
vSphere Web Services
SDK Programming Guide
21 SEP 2023
VMware vSphere 8.0
VMware ESXi 8.0
vCenter Server 8.0

You can find the most up-to-date technical documentation on the VMware website at:

https://docs.vmware.com/

VMware, Inc.
3401 Hillview Ave.
Palo Alto, CA 94304
www.vmware.com

Copyright
©

 2011-2023 VMware, Inc. All rights reserved. Copyright and trademark information.

vSphere Web Services SDK Programming Guide

VMware, Inc. 2

https://docs.vmware.com/
https://docs.vmware.com/copyright-trademark.html

Contents

About This Book 14

1 About the vSphere Web Services SDK 17
vSphere Web Services SDK 17

SDK Developer Setup for the Web Services SDK 18

SDK Samples for the Web Services SDK 18

UML Diagrams Used in the Web Services SDK Programming Guide 18

2 vSphere Web Services API Programming Model 20
vSphere Client-Server Architecture 20

Web Services API as a Web Service 21

WSDL Files and the Client-Side Proxy Interface 21

Network Access to the vSphere Web Service 22

Language-Specific Classes and Methods 23

Mapping XML Data Types to Java or JSON Data Types 23

Access to Managed Objects 24

Access to vSphere Server Data 25

Obtaining Information from a Server 25

Working with Data Structures 26

Accessing Property Values 26

Nested Properties and Property Paths in Composite Data Structures 27

xsd:anyType Arrays 27

Indexed Array and Key-Based Array Properties 30

Unset Optional Properties 30

Escape Character in Name and Path Properties 31

3 Client Applications for the Web Services API 32
vCenter Server Connections 32

Establishing a Single Sign-On Session with a vCenter Server 33

LoginByToken to vCenter Server By Using Java 33

vCenter Server Single Sign-On Session Using Java 34

HTTP and SOAP Header Handlers in Java 34

Creating the HTTP Connection in Java 36

Using LoginByToken in Java 37

Establishing a Session with Username and Password Credentials 40

Overview of a Java Sample Application for the Web Services SDK 40

Build a Simple vSphere Client Application for the Web Services SDK 40

Java Client Example for the Web Services SDK 41

VMware, Inc. 3

Web Server Session Token 44

Accessing the vSphere Web Services HTTP Endpoint with JAX-WS 45

Accessing the vSphere Server from a Web Services Client 47

Closing the Connection from a Web Services Client 48

Using the Java Samples as Reference 48

Multiple Versions of the vSphere API 49

Java Sample Applications in the Web Services SDK 50

Java Samples in the Web Services SDK 50

4 Client Applications Using the JSON Protocol 51
Client Requirements for the JSON Protocol 51

Outlining a Client for the JSON Protocol 52

Building JSON Request URLs 53

Building JSON Request Bodies 54

Retrieving the Service Instance with the JSON Protocol 55

Authenticating a JSON Client with the Session Manager 56

Basic Authentication for the JSON Protocol 57

SAML Token Authentication for a JSON Client 58

Mapping Methods for the JSON Protocol 59

Accessing Managed Object Properties with the JSON Protocol 59

Using Polymorphic Types with the JSON Protocol 64

Python Client Example for the JSON Protocol 65

5 Datacenter Inventory 69
Inventory Overview for the Web Services SDK 69

Inventory Hierarchies and ServiceInstance 69

Folders in the Hierarchy 70

ESXi Inventory Hierarchy 71

Accessing Inventory Objects 71

Creating Inventory Objects 72

Privileges Required for Inventory Management 73

Privileges 73

Permissions 73

Managed and Standalone ESXi Hosts 74

6 Property Collector 76
Introduction to the PropertyCollector 76

Data Retrieval 77

Inventory Traversal and Property Selection 77

Gathering Data with a ViewManager Object 78

vSphere Data Objects for Property Collection 78

vSphere Web Services SDK Programming Guide

VMware, Inc. 4

vSphere Methods for Property Collection 79

Using the PropertyCollector with RetrievePropertiesEx 80

Retrieve a Property from a Specified Managed Object 80

Retrieve Properties from a Set of Managed Objects with a View 83

Property Collector Program in Java for Web Services SDK 86

Inventory Traversal 91

TraversalSpec Traversal 91

Traverse the Inventory By Using the Property Collector 93

Inventory Traversal Example in Java 94

SelectionSpec Traversal 99

Client Data Synchronization with WaitForUpdatesEx 105

Property Filtering 106

WaitForUpdatesEx 107

Server Data Transmission 108

PropertyCollector Performance 109

SearchIndex 110

7 Authentication and Authorization 111
Objects for Authentication and Authorization Management 111

Authentication and Authorization for ESXi and vCenter Server 112

ESXi User Model 113

vCenter Server User Model 114

vSphere Security Model 114

Setting Up Users, Groups, and Permissions 116

Obtaining User and Group Information from UserDirectory 116

RetrieveUserGroups Method 117

Managing ESXi Users with HostLocalAccountManager 117

Methods Available for Local Account Management 118

Create a Local User Account on an ESXi System 118

Managing Roles and Permissions with AuthorizationManager 118

Using Roles to Consolidate Sets of Privileges 120

Modifying Sample Roles to Create New Roles 121

Granting Privileges Through Permissions 121

Authenticating Users Through SessionManager 124

Using VMware Single Sign On for vCenter Server Sessions 125

Using the Credential Store for Automated Login 125

Credential Store Libraries 125

Credential Store Methods 126

Credential Store Backing File 126

Credential Store Samples 127

Specifying Roles and Users with the Credential Store 128

vSphere Web Services SDK Programming Guide

VMware, Inc. 5

Managing Licenses with LicenseManager 128

8 Hosts 130
Host Management Objects 130

Retrieving Host Information 131

Configuring and Reconfiguring Hosts 132

Managing the Host Lifecycle 132

Reboot and Shutdown 132

Using Standby Mode 132

Disconnecting and Reconnecting Hosts 133

Querying and Changing the Host Time 134

Querying Virtual Machine Memory Overhead 134

9 Storage 135
Storage Management Objects 135

Introduction to Storage 136

How Virtual Machines Access Storage 137

Datastores 138

Choosing the Storage API to Use 139

Managed Objects for Working with Storage 140

Configuring Disk Partitions 141

Multipath Management 141

Configuring iSCSI Storage 142

Configure the VMkernel To Support Software iSCSI 143

Configure iSCSI Initiators 143

Creating and Managing Datastores 145

Accessing Datastores 146

Creating and Modifying a VMFS Datastore 146

Removing and Updating Datastores 148

Managing VMFS Datastores with HostStorageSystem 148

Managing VMFS Volume Copies (Resignaturing) 149

Resignaturing Volumes with ResignatureUnresolvedVmfsVolume_Task 150

Managing Diagnostic Partitions 150

Retrieving Diagnostic Partition Information 151

Create a Diagnostic Partition 151

Sample Code Reference 152

10 vSphere Networks 153
Virtual Switches 153

Port Groups 153

Virtual Machine Network Interfaces 154

vSphere Web Services SDK Programming Guide

VMware, Inc. 6

VMkernel Network Interfaces 154

Physical Network Adapter (pnic) 155

Using a Distributed Virtual Switch 155

Distributed Virtual Switch Configuration 156

Backup, Rollback, and Query Operations 157

VMware Standard Virtual Switch 158

Configuring a Standard Virtual Switch 159

vNetwork Standard Switch Environment 159

Setting Up Networking with vSS 160

Defining the Host Network Policies 163

NIC Teaming 163

Setting Up IPv6 Networking 164

Adding Networking Services 165

Sample Code Reference 166

11 Virtual Machine Configuration 167
VirtualMachine Management Objects and Methods 167

Creating Virtual Machines and Virtual Machine Templates 168

Creating a Virtual Machine Using VirtualMachineConfigSpec 168

Creating Virtual Machine Templates 170

Cloning a Virtual Machine 170

Converting a Template to a Virtual Machine 171

Accessing Information About a Virtual Machine 171

Configuring a Virtual Machine 172

Name and Location 174

Hardware Version 174

Boot Options 175

Operating System 175

CPU and Memory Information 175

Networks 178

Fibre Channel NPIV Settings 179

File Locations 180

Adding Devices to Virtual Machines 180

Performing Virtual Machine Power Operations 182

Registering and Unregistering Virtual Machines 183

Customizing the Guest Operating System 184

Installing VMware Tools 185

Upgrading a Virtual Machine 185

12 Virtual Machine Management 186
Virtual Machine Migration 186

vSphere Web Services SDK Programming Guide

VMware, Inc. 7

Cold Migration 187

Migration with vMotion 187

Using Storage vMotion 187

Snapshots 188

Creating a Snapshot 188

Reverting to a Snapshot 189

Deleting a Snapshot 189

Linked Virtual Machines 189

Linked Virtual Machines and Disk Backings 189

Creating a Linked Virtual Machine 190

Instant Clone Virtual Machines 192

Removing Snapshots and Deleting Linked Virtual Machines 198

Relocating a Virtual Machine in a Linked Virtual Machine Group 199

Promoting a Virtual Machine's Disk 199

Performing Advanced Manipulation of Delta Disks 200

13 Virtual Machine Guest Operations 202
Authenticating with the Guest Operating System 202

Running Guest OS Operations 202

Guest Operating System Customization 206

Guest Customization for Stopped Virtual Machines 208

Guest Customization Using cloud-init 208

Prepare a Virtual Machine Template for Raw Data cloud-init Customization 209

Prepare a cloud-init Metadata File 210

Prepare a cloud-init Userdata File 211

Initiate Raw Data cloud-init Customization with the vSphere Web Services API 212

Guest Network Customization for Instant Clone Virtual Machines 213

Installing the Guest Customization Engine 214

Disconnecting Virtual NICs 215

Customizing Guest Network Settings for Running Virtual Machines 215

Reconnecting Virtual NICs in a Running Virtual Machine 217

Restarting the Guest Network After Customization 217

Recovering from Guest Network Customization Errors 217

Application-Dependent Customization 218

Resetting the Network Stack in a Running Virtual Machine 218

Resetting the Network Stack in a Linux Virtual Machine 218

Resetting the Network Stack in a Windows Virtual Machine 219

14 Virtual Machine Security 221
How Virtual Machine Encryption Protects a Datacenter 221

What Keys are Used 222

vSphere Web Services SDK Programming Guide

VMware, Inc. 8

What Is Encrypted 222

What Is Not Encrypted 223

Who Can Perform Cryptographic Operations 223

How Can I Perform Cryptographic Operations 223

vSphere Virtual Machine Encryption Components 224

Key Management Server 224

vCenter Server 225

ESXi Hosts 225

Encryption Process Flow 225

Prerequisites and Required Privileges for Encryption Tasks 226

Cryptography Privileges and Roles 226

Host Encryption Mode 227

Encrypted vSphere vMotion 227

API Methods for vSphere Virtual Machine Encryption 227

vSphere API Methods for KMS Management 228

API Methods to Prepare an ESXi Host 229

vSphere API Methods for Cryptographic Operations 229

SPBM API Methods for Encryption 231

Workflows for vSphere Virtual Machine Encryption 231

Set Up the Key Management Server Cluster 231

Create an Encryption Storage Policy 234

Create an Encrypted Virtual Machine 237

Clone an Encrypted Virtual Machine 238

Encrypt an Existing Virtual Machine or Disk 238

Decrypt an Encrypted Virtual Machine or Disk 239

Encrypt with Different Keys for VM and Disk 240

Recrypt (Rekey) Encrypted Virtual Machines 241

Query Crypto Key In-Use Status 242

Encrypted vSphere vMotion 243

Virtual Disk Manager 243

Best Practices for Virtual Machine Encryption 243

Configuring Advanced Options 245

Physical Platform Resources 245

15 Virtual Applications: the vApp 249
About Virtual Applications 249

Management Overview 250

Direct and Linked Children 250

OVF Packages 251

Creating a VirtualApp 251

Managing VirtualApp Children 252

vSphere Web Services SDK Programming Guide

VMware, Inc. 9

Exporting a Virtual Application 253

VirtualApp and OvfManager Methods 255

VirtualApp Data Structures 255

OvfManager Data Structures 256

Example of Generating an OVF Package 257

Importing an OVF Package 259

Virtual Application Life Cycle 260

Powering a Virtual Application On or Off 260

Unregistering a Virtual Application 261

Suspending a Virtual Application 261

Destroying a Virtual Application 261

16 Resource Management 262
Resource Management Objects 262

Introduction to Resource Management 263

Resource Allocation 263

Resource Pool Hierarchies 264

Cluster Overview 264

Creating and Configuring Resource Pools 264

Configuring Reservation and Limit for Resource Pools 265

Configuring Priority Shares for Resource Pools 269

Deleting Child Resource Pools 280

Moving Resource Pools or Virtual Machines Into a Resource Pool 280

Introduction to vSphere Clusters 281

VMware DRS 281

VMware HA 281

VMware HCI 282

Creating and Configuring Clusters 282

Creating a Cluster 283

Adding a Host to a Cluster 284

Reconfiguring a Cluster 284

Managing DRS Clusters 285

Managing HA Clusters 285

Primary and Secondary Hosts 286

Failure Detection and Host Network Isolation 286

Using VMware HA and DRS Together 287

17 Tasks and Scheduled Tasks 288
Creating Tasks 288

Session Persistence 289

Cancelling a Task 289

vSphere Web Services SDK Programming Guide

VMware, Inc. 10

Using TaskInfo to Determine Task Status 289

Monitoring TaskInfo Properties 290

Accessing and Manipulating Multiple Tasks 292

Task Monitoring Example Using the Listview Object 292

Gathering Data with a TaskManager Interface 305

Understanding the ScheduledTaskManager Interface 307

Scheduling Tasks 308

Cancelling a Scheduled Task 311

Using a TaskHistoryCollector 312

Managing the HistoryCollector 313

Sample Code Reference 313

18 Events and Alarms 314
Event and Alarm Management Objects 314

Understanding Events 315

Managing Events with EventManager 315

Event Data Objects 316

Formatting Event Message Content 317

Creating Custom Events 317

Using an EventHistoryCollector 319

Creating an EventHistoryCollector Filter 320

Managing the HistoryCollector 320

Using Alarms 320

Obtaining a List of Alarms 321

Creating an Alarm 321

Defining Alarms Using the AlarmSpec Data Object 322

Specifying Alarm Trigger Conditions with AlarmExpression 323

Specifying Alarm Actions 324

Deleting or Disabling an Alarm 325

Sample Code Reference 326

19 vSphere Performance 327
vSphere Performance Data Collection 327

PerformanceManager Objects and Methods 330

Retrieving vSphere Performance Data 331

Performance Counter Example (QueryPerf) 332

Large-Scale Performance Data Retrieval 344

Using the QueryPerf Method as a Raw Data Feed 344

Comparison of Query Methods 345

Retrieving Summary Performance Data 346

Performance Counter Metadata 346

vSphere Web Services SDK Programming Guide

VMware, Inc. 11

PerfCounterInfo 346

Performance Intervals 347

ESXi Server Performance Intervals 348

vCenter Server Performance Intervals 349

vSphere Performance and Data Storage 349

Modifying Historical Intervals 349

Modifying Performance Counter Collection Levels 350

Sample Code Reference 351

20 Diagnostics and Troubleshooting 353
Troubleshooting Best Practices 353

Overview of Configuration Files and Log Files 354

ESXi Log File 355

Virtual Machine Log Files 355

vCenter Server Log Files 356

Modifying the Log Level to Obtain Detailed Information 357

Setting the Log Level on ESXi Systems 357

Generating Logs 358

Setting the Log Level on vCenter Server Systems 358

Using DiagnosticManager 359

Using the MOB to Explore the DiagnosticManager 360

Generating Diagnostic Bundles 361

Export Diagnostic Data By Using the vSphere Client 361

21 Managed Object Browser 363
Using the MOB to Explore the Object Model 363

Accessing the MOB 363

Using the MOB to Navigate the vSphere Object Model 364

Using the MOB to Invoke Methods 365

Passing Primitive Datatypes to Method 365

Passing Arrays of Primitives to Methods 365

Passing Complex Structures to Methods 366

Using the MOB Along With the API Reference 370

22 HTTP Access to vSphere Server Files 371
Introduction to HTTP Access 371

URL Syntax for HTTP Access 372

Datastore Access (/folder) 372

Host File Access to vSphere Server Files (/host) 373

Update Package Access (/tmp) 374

Privilege Requirements for HTTP Access 374

vSphere Web Services SDK Programming Guide

VMware, Inc. 12

23 Sample Program Overview 376
Java Sample Programs (JAXWS Bindings) 376

vSphere Web Services SDK Programming Guide

VMware, Inc. 13

About This Book

The vSphere Web Services SDK Programming Guide provides information about developing
applications using the VMware® vSphere Web Services SDK.

VMware provides different APIs and SDKs for various applications and goals. The vSphere Web
Services SDK targets developers who create client applications for managing VMware® vSphere
components available on ESXi hosts and vCenter Servers.

To view other VMware API and SDK documentation, go to https://developer.vmware.com.

Revision History

This book is revised with each release of the product or when necessary. The following table
summarizes significant changes in each version of this book.

Table 1-1. Revision History

Revision
Date Description

26 OCT 2023 Corrections and clarifications in PropertyCollector chapter, especially concerning WaitForUpdatesEx:
Chapter 6 Property Collector

28 AUG 2023 Minor updates:

n Removed /etc/syslog.conf from /host HTTP access. This configuration has been moved to

the ConfigStore.

n Changed some section titles for search engine optimization.

15 MAY 2023 Minor updates:

n Corrected Retrieving the Service Instance with the JSON Protocol which previously referred to
PropertyCollector as a singleton, which is not strictly correct.

n Added clarifications regarding PropertyCollector updates, in Client Data Synchronization with
WaitForUpdatesEx.

14 APR 2023 vSphere 8.0 Update 1

n Added Chapter 4 Client Applications Using the JSON Protocol.

