implicit registration, you must declare the Java service that implements your Data Provider
Adapter as an OSGI bundle when you add the service to the Virgo server framework. The vSphere Web Client
detects new OSGI bundles as they are added and registers the Data Provider Adapters with the Data Service.
You must also annotate the adapter class with the object types that the adapter supports.

VMware, Inc. 99

vSphere Web Client Extensions Programming Guide

100

Declaring the Service as an OSGI Bundle To declare the service as an OSGI bundle, you must define your
adapter’s Java service as a Java Bean in the bundle-context . xml file. You can find the bundle-context.xml
file your plug-in module’s src/main/resources/META-INF/spring folder.

To define the Java Bean, you must add the following XML element to the bundle-context.xml file.
<bean name="MyDataProviderImpl" class="com.example.MyDataProviderAdapter"> </bean>

The name attribute is an identifier that you choose for the Java Bean. You must set the value of the class
attribute to the fully qualified class name of the Java class you have created that implements the
DataProviderAdapter interface.

After you define your Data Provider Adapter as a Java Bean, you must modify the
bundle-context-osgi.xml file to include the Java Bean as an OSGI service. The
bundle-context-osgi.xml file is in your plug-in module’s src/main/resources/META-INF/spring
folder.

You must add the following XML element to the bundle-context-osgi.xml file.

<osgi:service id="MyDataProvider" ref="MyDataProviderImpl"
interface="com.vmware.vise.data.query.DataProviderAdapter" />

The 1id attribute is an identifier that you choose for the Data Provider Adapter. You must set the value of the
ref attribute to the same value as the name attribute that you defined when declaring your Java Bean. The
interface attribute must be set to the fully qualified class name of the DataProviderAdapter interface.

You must update the src/main/resources/META-INF/MANIFEST.MF file to reflect any Java packages from
the vSphere Web Client SDK that your Data Provider Adapter imports. You add the imported packages to the
import-packages section of the MANIFEST . MF file.

In Example 11-2, on page 102, the example Data Provider Adapter imports the packages
com.vmware.vise.data.uriand com.vmware.data.query.For the example, the MANIFEST . MF file must list
those packages in the import-package section.

Import-Package: org.apache.commons.logging,
com.vmware.vise.data,
com.vmware.vise.data.query,
com.vmware.vise.data.uri

Annotating the Adapter Class You must annotate your Data Provider Adapter class with the object types
for which the adapter processes queries. The vSphere Web Client uses these annotations to route queries for
the specific types to the correct adapters. You use the @type tag to create the necessary annotation.

For example, if you have a custom object of type WhatsIt, you annotate the class like the following example:

@type("samples:WhatsIt") // declares the supported object types
public class MyAdapter implements DataProviderAdapter {

Passing Arguments to Your Class Constructor Most Data Provider Adapters use other OSGI services that
the vSphere Web Client SDK provides. These services include the base Data Service, the Resource Type
Resolver Registry, and the vSphere Object Reference Service. You can pass these OSGI services to your Data
Provider Adapter as arguments to the Data Provider Adapter class constructor method.

All Data Provider Adapters can include the vSphere Web Client Data Service. To include the Data Service as
an argument to your Data Provider Adapter class constructor, you add the following element to your service’s
bundle-context-osgi.xml file.

<osgi:reference id="dataService" interface="com.vmware.vise.data.query.DataService" />

If your Data Provider Adapter handles queries for multiple custom object types, you must include the
Resource Type Resolver Registry OSGI service and register a Resource Type Resolver. To include the Resource
Type Resolver Registry OSGI service as an argument to your Data Provider Adapter class constructor, you add
the following element to your service’s bundle-context-osgi.xml file.

<osgi:reference id="uriRefTypeAdapter"
interface="com.vmware.vise.data.uri.ResourceTypeResolverRegistry" />

VMware, Inc.

Chapter 11 vSphere Web Client Service Layer

If your Data Provider Adapter handles queries for built-in vSphere object types, such as Hosts or Virtual
Machines, you can include the vSphere Object Reference Service. To pass the vSphere Object Reference Service
as an argument to your Data Provider Adapter class constructor, you add the following element to your
service’s bundle-context-osgi.xml file.

<osgi:reference id="vimObjectReferenceService"
interface="com.vmware.vise.vim.data.VimObjectReferenceService" />

Your Data Provider Adapter can use the User Session Service to get information about the current user session.
To pass the User Session Service as an argument to your Data Provider Adapter class constructor, you add the
following element to your service’s bundle—context-osgi.xml file.

<osgi: reference id="userSessionService"
interface="com.vmware.vise.usersession.UserSessionService" />

If you pass OSGI services to your Data Provider Adapter’s class constructor, you must include those
constructor arguments when you declare your Data Provider Adapter as a Java Bean in the
bundle-context.xml file. See “Declaring the Service as an OSGI Bundle” on page 100.

For each service your Data Provider Adapter includes, you must add a <constructor-arg> element to your
adapter’s Bean definition. In each <constructor—arg> element, you set the ref attribute to the same value as
the id attribute in the <osgi: reference> element in the bundle-context-osgi.xml file.

If your Data Provider Adapter uses the Data Service, vSphere Object Reference Service, Resource Type
Resolver Registry, and User Session Service, the Bean definition might appear as follows.

<bean name="MyDataProviderImpl" class="com.example.MyDataProviderAdapter">
<constructor-arg ref="dataService"/>
<constructor-arg ref="uriRefTypeAdapter" />
<constructor-arg ref="vimObjectReferenceService"/>
<constructor-arg ref="userSessionService"/>
</bean>

Registering Explicitly

You can register your Data Provider Adapter with the Data Service by using the
DataServiceExtensionRegistry service. DataServiceExtensionRegistry contains a
registerDataAdapter () method that you must call to register your Data Provider Adapter.

A common way to register your adapter is to pass DataServiceExtensionRegistry as a parameter to your
Data Provider Adapter class constructor, and call registerDataAdapter () from within that constructor.

Data Provider Adapter Example

Example 11-2, on page 102, presents an example of a Data Provider Adapter class that supports hypothetical
WhatsIt objects. In the example, the class constructor method initializes the class member variables for the
Data Service and registers a Resource Type Resolver. The example assumes that the Data Provider Adapter is
registered implicitly by registering the service as an OSGI bundle. The Data Service and Resource Type
Resolver Registry services are passed as arguments to the class constructor.

As a best practice, you can initialize the other services that your Data Provider Adapter requires in your Data
Provider Adapter class constructor. These might include the vSphere Web Client Data Service, the Resource
Type Resolver Registry if your adapter handles multiple custom object types, and the vSphere Object
Reference Service if your adapter requires data from regular vSphere objects.

For more complete examples of Data Provider Adapters, see the sample extensions included in the vSphere
Web Client SDK download file.

VMware, Inc. 101

vSphere Web Client Extensions Programming Guide

102

Example 11-2. Example Data Provider Adapter Class

package com.MyAdapter.DataProvider;

import

import
import
import
import
import
import

java.net.URI;

com.
com.
com.
com.
com.
com.

vmware.
vmware.
vmware.
vmware.
vmware.
vmware.

vise.
vise.
vise.
vise.
vise.
vise.

data.
data.
data.
data.
data.
data.

@type("samples:WhatsIt") //
public class MyAdapter implements DataProviderAdapter {

uri.ResourceTypeResolverRegistry;
query.DataProviderAdapter;
query.QuerySpec;
query.RequestSpec;
query.Response;

query.type;

type that the adapter supports

private final DataService _dataService;

// Resource resolver, used to resolve the URIs of objects serviced by this adapter
private static final ModelObjectUriResolver RESOURCE_RESOLVER = new ModelObjectUriResolver();

// constructor method
public MyAdapter(DataService dataService,
ResourceTypeResolverRegistry typeResolverRegistry)

{
if (dataService = null || typeResolverRegistry == null) {
throw new IllegalArgumentException(""MyAdapter constructor arguments must be
non-null.");
)
_dataService = dataService;
try {
// Register the Resource Type resolver for multiple custom object types
typeResolverRegistry.registerSchemeResolver(
ModelObjectUriResolver.SCHEME,
RESOURCE_RESOLVER) ;
} catch (UnsupportedOperationException e) {
_logger.warn("ModelObjectUriResolver registration failed.", e);
}
}
@Override

// All query requests for the types supported by this adapter are routed here by the vSphere
// Web Client Data Service; this method is the starting point for processing constraints,
// discovering objects and properties, and returning results
public Response getData(RequestSpec request) {
QuerySpec[] querySpecs = request.querySpec;
List<ResultSet> results = new ArraylList<ResultSet>(querySpecs.length);
for (QuerySpec gs : querySpecs) {
// Call your logic for query processing, constraint processing, object discovery:
ResultSet rs = processQuery(qs);
results.add(rs);
}
Response response = new Response();
response.resultSet = results.toArray(new ResultSet[]{});
return response;

The getData () method is called by the vSphere Web Client Data Service when it receives a query for one of
the objects or properties specified at registration. In the getData () method, your Data Provider Adapter must
parse the query, compute the results, and return that result data as a Response object. For a more complete
example, see the ChassisDataAdapter class in the SDK.

VMware, Inc.

Chapter 11 vSphere Web Client Service Layer

Creating a Custom Java Service

You can extend the vSphere Web Client service layer with your own Java services. Typically, you create a Java
service if your user interface extensions adds an action to the vSphere Web Client, where the Java service
performs the action operation on the virtual infrastructure. You can also add a Java service to perform a
complex calculation, retrieve data from an external source, or perform other miscellaneous tasks.

To add a Java service, you must provide a Java Archive (JAR) bundle that contains the classes in the service.
Inside the JAR bundle, you must add an XML configuration file that declares all of the Java objects that the
service adds to the vSphere Web Client Virgo server framework. The Virgo server uses Spring as the
application server framework.

Making Java Services Available to Ul Components in the vSphere Web Client

To make a custom Java service available to your extension components in the vSphere Web Client, complete
the following tasks.

1 Create a Java interface for the service.
2 Create a Java class that implements the interface in Step 1.

3 Add the service to the Virgo server framework. You must export and expose the service to the framework
by adding it as a bean in the Spring configuration Virgo server. See “Packaging and Exposing the Service”
on page 103.

4 Import the service where your extension references it.

B For Flex-based extensions, import the service into the user interface plug-in module that contains
your Flex components.

m For HTML-based extensions, import the service in the controller module that services your
extension’s data requests.

5 For Flex-based extensions, use ActionScript to create a proxy class in your Flex component. The proxy
class is used to communicate between the user interface plug-in module and the service. HTML-based
extensions access the service using a REST API that communicates with the controller module on the
Virgo server.

Creating the Java Interface and Classes

To integrate with the Virgo server Spring framework, the Java service you create must provide separate
interface and implementation classes. Example 11-3 shows a basic example of an interface class and an
implementation class.

Example 11-3. Basic Java Service Interface and Implementation

package com.vmware.myService;

public interface MyService {
String echo (String message);

}

public class MyServiceImpl implements MyService {
public String echo (String message) {
return message;

}

Packaging and Exposing the Service

To make your Java service available for use with the vSphere Web Client, you must export the service and add
it to the Spring configuration on the Virgo server. Spring uses the OSGI model to share Java libraries.

VMware, Inc. 103

vSphere Web Client Extensions Programming Guide

Exporting the Service

You must locate the /src/main/resources/META-INF/MANIFEST . MF file in your service JAR bundle and
ensure that the Java service package is exported. To export the package, the following line must appear in the
MANIFEST.MF file:

Export-Package: com.vmware.myService

In the example line, com.vmware .myService is the name of the service package you created.

Adding the Service to the Spring Configuration

You add your service to the Spring configuration on the Virgo server by creating a <bean> element in the
Spring configuration file. In the JAR bundle, locate the
/src/main/resources/META-INF/spring/bundle-context.xml file. The file contains a <beans> XML
element containing services in the configuration. Add your service as a new <bean> as follows:

<bean name="myServiceImpl" class="com.vmware.myService.MyServiceImpl"/>

The name attribute is the name of your service implementation, and the class attribute contains the class you
created that implements the service interface.

You must also expose the service interface as an OSGI bundle in the Spring framework. In the JAR bundle,
locate the /src/main/resources/META-INF/spring/bundle-context-osgi.xml file. This file also
contains a <beans> XML element. Add your service using the following line:

<osgi:service id="myService" ref="myServiceImpl" interface="com.vmware.myService.MyService"/>

The 1id attribute is the name of your service, the ref element specifies the service implementation you added
to the bundle-context.xml file, and the interface element contains the class that defines the service
interface.

Importing a Service in a User Interface Plug-In Module

104

To use a Java service you created and exposed in the vSphere Web Client service layer, a user interface plug-in
module must import the service. You import the service by updating two metadata configuration files within
your user interface plug-in module Web Archive (WAR) bundle.

In your user interface plug-in module WAR bundle, locate the
/war/src/main/webapp/META-INF/MANIFEST.MF file and add the following lines:

Import-Package:
com.vmware.myService

com.vmware.myService is the name of the service package you created.

Specifying Flex-to-Java Service Parameters

If you are adding a Flex extension, you need to specify the parameters for the Flex-to-Java framework. In the
WAR bundle, locate the /war/src/main/webapp/WEB-INF/spring/bundle-context.xml file. This file
specifies the necessary service parameters for the Flex-to-Java framework on the vSphere Web Client
application server. Inside the <beans> element of the bundle-context.xml file, create the service references
as follows:

<flex:message-broker id="myService-ui-broker"
services-config-path="/WEB-INF/flex/services-config.xml" />

<osgi:reference id="myService" interface="com.vmware.myService.MyService"/>

<flex:remoting-destination ref="myService" message-broker="myService-ui-broker"/>

The <flex:message broker>and <flex:remoting-destination> elements declare your service as a
destination for Flex remote object invocation.

VMware, Inc.

Chapter 11 vSphere Web Client Service Layer

Creating a Proxy Class with ActionScript

Using a proxy class in your extension Flex component is the recommended way to manage communication
between a custom Java service and your Flex data views. The vSphere Web Client includes a Flex utility library
that includes a base proxy class. You can use this base proxy class to implement the proxy class that
communicates with your service.

For more information about proxy classes and their role in the user interface layer, see “Architecting Data
Views” on page 43.

Example 11-4, on page 105, presents a sample ActionScript proxy class implementation. The sample proxy
class extends the com.vmware.flexutil.proxies.BaseProxy class that the vSphere Web Client provides.

Example 11-4. Example ActionScript Proxy Class

package com.vmware.samples.globalview {
import com.vmware.flexutil.proxies.BaseProxy;

/7“:7“:
* Proxy class for the EchoService java service
*/
public class EchoServiceProxy extends BaseProxy {
// Service name matching the flex:remoting-destination declared in
// main/webapp/WEB-INF/spring/bundle-context.xml
private static const SERVICE_NAME:String = "myService";

// channelUri uses the Web-ContextPath define in MANIFEST.MF (globalview-ui)
// A secure AMF channel is required because vSphere Web Client uses https
private static const CHANNEL_URI:String =

"/" + GlobalviewModule.contextPath + "/messagebroker/amfsecure”;

Create a EchoServiceProxy with a secure channel.

)

/

public function EchoServiceProxy() {
super (SERVICE_NAME, CHANNEL_URI);

}

/7‘::‘:

* Call the "echo" method of the EchoService java service.