05 DEC 2022 Minor cleanup.

06 OCT 2022 vSphere 8.0

n Removed C# and .NET material after deprecation.

n Removed more system configuration parameters that have been moved to ConfigStore. These
settings can no longer be edited directly with a web browser.

n Updates for accuracy including Security chapter. Alt text for graphics.

VMware, Inc. 14

https://developer.vmware.com

Table 1-1. Revision History (continued)

Revision
Date Description

05 OCT 2021 vSphere 7.0 Update 3

n Added raw cloud-init configuration to Guest Operations chapter.

n Added PTP time service capability to Hosts chapter.

19 MAY 2021 n Added information about configuring advanced host options.

n Added information about configuring direct access to physical devices on the host.

n A number of system configuration parameters moved to ConfigStore. These settings can no
longer be edited directly with a web browser.

12 APR 2021 VMware has rebranded the My VMware portal as VMware Customer Connect. We have updated this
document accordingly.

9 MAR 2021 vSphere 7.0 Update 2

n Added a simpler use case in the Property Collector chapter. Also made minor corrections and
clarifications.

n Rerganized part of the Tasks chapter to break up the very long Listview example program into
sections. Also made minor corrections and clarifications.

06 OCT 2020 vSphere 7.0 Update 1

n In Inventory Traversal and Property Selection, add best practice to destroy PropertyCollector
views after use.

n In Task Monitoring Example Using the ListView Object, cross-reference information about
chunking of results from PropertyCollector.

n At VMware, we value inclusion. To foster this principle within our customer, partner, and internal
community, we are replacing some of the terminology in our content. We have updated this guide
to remove instances of non-inclusive language.

02APR2020 vSphere 7.0

Added scalable shares feature. Reworked and expanded fixed shares and other resource anagement
material.

Added Virtual Machine Guest Operations chapter, including guest customization for instant clone
virtual machines.

20AUG2019 vSphere 6.7 Update 3

Bug fixes. Added section on crypto key query for VM encryption.

16OCT2018 vSphere 6.7 Update 1

Added section on Hyperconverged Infrastructure (HCI) clusters.

17APR2018 vSphere 6.7 - GA

Added Instant Clone material to VM Management chapter.

Minor updates elsewhere.

12APR2017 Removed appendix with list of permissions. Was not maintained.

15NOV2016 vSphere 6.5 - GA

Added chapter about vSphere virtual machine encryption.

Removed description of deprecated CIM Storage Management API.

Updated information about session cookie management.

04SEP2015 Updated information about migrating VMs with vMotion across data centers.

12MAR2015 vSphere 6.0 - Rewrote “Exporting a Virtual Application” section in Virtual Applications chapter.

vSphere Web Services SDK Programming Guide

VMware, Inc. 15

Table 1-1. Revision History (continued)

Revision
Date Description

19SEP2013 vSphere 5.5 – Added a C# example of using LoginByToken; clarified limitation for HA clusters.

10SEP2012 vSphere 5.1 – Added information about using the SessionManager.LoginByToken method; added
information about distributed virtual switches.

24AUG2011 vSphere 5.0 - Revised performance manager chapter. Added information about: unset properties,
using vCenter to access host data, and using the QueryConfigOption to add devices; emphasized
ListView instead of TaskManager; clarified limits and limitations of Linked Virtual Machines; updated
samples in chapters 3,5,14, and 16; replaced information about Axis bindings with JAX-WS; and
updated paths to samples supplied with SDK.

13JUL2010 Restructured manual and added chapters about host, storage, and networking. Revised property
collector chapter and added appendix about HTTP access.

07MAY2009 vSphere Web Services SDK 4.0 Programming Guide.

Intended Audience

This book is intended for anyone who needs to develop applications using the vSphere Web
Services SDK. Developers typically create client applications using Java and targeting VMware
vSphere. An understanding of Web Services technology and some programming background is
required.

Document Feedback

VMware welcomes your suggestions for improving our documentation. Send your feedback to
docfeedback@vmware.com.

vSphere Web Services SDK Programming Guide

VMware, Inc. 16

mailto:docfeedback@vmware.com

About the vSphere Web Services
SDK 1
VMware vSphere supports robust, fault-tolerant virtualized applications, networking, and storage.
vSphere offers many optional components and modules such as VMware High Availability and
VMware VMotion. The VMware vSphere Web Services SDK gives Web services developers
programmatic access to vSphere components.

Read the following topics next:

n vSphere Web Services SDK

n SDK Developer Setup for the Web Services SDK

n SDK Samples for the Web Services SDK

n UML Diagrams Used in the Web Services SDK Programming Guide

vSphere Web Services SDK

The vSphere Web Services SDK is the most comprehensive of the available management APIs.
The SDK works against both ESXi and vCenter Server systems.

As a Web Services SDK, the SDK is language neutral. The SDK includes stubs and examples for
Java and a comprehensive documentation set including an API Reference generated from the
source.

VMware, Inc. 17

Figure 1-1. vSphere APIs and CLIs

SDK Developer Setup for the Web Services SDK

Before you can start developing applications with the vSphere Web Services SDK, you must
download the software and set up your system. The vSphere Web Services SDK Developers
Setup Guide has complete instructions for Java client development and discusses a simplified
security configuration for development environments.

SDK Samples for the Web Services SDK

The SDK includes a set of Java samples that illustrate much of the SDK features:

The samples include a set of utility applications that are used by the sample code.

The code fragments in this guide are in part based on the Java sample applications, but present
code that does not require utility applications to run.

See Chapter 23 Sample Program Overview for lists of samples and a brief explanation of what
each sample does.

UML Diagrams Used in the Web Services SDK Programming
Guide

This guide uses UML (unified modeling language) diagrams to illustrate the API objects and their
relationships.

The guide includes class diagrams and instance diagrams. Figure 1-2. Legend for UML Class
Diagrams shows the UML notation used for managed objects and data objects. The diagrams
use a tilde (~) if an object has no properties or methods. Ellipses (...) means some properties or
methods are omitted.

vSphere Web Services SDK Programming Guide

VMware, Inc. 18

Figure 1-2. Legend for UML Class Diagrams

vSphere Web Services SDK Programming Guide

VMware, Inc. 19

vSphere Web Services API
Programming Model 2
The vSphere Web Services API is implemented as a language-neutral Web service. The API is
based on a remote procedure call mechanism that client applications use to access services and
components on ESXi and vCenter Server systems.

Read the following topics next:

n vSphere Client-Server Architecture

n Web Services API as a Web Service

n Access to Managed Objects

n Access to vSphere Server Data

vSphere Client-Server Architecture

VMware vSphere client applications participate in a distributed architecture that uses an
asynchronous communications model. This architecture is based on server-side managed
objects, client-side managed object references, and data objects.

n Managed objects exist on a vSphere server (ESX/ESXi or vCenter Server system).
They represent vSphere services and components. Services include PropertyCollector,

SearchIndex, PerformanceManager, and ViewManager. Components include inventory

objects such as VirtualMachine, Datastore, and Folder.

n Managed object references are client application references to server-side managed objects.
Your client application uses ManagedObjectReference objects when it invokes operations

on a server. A ManagedObjectReference is guaranteed to be unique and persistent during

an object's lifetime. The reference persists after an object has moved within the inventory,
across sessions, and across server restarts. If you remove an object, for example, a virtual
machine, from the inventory, and then put it back, the reference changes.

n Data objects contain information about managed objects. Your client application sends
data objects to and receives data objects from a vSphere server. Examples are the
different specification and capability objects such as VirtualMachineConfigSpec and

HostCapability.

VMware, Inc. 20

Figure 2-1. vSphere Server and Client shows a vSphere server and client application. The client
has a managed object reference to a virtual machine on the server, and a copy of the GuestInfo
data object for the virtual machine. A client must maintain its copy of a data object because,
depending on the type of client request, a vSphere server might send property data for a
data object as a set of name-value pairs associated with a managed object reference. See the
description of the ObjectContent data object in the vSphere API Reference.

Figure 2-1. vSphere Server and Client

The VMware vSphere application model uses an asynchronous client-server communication
model in most cases. Methods are nonblocking and return a reference to a Task managed object.

For more information about the Task managed object, see Tasks and Scheduled Tasks.

Web Services API as a Web Service

The vSphere Web Services API is a language-neutral Web service that runs on ESXi and vCenter
Server systems.

The API complies with the Web Services Interoperability Organization (WS-I) Basic Profile 1.0. The
WS-I Basic Profile 1.0 includes support for the following standards:

n XML Schema 1.0

n SOAP 1.1

n WSDL 1.1

For information about the WS-I Basic Profile 1.0, go to the Web Services Interoperability
Organization (WS-I) Web site at http://www.ws-i.org.

Web services support operations, which are the same as methods in other programming
languages. The vSphere API Web service provides access to all operations necessary for
monitoring and managing vSphere components, such as compute resources, virtual machines,
networks, storage, and so on.

WSDL Files and the Client-Side Proxy Interface

The vSphere Web Services SDK provides a set of WSDL (Web Services Description Language)
files that define the vSphere Web Services API. Web-services development tools such as JAX-
WS wsimport use these WSDL files to generate client-side proxy code (stubs).

vSphere Web Services SDK Programming Guide

VMware, Inc. 21

http://www.ws-i.org

The client proxy provides a language-specific interface proxy. The proxy facilitates remote
method invocation, organization of object data, and other aspects of distributed, object-oriented,
applications programming. Your client application calls proxy interface methods. The client proxy
uses SOAP (Simple Object Access Protocol) to exchange WSDL messages with a vSphere server.

Figure 2-2. Client-Server Communication Through a Client Proxy Interface is a representation of a
client application that uses the client proxy interface to call a method. The client proxy interface
is based on the WSDL definitions.

Figure 2-2. Client-Server Communication Through a Client Proxy Interface

To use the VMware client proxy interface, you must import the vSphere Web Services API client
libraries in to your client application using the following Java statement.

import com.vmware.vim25.*;

Important The vSphere Web Services SDK includes Java client-side proxy code that was
generated using the JAX-WS toolkit. If the versions of Java and JAX-WS on your development
platform are the same as those used to generate the proxy interface shipped in the SDK, you
do not have to generate client-side proxy code from the WSDL. See the Developer’s Setup
Guide for information about how to configure a development environment for the vSphere Web
Services SDK.

Network Access to the vSphere Web Service

Your client application can use the vSphere Web Services API to communicate with vSphere
servers over HTTPS (HTTP over an encrypted Secure Sockets Layer connection) at port 443.
HTTPS is the default protocol.

You can configure the server to support HTTP. Use HTTP access only for test or development
environments, not for production. For information about how to configure the server to support
HTTP access, see the vSphere Web Services SDK Developer’s Setup Guide.

vSphere Web Services SDK Programming Guide

VMware, Inc. 22

Language-Specific Classes and Methods

The SOAP tools generate language-specific classes and methods that match the WSDL
definitions. The tools also produce objects and methods that are not in the WSDL files.

n Generated objects. The additional objects provide access to the vSphere Web Service
to establish the client-server connection (VimService, AppUtil) and declare the methods

defined for the vSphere API (VimPortType, VimService).

n Generated methods. The additional methods are accessor (getter) and mutator (setter)
methods for properties. For Java, the method names are constructed by adding get and

set prefixes to a property name, and changing the first character of the property name to

upper case.

The following table identifies client proxy definitions for the vSphere Web Services SDK WSDL.

Element Access Java

Access to vSphere Web service (HTTPS/
HTTP)

VimService class

Access to vSphere API methods VimPortType class

Access to vSphere API properties getPropertyName and setPropertyName methods defined for data

objects

vSphere API data objects Data objects in the vSphere API (see the vSphere API Reference)
defined as objects in the proxy interface

The following code fragments show getter and setter method definitions for the
AfterStartupTaskScheduler.minute property.

Java

public int getMinute() {
 return minute; }
public void setMinute(int minute) {
 this.minute = minute; }

You can extrapolate the getter and setter methods that are available in the client proxy interface
from the vSphere API Reference. For example, the ScsiLun data object has a displayName
property. For the Java API, you can use a setDisplayName method to assign a string value to

the property, and obtain the string value by using the getDisplayName method. The vSphere

Web Services SDK includes Java sample code that illustrates how to use the proxy interfaces.
See Chapter 3 Client Applications for the Web Services API.

Mapping XML Data Types to Java or JSON Data Types

In this guide, the UML class and object diagrams use the primitive data type names such as
string and integer, without the XML Schema definition namespace prefix (xsd:). The vSphere API

vSphere Web Services SDK Programming Guide

VMware, Inc. 23

Reference contains the complete data type name, such as xsd:string. The data types map to

the primitive data types of the programming language used for the client application.

The following table lists some of the more common XML primitive data type mappings.

XML Schema Java Open API

xsd:base64binary byte[] string
(format: byte)

xsd:boolean boolean boolean

xsd:byte byte integer
(min: -128, max: 127)

xsd:dateTime java.util.Calendar string
(format: date-time)

xsd:decimal java.math.BigDecimal

xsd:double double number
(format: double)

xsd:float float number
(format: float)

xsd:int int integer
(format: int32)

xsd:string java.lang.String string

Access to Managed Objects

Your client application obtains access to managed objects through the ServiceInstance
managed object and its associated ServiceContent data object. The ServiceContent data

object contains managed object references to services and manager entities, and to the root
folder of the inventory.

The ServiceInstance managed object is the root object of the inventory on both ESX/ESXi and

vCenter Server systems. The server creates the ServiceInstance, and creates the manager

entities that provide services in the virtual environment. Examples of manager entities are
LicenseManager, PerformanceManager, and ViewManager.

The ServiceInstance is the primary point of access to the server inventory. Your

client application starts by connecting to a server and creating a reference to
the ServiceInstance. After you have connected to the server, you can call the

ServiceInstance.RetrieveServiceContent method to a ServiceContent data object.

ServiceContent provides access to the vSphere managed object services. See Overview of

a Java Sample Application for the Web Services SDK for an example of connecting to a server
and using the ServiceInstance reference to retrieve the ServiceContent object.

vSphere Web Services SDK Programming Guide

VMware, Inc. 24

Figure 2-3. ManagedObjectReference Data Object shows the object model for the
ServiceInstance and ServiceContent objects. The figure shows some of the

ServiceContent managed object references and the target objects of the references. Each

managed object reference identifies a specific managed object on the server with its type and a
value. (The value property is an opaque string.)

Figure 2-3. ManagedObjectReference Data Object

Access to vSphere Server Data

To obtain information about the virtual infrastructure, you retrieve managed object properties.
Managed object properties can be simple data types, such as integer or string data, or they can
be complex types such as data objects that contain sets of properties.

Obtaining Information from a Server

With a reference to a managed object, you can obtain information about the state of the server-
side inventory objects and populate client-side data objects based on the values. You can use
one of the following approaches:

n Use an accessor (getter) method. The client proxy interface provides accessor methods for
each data object property. You can use these accessor methods to obtain the values of
the object. See Language-Specific Classes and Methods for information about client proxy
interface accessor methods.

n Use a PropertyCollector to navigate to a selected point on the server and obtain values

from specific properties. See Chapter 6 Property Collector for more information about
PropertyCollector.

vSphere Web Services SDK Programming Guide

VMware, Inc. 25

n Use the SearchIndex managed object to obtain a managed object reference to the

managed entity of interest. The SearchIndex can return managed object references

to specific managed entities—ComputeResource, Datacenter, Folder, HostSystem,

ResourcePool, VirtualMachine—given an inventory path, IP address, or DNS name.

Important You can use API methods to operate on managed objects in the vSphere inventory.
A method that updates properties in one managed object may also update properties in other
managed objects. The Server performs asynchronous updates to the inventory. There is no
guarantee that the inventory will be completely updated when the method returns to the caller.
Use the PropertyCollector method WaitForUpdatesEx to obtain property changes.

Working with Data Structures

Properties contain information about the server-side objects at a given point in time. The value of
a property can be of one of the following types:

n Simple data types, such as a string, boolean, or integer (or other numeric) data type. For
example, the ManagedEntity managed object has a name property that takes a string value.

n Arrays of simple data types or data objects. For example, a HostSystem managed object

contains an array of managed object references (a type of data object) to virtual machines
hosted by that physical machine. As another example, the SessionManager managed object

has a sessionList property that is an array of UserSession data objects.

n Enumerated types (enumeration, enum) of predefined values. The values can be a collection
of simple data types or data objects. For example, a virtual machine's power state can be one
of three possible string values—poweredOn, poweredOff, or suspended.

The type of a property is often a string, but the property actually expects
one of the values an enumeration encapsulates. For example, when you set
VirtualMachineConfigSpec.guestid you can specify one of the elements of the

VirtualMachineGuestOSIdentifier as a string.

n Complex (or composite) data types. For example, the HostProfileConfigInfo object

contains data objects, an array of data objects, and an array of strings.

Accessing Property Values

To use the composite data structures and arrays that contain Server data:

n Use dot notation to access nested properties in composite data structures.

n Cast unconstrained property values (xsd:anyType) to array types.

n Use keys or index values as appropriate to access array values.

vSphere Web Services SDK Programming Guide

VMware, Inc. 26

Nested Properties and Property Paths in Composite Data Structures

vSphere Data objects can include properties that are defined as composite data types, such
as data objects. The embedded data objects can also contain properties that are data objects.
Properties can nest to several levels.

For example, the following figure shows a UML class diagram of the VirtualMachine
managed object, which has a runtime property that is defined as an xsd:dateTime data

type. VirtualMachine also has a summary property that is a VirtualMachineSummary
data object. The VirtualMachineSummary data object contains a config property that is a

VirtualMachineConfigSummary data object.

Figure 2-4. VirtualMachine Managed Object and Nested Properties

To refer to a nested property, use dot notation to separate the object names in the sequence
that defines the path to the property. Your code must handle the type referenced at the end of
the sequence.

For example, you can compare the property referenced by the path summary.config.guestId
(a string value) to the property referenced in the path summary.config (the complete

VirtualMachineSummary data object).

The following table shows examples of property references and the corresponding data types
for some of the properties of the VirtualMachine managed object shown in Figure 2-4.

VirtualMachine Managed Object and Nested Properties.

Reference Data Type

summary VirtualMachineSummary data object

summary.config VirtualMachineConfigSummary data object

summary.config.guestID string

xsd:anyType Arrays

The vSphere Web Services API uses xsd:anyType unconstrained type declarations. A vSphere

client must map values of xsd:anyType to explicit data types. An xsd:anyType value can

represent a single data value or it can represent an array. The WSDL for the vSphere Web

vSphere Web Services SDK Programming Guide

VMware, Inc. 27

Services API defines array types for all of the data values that a vSphere client can send or
receive as arrays. The array types use the prefix “ArrayOf”. An example of an array type is

ArrayOfString for string values.

When a client sends data to a vSphere Server, the client must use explicit datatypes. For
example, a client can define a MethodAction for a ScheduledTask. The vSphere Web Services

API defines arguments to the action (the MethodActionArgument.value property) as type

xsd:anyType. If the action takes an array argument, the client must set the corresponding

MethodAction.argument[].value to the appropriate ArrayOf... type.

When a client receives xsd:anyType data from a vSphere server, it must cast the data to an

explicit type. For example, the PropertyCollector method RetrievePropertiesEx returns

a set of ObjectContent data objects. The ObjectContent.propSet property is a list of

DynamicProperty objects that contains the requested property values. Each DynamicProperty
object contains a name-value pair. The value property (DynamicProperty.val) is of type

xsd:anyType. It can represent a single object or an array of objects.

When the returned value is a single object such as an Event, ManagedObjectReference, or

String, you can cast it directly to a variable of the appropriate type. However, when the value is

an array of objects you cannot cast the anyType value directly to an array variable.

When the PropertyCollector returns array data, it sends it as an xsd:anyType value.

The language-specific bindings contain definitions for array objects such as ArrayOfEvent,

ArrayOfManagedObjectReference, and ArrayOfString, and corresponding “get” methods. To

extract the actual array from a property of type xsd:anyType, cast DynamicProperty.val
to the appropriate array type and use the matching get method – for example, getEvent(),

getManagedObjectReference(), or getString().

The following sections provide some examples of how to cast returned values for a few of the
array types.

Cast an xsd:anyType Array to an Event Array

When the PropertyCollector returns array data representing an array of Event objects, the

array has the type xsd:anyType. To use the data in your application, you must first cast it to a

specialized type for Event arrays.

This example code uses the JAX-WS-generated Java bindings for the VMware vSphere Web
Services SDK WSDL.

Procedure

1 Use the DynamicProperty.getVal() method to retrieve the anyType property value.

2 Cast the anyType value to a value of type ArrayOfEvent.

3 Use the corresponding get method to assign the result of the cast operation to a list variable.

vSphere Web Services SDK Programming Guide

VMware, Inc. 28

Example

/*
* Handling arrays of Event objects.
* Cast the return value to ArrayOfEvent and use getEvent().
*/
List[] eventList = ((ArrayOfEvent) dynamicProp.getVal()).getEvent();

Cast an xsd:anyType Array to an Array of Managed Object References

When the PropertyCollector returns array data representing an array of managed objects, the

array has the type xsd:anyType. To use the data in your application, you must first cast it to a

specialized type for arrays of managed object references.

This example code uses the JAX-WS-generated Java bindings for the VMware vSphere Web
Services SDK WSDL.

Procedure

1 Use the DynamicProperty.getVal() method to retrieve the anyType property value.

2 Cast the anyType value to a value of type ArrayOfManagedObjectReference.

3 Use the corresponding get method to assign the result of the cast operation to a list variable.

Example

/*
* Handling arrays of ManagedObjectReference objects.
* Cast the return value to ArrayOfManagedObjectReference and use getManagedObjectReference().
*/
List[] morList =
 ((ArrayOfManagedObjectReference)dynamicProp.getVal()).getManagedObjectReference();

Cast an xsd:anyType Array to an Array of String

When the PropertyCollector returns array data representing an array of strings, the array has

the type xsd:anyType. To use the data in your application, you must first cast it to a specialized

type for arrays of strings.

This example code uses the JAX-WS-generated Java bindings for the VMware vSphere Web
Services SDK WSDL.

Procedure

1 Use the DynamicProperty.getVal() method to retrieve the anyType property value.

2 Cast the anyType value to a value of type ArrayOfString.

3 Use the corresponding get method to assign the result of the cast operation to a list variable.

vSphere Web Services SDK Programming Guide

VMware, Inc. 29

Example

/*
* Handling arrays of strings.
* Cast the return value to ArrayOfString and use getString().
*/
List[] stringList = ((ArrayOfString) dynamicProp.getVal()).getString();

Indexed Array and Key-Based Array Properties

The VMware vSphere data structures include array properties, which can be indexed arrays or
key-based arrays.

n Indexed arrays are accessed by using an index integer. Indexed arrays are used for arrays of
data types whose positions in the array do not change. For example, the roleList property

of the AuthorizationManager managed object is an array of authorization roles. Adding a

new role to the array does not change the position of existing elements in the array.

n Key-based arrays are used for information whose position is subject to change. A key-based
array (same basic concept as a Perl hash or a Python dictionary) uses a unique, unchanging
value as a key to access an element’s value.

Typically, the key is a string, but integers can also be used. For example, Event arrays use

integers as keys.

The vSphere management object model uses key-based arrays to track managed object
references. The contents of a key-based array property are accessed by the value of either
the key property or, in the case of a managed object reference, its value property. The value
of these fields is unique across all of the components of an array.

Nested properties can also refer to entries in a key-based array. For example, a.b.c["xyz"]
refers to the property c that has the key value of xyz.

Unset Optional Properties

Many of the Data Objects in the vSphere Web Services SDK have optional properties that may
be set by your client application or by a Server process or event. If you retrieve a data object
that has an optional property that is unset, the Server will not return a value for the optional
property. If you call an accessor function to retrieve the property value, the value returned by the
function depends on the programming language that you are using.

For example, if you are programming in Java, the value you will receive for an unset property is
null.

Figure 2-5. Data Object - HostFirewallInfo Properties shows part of the Properties table for
the HostFirewallInfo data object in the vSphere Web Services SDK API Reference. When you

look at properties in the vSphere Web Services SDK API Reference, you can see that optional
properties are marked with a red asterisk.

vSphere Web Services SDK Programming Guide

VMware, Inc. 30

In this example, that the defaultPolicy property is always returned, but the ruleset property

will be returned as a null value if it has not been set.

Figure 2-5. Data Object - HostFirewallInfo Properties

Since Data Objects are part of many different constructs, there is no standard scenario for when
an optional property should be set, what will happen if an optional property is left unset, or what
you should do if a null value is returned.

Escape Character in Name and Path Properties

The percent sign (%) is used as an escape character to embed special characters in strings.
For example, %2f (or %2F) is interpreted as the slash (/) character. To include a percent
sign as a literal in a string, use %%.The path to the inventory starts from the root folder
(ServiceContent.rootFolder property), denoted by the slash character.

Character Description Representation in URL

% Percent sign %25

/ Slash %2F, %2f

\ Backslash %5C, %5c

- Dash %2D, %2d

. Dot %2E, %2e

“ Double quotation mark %2B, %2b

vSphere Web Services SDK Programming Guide

VMware, Inc. 31

Client Applications for the Web
Services API 3
Any client application written for the Web Services API must perform certain basic functions.
These include making a connection to the server, authenticating and creating a session, and
closing the connection.

Read the following topics next:

n vCenter Server Connections

n Establishing a Single Sign-On Session with a vCenter Server

n LoginByToken to vCenter Server By Using Java

n Establishing a Session with Username and Password Credentials

n Overview of a Java Sample Application for the Web Services SDK

n Accessing the vSphere Server from a Web Services Client

n Closing the Connection from a Web Services Client

n Using the Java Samples as Reference

n Multiple Versions of the vSphere API

n Java Sample Applications in the Web Services SDK

vCenter Server Connections

Every vCenter Server client application must connect to the server and pass user account
credentials to authenticate to the server. After the connection has been established, the client
application can use vSphere services to access the virtual environment.

vSphere uses SSL certificates, HTTP tokens, and vCenter Single Sign-On tokens to authenticate a
client and support a persistent connection between the client and vCenter Server. The following
table provides an overview of these elements.

VMware, Inc. 32

Security Element Description

SSL certificates vSphere Servers use standard X.509 version 3 (X.509v3) certificates to encrypt
session information sent over Secure Socket Layer (SSL) protocol connections. In
a production environment, client applications verify the vSphere Server certificate
during the connection sequence. The examples in this chapter and the examples in
the vSphere Web Services SDK accept all certificates.

HTTP tokens A vSphere Server uses an HTTP token to identify a client session. The Server
provides the HTTP token in its response to a client connection request. Subsequent
messages between the client and the Server include the HTTP token in the HTTP
header.

Client
authentication

vCenter
Single Sign On
token

vSphere supports vCenter Single Sign-On. A vCenter client can obtain a vCenter
Single Sign-On token from a vCenter Single Sign-On Server and use that token to
login to a vCenter Server.

Client
authentication

username/
password

Username/password authentication for client-server connections. A client can
present user credentials either directly to vCenter Server to establish a session, or
to the vCenter Single Sign-On Service in exchange for a SAML token.

Establishing a Single Sign-On Session with a vCenter Server

vSphere uses single sign-on to provide a single point of authentication for clients. vSphere
includes the vCenter Single Sign-On Server. To use vCenter Single Sign-On, your client obtains
a SAML token (Security Assertion Markup Language) from the vCenter Single Sign-On Server
and passes the token to the vCenter Server in the login request. The token represents the client
and contains claims that support client authentication. Components in the vSphere environment
perform operations based on the original authentication. For information about obtaining a
vCenter Single Sign-On token from the vCenter Single Sign-On Server, see vCenter Single Sign
On Programming Guide.

To use single sign on, your client calls the LoginByToken method. Your client must send a SAML

token to the vCenter Server by embedding the token in the SOAP header for the LoginByToken
request. During the login sequence, your client must save and restore the HTTP session cookie.
The vCenter Single Sign-On SDK contains sample code that demonstrates how to use the
LoginByToken method.

The following sections describe examples of using the LoginByToken method to establish a

vCenter Single Sign On session with a vCenter Server.

LoginByToken to vCenter Server By Using Java

The following example is based on the LoginByTokenSample.java file contained in the vCenter

Single Sign On SDK. The SDK contains Java code that supports HTTP and SOAP header
manipulation.

vSphere Web Services SDK Programming Guide

VMware, Inc. 33

vCenter Server Single Sign-On Session Using Java

After you obtain a SAML token from the vCenter Single Sign-On Server, you can use the vSphere
Web Services API method LoginByToken to establish a vCenter Single Sign-On session with a

vCenter Server. At the beginning of the session, your client is responsible for the following tasks:

n Insert the vCenter Single Sign-On token and a timestamp into the SOAP header of the
LoginByToken message.

n Maintain the vCenter session cookie. During the login sequence, the Server produces an
HTTP session cookie to support the persistent connection. Your client must save this cookie
and re-introduce it at the appropriate times.

n If at a later time your client invokes the LoginByToken method, or other login method, the

Server issues a new session cookie in response. You must have a cookie handler in place to
save the cookie for subsequent requests.

The example program uses these general steps:

Procedure

1 Call the RetrieveServiceContent method to establish an HTTP connection with the

vCenter Server and get the Session Manager managed object reference.

2 Call the LoginByToken method to authenticate the vCenter session. To send the token to

the vCenter Server, the client uses a handler to embed the token and a time stamp in the
SOAP header for the message. The client uses an HTTP header handler method to extract the
session cookie from the vCenter Server response.

3 Restore the session cookie for future requests. To identify the session started with the
LoginByToken method, the client uses a handler to embed the session cookie in the HTTP

header.

HTTP and SOAP Header Handlers in Java

To use a vCenter Single Sign On token to login to a vCenter Server, the example uses header
handlers to manipulates the HTTP and SOAP header elements of the login request. After
establishing a handler, subsequent requests automatically invoke the handler.

n Insertion handlers put the vCenter Single Sign On token and a timestamp into the SOAP
header into the HTTP header of the login request.

n An extraction handler obtains the HTTP session cookie provided by the vCenter Server. After
setting up the handler, a call to the LoginByToken method will invoke the handler to extract

the cookie from the Server response.

The following figure shows the use of handlers to manipulate header elements when establishing
a vCenter Single Sign On session with a vCenter Server.

vSphere Web Services SDK Programming Guide

VMware, Inc. 34

Figure 3-1. Starting a vCenter Session

Important Every call to the vCenter Server will invoke any message handlers that have
been established. The overhead involved in using the SOAP and HTTP message handlers is
not necessary after the session has been established. The example saves the default message
handler before setting up the SOAP and HTTP handlers. After establishing the session, the
example will reset the handler chain and restore the default handler.

The example code also uses multiple calls to the VimPortType.getVimPort method to manage

the request context. The getVimPort method clears the HTTP request context. After each

call to the getVimPort method, the client resets the request context endpoint address to the

vCenter Server URL. After the client has obtained the session cookie, it will restore the cookie in
subsequent requests.

Sample Code for a Java Client to the Web Services SDK

The code examples in the following sections show how to use the LoginByToken method with

a holder-of-key security token. The code examples are based on the sample code contained
in the vCenter Single Sign On SDK. The files are located in the Java samples directory (SDK/
ssoclient/java/JAXWS/samples):

n LoginByToken sample:

samples/com/vmware/vsphere/samples/LoginByTokenSample.java

n Header cookie handlers:

samples/com/vmware/vsphere/soaphandlers/HeaderCookieHandler.java

samples/com/vmware/vsphere/soaphandlers/HeaderCookieExtractionHandler.java

vSphere Web Services SDK Programming Guide

VMware, Inc. 35

n SOAP header handlers. These are the same handlers that are used in the vCenter Single
Sign-On example in vCenter Single Sign On Programming Guide. The SOAP handler files are
contained in the vCenter Single Sign-On SDK and are located in the SSO client soaphandlers
directory:

SDK/ssoclient/java/JAXWS/samples/com/vmware/sso/client/soaphandlers

Creating the HTTP Connection in Java

The code fragment in this section establishes an HTTP session with the vCenter Server and saves
the HTTP session cookie.

The following sequence describes these steps and shows the corresponding objects and
methods.

1 Use the getHandlerResolver method to save the default

message handler. To use the HTTP and SOAP message
handlers, you must first save the default message handler
so that you can restore it after login. The HTTP and SOAP
message handlers impose overhead that is unnecessary
after login.

VimService.getHandlerResolver()

2 Get the VIM port. The VIM port provides access to
the vSphere API methods, including the LoginByToken
method.

VimPortTypeVimService

3 Set the request context endpoint address to the vCenter
Server URL. Request ContextVimService

4 Retrieve the ServiceContent. This method establishes the
HTTP connection. VimPortType ServiceContent

The following example shows Java code that saves the session cookie.

Example: Saving the vCenter Server Session Cookie

/*
 * The example uses a SAML token (obtained from a vCenter Single Sign On Server)
 * and the vCenter Server URL.
 * The following declarations indicate the datatypes; the token datatype (Element) corresponds
 * to the token datatype returned by the vCenter Single Sign On Server.
 *
 * Element token; -- from vCenter Single Sign On Server
 * String vcServerUrl; -- identifies vCenter Server
 *
 * First, save the default message handler.
 */

HandlerResolver defaultHandler = vimService.getHandlerResolver();

/*
 * Create a VIM service object.
 */

vSphere Web Services SDK Programming Guide

VMware, Inc. 36

vimService = new VimService();

/*
 * Construct a managed object reference for the ServiceInstance.
 */
ManagedObjectReference SVC_INST_REF = new ManagedObjectReference();
SVC_INST_REF.setType("ServiceInstance");
SVC_INST_REF.setValue("ServiceInstance");

/*
 * Get the VIM port for access to vSphere API methods. This call clears the request context.
 */
vimPort = vimService.getVimPort();

/*
 * Get the request context and set the connection endpoint.
 */
Map<String, Object> ctxt = ((BindingProvider) vimPort).getRequestContext();
ctxt.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY, vcServerUrl);
ctxt.put(BindingProvider.SESSION_MAINTAIN_PROPERTY, true);

/*
 * Retrieve the ServiceContent. This call establishes the HTTP connection.
 */
serviceContent = vimPort.retrieveServiceContent(SVC_INST_REF);

Using LoginByToken in Java

The code fragment in this section sets up the message handlers and calls the LoginByToken
method to get the session cookie. The following sequence describes the steps and shows the
corresponding objects and methods.

1 Create a new HeaderHandlerResolver. Then

set the message security handlers for cookie
extraction and for inserting the SAML token and
credentials in the SOAP header.

HeaderHandler Resolver

WsSecurityUserCertificateSignatureHandler (key, certificate, ID)

TimestampHandler
SamlTokenHandler (SAML token)

HeaderCookieExtractionHandler (session cookie)

2 Get the VIM port.

VimPortTypeVimService

3 Set the connection endpoint in the HTTP
request context. Request ContextVimService

vSphere Web Services SDK Programming Guide

VMware, Inc. 37

4 Call the LoginByToken() method. The method

invocation activates the handlers to insert
the elements into the message headers. The
method returns a session cookie that identifies
the newly created session.

VimPortType.LoginByToken()

5 Extract the cookie and save it for later use. HeaderCookieExtractionHandler.getCookie()

The following examples shows Java code that calls the LoginByToken() method.