* @param message Single argument to the echo method

* @param callback Callback in the form <code>function(result:0Object,
* error:Error, callContext:0bject)</code>

* @param context Optional context object passed back with the result
*/

public function echo(message:String, callback:Function = null, context:0Object = null):void {
// "echo" takes a single message argument but callService still requires an array.
callService("echo", [message], callback, context);

You must set the Proxy constructor destination argument to the service ID that you imported in your plug-in
module configuration files. In Example 11-4, the proxy constructor sets the destination parameter to the
service ID myService, as defined in the WAR bundle configuration file
(/war/src/main/webapp/WEB-INF/spring/bundle-context.xml).

In the proxy, you can call functions of the Java service by using the callService method. The callService
method is included in the package com.vmware.flexutil.ServiceUtil. In Example 11-4, the proxy class
uses the callService method to call the echo method in the Java service.

VMware, Inc. 105

vSphere Web Client Extensions Programming Guide

106 VMware, Inc.

Creating and Deploying Plug-In
Packages

In the vSphere Web Client, you deploy extension solutions using plug-in packages. Each plug-in package can
contain both user interface plug-in modules and service plug-in modules, and manages the deployment of
those modules. The vSphere Web Client extensibility framework can perform live hot deployment of the
plug-in modules in a package.

This chapter includes the following topics:

B “Overview of Plug-In Packages” on page 107
B “Creating a Plug-In Package” on page 108

B “Deploying a Plug-In Package” on page 110

Overview of Plug-In Packages

A plug-in package is a ZIP archive file that contains all of the plug-in modules in your extension solution along
with a package manifest. The package manifest describes deployment information for each plug-in module
using XML metadata. The vSphere Web Client Extension Manager uses this metadata to install and deploy
each plug-in module in the plug-in package.

VMware, Inc. 107

vSphere Web Client Extensions Programming Guide

Figure 12-1. Plug-In Deployment

Plugin Registration

1. First user login
after plugin registration

Winere viphere Web Clent & @

=== o a !
= e ® ‘)
e B plugin Ul
1| - | ¥
A | T Cormo o (v v wﬁ:‘t
," 5. Plugin available to all users
[war bundle]

X [jar bundle(s) L

.

-
v 5

N
L \

2. Check for new

|
| 4. Download package
VC extensions .' w P g

3 Gn‘a"t URL of\\ and hot-deploy bundles
pluginipackage

1Y
.

a

Ext | .zip| 39 party
) web server

Creating a Plug-In Package
To create a plug-in package, you must create a ZIP archive file with the following structure:
m At the root level, add a plugin-package.xml file to the root folder.
m At the root level, add a plugins folder.
B Inside the plugins folder, add one or more WAR files containing the plug-in UI modules.

® Inside the plugins folder, add zero or more JAR files, one for each Java service component created for

your plug-in.

® Inside the plugins folder, add zero or more JAR files, one for each 3rd-party Java library used by your
plug-in.

You can use any text or XML editor to create the plugin-package.xml file.

NOTE Each WAR file or JAR file must contain an OSGI-compliant META-INF/MANIFEST.MF file that describes
the bundle.

Creating the Package Manifest File

The plug-in package manifest file specifies general information about the plug-in package, the deployment
order for the plug-in modules in the package, and any dependencies for the plug-in package.

XML Elements in the Manifest File

The metadata in the manifest file follows a specific XML schema. The <pluginPackage> root element
encapsulates the entire plug-in package manifest. The <pluginPackage> element can contain the
<dependencies> element and the <bundlesOrders> element.

Example 12-1, on page 109, shows an example of a plugin-package.xml manifest file.

108 VMware, Inc.

Chapter 12 Creating and Deploying Plug-In Packages

Example 12-1. Example plugin-package.xml file

<pluginPackage id = "com.vmware.client.myPackage"
version="1.0.0"
name="My Plugin Name"
description="Demo package version 1"
vendor="VMware"
iconUri="assets/packageIcon.png">

<dependencies>
<pluginPackage id = "com.vmware.vsphere.client
</dependencies>

version="5.5.0" />

<bundlesOrder>
<bundle id="com.mySolution.myDataServicePlugin" />
<bundle id="com.mySolution.myUIViewPlugin" />
<bundle id="com.mySolution.myActionPlugin" />
</bundlesOrder>

</pluginPackage>

<pluginPackage> Element

The <pluginPackage> element is the root element of any plug-in package manifest file. The following
attributes of the <pluginPackage> contain information about the entire package.

B id. The package’s unique identifier, which you create. Each plug-in package name must be unique. A best
practice is to use namespace notation, such as com.myCompany . PackageName.

B version. A dot-separated string containing the package version number, such as 1.0.0.
B description. A short description of the package.
B vendor. The name of the package vendor.

B iconUri. The URI of an icon to represent the package. The location is specified relative to the manifest file.

<dependencies> Element

The <dependencies> element defines any dependencies upon other plug-in packages. In the
<dependencies> element, you specify each specific package dependency with a <pluginPackage> element.
Each <pluginPackage> element in the <dependencies> element must have the following attributes.

B id. The unique identifier of the package that your package is dependent on.
B version. The version number of the package that your package is dependent on.

B match. The version matching policy. Possible values are equal, greaterThan, lessThan,
greaterOrEqual, or lessOrEqual. The match attribute is optional and defaults to greaterOrEqual if
omitted.

<bundlesOrder> Element

The <bundlesOrder> element specifies the order in which locally hosted plug-in modules are deployed to the
vSphere Web Client. If your plug-in package contains both service plug-in modules and user interface plug-in
modules, a best practice is to deploy the service plug-in modules first, because the user interface plug-in
modules might import those services.

You specify each plug-in module using a <bundle> element inside the <bundlesOrder> element. The
<bundle> element'’s id attribute contains the unique identifier of the plug-in module. The value of the id
attribute must match the Bundle-SymbolicName specified in the plug-in module MANIFEST . MF file included
in the WAR bundle.

NOTE Plug-in modules in the package that are not explicitly specified in the <bundlesOrder> list are still
deployed, but in an undefined order.

VMware, Inc. 109

vSphere Web Client Extensions Programming Guide

Deploying a Plug-In Package

110

You deploy a plug-in package to the vSphere Web Client by registering the package as an extension on
vCenter Server. When you register your plug-in as an extension on vCenter Server, your plug-in becomes
available to any vSphere Web Client that connects to your vSphere environment.

You must register your plug-in on every vCenter Server where you need to use it. When a vSphere Web Client
connects to a vCenter Server where your plug-in is not registered, the plug-in is not visible to the client.

When a vSphere Web Client establishes a user session to vCenter Server, the vSphere Web Client application
server queries vCenter Server for a list of all available plug-in packages that are registered as vCenter
extensions. Any plug-in packages that are not present on the application server are downloaded and installed.

NOTE Plug-in package .ZIP files are not always installed locally on a vCenter server. Some vCenter extensions
can reference remote packages at any Web server URL. If a remotely hosted package is found on
vCenter Server, the package .ZIP file is downloaded from the URL specified in the vCenter extension data.

The vSphere Web Client application server can run only one version of each plug-in package. If a plug-in
package is present on the application server, but has an older version number than the corresponding package
on vCenter Server, the package version on vCenter Server replaces the older package.

Registering a Plug-In Package as a vCenter Server Extension

To register your plug-in package as an extension with vCenter Server, you must create an Extension data
object and register this data object with the vCenter Server ExtensionManager. See “Creating the vCenter
Server Extension Data Object” for information on the XML properties.

You can create and register an Extension data object in the following ways:

B Use a utility application or script to create the Extension data object programatically, and register that
data object using the vSphere API You can use the ExtensionManager.registerExtension() method
to register the data object.

B Use the traditional vSphere Client to register the extension.