Example: Using LoginByToken

/*
 * Create a handler resolver and add the handlers.
 * Create a cookie extraction handler and add it to the handler resolver.
 */
HeaderHandlerResolver handlerResolver = new HeaderHandlerResolver();
HeaderCookieExtractionHandler cookieExtractor = new HeaderCookieExtractionHandler();
handlerResolver.addHandler(cookieExtractor);
handlerResolver.addHandler(new TimeStampHandler());
handlerResolver.addHandler(new SamlTokenHandler(token));
handlerResolver.addHandler(new WsSecuritySignatureAssertionHandler(
 userCert.getPrivateKey(),
 userCert.getUserCert(),
 Utils.getNodeProperty(token, "ID")));
vimService.setHandlerResolver(handlerResolver);

/*
 * Create a handler resolver.
 * Set the VIM service handler resolver.
 */
vimService.setHandlerResolver(handlerResolver);
/*
 * Get the Vim port; this call clears the request context.
 */
vimPort = vimService.getVimPort();

/*
 * Retrieve the request context and set the server URL.
 */
Map<String, Object> ctxt = ((BindingProvider) vimPort).getRequestContext();
ctxt.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY, vcServerUrl);
ctxt.put(BindingProvider.SESSION_MAINTAIN_PROPERTY, true);

/*
 * Call LoginByToken.
 */
UserSession us = vimPort.loginByToken(serviceContent.getSessionManager(), null);

/*
 * Save the HTTP cookie.
 */
 String cookie = cookieExtractor.getCookie();

vSphere Web Services SDK Programming Guide

VMware, Inc. 38

Restoring the vCenter Server Session Cookie in a Java Client

After you log in, you must restore the standard vCenter Server session context. The code
fragment in this section restores the default message handler and the session cookie. As the
cookie handler has been replaced by the default handler, the client resets the session cookie
by calling request context methods to access the context fields directly. The following sequence
describes these steps and shows the corresponding objects and methods.

1 Restore the default message handler. The handlers used
for LoginByToken() are not used in subsequent calls to

the vSphere API.

VimService.setHandlerResolver()

2 Get the VIM port.

VimPortTypeVimService

3 Set the connection endpoint in the HTTP request context.

Request ContextVimService

4 Set the HTTP request header (vCenter Server session
cookie).

RequestContext.get()
RequestContext.put()

The following example shows Java code that restores the vCenter Server session. This code
requires the vCenter Server URL and the cookie and default handler that were retrieved before
login. See Sample Code for a Java Client to the Web Services SDK.

Example: Restoring the vCenter Server Session

/*
 * Reset the default handler. This overwrites the existing handlers, effectively removing
them.
 */
vimService.setHandlerResolver(defaultHandler);
vimPort = vimService.getVimPort();

/*
 * Restore the connection endpoint in the request context.
 */
// Set the validated session cookie and set it in the header for once,
// JAXWS will maintain that cookie for all the subsequent requests

Map<String, Object> ctxt = ((BindingProvider) vimPort).getRequestContext();
ctxt.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY, vcServerUrl);
ctxt.put(BindingProvider.SESSION_MAINTAIN_PROPERTY, true);

/*
 * Reset the cookie in the request context.
 */
Map<String, List<String>> headers =
 (Map<String, List<String>>) ctxt.get(MessageContext.HTTP_REQUEST_HEADERS);
if (headers == null) {
 headers = new HashMap<String, List<String>>();
}

vSphere Web Services SDK Programming Guide

VMware, Inc. 39

headers.put("Cookie", Arrays.asList(cookie));
ctxt.put(MessageContext.HTTP_REQUEST_HEADERS, headers);

Establishing a Session with Username and Password
Credentials

You can specify username and password credentials to establish a session with a vCenter
Server. The following steps describe how a client application specifies username and password
credentials for access to a vCenter Server.

Procedure

1 Create a connection to the vSphere server Web service.

2 Instantiate a local proxy object for reference to ServiceInstance. Use this local proxy

object to retrieve the ServiceContent object from the server. ServiceContent contains a

reference to the root folder for the inventory and references to the managed objects that
provide the vSphere services.

3 Instantiate a local proxy object for access to vSphere API methods.

4 Log in to the server using appropriate credentials (user account, password, and optionally the
locale).

5 Access server-side objects to retrieve data and perform management operations.

6 Close the connection.

Overview of a Java Sample Application for the Web Services
SDK

This section includes an example of a complete client application that demonstrates the basic
client capability. The sample client application prints out the product name, server type, and
product version to demonstrate that it is connected and able to retrieve information from the
server.

While Java Test Client Application is a complete client application that demonstrates the basic
client capability, it uses a slightly different format than the Java sample files in the SDK\ directory.

This example, and the Java samples that are included with your vSphere Web Service SDK, have
been compiled using JAX-WS bindings.

Most of the vSphere Web Services SDK samples do not handle exceptions, and they accept all
security certificates. Use the samples as examples for extracting the types of data you want to
view, but do not use these security or exception techniques in your production applications.

Build a Simple vSphere Client Application for the Web Services SDK

This simple client application accepts command-line arguments for the vSphere server name
(DNS name or IP address), user name, and password.

vSphere Web Services SDK Programming Guide

VMware, Inc. 40

To build a simple vSphere client application in Java, use the following steps.

Procedure

1 Import the vSphere Web Services API libraries:

import com.vmware.vim25.*;

2 Import the necessary Java (and JAX-WS connection, bindings, and SOAP) libraries:

import java.util.*;
import javax.net.ssl.HostnameVerifier;
import javax.net.ssl.HttpsURLConnection;
import javax.net.ssl.SSLSession;
import javax.xml.ws.BindingProvider;
import javax.xml.ws.soap.SOAPFaultException;

3 Create the TestClient class:

public class TestClient {

4 Include the class variable declarations/definitions. Use a TrustManager class to accept all

certificates, as shown in Accessing the vSphere Web Services HTTP Endpoint with JAX-WS .
This is not appropriate for a production environment. Production code should implement
certificate support.

5 Use the vSphere Web Services APIs to create the connection, as shown in Accessing the
vSphere Server from a Web Services Client.

6 Retrieve data from the vSphere or vCenter Server. In this example, we are just going to print
out the product name, server type, and product version to prove that the client is connected
and working correctly.

System.out.println(serviceContent.getAbout().getFullName());
System.out.println("Server type is " + serviceContent.getAbout().getApiType());
System.out.println("API version is " + serviceContent.getAbout().getVersion());

7 Use the VimPort object to close the connection, as shown in Closing the Connection from a

Web Services Client. Always close your server connections to maintain security.

Java Client Example for the Web Services SDK

This example shows the complete sample client application code, without the explanatory steps.
The example opens a connection with the server, retrieves the service content, uses the session
manager managed object reference to log in, displays information about the server, and closes
the connection.

Example: Java Test Client Application

import com.vmware.vim25.*;
import java.util.*;

vSphere Web Services SDK Programming Guide

VMware, Inc. 41

import javax.net.ssl.HostnameVerifier;
import javax.net.ssl.HttpsURLConnection;
import javax.net.ssl.SSLSession;
import javax.xml.ws.BindingProvider;
import javax.xml.ws.soap.SOAPFaultException;

public class TestClient {

 // Authentication is handled by using a TrustManager and supplying
 // a host name verifier method. (The host name verifier is declared
 // in the main function.)
 private static class TrustAllTrustManager
 implements javax.net.ssl.TrustManager,
 javax.net.ssl.X509TrustManager {

 public java.security.cert.X509Certificate[] getAcceptedIssuers() {
 return null;
 }

 public boolean isServerTrusted(java.security.cert.X509Certificate[] certs) {
 return true;
 }

 public boolean isClientTrusted(java.security.cert.X509Certificate[] certs) {
 return true;
 }

 public void checkServerTrusted(java.security.cert.X509Certificate[] certs,
 String authType)
 throws java.security.cert.CertificateException {
 return;
 }

 public void checkClientTrusted(java.security.cert.X509Certificate[] certs,
 String authType)
 throws java.security.cert.CertificateException {
 return;
 }
 }// end class TrustAllTrustManager

 public static void main(String[] args) {
 try {

 // Server URL and credentials.
 String serverName = args[0];
 String userName = args[1];
 String password = args[2];
 String url = "https://"+serverName+"/sdk/vimService";
 // Variables of the following types for access to the API methods
 // and to the vSphere inventory.
 // -- ManagedObjectReference for the ServiceInstance on the Server
 // -- VimService for access to the vSphere Web service
 // -- VimPortType for access to methods
 // -- ServiceContent for access to managed object services
 ManagedObjectReference SVC_INST_REF = new ManagedObjectReference();

vSphere Web Services SDK Programming Guide

VMware, Inc. 42

 VimService vimService;
 VimPortType vimPort;
 ServiceContent serviceContent;

 // Declare a host name verifier that will automatically enable
 // the connection. The host name verifier is invoked during
 // the SSL handshake.
 HostnameVerifier hv = new HostnameVerifier() {
 public boolean verify(String urlHostName, SSLSession session) {
 return true;
 }
 };
 // Create the trust manager.
 javax.net.ssl.TrustManager[] trustAllCerts = new javax.net.ssl.TrustManager[1];
 javax.net.ssl.TrustManager tm = new TrustAllTrustManager();
 trustAllCerts[0] = tm;

 // Create the SSL context
 javax.net.ssl.SSLContext sc = javax.net.ssl.SSLContext.getInstance("SSL");

 // Create the session context
 javax.net.ssl.SSLSessionContext sslsc = sc.getServerSessionContext();

 // Initialize the contexts; the session context takes the trust manager.
 sslsc.setSessionTimeout(0);
 sc.init(null, trustAllCerts, null);

 // Use the default socket factory to create the socket for the secure connection
 javax.net.ssl.HttpsURLConnection.setDefaultSSLSocketFactory(sc.getSocketFactory());
 // Set the default host name verifier to enable the connection.
 HttpsURLConnection.setDefaultHostnameVerifier(hv);

 // Set up the manufactured managed object reference for the ServiceInstance
 SVC_INST_REF.setType("ServiceInstance");
 SVC_INST_REF.setValue("ServiceInstance");

 // Create a VimService object to obtain a VimPort binding provider.
 // The BindingProvider provides access to the protocol fields
 // in request/response messages. Retrieve the request context
 // which will be used for processing message requests.
 vimService = new VimService();
 vimPort = vimService.getVimPort();
 Map<String, Object> ctxt = ((BindingProvider) vimPort).getRequestContext();

 // Store the Server URL in the request context and specify true
 // to maintain the connection between the client and server.
 // The client API will include the Server's HTTP cookie in its
 // requests to maintain the session. If you do not set this to true,
 // the Server will start a new session with each request.
 ctxt.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY, url);
 ctxt.put(BindingProvider.SESSION_MAINTAIN_PROPERTY, true);

 // Retrieve the ServiceContent object and login
 serviceContent = vimPort.retrieveServiceContent(SVC_INST_REF);
 vimPort.login(serviceContent.getSessionManager(),

vSphere Web Services SDK Programming Guide

VMware, Inc. 43

 userName,
 password,
 null);

 // print out the product name, server type, and product version
 System.out.println(serviceContent.getAbout().getFullName());
 System.out.println("Server type is " + serviceContent.getAbout().getApiType());
 System.out.println("API version is " + serviceContent.getAbout().getVersion());

 // close the connection
 vimPort.logout(serviceContent.getSessionManager());
 } catch (Exception e) {
 System.out.println(" Connect Failed ");
 e.printStackTrace();
 }
 }//end main()
}// end class TestClient

// See Obtaining a Session Token - Code Fragments from VMPromoteDisks.java for more details.

Compiling the Java Test Client in the Web Services SDK

Use the following command to compile the code for the Java Test Client Application, after you
have saved it as a .java file:

c:>javac -classpath path-to-vim25.jar TestClient.java

Use the following command to run the compiled class (binary) file:

c:>java -classpath path-to-vim25.jar TestClient web-service-url user-name user-
password

Web Server Session Token

As with other Web services, the vSphere Web service maintains session state for each client
connection by using a token in the HTTP header to identify the session. The vSphere server
returns a session token to the client in its response to the client connection request. Subsequent
messages between client and server automatically include the token.

Each of the stand-alone samples in the SDK\vsphere-ws\java\JAX-WS\samples\com\vmware\
uses the JAX-WS TrustAllTrustCertificates class, as discussed in Obtaining a Session Token -
Code Fragments from VMPromoteDisks.java to ignore certificates, obtain a session token, and
then connect to the server.

Caution We do not recommend that you trust all certificates in a production environment.
Instead, you can look at the sample code to see how the JAX-WS libraries are used when making
the connection, but set up an SSL policy that allows connection only with trusted certificates.

The logic for getting a cookie and putting it in the header looks like this:

//cookie logic
List cookies = (List) headers.get("Set-cookie");
cookieValue = (String) cookies.get(0);

vSphere Web Services SDK Programming Guide

VMware, Inc. 44

StringTokenizer tokenizer = new StringTokenizer(cookieValue, ";");
cookieValue = tokenizer.nextToken();
String path = "$" + tokenizer.nextToken();
String cookie = "$Version=\"1\"; " + cookieValue + "; " + path;

// set the cookie in the new request header
Map map = new HashMap();
map.put("Cookie", Collections.singletonList(cookie));

((BindingProvider) vimPort).getRequestContext().put(
MessageContext.HTTP_REQUEST_HEADERS, map);

Accessing the vSphere Web Services HTTP Endpoint with JAX-WS

The steps for accessing any HTTP endpoint with JAX-WS bindings include the vSphere Web
Services SDK Server URL, vSphere server object, and variables.

These steps are listed at the beginning of Obtaining a Session Token - Code Fragments from
VMPromoteDisks.java.

Procedure

1 Create a TrustManager class to handle certificate checking.

In this example we use a TrustManager class to accept all certificates. This is not appropriate

for a production environment. Production code should implement certificate support.

private static class TrustAllTrustManager
 implements javax.net.ssl.TrustManager,
 javax.net.ssl.X509TrustManager {

 public java.security.cert.X509Certificate[] getAcceptedIssuers() {
 return null;
 }

 public boolean isServerTrusted(
 java.security.cert.X509Certificate[] certs) {
 return true;
 }

 public boolean isClientTrusted(java.security.cert.X509Certificate[] certs) {
 return true;
 }

 public void checkServerTrusted(java.security.cert.X509Certificate[] certs,
 String authType)
 throws java.security.cert.CertificateException {
 return;
 }

 public void checkClientTrusted(java.security.cert.X509Certificate[] certs,
 String authType)

vSphere Web Services SDK Programming Guide

VMware, Inc. 45

 throws java.security.cert.CertificateException {
 return;
 }
}

2 Include the Server URL and credentials as arguments in the main method:

public static void main(String[] args) {
 try {
 String serverName = args[0];
 String userName = args[1];
 String password = args[2];
 String url = "https://"+serverName+"/sdk/vimService";

3 Declare variables of the following types for access to vSphere server objects:

n ManagedObjectReference for the ServiceInstance.

n VimService object for access to the Web service.

n VimPortType object for access to all of the methods defined in the vSphere API.

n ServiceContent for access to the managed object services on the server.

The following Java code fragment shows these variable declarations:

ManagedObjectReference SVC_INST_REF = new ManagedObjectReference();
VimService vimService;
VimPortType vimPort;
ServiceContent serviceContent;

4 Declare a host name verifier that will automatically enable the connection. The host name
verifier is invoked during the SSL handshake.

HostnameVerifier hv = new HostnameVerifier() {
 public boolean verify(String urlHostName, SSLSession session) {
 return true;
 }
};

5 Instantiate the trust manager object.

// Create the trust manager.
javax.net.ssl.TrustManager[] trustAllCerts = new javax.net.ssl.TrustManager[1];
javax.net.ssl.TrustManager tm = new TrustAllTrustManager();
trustAllCerts[0] = tm;

6 Create the SSL context

javax.net.ssl.SSLContext sc = javax.net.ssl.SSLContext.getInstance("SSL");

7 Create the session context

javax.net.ssl.SSLSessionContext sslsc = sc.getServerSessionContext();

vSphere Web Services SDK Programming Guide

VMware, Inc. 46

8 Initialize the contexts; the session context takes the trust manager.

sslsc.setSessionTimeout(0);
sc.init(null, trustAllCerts, null);

9 Use the default socket factory to create the socket for the secure connection

javax.net.ssl.HttpsURLConnection.setDefaultSSLSocketFactory(sc.getSocketFactory());

10 Set the default host name verifier to enable the connection.

HttpsURLConnection.setDefaultHostnameVerifier(hv);

Accessing the vSphere Server from a Web Services Client

The steps that use the vSphere Web Services API to create the connection are:

Procedure

1 Create a managed object reference for the ServiceInstance object on the server.

ManagedObjectReference SVC_INST_REF = new ManagedObjectReference();
SVC_INST_REF.setType("ServiceInstance");
SVC_INST_REF.setValue("ServiceInstance");

2 Create a VimService object to obtain a VimPort binding provider. The BindingProvider object

provides access to the protocol fields in request/response messages. Retrieve the request
context which will be used for processing message requests.

The VimServiceLocator and VimPortType objects provide access to vSphere servers. The

getVimPort method returns a VimPortType object that provides access to the vSphere API

methods.

vimService = new VimService();
vimPort = vimService.getVimPort();
Map<String, Object> ctxt = ((BindingProvider) vimPort).getRequestContext();

3 Store the Server URL in the request context and specify true to maintain the connection

between the client and server. The client API will include the server's HTTP cookie in its
requests to maintain the session. If you do not set this to true, the server will start a new
session with each request.

ctxt.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY, url);
ctxt.put(BindingProvider.SESSION_MAINTAIN_PROPERTY, true);

4 Retrieve the ServiceInstance content (the ServiceContent data object) and log in to the

server.

serviceContent = vimPort.retrieveServiceContent(SVC_INST_REF);
vimPort.login(serviceContent.getSessionManager(),

vSphere Web Services SDK Programming Guide

VMware, Inc. 47

 userName,
 password,
 null);
isConnected = true;

Closing the Connection from a Web Services Client

Use the VimPort object again to close the connection. Always close your server connections to

maintain security.

 vimPort.logout(serviceContent.getSessionManager());
 } catch (Exception e) {
 System.out.println(" Connect Failed ");
 e.printStackTrace();
 }
 }//end main()
}// end class TestClient

Using the Java Samples as Reference

The following code fragment from the SDK\vsphere-ws\java\JAX-
WS\samples\com\vmware\vm\
VMPromoteDisks.java sample shows another implementation of the server connection. Review

the stand-alone Java samples that are shipped with your vSphere Web Services SDK, and use
similar code to get a session token for your client application.