1 Create the vim. Extension data object in an XML file, and place that file in a file system available to
the vSphere Client.

2 Run the Windows vSphere Client and connect to the vCenter Server where you need to register your
extension.

3 From the Plug-ins menu select Manage Plug-ins.

4 In the Plug-in Manager window right-click in an empty area at the bottom of the window, or in an
empty column at the right edge of the window, and select New Plug-in.

5 In the Register Plug-in window enter a file name or click the Browse button and locate the
vim.Extension file.

6 Click Register Plug-in.

VMware, Inc.

Chapter 12 Creating and Deploying Plug-In Packages

Creating the vCenter Server Extension Data Object

Regardless of the registration method you choose, you must set the properties of the Extension data object as
follows:

B key. The plug-in package id, defined in your plug-in package’s manifest, plugin-package.xml.
B client. This property must contain one ExtensionClientInfo data object, with the following properties:
B type. Must be set to vsphere-client-serenity.

B url. The location of the plugin-package folder, which must be a . zip file. The ZIP archive root folder
must contain the plugin-package.xml package manifest.

B server. (conditional) If the URL uses HTTPS, you must define a <servers property in your extension
data object. The <server> property must contain the SSL thumbprint for the server where your
plug-in package ZIP file is stored. For information about the <servers property, see “Using a Secure
URL for the Plug-in Location” on page 111.

m version. The dot-separated version number of the plug-in package, defined in
plugin-package.xml.

Example 12-2 shows an example Extension object defined in an XML file.

Example 12-2. Example vim.Extension XML Definition

<extension>
<description>
<label>My plugin</label>
<summary>My first vSphere Client plugin</summary>
</description>
<key>com.acme.myPlugin.MyPlugin</key>
<company>VMware</company>
<version>1.0.0</version>
<client>
<version>1.0.0</version>
<description>
<label>My plugin</label>
<summary>My first vSphere Client plugin</summary>
</description>
<company>VMWare</company>
<type>vsphere-client-serenity</type>
<url>http://a-web-server-path/mypluginPackage.zip</url>
</client>
<lastHeartbeatTime>2012-07-21T00:25:52.8144187</1lastHeartbeatTime>
</extension>

Using a Secure URL for the Plug-in Location

A best practice is to use a secure URL (HTTPS) for your plug-in package .z1ip file location. If you use an HTTPS
URL, you must include a <server> property in your vim.Extension data object. The <server> property
contains the SHA1 thumbprint for the server that corresponds to the URL. Example 12-3, on page 112, shows
an example server property.

VMware, Inc. 1M1

vSphere Web Client Extensions Programming Guide

12

Example 12-3. Example <server> Property with SHA1 Thumbprint

<extension>

<server>
<url>https://myhost/helloworld-plugin.zip</url>
<description>
<label>Helloworld</label>
<summary>Helloworld sample plugin</summary>
</description>
<company>VMware</company>
<!—— SHA1l Thumbprint of the server hosting the .zip file ——>
<serverThumbprint>
3D:E7:9A:85:01:A9:76:DD:AC:5D:83:1C:0E:E0:3C:F6:E6:2F:A9:97
</serverThumbprint>
<type>HTTPS</type>
<adminEmail>your-email</adminEmail>
</server>
</extension>

Verifying Your Plug-In Package Deployment

You can verify that your plug-in package deployed correctly by searching the log file on the

vSphere Web Client Virgo server for your plug-in package ID. If the package deployed correctly, the plug-in
package ID is included in a message about a successful package deployment. You can also check specific
folders on the Virgo server for your expanded .zip files.

On the Windows operating system, the file appears in the following location.
%PROGRAMDATA%/VMware/vSphere%20Web%20Client/vc-packages/vsphere-client-serenity/
On the Linux operating system, the file appears in the following location.

/var/lib/vmware/vsphere-client/vc-packages/vsphere-client-serenity/

Unregistering a Plug-In Package

You can unregister a plug-in package that you previously registered with vCenter Server. You can unregister
the plug-in package programatically, using the vSphere API ExtensionManager method
unregisterExtension(), or you can use the vCenter Managed Object Browser (MOB) interface in your Web
browser to manually delete the extension.

Unregistering a plug-in package on vCenter Server does not delete the plug-in package files that are installed
locally on the vSphere Web Client Virgo server. The files are not used after you unregister the package. To
remove the files for cleanup purposes, you must delete the plug-in package files manually.

NOTE In the current release of vSphere, any Java services you added are still active after you unregister a
plug-in package, and the plug-in might still appear in the vSphere Web Client Plug-In Management view. This
is a known issue, and a workaround is to restart the Virgo server.

VMware, Inc.

List of Extension Points

Table A-1 contains the complete list of extension points published by the vSphere Web Client, the required
extension definition type, and a brief description of the resulting extension.

Table A-1. vSphere Web Client Extension Points
Extension Point Name Description

Action Extension Point

vise.actions.sets Contains a set of actions, each of which is
represented by the class
com.vmware.actionsfw.ActionSpec.
Requires a data object of type
com.vmware.actionsfw.ActionSetSpec.

Object Workspace Extension Points

Each vSphere object type’s object workspace provides a set of extension points. Each extension point corresponds to a
specific data view, such as the Summary tab view or the Manage tab view. Every object workspace extension point
requires a data object of type com.vmware.ui.views.ViewSpec.

Object workspace extension points follow the format vsphere.core.${objectType}.${view}. The ${objectType}
placeholder corresponds to the type of vSphere object, and the ${view} placeholder corresponds to the specific view. For
example, the extension point vsphere. core.cluster.manageViews is the extension point for the Manage tab view for
Cluster objects. The following names are valid ${objectType} values.

®m cluster: ClusterComputeResource object

datacenter: Datacenter object

dscluster: StoragePod object

dvs: DistributedVirtualSwitch object
dvPortgroup: DistributedVirtualPortgroup object
folder: Folder object

host: HostSystem object

network: Network object

resourcePool: ResourcePool object

datastore: Datastore object

vApp: VirtualApp object

vm: VirtualMachine object

vsphere.core.${objectType}.summarySectionViews Portlets under the Summary tab view

vsphere.core.${objectType}.monitorViews Second-level tabs under the Monitor tab view

vsphere.core.${objectType}.monitor.performanceViews Views on the Monitor tab, under the
Performance second-level tab

vsphere.core.${objectType}.manageViews Second-level tabs under the Manage tab view

vsphere.core.${objectType}.manage.settingsViews Views on the Manage tab, under the Settings
second-level tab

vsphere.core.${objectType}.manage.alarmDefinitionsViews Views on the Manage tab, under the Alarm
Definitions second-level tab

VMware, Inc. 113

vSphere Web Client Extensions Programming Guide

Table A-1. vSphere Web Client Extension Points (Continued)
Extension Point Name Description

Object Navigator Extension Point

vise.navigator.nodespecs Add an object collection node, category, or
pointer node extension to the object navigator.
Requires a data object of type
com.vmware.ui.objectnavigator.model.O
bjectNavigatorNodeSpec.

Domain Views Extension Point

vise.global.views Add a global Ul view to the vSphere Web
Client.
Requires a data object of type
com.vmware.ui.views.GlobalViewSpec.

Home Screen Extension Point

vise.home.shortcuts Add a shortcut to a global view or other data
view to the home screen.
Requires a data object of type
com.vmware.vsphere.client.views.Short

cutSpec.

Related Objects Extension Point

vise.relateditems.specs Create a new relation between vSphere object
types

Requires a data object of type
com.vmware.ui.relateditems.model.Obje
ctRelationSetSpec.

Object List Extension Points

Each vSphere object type has a list view to which you can add columns. The vSphere Web Client SDK provides an
extension point for the list view for each vSphere object type. Each extension point requires a data object of type
com.vmware.ui.lists.ColumnSetContainer.