Example: Obtaining a Session Token - Code Fragments from
VMPromoteDisks.java

 .
 .
 .
 private static String cookieValue = "";
 private static Map headers = new HashMap();
 .
 .
 .
 private static void trustAllHttpsCertificates()
 throws Exception {

 javax.net.ssl.TrustManager[] trustAllCerts = new javax.net.ssl.TrustManager[1];
 javax.net.ssl.TrustManager tm = new TrustAllTrustManager();
 trustAllCerts[0] = tm;
 javax.net.ssl.SSLContext sc = javax.net.ssl.SSLContext.getInstance("SSL");
 javax.net.ssl.SSLSessionContext sslsc = sc.getServerSessionContext();
 sslsc.setSessionTimeout(0);
 sc.init(null, trustAllCerts, null);
 javax.net.ssl.HttpsURLConnection.setDefaultSSLSocketFactory(sc.getSocketFactory());
 }
 ...

vSphere Web Services SDK Programming Guide

VMware, Inc. 48

 private static void connect()
 throws Exception {

 HostnameVerifier hv = new HostnameVerifier() {
 public boolean verify(String urlHostName, SSLSession session) {
 return true;
 }
 };
 trustAllHttpsCertificates();
 HttpsURLConnection.setDefaultHostnameVerifier(hv);

 SVC_INST_REF.setType(SVC_INST_NAME);
 SVC_INST_REF.setValue(SVC_INST_NAME);

 vimService = new VimService();
 vimPort = vimService.getVimPort();
 Map<String, Object> ctxt =
 ((BindingProvider) vimPort).getRequestContext();

 ctxt.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY, url);
 ctxt.put(BindingProvider.SESSION_MAINTAIN_PROPERTY, true);

 serviceContent = vimPort.retrieveServiceContent(SVC_INST_REF);
 headers =
 (Map) ((BindingProvider) vimPort).getResponseContext().get(
 MessageContext.HTTP_RESPONSE_HEADERS);
 vimPort.login(serviceContent.getSessionManager(),
 userName,
 password, null);
 isConnected = true;

 propCollectorRef = serviceContent.getPropertyCollector();
 rootRef = serviceContent.getRootFolder();
 }
 ...

Multiple Versions of the vSphere API

When a client application connects to a Web service running on a vSphere server (ESXi or
vCenter Server system), the server detects the version of the API that was used to develop the
client and makes available only those operations supported by the client.

Client applications convey information about the API version used in the SOAP messages that
they send to a vSphere server. These SOAP messages include a versionID in the soapAction
attribute. The details are handled transparently by the SOAP toolkit and the client proxy code.
The server adjusts its behavior based on the client’s version information, exposing the API
version that the client supports to the client.

vSphere Web Services SDK Programming Guide

VMware, Inc. 49

Starting with vSphere 4.0, information about the supported API versions is contained in
an XML file, vimServiceVersions.xml, located on the server (see Service-Versions File

(vimServiceVersions.xml)). You can access this file with the URL https://server_hostname/sdk/
vimServiceVersions.xml.

Example: Service-Versions File (vimServiceVersions.xml)

<?xml version="1.0" encoding="UTF-8" ?>
- <!-- Copyright 2008-2010 VMware, Inc. All rights reserved. -->
- <namespaces version="1.0">
 - <namespace>
 <name>urn:vim25</name>
 <version>5.0</version>
 - <priorVersions>
 <version>2.5u2</version>
 <version>2.5</version>
 </priorVersions>
 </namespace>
 - <namespace>
 <name>urn:vim2</name>
 <version>2.0</version>
 </namespace>
 </namespaces>

If you are developing a client application that must support multiple server versions at the same
time (ESXi 5.0 and ESXi 5.5, for example), you must obtain information about the API versions
that are supported on the server and provide logic in your code to use or not use features, based
upon the version information.

One approach to targeting multiple versions of the API from the same client application code
is to check for the existence of the server versions file on the server. If you do not find a
vimServiceVersions.xml file on the server, the server is older than ESX/ESXi 4.x, vCenter

Server 4.x.

Java Sample Applications in the Web Services SDK

The vSphere Web Services SDK includes sample applications, written in Java, that demonstrate
features of the vSphere API and object model. Most of the samples do not handle exceptions,
and they accept all security certificates. So use the applications as examples for extracting the
types of data you want to view, but do not use the helper classes, trust store methods or
exception handling techniques in your production environment.

Java Samples in the Web Services SDK

The Java samples in your vSphere Web Services SDK include .java files that you can compile

and then run using any Java editor or IDE. The samples accept command-line arguments for the
vSphere server name (DNS name or IP address), user name, and password.

vSphere Web Services SDK Programming Guide

VMware, Inc. 50

Client Applications Using the
JSON Protocol 4
You can choose to create client applications for the Web Services API by using the JSON
protocol. This protocol offers functionality similar to the SOAP protocol, but provides a more
REST-like interface and uses a separate service endpoint.

A JSON protocol client must perform certain basic functions, such as authenticating a session,
retrieving data, and ending the session. This chapter outlines how to code basic functions, using
Python to drive the JSON protocol.

Read the following topics next:

n Client Requirements for the JSON Protocol

n Outlining a Client for the JSON Protocol

n Building JSON Request URLs

n Building JSON Request Bodies

n Retrieving the Service Instance with the JSON Protocol

n Authenticating a JSON Client with the Session Manager

n Mapping Methods for the JSON Protocol

n Accessing Managed Object Properties with the JSON Protocol

n Using Polymorphic Types with the JSON Protocol

n Python Client Example for the JSON Protocol

Client Requirements for the JSON Protocol

A client for the JSON protocol of the API needs a mid-level capability to build HTTP request
messages, send the requests over the network, and manage server responses. Many languages
have libraries to abstract the TCP/IP layers while also providing access to URLs, headers, and
bodies.

For example, some popular libraries include:

Python 3

VMware, Inc. 51

urllib.request module

Java

java.net.HttpUrlConnection or java.net.HTTP module (for Java 11 and later)

Go

net/http package

Rust

http module

Perl

LWP module

Swift

URL, URLRequest, URLSession, and URLSessonDataTask interfaces

C++

libcurl or curlpp

Command line and graphical tools for passing HTTP messages include:

n curl

n wget

n Postman

n Insomnia

n Hoppscotch

To use the JSON protocol, you will build URLs that embed the names of managed objects,
properties, and methods. You will build request bodies that specify the parameters for method
calls. You will read response bodies and response headers, and you will include a session
identifier in your request headers.

Outlining a Client for the JSON Protocol

A client to work with the JSON protocol generally contains the following parts, at minimum.

n The basic elements of the URL, including the address of the vCenter Server instance, the
service endpoint specifier, and the version specifier.

n The credentials with which you authenticate your client session.

n Code to GET managed object properties, such as the ServiceInstance content, which

contains managed object references to singletons, including the SessionManager.

n Code to POST requests to invoke methods on managed objects, such as the Login method.

vSphere Web Services SDK Programming Guide

VMware, Inc. 52

n A request to fetch the ServiceInstance content and extract the SessionManager managed

object reference.

n A request to authenticate the client session with the SessionManager.

n A request to end the client session.

The following sections use fragments of Python code to show how you can build these parts of
the request.

Building JSON Request URLs

The service endpoint for the JSON API is determined by the vCenter Server address and the API
version that the client prefers for the response. These data form part of the service URL.

All requests in the JSON API specify a managed object. Some requests retrieve properties of a
managed object. Other requests invoke a method on a managed object.

The parts of the service URL are as follows:

1 scheme = 'https://'

2 domain = vCenter Server IP address or fully qualified domain name

3 The URL path contains the following parts:

a endpoint = '/sdk/vim25'

b version = '8.0.1.0'

c A managed object reference, generated by the server, which has two subparts, type and

value, where:

1 type is the name of a type of managed object, such as Folder or VirtualMachine or

ServiceInstance

2 value is a unique identifier (within this vCenter Server instance) for a specific object of

the type named, such as group-d1 or vm-015 or ServiceInstance.

The object notation must be serialized as two strings separated by a slash (/). For

example: 'Folder/group-d1'.

def serialize_moref_for_request_url(moref):
 return('{}/{}'.format(moref['type'], moref['value']))

d A property name or method name, such as childType or CreateVM

An example request URL to retrieve the type or types of managed objects that a folder can
contain::

>>> scheme = 'https://'
>>> domain = 'vcenter.example.com'
>>> endpoint = '/sdk/vim25'
>>> version = '8.0.1.0'

vSphere Web Services SDK Programming Guide

VMware, Inc. 53

>>> motype = 'Folder'
>>> moid = 'group-d1'
>>> moref = motype + '/' + moid
>>> property = 'childType'
>>> url = scheme + domain + endpoint + '/' + version + '/' + moref + '/' + property
>>> print(url)
https://vcenter.example.com/sdk/vim25/8.0.1.0/Folder/group-d1/childType

An example request URL to cancel a long-running operation:

...
>>> motype = 'Task'
>>> moid = 'task-124'
>>> moref = motype + '/' + moid
>>> method = 'Cancel'
>>> url = scheme + domain + endpoint + '/' + version + '/' + moref + '/' + method
>>> print(url)
https://vcenter.example.com/sdk/vim25/8.0.1.0/Task/task-124/Cancel

Building JSON Request Bodies

Methods are invoked with the JSON protocol by sending a POST request with the method name
in the URL and the method parameters in the body of the request.

The request body for a method invocation is a single JSON object containing the
method parameters as named objects or arrays. For instance, a request body for the
MoveIntoFolder_Task method might look like this:

{'list': [
 {'_typeName': 'ManagedObjectReference',
 'type': 'VirtualMachine',
 'value': 'vm-23'},
 {'_typeName': 'ManagedObjectReference',
 'type': 'VirtualMachine',
 'value': 'vm-96'},
 {'_typeName': 'ManagedObjectReference',
 'type': 'VirtualApp',
 'value': 'resgroup-v44'}
]
}

The method name itself becomes part of the URL, as described in Building JSON Request URLs.

Note Use the WSDL forms of type names. WSDL names are shown in the vSphere Web
Services API reference. For example, use the WSDL name ApplyHostProfileConfigurationSpec,

rather than the package name vim.profile.host.ProfileManager.ApplyHostConfigSpec, to

build a data object as a parameter to the method ApplyEntitiesConfig_Task. Similarly,

use the method's WSDL name, ApplyEntitiesConfig_Task, rather than the source name,

applyEntitiesConfiguration.

vSphere Web Services SDK Programming Guide

VMware, Inc. 54

Retrieving the Service Instance with the JSON Protocol

ServiceInstance is a singleton managed object that acts as a gateway to the resources
available on the server. You can locate other important singletons such as SessionManager and
SearchIndex from the properties of the ServiceInstance. ServiceInstance is accessible without
authentication, so you can retrieve a reference to the SessionManager which you can use to
authenticate a session.

To retrieve the properties of the ServiceInstance managed object, do the following.

Prerequisites

You need the IP address or fully qualified domain name of a vCenter Server to which you will
send the request.

Procedure

1 Synthesize a managed object reference to the ServiceInstance managed object. This
managed object reference always has a fixed value of {type: "ServiceInstance", value:
"ServiceInstance"} because it is a prerequisite for access to other managed object

references.

motype = 'ServiceInstance'
moid = 'ServiceInstance'
moref = motype + '/' + moid

2 Specify the property to retrieve from the managed object.

property = 'content'

3 Assemble the URL from the pieces previously defined.

scheme = 'https://'
domain = 'vcenter.example.com'
endpoint = '/sdk/vim25'
version = '8.0.1.0'
url = scheme + domain + endpoint + '/' + version + '/' + moref + '/' + property
print(url)

href="https://vcenter.example.com/sdk/vim25/8.0.1.0/ServiceInstance/ServiceInstance/
content"

4 Send the URL in an HTTP GET request.

from urllib.request import urlopen, Request
import ssl
Skip certificate verification on test systems only:
unverified_context = ssl._create_unverified_context()

vSphere Web Services SDK Programming Guide

VMware, Inc. 55

request = Request(url, headers=headers or {})
with urlopen(request, context=unverified_context) as response :
 response_headers = response.headers
 response_body = response.read()

5 Display the result of the query.

from pprint import pprint
json_body = json.loads(response_body)
pprint(json_body)

Results

The program displays a number of managed object references for singletons that you can use for
additional requests. The following excerpt includes several important managed objects that you
will use for basic operations, including authentication.

Example: Excerpt from Service Content

...
'propertyCollector': {'_typeName': 'ManagedObjectReference',
 'type': 'PropertyCollector',
 'value': 'propertyCollector'},
'rootFolder': {'_typeName': 'ManagedObjectReference',
 'type': 'Folder',
 'value': 'group-d1'},
'scheduledTaskManager': {'_typeName': 'ManagedObjectReference',
 'type': 'ScheduledTaskManager',
 'value': 'ScheduledTaskManager'},
'searchIndex': {'_typeName': 'ManagedObjectReference',
 'type': 'SearchIndex',
 'value': 'SearchIndex'},
'serviceManager': {'_typeName': 'ManagedObjectReference',
 'type': 'ServiceManager',
 'value': 'ServiceMgr'},
'sessionManager': {'_typeName': 'ManagedObjectReference',
 'type': 'SessionManager',
 'value': 'SessionManager'},
...

What to do next

Use the SessionManager URL in the Service Content to open an authenticated session with the
vCenter Server instance.

Authenticating a JSON Client with the Session Manager

Most method calls must carry a session ID to authenticate with the server at the time of the call.
The session ID is a temporary substitute for username and password, thereby limiting risk to the
principal's credentials.

vSphere Web Services SDK Programming Guide

VMware, Inc. 56

To acquire a session ID, you have these options:

n Invoke the SessionManager.Login method with username and password, exchanging the

principal's credentials for a session ID token.

n Request a SAML token from the vCenter Single-Sign-On server, and use the token to invoke
the SessionManager.LoginByToken method, receiving a session ID token in exchange.

After a successful authentication operation with vCenter Server, you extract the session ID token
from the HTTP header of the response message. Include the same header in subsequent API
request messages.

For example, the response headers might contain lines similar to the following:

content-type: application/json
date: Tue, 14 Aug 2007 13:30:00 GMT
vmware-api-session-id: 0123498765fabdec5263748596071829304100ab
x-envoy-upstream-service-time: 45

The value 0123498765fabdec5263748596071829304100ab is the session ID token. Use it in the

headers of your API requests, similar to the following:

content-type: application/json
vmware-api-session-id: 0123498765fabdec5263748596071829304100ab

Basic Authentication for the JSON Protocol

Basic authentication relies on username and password. These credentials are transported over
HTTPS with TLS encryption, but for stricter security consider using SAML token authentication
instead.

To authenticate with username and password, do the following steps.

Prerequisites

Basic authentication requires that you have a username and corresponding password that have
privileges on the vCenter Server instance to which you connect. You also need the IP address or
fully qualified domain name of the vCenter Server instance.

Procedure

1 Prepare a JSON serialization of your credentials. This will be the body of your request.

body_string = '{"userName": "Administrator@vsphere.local", "password": "betyoucantguess"}'

2 Get the SessionManager managed object reference from the ServiceInstance content. Format
it for the resource portion of the service URL.

moref = si_content['sessionManager']
url_moref = '{}/{}'.format(moref['type'], moref['value'])

vSphere Web Services SDK Programming Guide

VMware, Inc. 57

3 Assemble the complete URL for a request to invoke the Login method of the
SessionManager.

scheme = 'https://'
domain = 'vcenter.example.com'
endpoint = '/sdk/vim25'
version = '8.0.1.0'
method = 'Login'
url = scheme + domain + endpoint + '/' + version + '/' + url_moref + '/' + method
print(url)

https://vcenter.example.com/sdk/vim25/8.0.1.0/SessionManager/SessionManager/Login

4 Set the request header 'Content-Type' = 'application/json'.

request_headers = {}
request_headers['Content-Type'] = 'application/json'

5 Send the URL and the body in an HTTP POST request.

from urllib.request import urlopen, Request
import ssl
Skip certificate verification on test systems only:
unverified_context = ssl._create_unverified_context()
request = Request(url, headers=request_headers)
with urlopen(request, context=unverified_context) as response :
 response_headers = response.headers
 response_body = response.read()

6 Extract the session token from the authentication header in the response.

token = response_headers['vmware-api-session-id']

Results

The token you extracted is your current session ID and is required to access most managed
object properties and methods with the API.

Example:

What to do next

Save the token. Add the token header to all subsequent requests before sending.

request_headers['vmware-api-session-id'] = token

SAML Token Authentication for a JSON Client

To authenticate by SAML token, you must use SOAP message protocol rather than the JSON
protocol. After authentication, you can send authenticated requests over the JSON protocol.

vSphere Web Services SDK Programming Guide

VMware, Inc. 58

SAML token authentication using the SOAP protocol is described in the vCenter Single Sign-On
Programming Guide. Use the Single-Sign-On server to exchange the principal's credentials for a
SAML token, then invoke the LoginByToken() method of the SessionManager to exchange the

SAML token for a session ID token.

The SessionManager returns the session ID token in a cookie header. Use the value of the
cookie as the value of vmware-api-session-id in request message headers, as described in

Authenticating a JSON Client with the Session Manager.

Mapping Methods for the JSON Protocol

All methods defined in the WSDL schema for the vSphere Web Services API can be invoked
by using a REST-like URL with the POST verb. The method name appends to the URL and the
method parameters appear as JSON in the body of the request.

Method names begin with an uppercase letter and match the method name in the vSphere Web
Services API Reference. All methods attach to a managed object reference, as in the SOAP API.

For example, the SessionManager managed object has a method whose WSDL name is
AcquireLocalTicket.