The extension point names follow the format vsphere.core.${objectType}.list.columns, where the
${objectType} placeholder corresponds to the type of vSphere object. The following names are valid ${objectType}
values.

cluster: ClusterComputeResource object
datacenter: Datacenter object

dscluster: StoragePod object

dvs: DistributedVirtualSwitch object
dvPortgroup: DistributedVirtualPortgroup object
folder: Folder object

host: HostSystem object

hp: HostProfile object

network: Network object

resourcePool: ResourcePool object
datastore: Datastore object

vApp: VirtualApp object

vm: VirtualMachine object

template: Virtual Machine template object

vsphere.core.${objectType}.list.columns Create a new column in the list of vSphere
objects of type ${objectType}.

Object Representation Extension Point

vise.inventory.representationspec Define one or more new icon and label sets for
an object collection node in the object navigator,
along with the conditions under which the icon
and label sets appear.
Requires a data object of type
com.vmware.ui.objectrepresentation.mo
del.ObjectRepresentationSpec.

114 VMware, Inc.

Appendix A List of Extension Points

Table A-2 contains the Extension Templates included with the vSphere Web Client SDK.

Table A-2. Extension Templates in the vSphere Web Client SDK
Template ID Description

vsphere.core.inventory.objectViewTemplate Creates a complete object workspace for a given
custom object type. When you create an instance of
the objectViewTemplate, the vSphere Web Client
generates an extension point for each of the standard
object workspace tabs, subtabs, and views.

You must supply a namespace and an objectType
for the objectViewTemplate.

The objectViewTemplate creates extension points
in the format namespace. extension-point-name.
For a custom object called a Rack, for example, one
extension point might be
com.myExtension.Rack.monitorViews.

For the full list of object workspace extension points,
see Table A-1, “vSphere Web Client Extension
Points,” on page 113. A given tab does not appear in
the vSphere Web Client user interface unless you
explicitly create an extension that references that
tab’s extension point.

vsphere.core.inventory.summaryViewTemplate Creates a standard Summary tab with an optional
header at the top, and a main area that can contain
one or more Portlet data views.

You must supply a namespace, and can optionally
supply a summaryHeaderView, for the
summaryViewTemplate. You must create an instance
of the objectViewTemplate before creating a
summaryViewTemplate instance.

The summaryViewTemplate creates the extension
point namespace. summarySectionViews. When
you create data view extensions at this extension
point, they data views appear as Portlets in the
Summary tab.

vsphere.core.inventorylist.objectCollectionTemplate Creates an object collection node in the object
navigator for a given custom object type.

You must supply the following variables when
creating an instance of the
objectCollectionTemplate.

namespace: a unique identifier used to avoid name
clashes with other extensions

title: the custom object text label

icon: the custom object icon resource

objectType: the vSphere type name for the custom
object

listViewId: the data view that appears when the
user clicks the collection node, usually an object list

parentUid: the object collection node’s parent node
in the object navigator control

VMware, Inc. 115

vSphere Web Client Extensions Programming Guide

116 VMware, Inc.

Using Legacy Script Plug-Ins with the
vSphere Web Client

The vSphere Web Client provides partial support for script plug-ins that you have created for previous
versions of the Windows-based vSphere Client application. To use your vSphere Client script plug-ins with
the vSphere Web Client, you must enable script plug-in support in the vSphere Web Client configuration. The
vSphere Web Client uses the data in the XML configuration file for a given script plug-in, and renders that
plug-in at an equivalent location in the vSphere Web Client user interface.

When you enable script plug-in support for the vSphere Web Client, the vSphere Web Client processes and
displays any legacy script plug-in registered with your vCenter Server.

The vSphere Web Client does not fully support vSphere Client script plug-ins. To take full advantage of the
vSphere Web Client extension points and tools, you must use the vSphere Web Client SDK to create plug-in
modules.

This appendix contains the following topics:
B “Enabling Script Plug-In Support in the vSphere Web Client” on page 117
B “Where Script Plug-In Extensions Appear in the vSphere Web Client” on page 117

B “Known Issues and Unsupported Features” on page 118

Enabling Script Plug-In Support in the vSphere Web Client

Support for vSphere Client script plug-ins is disabled by default in the vSphere Web Client. To enable support
for script plug-ins, locate thewebclient.properties file in the vSphere Web Client install directory, typically
%ProgramData%\VMware\vSphere Web Client on the Windows operating system, and
/var/lib/vmware/vsphere-client on Linux and MacOS. Add the following line to the
webclient.properties file.

scriptPlugin.enabled = true

You must also have registered your script plug-ins with the vCenter Server to which the vSphere Web Client
is connecting. The script plug-in URL must use the HTTPS protocol to work with the vSphere Web Client. In
the extension.xml file you use to register your script plug-in with vCenter Server, you must add the SHA1
thumbprint of the server where your scriptConfig.xml plug-in file is located. For an example
extension.xml file with an SHA1 thumbprint, see “Creating the vCenter Server Extension Data Object” on
page 111.

If you prefer to use a non-secure HTTP URL for your script plug-in, you can add the following flag to the
webclient.properties file.

allowHttp = true

Where Script Plug-In Extensions Appear in the vSphere Web Client

The extensions in your vSphere Client script plug-ins appear in specific places in the vSphere Web Client.
describes where each type of vSphere Client extension appears in the vSphere Web Client.

VMware, Inc. 117

vSphere Web Client Extensions Programming Guide

Table B-1. Script Plug-In Locations in the vSphere Web Client

Extension Type Old Location in vSphere Client New Location in vSphere Web Client

HomeView Added a shortcut on the vSphere Appears on the vSphere Web Client home screen

Client home screen in the Inventory, in the Classic Solutions category.
Administration, Management, or
Applications category

InventoryView Displayed a Web appletin theselected ~ Appears as a subview inside the Classic
vSphere object’s Inventory View Solutions tab for the target object’s object

workspace.

InventoryMenus Added a Menu item to a specific Appears in the context menu for the target object
object sub-menu under the top-level ~ type when the user right-clicks in the object
Inventory menu navigator.

MainMenus Added a menu item to one of the Appears in the user menu at the top of the
top-level menus in the vSphere Client, ~ vSphere Web Client, inside the Classic Solutions
such as File, Edit, or View. submenu.

Toolbars Added an item to an object’s toolbar Toolbars are not supported in the vSphere Web

Client.

Known Issues and Unsupported Features

118

Using vSphere Client script plug-ins with the vSphere Web Client has the following known issues.

Setting the display attribute on a URL tag to a value of "none" runs the script located at the URL without
opening the URL in a new page. This behavior is supported in the vSphere Web Client, but the Flash
Player requires the domain where the script is located to have a cross-domain policy XML file. See
http://www.adobe.com/devnet/articles/crossdomain_policy_file_spec.html.

When using a script plug-in at a secure URL (HTTPS) in the Chrome or Firefox browsers, you must load
the script plug-in page in an external tab at least once before it appears in the vSphere Web Client.

Icons for a script plug-in shortcut do not appear in the vSphere Web Client. The vSphere Web Client
displays a placeholder icon for the script plug-in icon on the home screen.

Localized labels for script plug-ins are not supported in the vSphere Web Client. The vSphere Web Client
displays all titles and labels using the English (EN) locale.

Toolbar extensions are not supported in the vSphere Web Client.

Script plug-ins that provide shortcuts to specific vSphere objects or object views are not supported in the
vSphere Web Client, as the datacenter hierarchy is organized and displayed differently than in the
vSphere Client.

VMware, Inc.