The URL format that you use to invoke a method is

https://vcenter_fqdn/sdk/vim25/8.0.1.0/mo_ref/method_name

For example, you invoke the AcquireLocalTicket method with a URL like this:

https://vcenter_fqdn/sdk/vim25/8.0.1.0/SessionManager/SessionManager/AcquireLocalTicket

When you POST a request to invoke a method on a managed object, the body of the request
contains a single anonymous JSON object that specifies the parameter names and values.
Unlike the SOAP request protocol, the JSON does not specify a reference to 'this' because the
managed object reference is in the URL path.

For example, the method Folder.CreateFolder() requires a name for the new folder. The body

for that request would look similar to this:

{"name": "spare_VM_folder"}

Accessing Managed Object Properties with the JSON
Protocol

You retrieve a property of a managed object by appending the property name to the URL, after
the managed object reference. Property names always begin with a lowercase letter, matching
the name in the vSphere Web Services API Reference.

vSphere Web Services SDK Programming Guide

VMware, Inc. 59

For example, you can retrieve the string property HostProfile.validationState with a URL

similar to this:

https://vcenter_fqdn/sdk/vim25/8.0.1.0/hostprofile_mo_ref/validationState

Note You cannot modify properties directly. To modify properties of a managed object, you
must invoke a method of the managed object or a related managed object that affects its state
on the server.

Retrieving Nested Properties

You can retrieve a top-level property by naming it in the URL, but nested properties are not
directly accessible. Many top-level properties are data objects or arrays, containing nested
properties of interest. To access nested properties, first retrieve the top-level property, then
deserialize the JSON in the response body. After deserialization, you can access the nested
properties of the data object or array in the client.

For example, code this request:

GET https://vcenter_fqdn/sdk/vim25/8.0.1.0/vm_mo_ref/runtime

Then extract and display the nested property like this:

data_object = json.loads(response_body)
state = data_object['powerState']
print('VM powerState = ' + state)

The nested property displays.

VM powerState = poweredOff

Retrieving Managed Object Reference Properties

Managed objects often have properties to reference other managed objects. In these cases, you
can use a GET request to obtain the managed object reference, but to access the properties or
methods of the other managed object you must issue a new GET request, using the managed
object reference in the request URL.

If you need to follow a chain of managed object references, you can avoid extra requests by
using the PropertyCollector managed object. The purpose of the PropertyCollector is to delegate
the search functions to the server, where they can be done more efficiently.

Using the Property Collector to Retrieve Object Properties

You can use the PropertyCollector to retrieve properties from one or more managed objects,
whether or not they are related to each other, if you can specify the set of objects in your
request. The PropertyCollector provides a flexible interface by which you can specify search
criteria to execute in the server.

vSphere Web Services SDK Programming Guide

VMware, Inc. 60

To specify a property retrieval, several approaches are available to you. A few of them are:

n Provide a managed object reference and a set of its properties that you want to retrieve.

n Provide a managed object reference as a starting point for a search that traverses inventory
paths to find related managed objects and return their properties.

n Provide a reference to a previous search set as a starting point for a traversal search, often
directed to the managed objects contained in the set.

This example shows a hybrid approach where you first locate a Datacenter managed object

by using the SearchIndex() method. Then you use that managed object as a starting point

to traverse to VirtualMachine objects in the data center's virtual machine folder. If there are

subfolders within the virtual machine folder, the search specifications traverse the subfolders
recursively.

The goal of this example is to report whether the virtual machines are powered on or powered
off. That information is in the VirtualMachine.runtime.powerState property.

The powerState property is a nested property of the virtual machine, so we need to locate the

VirtualMachine managed objects and specify a property within the runtime data object belonging

to each VirtualMachine. The JSON protocol has the ability to retrieve the entire runtime data
object as a single property, but the PropertyCollector has the power to extract the nested
property in a single query.

Use the following procedure to build a server-side specification that will retrieve the power states
of the virtual machines in the data center's virtual machine folder.

Note For simplicity, this procedure ignores VApps.

1 Build a PropertySpec data object to identify the managed object type (VirtualMachine) and

the nested property name (runtime.powerState).

propSet = [{'_typeName': 'PropertySpec',
 'type': 'VirtualMachine', 'pathSet': ['runtime.powerState'], 'all': False}]

The all property, if True, overrides the pathSet property and collects all properties of the

managed object. This behavior is useful if you want to maintain a client-side copy in synch
with the server-side managed object.

2 (optional) If it helps to clarify the inventory paths to the virtual machines, sketch
VirtualMachine objects and their parent managed objects, all the way up the chain to the

starting Datacenter managed object.

vSphere Web Services SDK Programming Guide

VMware, Inc. 61

Datacenter

vmFolder

Folder

childEntity[]

Folder

childEntity[]

VirtualMachine

VirtualMachine

dc_to_vmfolder

traverse_foldertraverse_folder

traverse_folder

vSphere Web Services SDK Programming Guide

VMware, Inc. 62

For each path between managed objects, note the name of the property in the parent
object that links to the child object. You must create a TraversalSpec (or a SelectionSpec
reference to a TraversalSpec) to follow each of those links to the next managed object.

The VirtualMachine managed objects whose properties you want to retrieve do not need

TraversalSpec objects.

3 Working backwards from VirtualMachine objects to Datacenter object, create a named

TraversalSpec data object for each path segment.

traverse_folder = {'_typeName': 'TraversalSpec'}
traverse_folder['name'] = 'traverse_folder'
traverse_folder['type'] = 'Folder'
traverse_folder['path'] = 'childEntity'
traverse_folder['skip'] = False

dc_to_vmfolder = {'_typeName': 'TraversalSpec'}
dc_to_vmfolder['name'] = 'dc_to_vmfolder'
dc_to_vmfolder['type'] = 'Datacenter'
dc_to_vmfolder['path'] = 'vmFolder'
dc_to_vmfolder['skip'] = True

You do not need a TraversalSpec for the VirtualMachine object, because it is a leaf object in

the traversal tree. You do need a TraversalSpec for the Datacenter object and the Folder
object, so the PropertyCollector will know how to traverse down the chain to the child
objects. The skip property is an optimization. It tells the PropertyCollector that the next

managed object after the traversal can be traversed without checking the PropertySpec.

Note The TraversalSpec.selectSet[] property is not yet set. You will use it to link the specs

together.

4 If your data center might have nested folders inside its VM folder, create a SelectionSpec
data object that specifies the name of the TraversalSpec for Folder objects, so the

PropertyCollector can follow the childEntity path recursively for any nested folders it finds.

folder_recursion = {'_typeName': 'SelectionSpec', 'name': 'traverse_folder'}

5 Link the TraversalSpec objects together by using the selectSet[] property to build a

managed object traversal chain.

traverse_folder['selectSet'] = [folder_recursion]
dc_to_vmfolder['selectSet'] = [traverse_folder]

6 Create an ObjectSpec data object to specify starting from your Datacenter managed object,

and to direct the PropertyCollector to the TraversalSpec that leads to the top-level VM

folder.

objectSet = [{'_typeName': 'ObjectSpec',
 'obj': dc_moref, 'skip': False,
 'selectSet': [dc_to_vmfolder] }]

vSphere Web Services SDK Programming Guide

VMware, Inc. 63

The skip property in the ObjectSpec is different from the skip property in a TraversalSpec.

In the ObjectSpec, it tells the PropertyCollector that the starting object is not one of the

managed objects it is looking for.

7 Combine the PropertySpec and the ObjectSpec into a PropertyFilterSpec that will be a

parameter to the PropertyCollector.RetrievePropertiesEx method.

specSet = [{'_typeName': 'PropertyFilterSpec',
 'propSet': propSet, 'objectSet': objectSet}]

8 Specify the RetrievePropertiiesEx method parameters in the request body.

import json
param_dict = {'options': {'_typeName': 'RetrieveOptions',
 'maxObjects': 1000}, 'specSet': specSet}
request_body = json.dumps(param_dict).encode('utf-8')

9 Send the request, using the POST verb.

from urllib.request import urlopen, Request
import ssl
moref = si_content['propertyCollector']
method = 'RetrievePropertiesEx'
url = make_url(domain, mo=moref, m_p=method)
request_headers = {}
request_headers['vmware-api-session-id'] = token
request_headers['Content-Type'] = 'application/json'
headers['Content-Type'] = 'application/json'
Skip certificate verification on test systems only:
unverified_context = ssl._create_unverified_context()
request = Request(url, headers, data=body)
with urlopen(request, context=unverified_context) as response :
 response_headers = response.headers
 response_body = response.read()
json_body = json.loads(response_body)
print(json_body)

The results are returned in a RetrieveResult data object, which encloses an array of

ObjectContent data objects. Each ObjectContent contains a managed object reference and

a corresponding array of named properties found by the PropertyCollector that match your
PropertySpec. For this example, the managed object references identify VirtualMachine objects,

and the property name-value pairs show the powerState of each VirtualMachine.

Using Polymorphic Types with the JSON Protocol

The JSON protocol deals with managed objects whose properties include WSDL-defined data
objects, such as configuration objects. Method parameters can also be data objects. Some of
these data objects are polymorphic, in the sense that they can inherit from other data objects
and can be referenced as the parent type.

vSphere Web Services SDK Programming Guide

VMware, Inc. 64

The JSON protocol distinguishes the assigned type by adding a _typename property to the JSON

serialization. For example, a TaskInfo data object contains a result property that has the XSD

type xsd:anyType. The actual type of the assigned value is specified with a _typename property in

result.

For example, the following JSON shows how a result data object is returned in the server
response and the assigned type is identified by the _typeName property.

"result": {
 "_typeName": "ManagedObjectReference",
 "_value": {
 "value": "domain-s16",
 "type": "ComputeResource"
 }
}...

When you use a polymorphic type in a request, you must add a _typename property to identify

the assigned type for the server. For example, if you create a PropertyFilter for a request

to the PropertyCollector, you might include a TraversalSpec object, which inherits from the

SelectSet object. Add the _typename property to distinguish a TraversalSpec value from a

SelectSet value:

"traverse_vm_folder": {
 "_typeName": "TraversalSpec",
 "type": "Folder",
 "path": "childEntity",
 "skip": false
}

Many properties are defined in the WSDL as inheriting from DynamicData. For that reason, you

will use _typeName frequently. A best practice is to add the _typeName property to all objects you

create for the JSON API.

Python Client Example for the JSON Protocol

This brief example illustrates several basic operations you need to implement a client that uses
the JSON protocol.

import json
from pprint import pprint

domain = 'vcenter.example.com'
credentials = {'userName': 'Administrator@vsphere.local', 'password': 'betyoucantguess'}
dc_name = 'DC-1'

def make_url(vc, ver='8.0.1.0', mo='ServiceInstance/ServiceInstance', m_p='content'):
 if isinstance(mo, dict):
 mo = '{}/{}'.format(mo['type'], mo['value'])
 url = 'https://{}/sdk/vim25/{}/{}/{}'.format(vc, ver, mo, m_p)

vSphere Web Services SDK Programming Guide

VMware, Inc. 65

 return url

def send_request(url, headers=None, body=None):
 from urllib.request import urlopen, Request
 import ssl
 if headers is None: headers = {}
 headers['Content-Type'] = 'application/json'
 # Skip certificate verification on test systems only:
 unverified_context = ssl._create_unverified_context()
 request = Request(url, headers=headers or {}, data=body)
 with urlopen(request, context=unverified_context) as response :
 response_headers = response.headers
 response_body = response.read()
 return(response_headers, response_body)

def get_service_content(vc):
 url = make_url(vc)
 (response_headers, response_body) = send_request(url)
 json_body = json.loads(response_body)
 return(json_body)

def basic_auth(domain, credentials):
 si_content = get_service_content(domain)
 moref = si_content['sessionManager']
 method = 'Login'
 url = make_url(domain, mo=moref, m_p=method)
 request_headers = {}
 request_headers['Content-Type'] = 'application/json'
 request_body = json.dumps(credentials).encode('utf-8')
 (response_headers, response_body) = send_request(url, headers=request_headers,
body=request_body)
 print('Response:')
 print(response_headers)
 print(json.loads(response_body))
 token = response_headers['vmware-api-session-id']
 return(token)

def logout(domain, session_moref) :
 request_body = {}
 method = 'Logout'
 url = make_url(domain, mo=session_moref, m_p=method)
 request_headers = {}
 request_headers['vmware-api-session-id'] = token
 request_headers['Content-Type'] = 'application/json'
 (response_headers, response_body) = send_request(url, headers=request_headers,
body=request_body)
 return(response_headers)

def get_datacenter_moref(domain, dc_name, token):
 si_content = get_service_content(domain)
 moref = si_content['searchIndex']
 method = 'FindByInventoryPath'
 url = make_url(domain, mo=moref, m_p=method)
 body_dict = {'inventoryPath': dc_name}
 request_body = json.dumps(body_dict).encode('utf-8')

vSphere Web Services SDK Programming Guide

VMware, Inc. 66

 request_headers = {}
 request_headers['vmware-api-session-id'] = token
 request_headers['Content-Type'] = 'application/json'
 (response_headers, response_body) = send_request(url, headers=request_headers,
body=request_body)
 json_body = json.loads(response_body)
 return(json_body)

def get_vm_power_states(domain, dc_moref, token):
 # MO type & properties to retrieve.
 propSet = [{'_typeName': 'PropertySpec',
 'type': 'VirtualMachine', 'pathSet': ['runtime.powerState'], 'all': False}]
 # Work backwards to define the steps in the traversal path.
 # traversalspec = type to traverse, path out, skip next?, (selectSet).
 # Traverse any nested folders inside vmFolder:
 traverse_folder = {'_typeName': 'TraversalSpec'}
 traverse_folder['name'] = 'traverse_folder'
 traverse_folder['type'] = 'Folder'
 traverse_folder['path'] = 'childEntity'
 traverse_folder['skip'] = False
 traverse_folder['selectSet'] = [{'_typeName': 'SelectionSpec',
 'name': 'traverse_folder'}]
 # Traverse Datacenter to vmFolder:
 dc_to_vmfolder = {'_typeName': 'TraversalSpec'}
 dc_to_vmfolder['name'] = 'dc_to_vmfolder'
 dc_to_vmfolder['type'] = 'Datacenter'
 dc_to_vmfolder['path'] = 'vmFolder'
 dc_to_vmfolder['skip'] = True
 dc_to_vmfolder['selectSet'] = [traverse_folder]
 # objectSet = Starting MO + traversal steps to retrieval objects.
 objectSet = [{'_typeName': 'ObjectSpec',
 'obj': dc_moref, 'skip': False,
 'selectSet': [dc_to_vmfolder]}]
 # specSet = total filter specification.
 specSet = [{'_typeName': 'PropertyFilterSpec',
 'propSet': propSet, 'objectSet': objectSet}]
 # Params to RetrievePropertiesEx():
 param_dict = {'options': {'_typeName': 'RetrieveOptions',
 'maxObjects': 1000}, 'specSet': specSet}
 # Build request message.
 request_body = json.dumps(param_dict).encode('utf-8')
 moref = si_content['propertyCollector']
 method = 'RetrievePropertiesEx'
 url = make_url(domain, mo=moref, m_p=method)
 request_headers = {}
 request_headers['vmware-api-session-id'] = token
 request_headers['Content-Type'] = 'application/json'
 (response_headers, response_body) = send_request(url, headers=request_headers,
body=request_body)
 json_body = json.loads(response_body)
 return(json_body)

MAIN

si_content = get_service_content(domain)

vSphere Web Services SDK Programming Guide

VMware, Inc. 67

pprint(si_content); print()

token = basic_auth(domain, credentials)
print('Session token: {}'.format(token)); print()

dc_moref = get_datacenter_moref(domain, dc_name, token)
print('{} MOref = {}'.format(dc_name, dc_moref)); print()

response_body = get_vm_power_states(domain, dc_moref, token)
print('Response body:'); pprint(response_body)

moref = si_content['sessionManager']
headers = logout(domain, moref)
print('Logging out:')
print(headers)

vSphere Web Services SDK Programming Guide

VMware, Inc. 68

Datacenter Inventory 5
The vSphere inventory is a representation of the vSphere datacenter and the objects in the
datacenter. Knowing how the objects in the datacenter relate to each other helps you traverse
the inventory hierarchy and access the objects you want to manipulate.

Read the following topics next:

n Inventory Overview for the Web Services SDK

n Inventory Hierarchies and ServiceInstance

n Accessing Inventory Objects

n Creating Inventory Objects

n Privileges Required for Inventory Management

n Managed and Standalone ESXi Hosts

Inventory Overview for the Web Services SDK

The vSphere inventory contains the following types of objects:

n Systems in the datacenter: Host, VirtualMachine, and VirtualApp.

n Support components: ComputeResource, Datastore, Network, and virtual devices.

n Organizational components: Folder and Datacenter

When you manage the virtual infrastructure, you access objects and their properties and
methods based on their location in the inventory. Understanding the inventory structure is
therefore critical for any programming task. You always start with the ServiceInstance
associated with a session, which is the root object of the inventory, and traverse the inventory
hierarchy from there. See Chapter 6 Property Collector. How you access objects depends on
whether your client application is connected to a vCenter Server or an ESXi host.

Inventory Hierarchies and ServiceInstance

When you start a session, vSphere creates a ServiceInstance with one root folder, one

Datacenter, and four folders that hold the different types of inventory objects.

VMware, Inc. 69

When you access a vCenter Server System, the hierarchy shown in the illustration below allows
you to traverse the inventory.

Figure 5-1. vCenter Server Inventory Hierarchy

Caution If your ESXi hosts are managed by vCenter Server, you must always access your hosts
through vCenter Server. The vCenter service keeps track of all synchronous and asynchronous
operations, and will have the latest status and inventory information about each ESXi host.
Therefore, connecting directly to a managed host may give you incorrect or incomplete data.

When you have ESXi hosts that are not managed by vCenter Server, your application can
connect to each host directly.

Folders in the Hierarchy

If your installation includes a vCenter Server system, you can create additional datacenters under
the root folder. For every Datacenter object, the server automatically creates the following

Folder objects:

n A folder for VirtualMachine, template, and VirtualApp objects.

n A folder for a ComputeResource hierarchy.

n A folder for Network, DistributedVirtualSwitch, and DistributedVirtualPortgroup
objects.

n A folder for Datastore objects.

vSphere Web Services SDK Programming Guide

VMware, Inc. 70

In a large deployment, the nested structure allows you to organize the objects in the datacenter
into an easily manageable structure by using multiple folders and datacenters.

For a standalone ESXi system, only a single datacenter is supported, and the Folder managed

entity does not support creating additional Folder objects or Datacenter objects.

ESXi Inventory Hierarchy

When you access an ESXi host directly, rather than accessing the host through a vCenter Server
system, the hierarchy shown in the illustration below allows you to traverse the inventory.

Figure 5-2. ESXi Inventory Hierarchy

Accessing Inventory Objects

To retrieve information from an inventory object, you start with ServiceInstance, the root

object of the inventory. You access an object using a TraversalSpec in conjunction with a

property collector, using the properties that identify an object’s position in the hierarchy.

n Every managed entity has a parent property that identifies its relative position in the

inventory hierarchy.

n The Folder managed object has a childEntity property that identifies objects in a folder

instance.

Figure 5-3. Instance Diagram of Root Folders in an Inventory shows the childEntity and

folder properties that define the default objects in the inventory of a standalone ESXi system.

The inventory begins with the ServiceContent.rootFolder property. The rootFolder has a

childEntity that consists of a managed object reference to a Datacenter managed object.

vSphere Web Services SDK Programming Guide

VMware, Inc. 71

Figure 5-3. Instance Diagram of Root Folders in an Inventory

Creating Inventory Objects

The Folder managed entity provides methods for creating instances of the following managed

entities.

n Datacenter

n DistributedVirtualSwitch

n VirtualMachine

n Cluster

n Folder

When you create these objects, they appear in the folder you invoked the creation method from.

While some managed entities are created through a method on the Folder managed entity,

other managed entities are instantiated directly. For example, the HostDatastoreSystem has

methods for creating datastores such as CreateNasDatastore and CreateVmfsDatastore.

Important When you create an inventory object, you must stay within the bounds of
the host’s capabilities, accessible through the HostSystem.capability property, which is

a HostCapability data object. For example, a HostCapability object might have the

maxSupportedVMs property specified.

vSphere Web Services SDK Programming Guide

VMware, Inc. 72

Privileges Required for Inventory Management

Navigating the inventory requires a user account that can connect to the server and obtain a
valid session. The user identity associated with the session is called a principal. When a client
application attempts to access an object in the inventory, the server checks the permission
object or objects and compares the permissions with the principal’s privileges.

For example, creating a virtual machine requires that the principal associated with the session
have the following privileges:

n The VirtualMachine.Inventory.Create privilege on the folder in which to create the

virtual machine.

n The Resource.AssignVMToPool privilege on the resource pool from which the virtual

machine obtains its allocation of CPU and memory resources.

Reading the perfCounter property of the PerformanceManager managed object requires the

System.View privilege on the root folder.

Important Some privileges are specific to objects on vCenter Server or specific to ESXi. For
example, the Alarm.Create privilege associated with AlarmManager is available only through

vCenter Server systems.

See Chapter 7 Authentication and Authorization for more information on authentication,
authorization, roles, and user identity.

Privileges

A privilege is a system-defined requirement associated with a VMware vSphere managed object.
Privileges are static and do not change for a version of a product. Privileges for vSphere
components are defined as follows:

<group>[.<group>].privilege

For example:

Datacenter.Create
Host.Config.Connection
Host.Config.Snmp

Permissions

Permissions are the associations of roles with privileges on a specified managed entity. You use
permissions to specify which users can access which managed entity.

A child entity inherits the permissions of its parent if the parent’s propagate property is set to

true. A permission that is set directly on a child overrides the permission in the parent. To grant
permission to all child entities of a Datacenter object, assign permissions to the Datacenter
object and set the Permission object’s propagate property to true.

vSphere Web Services SDK Programming Guide

VMware, Inc. 73

Figure 5-4. Inventory and Permissions shows that users root and vpxuser both have

permissions on the rootFolder of the inventory. The vpxuser is the account created on a

host by the vCenter Server system when that host is added to the vCenter Server system.
The vCenter Server system needs access to the inventory objects of the host systems that it
manages, so the vpxuser account is granted privileges to the rootFolder of each host.

Important See Chapter 7 Authentication and Authorization for a detailed discussion of
privileges, permissions, and user management.

Figure 5-4. Inventory and Permissions

Managed and Standalone ESXi Hosts

You can run ESXi as a managed or standalone ESXi host.

n Standalone ESXi hosts are standalone hosts with limited capabilities. The inventory of a
standalone host can support multiple virtual machines and multiple resource pools, but it
contains a single default datacenter and a single root folder. The default datacenter and root
folder are not visible in the vSphere Client, but they exist in the inventory of a standalone
host and they are visible in the MOB.

n Managed ESXi hosts have been added to the vCenter Server inventory. Available features
depend on the licenses available for that host. For example, you can configure two or more
hosts for VMware DRS resource management or VMware HA failover protection.

The following table summarizes the differences between the number of objects that an inventory
can contain. See also Figure 5-2. ESXi Inventory Hierarchy and Figure 5-1. vCenter Server
Inventory Hierarchy.

vSphere Web Services SDK Programming Guide

VMware, Inc. 74

ManagedEntity Subtype ESX/ESXi Inventory vCenter Server Inventory

ClusterComputeResource None. Multiple instances supported.

ComputeResource Exactly one only. Multiple instances supported.

Datacenter Exactly one only. Cannot be
destroyed. Transparent.

Multiple instances supported.

Datastore Multiple instances supported. Multiple instances supported.

DistributedVirtualSwit
ch

Multiple instances supported. Multiple instances supported.

Folder Exactly one only. Cannot be
destroyed. Transparent.

Multiple instances supported.

HostSystem Exactly one only. Multiple instances supported.

Network Multiple instances supported. Multiple instances supported.

ResourcePool Multiple instances supported. Multiple instances supported.

VirtualApp None. Multiple instances supported.

VirtualMachine Multiple instances supported. Multiple instances supported.

vSphere Web Services SDK Programming Guide

VMware, Inc. 75

Property Collector 6
vSphere provides the PropertyCollector service for accessing data and monitoring changes.

Use the RetrievePropertiesEx to obtain values of managed object properties, and

WaitForUpdatesEx to monitor and retrieve modified property values.

Read the following topics next:

n Introduction to the PropertyCollector

n vSphere Data Objects for Property Collection

n vSphere Methods for Property Collection

n Using the PropertyCollector with RetrievePropertiesEx

n Retrieve a Property from a Specified Managed Object

n Retrieve Properties from a Set of Managed Objects with a View

n Property Collector Program in Java for Web Services SDK

n Inventory Traversal

n Client Data Synchronization with WaitForUpdatesEx

n Server Data Transmission

n PropertyCollector Performance

n SearchIndex

Introduction to the PropertyCollector

The PropertyCollector service provides a way to monitor and retrieve information about

managed objects, such as whether a host in a cluster is offline, or whether a virtual machine is
powered on.

The PropertyCollector uses one or more filters to determine the scope of collection and it has

methods to retrieve data. A filter uses a set of data objects that specify the following information:

n Starting point for inventory traversal during the collection operation.

n Inventory traversal path.

n Objects and properties from which data will be collected.

VMware, Inc. 76

A vSphere server creates a default PropertyCollector for every session, and allows you to

create multiple, additional PropertyCollector objects. Create additional PropertyCollector
objects, using one per thread, to perform concurrent collection operations.

Data Retrieval

PropertyCollector can retrieve data all at once, or incrementally.

n Property retrieval as a single operation uses the RetrievePropertiesEx and

ContinueRetrievePropertiesEx methods. These methods perform a single collection

operation.

n Incremental property retrieval, also referred to as property monitoring, uses the
WaitForUpdatesEx method. The initial call to this method retrieves a baseline set of

managed object property values. Subsequent calls retrieve changes in property values
since the last retrieval. Use WaitForUpdatesEx to monitor changes to the inventory or any

managed object properties.

Note The PropertyCollector does not guarantee the order of data that it returns in

response to a request for data.

Inventory Traversal and Property Selection

To use PropertyCollector, first build a PropertyFilterSpec to guide the collector's actions on

the server.

You pass your PropertyFilterSpec to either the RetrievePropertiesEx method or the

CreateFilter method. The latter establishes a persistent filter on the server side for use with

the WaitForUpdatesEx method.

A PropertyFilterSpec contains:

n The name of at least one managed object class from which you want to collect properties.
(PropertySpec.type)

n For each managed object class specified, at least one name of a property to return.
(PropertySpec.pathSet).

n If needed, one or more paths through the inventory hierarchy that the PropertyCollector
can traverse to reach the managed objects from which you want to collect properties.
(ObjectSpec.selectSet)

n For each path, a starting managed object reference from which to traverse that path.
(ObjectSpec.obj)

If you do not have a starting managed object reference from a prior API call, you can start with
the root folder at the base of the inventory hierarchy. The rootFolder reference is available in

the ServiceContent data object. For information about getting the ServiceContent, see Overview

of a Java Sample Application for the Web Services SDK.

vSphere Web Services SDK Programming Guide

VMware, Inc. 77

Gathering Data with a ViewManager Object

You can use a vSphere view object in a PropertyCollector filter to simplify access to a subset

of inventory objects. For example, ContainerView collects information about all VirtualMachine

objects in a datacenter, and ListView tracks information about Task objects while an operation is

in progress.

The ViewManager’s ListView method allows you to customize your view with an input object list,

the ContainerView method lets you view all objects in a folder, datacenter, resource pool, or

other container of managed objects, and the InventoryView method lets you monitor the entire

inventory.

Note A best practice is to use the smallest view you can create. This will be the most efficient
way to retrieve data with the PropertyCollector.

The ViewManager has the following property:

n viewList – An array of view references. Each array entry is a managed object reference to

a view created by this View Manager.

The view acts as a virtual parent object to the set, which provides the following benefits:

n The view can collect objects from different parts of the inventory and make them available
under the same parent.

n All objects in the set are accessible by doing a single traversal step, rather than a chain of
several steps starting at the root folder.

A best practice when using views is to call the DestroyView() method when a view is no longer

needed. This practice frees memory on the server.

See Retrieve Properties from a Set of Managed Objects with a View for an example that uses the
ContainerView method to access Inventory data.

For more information about the vSphere inventory, browse the managed object definitions in the
vSphere Web Services API Reference.

vSphere Data Objects for Property Collection

PropertyCollector data objects are used to specify objects and properties for the collector to

retrieve.

Data Object Description

PropertyFilterSpec Provides access to object and property selection data. A
PropertyFilterSpec must have at least one ObjectSpec and at least one

PropertySpec.

ObjectSpec Identifies the starting object for property collection, which can be either an
inventory object or a view you created. An ObjectSpec also identifies the

traversal specs used by the property collector.

vSphere Web Services SDK Programming Guide

VMware, Inc. 78

Data Object Description

PropertySpec Identifies object types and their properties for collection.

TraversalSpec Identifies the objects and paths that can be traversed to find the objects and
properties identified by the PropertySpec.

SelectionSpec Lists the TraversalSpec objects available at each step of an inventory

traversal. Supports recursive traversal by name.

View objects Use a view to form a set of starting objects for traversal and collection.

vSphere Methods for Property Collection

The PropertyCollector supports the following approaches to obtaining objects and properties

from the server:

n If your client application does not keep a synchronized representation of server state,
use the RetrievePropertiesEx method. RetrievePropertiesEx instantiates a filter,

collects the specified objects and properties, and returns the data to your client
application as an ObjectContent data object. The server does not add the filter to the

PropertyCollector.filter array. The server destroys the filter after returning the results

to your client.

n If your application maintains a synchronized representation of server state, use the
CreateFilter and WaitForUpdatesEx methods. WaitForUpdatesEx returns descriptions

of property changes, organized by the filter that identified the properties.

In either case, you create a PropertyFilterSpec data object to specify the objects and

properties you want to retrieve from the server.

The following table shows the PropertyCollector methods organized by the context in which

you use them. For more information about these methods, see the vSphere API Reference.

Method Context Method Description

Monitor
properties using
different filters

CreatePropertyCollector Creates a new PropertyCollector object

to monitor properties using different filters.
The vSphere server handles requests for a
PropertyCollector instance independently of any

other instances of the PropertyCollector on the

server.

DestroyPropertyCollector Destroys an instance of a PropertyCollector
that was created by a call to
CreatePropertyCollector from your client

application.

Single collection
operation

RetrievePropertiesEx Retrieves property data for the managed objects
specified by a single-use PropertyFilterSpec.

ContinueRetrieveProperties
Ex

Retrieves additional property data for an operation
started by RetrievePropertiesEx.

vSphere Web Services SDK Programming Guide

VMware, Inc. 79

Method Context Method Description

CancelRetrievePropertiesEx Cancels a RetrievePropertiesEx or

ContinueRetrievePropertiesEx operation.

Incremental
collection or
monitoring
operation

WaitForUpdatesEx Retrieves changes to property data since the
last WaitForUpdatesEx cycle. WaitForUpdatesEx
blocks until one or more changes are detected or
until the request times out.

CancelWaitForUpdatesEx Cancels a WaitForUpdatesEx operation.

General CreateFilter Creates a new instance of a PropertyFilter
managed object.

Using the PropertyCollector with RetrievePropertiesEx

Two use cases show how to retrieve properties of selected managed objects with the
RetrievePropertiesEx method.

A simple use case is to retrieve properties from a managed object for which a reference has
been supplied. You need only create a PropertyFilterSpec that contains a PropertySpec to

identify the property to retrieve and an ObjectSpec to identify the managed object. Pass this

PropertyFilterSpec to the RetrievePropertiesEx method and get the property value from the

structured result.

A more complicated use case retrieves properties from a set of managed objects found in
the inventory hierarchy. For this use case, you create a View managed object that provides

a path to all the target managed objects within one traversal step. You need to create a
PropertyFilterSpec that contains a PropertySpec to identify the property to retrieve and an

ObjectSpec that identifies the View object and also contains a TraversalSpec to describe the

path from the View to its children. Pass this PropertyFilterSpec to the RetrievePropertiesEx
method and get the property value from the structured result.

Retrieve a Property from a Specified Managed Object

This procedure uses PropertyCollector to retrieve a property from a single VirtualMachine
object with the RetrievePropertiesEx method, by obtaining a managed object reference to the

parent object of the VirtualMachine in the inventory.

To retrieve a reference to the parent object of a specific virtual machine, you must:

n Prepare a PropertySpec to specify the parent property and the parentVApp property of

the VirtualMachine class. A virtual machine can have only one parent, but the parent can

be either a Folder object or a VirtualApp object. This example collects both properties, one

of which will be null.

vSphere Web Services SDK Programming Guide

VMware, Inc. 80

n Prepare an ObjectSpec to identify the starting object, which is the specified

VirtualMachine. There is no need for a TraversalSpec because the property belongs to

the starting object itself. However, the ObjectSpec.skip property is set to false; a value of

true would cause the PropertyCollector not to collect properties from the starting object.

n Assemble a PropertyFilterSpec from the prepared data.

n Invoke the RetrievePropertiesEx method.

Prerequisites

For this task you need:

n A virtual machine managed object reference in a variable named vmRef.

n An authenticated Web Services session with the vSphere server that manages the virtual
machine.

n A VimPort binding provider referenced by the variable methods, which is attached to the

vSphere server connection context.

n A PropertyCollector instance referenced by the variable pCollector.

Note This procedure shows only how to use the PropertyCollector. For a description

of server connection and getting a reference to the PropertyCollector, see Build a Simple

vSphere Client Application for the Web Services SDK.

Procedure

1 Declare a function that accepts a virtual machine MOref and returns a MOref to its parent

object.in a key-value pair.

 private static DynamicProperty getVMParentProperty(ManagedObjectReference vmRef)
 throws Exception {

2 Specify the properties for retrieval (VirtualMachine.parent and

VirtualMachine.parentVApp).

Because the VirtualMachine has two mutually exclusive parent properties, depending on

the parent type, this code collects both properties.

 PropertySpec pSpec = new PropertySpec();
 pSpec.setType("VirtualMachine");
 pSpec.getPathSet().add("parent");
 pSpec.getPathSet().add("parentVApp");

vSphere Web Services SDK Programming Guide

VMware, Inc. 81

3 Create an ObjectSpec to define the property collection.

Use the setObj method to specify that the vmRef is the starting object for this property

collection. Set the skip property to false to indicate that you want to collect properties

from the starting object. Omit the selectSet property because the property collection does

not need to traverse away from the starting object.

 ObjectSpec oSpec = new ObjectSpec();
 oSpec.setObj(vmRef);
 oSpec.setSkip(false);

4 Create a PropertyFilterSpec and add the object and property specs to it.

 PropertyFilterSpec fSpec = new PropertyFilterSpec();
 fSpec.getObjectSet().add(oSpec);
 fSpec.getPropSet().add(pSpec);

5 Create a list for the filters and add the property filter spec to it.

 List<PropertyFilterSpec> fSpecList = new ArrayList<PropertyFilterSpec>();
 fSpecList.add(fSpec);

6 Use the filter spec to retrieve the property collection from the server.

 RetrieveOptions ro = new RetrieveOptions();
 RetrieveResult props = methods.retrievePropertiesEx(pCollector,fSpecList,ro);

7 Unwrap the parent property.

 if (props != null) {
 for (ObjectContent oc : props.getObjects()) {
 List<DynamicProperty> dps = oc.getPropSet();
 if (dps != null) {
 for (DynamicProperty dp : dps) {
 if (dp.getName().equals("parent") || dp.getName().equals("parentVApp")) {
 return dp;
 }
 }
 }
 }
 }
 System.out.println("Parent not found.");
 throw new Exception();
 }

Results

The method returns a key-value pair, name and val, indicating the name of the parent property

and a managed object reference to the parent object.

vSphere Web Services SDK Programming Guide

VMware, Inc. 82

What to do next

 DynamicProperty parent = getVMParentProperty(vmRef);
 if (parent.getName().equals("parentVApp")) {
 System.out.format("VApp MOref: %s", parent.getVal());
 } else {
 System.out.format("Folder MOref: %s", parent.getVal());
 }

Retrieve Properties from a Set of Managed Objects with a
View

This procedure uses PropertyCollector with a ContainerView to retrieve properties from

multiple VirtualMachine objects with the RetrieveProperiesEx method.