Index

A

action extensions 67—81

and Actions Framework 18

example, new solution sub-menu 77
example, prioritizing action menu 80
example, prioritizing global actions toolbar 81
example, solution sub-menu with actions 78
example, solution sub-menu with nesting 79
example, solution sub-menu with separator 79
for custom objects 18

for existing objects 18

implementing 68, 75, 76

purpose 67

see also: action set extensions

action set extensions

example, adding new action set 70, 71

action sets 68

adding actions 68
filtered by object type 68
implementing 68

actions

command classes 72
event targets 75
implementing 75
prioritizing 79, 80
service layer 75
target objects 75
user interface 75

Actions Framework 48, 75

action sets 67
adding actions 18
library 75

actions menu

extending 76

Administration application

purpose 15

annotations 44, 48

VMware, Inc.

[DefaultMediator] 44, 45, 48
[Event] 48, 54
[EventHandler] 50

[Model] 49, 52, 53, 54
[RequestHandler] 49, 72
[ResponseHandler] 49, 54
[View] 44, 50

@type 100

arguments 48

events 47, 48
listed 48

Cc

classes

see: command classes

see: mediator classes

see: types

see: view classes
column extensions

managing visibility 91
columns

extending list views 89
command classes 47

example 73,74

for actions 72, 75
container application, Flex 21
context-specific actions, prioritizing 80
custom Java services 103—-105

actions 18, 75

adapters 93

adding services to Spring configuration 104

classes 103

custom objects 18

example, interface 103

exporting 104

exposing 103

importing 104

interface 103

JAR bundle 103, 104

OSGI bundles 104

packaging 103

plug-in modules 16

proxy classes 105

purpose 16

service ID 105

standalone 16

types 16

user interface 103
custom object types 99

D

DAM: see Data Access Manager

data access extensions
implementation 51

Data Access Manager 46, 48, 51, 54

119

vSphere Web Client Extensions Programming Guide

120

client communication 93
data refresh 51, 57
data refresh modes 57
data update specification 57
data view extensions 41
Frinje events 51
Frinje framework 43
notifications 51
use with custom adapters 95
workflow 51
data model classes 54
example 52
example, array 54
example, nested 53
example, property annotation 53
example, related custom object 54
example, relationship annotation 53
implementing 52
nested 53
purpose 49
retrieving custom objects 54
retrieving properties 52
data provider adapters 97-102
annotating 100
class constructor 100
example 101-102
interface 98, 100
Java bean 100, 101
OSGI bundle 100
purpose 95
query structure 98
query target objects 98
registration 99
registration, explicit 101
requirements 97
resolving query targets 99
result sets 99
data requests
troubleshooting 56
Data Service 51
extending 16, 94
purpose 93, 94
data service adapters 95-102
benefits 95
designing 95
for custom objects 18
for data view extensions 18
for global view extensions 17
implementation 95
interfaces 95
registration 95
types 95

data service queries
CompositeConstraint 99
constraints 98
ObjectldentityConstraint 98
PropertyConstraint 98
RelationalConstraint 98
data sources 46
data view extensions 43-58
adding to object workspaces 25
custom objects 18
example, host Summary tab 38
example, instantiating Summary tab 41
example, object view template 37, 39
extending existing objects 38
for existing object workspaces 18
initialization 45
mediator classes 51
proxy classes 46
types 38, 43
data views
classes 41
decoupling software components 43, 47
deploying plug-in packages 112
development environment
requirements 19
development environment: see also Eclipse
dynamic resource loader 23
dynamic resources 23

E

Eclipse IDE 44
for plug-in development 19

event bus 47, 48

event dispatchers 54

event handlers 51
actions 72,75

events
ActionlnvocationEvent 72, 75
data requests 54
data responses 54
DataByConstraintRequest 55
DataByModelRequest 55
DataByQuerySpecRequest 55
DataRefreshinvocationEvent 50
dispatchers 47, 49
dispatching 47
for actions 75
handlers 49, 54
handling 47
ModelChangeEvent 75
PropertyRequest 55
requests and responses associated 55
response handling 75

VMware, Inc.

subscribing 47
events, Frinje 46
extension data objects 111
example 111
example, SSL thumbprint 112
extension definition XML schema 27
extension objects
purpose 27
type specification 28
extension points
actions 80
host.summarySectionViews 38
listActions 80
listed 113-115
namespace.list.columns 90
namespace.summarySectionViews 40, 41
nodespecs 60
objectType.list.columns 90
portlet views 40
purpose 26
solutionMenus 76
vise.actions.sets 68
vise.home.shortcuts 87
vise.relateditems.specs 84
vm.manageViews 38
extensions
action set type 68, 69, 70, 71
action type 67-81
custom Java services 16
custom object workspaces 43
data view type 38, 43-58
example XML 27
example, filtered by object type 28
example, filtered by property 30
example, filtered by user privilege 31
filtered 27
filtered in GUI 28
filtering type 76
Flex or metadata 43
global view type 33-35, 43, 59
GUI elements 21
home screen shortcut type 26
list view type 89-91
menu type 76-79
metadata and GUI 26
nested 26
object navigator type 59-65
object workspace type 37-42, 43
pointer node type 59, 61
prioritization 79, 80
purpose 15
relation type 60, 62, 83—86

VMware, Inc.

Index

shortcut type 87-88
template-defined 31
user interface 21-31
vise.global.views 34

files
bundle-context.xml 100, 104
bundle-context-osgi.xml 100, 101, 104
MANIFEST.MF 100, 104
plug-in manifest 76
plug-in package manifest 107, 108
plugin.xml 22, 27, 31
plugin-package.xml 108, 111
ui/pom.xml 19
vim.Extension 111

filtering
with metadata 27

filtering action menus 76

filtering extensions
by boolean expressions 29
by object comparison 29
by object property 29
by object type 28
by user privilege 30
example, by object type 28
example, by property 30
example, by user privilege 31
with metadata 28

Flex run-time
versions 19

FlexBuilder 19
for plug-in development 19

Frinje events
for action menus 68

Frinje framework 43, 44, 45, 47
events 46, 48

G

global actions menu 80
global actions toolbar 80
global actions, prioritizing 80
global view extensions 45
example XML 34
implementation 34
purpose 17, 24, 33
types 33
Ul for 34
global views 59
GUI extensions 21
about 16
dynamic resources 23
icons 23

121

vSphere Web Client Extensions Programming Guide

122

order 24
sequencing 24
types 24

H

hierarchies

data views 14
extension points 26
menus 77
object navigator 14
home screen
extending 14
home screen extensions
purpose 17
home screen shortcuts 26, 87—88
implementation 87
purpose 87
hot-deployment of plug-in modules 107

icon resources 23

IDE: see Eclipse

interfaces
IContextObjectHolder 45
IResourceReference 98
PropertyProviderAdapter 96
ResourceTypeResolver 99

inventory trees and inventory lists 25

J

Java services
custom 46
Data Service 93

Data Service Extension Registry 95, 96, 99,
101

Resource Type Resolver Registry 99, 100
see also: custom Java services

see also: service layer

vSphere Object Reference Service 101
vSphere Web Client Data Service 100

L

legacy script plug-ins 117-118
enabling 117
limitations 118
user interface 117

list view extensions 89-91
adding columns 90
column visibility 91
example, adding a column 90
implementation 89
new object types 90
purpose 89

locales
in resource bundles 23
supported 23
localization data
resources 23

main workspace
custom object workspaces 15
Getting Started tab 14
global views 15
home screen 14
Manage tab 15
Monitor tab 15
purpose 13
Related Objects tab 15
Summary tab 14
Managed Object Browser 112
manifest files
MANIFEST.MF 100
plug-in package manifest 107
plugin.xml 22
mapping data requests to responses 55
mapping URIs to custom object types 99
Maven
Flex versions 19
flexmojos 19
mediator and view classes associated 44, 48, 50
mediator classes 44, 45, 54
data access 46
example 44
example, [Event] 49
example, [ResponseHandler] 50
example, [View] 50
example, Data Access Manager 56
example, data refresh 58
example, error property 57
example, IContextObjectHolder 46
purpose 45
menus
actions, adding 75, 77
actions, filtered by object type 76
nested 77,78
see also: action extensions
separators, adding 78
metadata 44
filter types 28
filters 27
metadata framework
XML schema 21
methods
callService() 105
dispatchEvent() 54

VMware, Inc.

ExtensionManager.registerExtension() 110
getData() 98, 99, 102
getProperties() 96
getResourceType() 99
newExplicitinstance() 57
newlmplicitinstance() 57
registerDataAdapter() 96, 101
unregisterExtension() 112
MOB: see Managed Object Browser
model component, MVC architecture 46
MVC architecture
components 44
controller component 47
GUIl 21
model component 46
proxy class 46
see also: MVC framework
view component 47
MVC framework 41, 43
auto-instantiating classes 47
command class 75
command classes 68, 75
example, [DefaultMediator] 48
example, [Event] 49
example, [EventHandler] 50
example, [ResponseHandler] 50
example, [View] 50
example, data model class 52

example, data model with property
annotation 53

example, data model with relationship
annotation 53

example, IContextObjectHolder mediator 46
example, mediator class 44

example, proxy class 47

example, view class 44

software components 43

vSphere Web Client usage 43

N

naming convention
vSphere objects 20
nesting extensions 26

(o)

object categories 25

object collection nodes 60

object list view extensions 26
see also:list view extensions

object navigator 11, 59-65
administration page 59
browsing virtual infrastructure 14
explained 59

VMware, Inc.

extending 13, 25
home page 59
purpose 12
top level 12
object navigator categories
administration 60
solutionsCategory 60
vilnventoryLists 60
virtuallnfrastructure 60
object navigator extensions
categories 60
custom objects 18
example, new category 61
example, new object collection node 63

example, new object collection node with
template 63

example, new pointer node 62

Index

example, object representation extension 64

extension point 60
global views 59
object collection nodes 60, 62, 63
page and category 60
pointer nodes 61
purpose 17, 59
XML templates 63
object view templates 39
namespace variable 39
objectType variable 40
standard template 39
object workspace extensions 37—-42, 45
custom objects 18, 39
extending existing workspaces 37
purpose 37
see also: data view extensions
object workspaces
data view extension points 25
extending hierarchy 14
OSGl services 100

Data Service Extension Registry 95, 96, 99,

101

Resource Type Resolver Registry 99, 100

User Session Service 101
user-provided 100

vSphere Object Reference Service 101
vSphere Web Client Data Service 100

P

packages
ActionContext 75
ActioninvocationEvent 75
com.vmware.data.query 49, 100
com.vmware.vise.data.query 95, 96, 98
com.vmware.vise.data.uri 100

123

vSphere Web Client Extensions Programming Guide

124

DataObject 52
ModelChangeEvent 75
ObjectChangelnfo 75
OperationType 75
plug-in: see plug-in packages
ServiceUtil 105
plug-in module manifest file: see plugin.xml
plug-in modules
contents 17
custom objects 18
global views 17
hot-deployment 107
Java services 16
types 15
user interface 16
plug-in packages 107
contents 19
creating 108
deployment 19, 110
locations 111, 112
registration 19, 110
unregistering 112
verifying deployment 112
versions 109, 110
plugin.xml
purpose 22
plugin-package.xml
example 109
prioritization extensions 80
prioritizing actions 79, 80
properties
acceptsMultipleTargets 68
actions 68
actionTargetTypes 80
applyDefaultChrome 34
children 76, 78
client 111
command 69, 72
componentClass 28, 34, 39
conditionalProperty 69, 84, 85
contextObject 45
DataUpdateSpec 57
defaultBundle 22
description 68
icon 61, 62, 68, 85
id 22, 85
isFocusable 63
key 111
label 68, 76, 77, 78, 85
listViewld 85
locale 23
moduleUri 22

name 28, 34, 39
navigationTargetUid 61, 62
nodeObjectType 63
parentUid 60, 61, 62
prioritizedlds 80, 81
regionid 80, 81
relation 85
relationSpecs 84
relationsViewld 84
securityPolicyUri 22
server 111
targetType 85
titte 61, 62
type 77,78, 84, 111
uid 68,72,76,77,78
url 111
version 111

property provider adapters 96-97
example 96, 97
interface 96
purpose 95
registration 96

proxy classes
actions 75
ActionScript 46
example 47,105

R

Related Objects extensions 18
see also: relation extensions
relation extensions 60, 62, 83—86
custom objects 18
example, adding relations 86
implementation 84
purpose 83
RelationSpec object 84
relationships between vSphere objects 83
see also: relation extensions
requests and responses 54
requirements for development environment 19
resolving URIs 99
resource bundles 23
resource type resolvers 99
registration 99
resources
localization data 23
result sets, data service queries 99

S
service extensions: see custom Java services
service layer 93

actions 75

architecture 10

VMware, Inc.

SHA1 thumbprint: see SSL thumbprint

shortcut extensions
example, adding an object 87
see also: home screen shortcuts

solution menu extensions 76
example, new solution sub-menu 77
example, solution sub-menu with actions 78
example, solution sub-menu with nesting 79
example, solution sub-menu with separator 79
see also: action extensions

solution menus 76
see also: menus

solution sub-menus 77
see also: menus

Spring Tools Suite
for plug-in development 19

SSL thumbprint 111, 117
example 112

standard template
see: object view templates

sub-menus: see menus

T

thumbprint: see SSL thumbprint

types
ActionContext 75
ActionMenultemSpec 76, 77, 78
ActionPriorityGroup 80
ActionSetSpec 68
ActionSpec 68
BaseProxy 46
ChassisCommand 72
CompositeConstraint 29
Constraint 98
DataByModelRequest 58
DataObject 51, 52, 54
DataObjects 54
DataRequestinfo 57
DataUpdateSpec 57
EventDispatcher 45, 54
GlobalViewSpec 34
ObjectNavigatorNodeSpec 60, 61, 62
ObjectRelationSetSpec 84
ObjectReltaionSetSpec 84
objectViewTemplate 39
PropertyConstraint 29
PropertyRequestSpec 96
PropertySpec 98
QuerySpec 98
RequestSpec 98
ResourceSpec 98
Response 102
ResultSet 96

VMware, Inc.

ResultSpec 99
ShortcutSpec 87
ViewSpec 38
vim.Extension 110

)
ul

refreshing 54
unregistering plug-in packages 112
URIs

resolving to custom object types 99
user interface layer

about 21

architecture 9

\"

vCenter Server

in development environment 19
view and mediator classes associated 48, 50
view classes 44, 47

example 44

example, [DefaultMediator] 48

purpose 45

updating 54
view components

implementing 45

view and mediator classes associated 44
view components, MVC architecture 44
vim.Extension

example 111

example, SSL thumbprint 112
Virgo server

about 9

development environment 19

diagram 93

Java services 46, 93
vSphere objects

mapping names to APl 20

selection 45

w
WAR bundles

for Ul plug-in modules 21
Web Application Archive: see WAR
Web application server: see Virgo server
Web Client

architecture 9

extensibility 15

purpose 9
Web Client user interface

about 10

Administration application 15

main workspace 13, 14

Index

125

vSphere Web Client Extensions Programming Guide

126

X

object navigator 11, 12

XML editor

for plug-in development 19

XML elements

XML schema for extension definition 27

<beans> 104
<bundlesOrder> 108, 109

<com.vmware.actionsfw.Actioninfo> 68

<comparator> 29

<conjoiner> 29
<constructor-arg> 101
<dependencies> 108, 109
<extendedPoint> 27, 34, 38, 87
<extension> 22, 23, 27
<flex:message broker> 104
<flex:remoting-destination> 104
<metadata> 28, 29, 30, 68, 76
<nestedConstraints> 29
<object> 27, 90, 91
<objectType> 28
<osgi:reference> 101
<osgi:service> 100

<plugin> 22
<pluginPackage> 108, 109
<precedingExtension> 24
<privilege> 30
<propertyConditions> 29
<propertyName> 29
<resources> 22, 23
<templateld> 39, 41
<templatelnstance> 39, 40

VMware, Inc.

	vSphere Web Client Extensions Programming Guide
	Contents
	Introduction to the vSphere Web Client
	Understanding the vSphere Web Client Architecture
	User Interface Layer
	Service Layer

	Overview of the vSphere Web Client User Interface
	Object Navigator
	Object Navigator Top Level
	Object Navigator When Browsing the Virtual Infrastructure

	Main Workspace
	Home Screen
	Browsing the Virtual Infrastructure
	Global Views
	Workspaces for Custom Objects

	Administration Application

	Understanding Extensibility in the vSphere Web Client
	User Interface Plug-In Modules
	Adding Java Services
	Getting Data from the vSphere Environment
	Making Changes to the vSphere Environment

	Plug-In Modules in a Complete Solution
	Global Views
	Adding Data Views to Existing Virtual Infrastructure Object Workspaces
	Adding Actions to Existing vSphere Objects
	Adding a Custom Object Type to the vSphere Environment

	Plug-In Packages

	Requirements for Developing vSphere Web Client Extension Solutions
	Flex Run-Time Version Dependencies

	Naming Convention for vSphere Objects in the vSphere Web Client SDK

	vSphere Web Client User Interface Layer
	Understanding the User Interface Layer
	User Interface Plug-In Modules
	Creating the Plug-In Module Manifest
	XML Elements in the Manifest File

	Types of vSphere Web Client Extensions
	Adding a Global View
	Adding Data Views to Virtual Infrastructure Objects
	Enhancing the Object Navigator
	Adding Actions
	Creating a Relation Between vSphere Objects
	Adding a Home Screen Shortcut
	Extending Object List Views

	Defining Extensions
	Extension Point
	Extension Object
	Filtering Metadata
	Extension Definition XML Schema
	Specifying the Extension Point
	Describing the Extension Object
	Providing Filtering Metadata

	Filtering Extensions
	Filtering Based on Selected Object Type
	Filtering Based on the Value of a Property of the Selected Object
	Filtering Based on User Privilege Level

	Using Templates to Define Extensions

	Adding a Global View Extension
	Use Cases for Creating a Global View Extension
	Dashboards
	Consoles

	Defining a Global View Extension
	Creating Global View Classes
	Making a Global View Accessible to Users

	Adding to vCenter Object Workspaces
	Use Cases for Adding to an Object Workspace
	Adding to an Existing Object Workspace
	Types of Data Views
	Defining a Data View Extension

	Creating an Object Workspace for a Custom Object
	Using the Object View Template to Create an Object Workspace
	Namespace
	Object Type

	Creating the Data Views Within the Template
	Using the Summary Tab Template
	Namespace
	Summary Header View
	Adding Portlets to the Summary Tab

	Creating Data View Classes

	Architecting Data Views
	About the MVC Architecture
	The Frinje Framework MVC in the vSphere Web Client
	View Components in Frinje
	Overview of View and Mediator Classes
	Creating View Components with the vSphere Web Client SDK

	Model Components in Frinje
	Controller Components in Frinje
	Frinje Event Bus
	Command Classes

	About the Frinje Event-Driven APIs
	Frinje Metadata Annotations
	DefaultMediator
	Event
	Model
	RequestHandler
	ResponseHandler
	EventHandler
	View

	Using the Data Access Manager Library
	Data Access Manager Workflow
	Creating the Data Model Class
	Class Declaration
	Declaring the Properties to Retrieve
	Retrieving Properties for Related Objects
	Nested Data Models

	Sending Data Requests and Handling Data Responses
	Data Request Events
	Data Response Events
	Request-to-Response Mapping
	Examples of Data Request and Data Response Events
	Error Checking and Troubleshooting Your Data Requests

	Data Refresh and Data Update Specifications

	Extending the Object Navigator
	Use Cases for Extending the Object Navigator
	Global Views
	Object Collections

	Defining an Object Navigator Extension
	Specifying the Object Navigator Page and Category
	Adding a Category to the Object Navigator
	Adding a Pointer Node to the Object Navigator
	Adding an Object Collection Node to the Object Navigator

	Using a Template to Define an Object Collection Node
	Adding Custom Icons and Labels to an Object Collection Node
	Defining an Object Representation Extension
	Defining an Individual Icon and Label Set

	Creating Action Extensions
	Use Cases for Adding an Action Extension
	About the Actions Framework and Action Sets
	Action Controllers in Flex Extensions
	Action Controllers for HTML Extensions

	Defining an Action Set
	Defining Individual Actions in an Action Set
	Defining the <delegate> Object in HTML-Based Action Extensions
	Example Action Extension Definitions
	Flex-Based Action Extension Definition
	HTML-Based UI Action Extension Definition
	HTML-Based Headless Action Extension Definition

	Using callActionsController To Invoke HTML Actions
	Using Flex Command Classes To Handle Actions
	Java Actions Controller Classes for HTML Extensions
	Performing Action Operations on the vSphere Environment
	Obtaining the Action Target Object
	Updating the Client with Action Operation Results

	Organizing Your Actions in the User Interface
	Extending an Action Menu
	Defining a Solution Menu Extension
	Adding Items to a Nested Solution Menu

	Prioritizing Actions in the User Interface
	Prioritizing Context-Specific Actions
	Prioritizing Global Actions Toolbar

	Creating a New Relation Between vSphere Objects
	Use Cases for Adding a Relation Extension
	Defining a Relation Extension
	Describing the Relation Using the RelationSpec Object

	Creating Home Screen Shortcuts
	Use Cases for Adding a Home Screen Shortcut
	Creating the Home Screen Shortcut Extension Definition

	Extending vSphere Object List Views
	Use Cases for Extending an Object List View
	Defining an Object List View Extension
	Extending a vSphere Object List View
	Adding a List View for a New Object Type

	Column Visibility

	vSphere Web Client Service Layer
	Understanding the vSphere Web Client Data Service
	Extending the Data Service with a Data Service Adapter
	Advantages of Providing a Data Service Adapter
	Designing a Data Service Adapter
	Property Provider Adapters
	Data Provider Adapters
	Implementing an Adapter

	Property Provider Adapters
	PropertyProviderAdapter Interface
	Registering a Property Provider Adapter
	Example Property Provider Adapter

	Data Provider Adapters
	DataProviderAdapter Interface
	Processing Data Service Queries
	Resolving the Target Object
	Registering a Data Provider Adapter
	Data Provider Adapter Example

	Creating a Custom Java Service
	Making Java Services Available to UI Components in the vSphere Web Client
	Creating the Java Interface and Classes
	Packaging and Exposing the Service
	Exporting the Service
	Adding the Service to the Spring Configuration

	Importing a Service in a User Interface Plug-In Module
	Specifying Flex-to-Java Service Parameters
	Creating a Proxy Class with ActionScript

	Creating and Deploying Plug-In Packages
	Overview of Plug-In Packages
	Creating a Plug-In Package
	Creating the Package Manifest File
	XML Elements in the Manifest File

	Deploying a Plug-In Package
	Registering a Plug-In Package as a vCenter Server Extension
	Creating the vCenter Server Extension Data Object
	Using a Secure URL for the Plug-in Location

	Verifying Your Plug-In Package Deployment
	Unregistering a Plug-In Package

	List of Extension Points
	Using Legacy Script Plug-Ins with the vSphere Web Client
	Enabling Script Plug-In Support in the vSphere Web Client
	Where Script Plug-In Extensions Appear in the vSphere Web Client
	Known Issues and Unsupported Features

	Index