To collect the names of all virtual machines in the inventory, you must:

n Prepare a ContainerView that contains only the virtual machines.

n Prepare a PropertySpec to specify the name property of the VirtualMachine class.

n Prepare a TraversalSpec to specify the path from the view to its contents.

n Assemble a PropertyFilterSpec from the prepared data.

n Invoke the RetrievePropertiesEx method.

Note This procedure shows only how to use the PropertyCollector. For a description of

server connection, see Build a Simple vSphere Client Application for the Web Services SDK.

To collect the names of all virtual machines in the inventory, use the following steps.

Procedure

1 Get references to the ViewManager and the PropertyCollector.

In the example, sContent is the variable for the ServiceContent data object. sContent
provides the methods to retrieve the managed object references to the vSphere services.

ManagedObjectReference viewMgrRef = sContent.getViewManager();
ManagedObjectReference propColl = sContent.getPropertyCollector();

2 Create a container view for virtual machines.

methods is the variable for the VimPortType object. VimPortType defines the Java methods

that correspond to the vSphere API methods. The createContainerView parameters are as

follows:

n container: Selection starts within the inventory root folder.

n type: Only VirtualMachine type managed objects are selected for the ContainerView,

starting at the root folder.

vSphere Web Services SDK Programming Guide

VMware, Inc. 83

n recursive: The value true for the last parameter extends the selection beyond the

children of the root folder so that the ViewManager will follow child folder paths to add

virtual machines to the view.

This container view provides references to all virtual machines in the inventory.

List<String> vmList = new ArrayList<String>();
vmList.add("VirtualMachine");

ManagedObjectReference cViewRef = methods.createContainerView(viewMgrRef,
 sContent.getRootFolder(),
 vmList,
 true);

3 Create an object specification to define the starting point for inventory navigation.

The ObjectSpec.obj property identifies the starting object (the container view). This

example collects only virtual machine data, so the skip property is set to true to ignore

the container view itself during collection.

ObjectSpec oSpec = new ObjectSpec();
oSpec.setObj(cViewRef);
oSpec.setSkip(true);

4 Create a traversal specification to identify the path for collection.

The TraversalSpec properties type and path determine path traversal.

TraversalSpec.type identifies the type of managed object that this spec can traverse.

TraversalSpec.path identifies a property that links to other managed objects. The

PropertyCollector uses the path object to select additional objects.

This example uses a single TraversalSpec to walk the list of virtual machines that

are available through the container view. The following code fragment specifies the
ContainerView object for the TraversalSpec.type property and the view property in the

ContainerView for the TraversalSpec.path property. The skip property is set to false,

so the PropertyCollector will collect data from the path objects (the virtual machines in

the container view).

TraversalSpec tSpec = new TraversalSpec();
tSpec.setName("traverseEntities");
tSpec.setPath("view");
tSpec.setSkip(false);
tSpec.setType("ContainerView");

5 Add the TraversalSpec to the ObjectSpec.selectSet array. The TraversalSpec tells the

PropertyCollector how to traverse from the starting object to other managed objects.

oSpec.getSelectSet().add(tSpec);

vSphere Web Services SDK Programming Guide

VMware, Inc. 84

6 Identify a managed object type and the properties to be retrieved from it.

The example program creates a PropertySpec data object to specify the properties to be

collected. The type property is set to a managed object type present in the container view.

The pathSet property identifies one or more properties in the type object.

This example specifies the VirtualMachine.name property.

PropertySpec pSpec = new PropertySpec();
pSpec.setType("VirtualMachine");
pSpec.getPathSet().add("name");

7 Add the object and property specifications to the property filter specification.

A PropertyFilterSpec must have at least one ObjectSpec and one PropertySpec. The

PropertyFilterSpec specifies what properties to collect, while the ObjectSpec tells the

PropertyCollector how to find them.

PropertyFilterSpec fSpec = new PropertyFilterSpec();
fSpec.getObjectSet().add(oSpec);
fSpec.getPropSet().add(pSpec);

8 Create a list for the filters and add the PropertyFilterSpec to it.

This example needs only one filter to collect the names of virtual machines.

List<PropertyFilterSpec> fSpecList = new ArrayList<PropertyFilterSpec>();
fSpecList.add(fSpec);

9 Retrieve the data.

To invoke a single property collection operation, call the RetrievePropertiesEx method.

The example application passes the populated PropertyFilterSpec and an empty options
structure to the method. The default for the RetrieveOptions.maxObjects specifies no

maximum for the number of objects that can be returned.

Note The PropertyCollector can impose a maximum in some circumstances. If the

number of collected objects is greater than the maximum, the PropertyCollector returns

a token value in the RetrieveResult data object and this token is used to retrieve the

remaining properties using the ContinueRetrievePropertiesEx API method. For more

information, see Server Data Transmission.

RetrieveOptions ro = new RetrieveOptions();
RetrieveResult props = methods.retrievePropertiesEx(propColl,fSpecList,ro);

vSphere Web Services SDK Programming Guide

VMware, Inc. 85

10 Print the virtual machine names.

The following code fragment walks the list of ObjectContent objects returned in the

RetrieveResult object. For each object (ObjectContent), the inner loop prints the name-

value pairs.

if (props != null) {
 for (ObjectContent oc : props.getObjects()) {
 String vmName = null;
 String path = null;
 List<DynamicProperty> dps = oc.getPropSet();
 if (dps != null) {
 for (DynamicProperty dp : dps) {
 vmName = (String) dp.getVal();
 path = dp.getName();
 System.out.println(path + " = " + vmName);
 }
 }
}

Results

You can also see these code fragments in the context of an end-to-end example that includes
connection and authentication logic, in Build a Simple vSphere Client Application for the Web
Services SDK.

Property Collector Program in Java for Web Services SDK

PropertyCollector provides a powerful, flexible, and efficient way to collect data from a

vCenter Server or ESXi host.

Simple PropertyCollector Example (Java) is a simple PropertyCollector example written

in Java. The example uses a ContainerView for efficient access to the inventory and

a PropertyFilterSpec that contains one ObjectSpec, one TraversalSpec, and one

PropertySpec. The program performs the following tasks:

1 Accepts command line arguments for the vSphere server name (DNS name or IP address),
user name, and password.

2 Connects to a vSphere server.

3 Uses a ContainerView to create a subset of the inventory; the subset contains only virtual

machines.

4 Uses the RetrievePropertiesEx method for a single retrieval operation.

5 Collects the names of all of the virtual machines in the inventory and prints the names using
the standard output stream.

6 Closes the connection to the server.

vSphere Web Services SDK Programming Guide

VMware, Inc. 86

Figure 6-1. Property Filter Specification shows the objects used in Simple PropertyCollector
Example (Java). The figure represents properties that identify inventory elements directly or
indirectly. It does not show all the properties for the different objects.

Figure 6-1. Property Filter Specification

Example: Simple PropertyCollector Example (Java)

import com.vmware.vim25.*;

import java.util.*;
import javax.net.ssl.HostnameVerifier;
import javax.net.ssl.HttpsURLConnection;
import javax.net.ssl.SSLSession;
import javax.xml.ws.BindingProvider;
import javax.xml.ws.soap.SOAPFaultException;

// PropertyCollector example
// command line input: server name, user name, password

public class PCollector {

 private static void collectProperties(VimPortType methods,
 ServiceContent sContent) throws Exception {
 // Get references to the ViewManager and PropertyCollector
 ManagedObjectReference viewMgrRef = sContent.getViewManager();
 ManagedObjectReference propColl = sContent.getPropertyCollector();

 // use a container view for virtual machines to define the traversal
 // - invoke the VimPortType method createContainerView (corresponds
 // to the ViewManager method) - pass the ViewManager MOR and
 // the other parameters required for the method invocation

vSphere Web Services SDK Programming Guide

VMware, Inc. 87

 // - createContainerView takes a string[] for the type parameter;
 // declare an arraylist and add the type string to it
 List<String> vmList = new ArrayList<String>();
 vmList.add("VirtualMachine");

 ManagedObjectReference cViewRef = methods.createContainerView(viewMgrRef,
 sContent.getRootFolder(),
 vmList,
 true);

 // create an object spec to define the beginning of the traversal;
 // container view is the root object for this traversal
 ObjectSpec oSpec = new ObjectSpec();
 oSpec.setObj(cViewRef);
 oSpec.setSkip(true);

 // create a traversal spec to select all objects in the view
 TraversalSpec tSpec = new TraversalSpec();
 tSpec.setName("traverseEntities");
 tSpec.setPath("view");
 tSpec.setSkip(false);
 tSpec.setType("ContainerView");

 // add the traversal spec to the object spec;
 // the accessor method (getSelectSet) returns a reference
 // to the mapped XML representation of the list; using this
 // reference to add the spec will update the list
 oSpec.getSelectSet().add(tSpec);

 // specify the property for retrieval (virtual machine name)
 PropertySpec pSpec = new PropertySpec();
 pSpec.setType("VirtualMachine");
 pSpec.getPathSet().add("name");

 // create a PropertyFilterSpec and add the object and
 // property specs to it; use the getter method to reference
 // the mapped XML representation of the lists and add the specs
 // directly to the list
 PropertyFilterSpec fSpec = new PropertyFilterSpec();
 fSpec.getObjectSet().add(oSpec);
 fSpec.getPropSet().add(pSpec);

 // Create a list for the filters and add the spec to it
 List<PropertyFilterSpec> fSpecList = new ArrayList<PropertyFilterSpec>();
 fSpecList.add(fSpec);

 // get the data from the server
 RetrieveOptions ro = new RetrieveOptions();
 RetrieveResult props = methods.retrievePropertiesEx(propColl,fSpecList,ro);

 // go through the returned list and print out the data
 if (props != null) {
 for (ObjectContent oc : props.getObjects()) {
 String vmName = null;
 String path = null;

vSphere Web Services SDK Programming Guide

VMware, Inc. 88

 List<DynamicProperty> dps = oc.getPropSet();
 if (dps != null) {
 for (DynamicProperty dp : dps) {
 vmName = (String) dp.getVal();
 path = dp.getName();
 System.out.println(path + " = " + vmName);
 }
 }
 }
 }
 }//end collectProperties()

 // Authentication is handled by using a TrustManager and supplying
 // a host name verifier method. (The host name verifier is declared
 // in the main function.)
 //
 // For the purposes of this example, this TrustManager implementation
 // will accept all certificates. This is only appropriate for
 // a development environment. Production code should implement certificate support.

 private static class TrustAllTrustManager
 implements javax.net.ssl.TrustManager,
 javax.net.ssl.X509TrustManager {
 public java.security.cert.X509Certificate[] getAcceptedIssuers() {
 return null;
 }

 public boolean isServerTrusted(java.security.cert.X509Certificate[] certs) {
 return true;
 }

 public boolean isClientTrusted(java.security.cert.X509Certificate[] certs) {
 return true;
 }

 public void checkServerTrusted(java.security.cert.X509Certificate[] certs,
 String authType)
 throws java.security.cert.CertificateException {
 return;
 }

 public void checkClientTrusted(java.security.cert.X509Certificate[] certs,
 String authType)
 throws java.security.cert.CertificateException {
 return;
 }
 }

 public static void main(String [] args) throws Exception {

 // arglist variables
 String serverName = args[0];
 String userName = args[1];
 String password = args[2];
 String url = "https://"+serverName+"/sdk/vimService";

vSphere Web Services SDK Programming Guide

VMware, Inc. 89

 // Variables of the following types for access to the API methods
 // and to the vSphere inventory.
 // -- ManagedObjectReference for the ServiceInstance on the Server
 // -- VimService for access to the vSphere Web service
 // -- VimPortType for access to methods
 // -- ServiceContent for access to managed object services
 ManagedObjectReference SVC_INST_REF = new ManagedObjectReference();
 VimService vimService;
 VimPortType vimPort;
 ServiceContent serviceContent;

 // Declare a host name verifier that will automatically enable
 // the connection. The host name verifier is invoked during
 // the SSL handshake.
 HostnameVerifier hv = new HostnameVerifier() {
 public boolean verify(String urlHostName, SSLSession session) {
 return true;
 }
 };

 // Create the trust manager.
 javax.net.ssl.TrustManager[] trustAllCerts = new javax.net.ssl.TrustManager[1];
 javax.net.ssl.TrustManager tm = new TrustAllTrustManager();
 trustAllCerts[0] = tm;
 // Create the SSL context
 javax.net.ssl.SSLContext sc = javax.net.ssl.SSLContext.getInstance("SSL");

 // Create the session context
 javax.net.ssl.SSLSessionContext sslsc = sc.getServerSessionContext();

 // Initialize the contexts; the session context takes the trust manager.
 sslsc.setSessionTimeout(0);
 sc.init(null, trustAllCerts, null);

 // Use the default socket factory to create the socket for the secure connection
 javax.net.ssl.HttpsURLConnection.setDefaultSSLSocketFactory(sc.getSocketFactory());

 // Set the default host name verifier to enable the connection.
 HttpsURLConnection.setDefaultHostnameVerifier(hv);

 // Set up the manufactured managed object reference for the ServiceInstance
 SVC_INST_REF.setType("ServiceInstance");
 SVC_INST_REF.setValue("ServiceInstance");

 // Create a VimService object to obtain a VimPort binding provider.
 // The BindingProvider provides access to the protocol fields
 // in request/response messages. Retrieve the request context
 // which will be used for processing message requests.
 vimService = new VimService();
 vimPort = vimService.getVimPort();
 Map<String, Object> ctxt = ((BindingProvider) vimPort).getRequestContext();

 // Store the Server URL in the request context and specify true
 // to maintain the connection between the client and server.
 // The client API will include the Server's HTTP cookie in its

vSphere Web Services SDK Programming Guide

VMware, Inc. 90

 // requests to maintain the session. If you do not set this to true,
 // the Server will start a new session with each request.
 ctxt.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY, url);
 ctxt.put(BindingProvider.SESSION_MAINTAIN_PROPERTY, true);

 // Retrieve the ServiceContent object and login
 serviceContent = vimPort.retrieveServiceContent(SVC_INST_REF);
 vimPort.login(serviceContent.getSessionManager(),
 userName,
 password,
 null);

 // retrieve data
 collectProperties(vimPort, serviceContent);

 // close the connection
 vimPort.logout(serviceContent.getSessionManager());

 }
}

Inventory Traversal

PropertyCollector can traverse the server inventory in arbitrary ways, enabling you to follow

links between related objects.

Simple PropertyCollector Example (Java) uses a ContainerView to specify the objects that start

the collection process. This is the simplest way to set up a filter, using a single reference to a
view to provide the PropertyCollector with access to a set of objects. To locate objects in

the inventory, a filter includes TraversalSpec and possibly SelectionSpec objects. Use these

objects to direct the PropertyCollector to the managed objects and their properties named in

the PropertySpec data objects of the PropertyFilterSpec.

TraversalSpec Traversal

Use a TraversalSpec object to identify a managed object type and a traversal property in that

type. TraversalSpec contains type, path, and selection properties.

n type – identifies an inventory object type.

n path – specifies a managed object reference property in the type object. This property

provides the traversal path extending from this object.

n selectSet – specifies an optional list of selection objects for additional object traversal

paths. The PropertyCollector tries to apply the TraversalSpec objects in the selectSet
array to the results of the traversal (the targets of TraversalSpec.path). If the type

of a referenced managed object matches one of the specs in the SelectSet array,

the PropertyCollector follows that TraversalSpec next. The selectSet array can

also contain SelectionSpec objects; a SelectionSpec is a reference to a named

TraversalSpec. See SelectionSpec Traversal.

vSphere Web Services SDK Programming Guide

VMware, Inc. 91

n skip – indicates whether to collect properties for managed objects referenced by the path
property.

During inventory traversal, the PropertyCollector visits managed objects referenced by the

TraversalSpec.path property values. When the PropertyCollector visits an object, it collects

properties if the object's type matches a PropertySpec.type value.

Traversal starts with the managed object referenced by ObjectSpec.obj, and the

PropertyCollector also collects its properties if it matches a PropertySpec and if

ObjectSpec.skip is false. Then the PropertyCollector follows the path property of each

applicable TraversalSpec in the ObjectSpec.selectSet array. If the TraversalSpec.skip property

is false, the PropertyCollector can also collect properties from the objects referenced by the

pathSet property array.

Finally, the PropertyCollector checks the TraversalSpec.selectSet array for any traversal

specs that apply to the referenced objects, and the traversal continues until no more traversal
specs apply.

Figure 6-2. Inventory Navigation is a representation of a PropertyFilterSpec that defines

traversal of VirtualMachine objects to access related Network objects.. The filter uses a

ContainerView as a starting point. The TraversalSpec for the ContainerView specifies the

view property for access to the view’s virtual machines. The figure shows TraversalSpec
objects that extend navigation from a VirtualMachine object to the associated Network and

ResourcePool objects. The PropertyCollector applies these TraversalSpec objects to each

of the VirtualMachine objects in the view list. The figure also shows the PropertySpec objects

for collecting data from VirtualMachine, Network, and ResourcePool objects.

vSphere Web Services SDK Programming Guide

VMware, Inc. 92

Figure 6-2. Inventory Navigation

PropertyFilterSpec

objectSet[]

propSet[]

ObjectSpec

selectSet[]

[...][...]

type=“VirtualMachine”

pathSet[]=“name”

PropertySpec

type=“Network”

pathSet[]=“summary.accessible”

PropertySpec

[...]

type=“ResourcePool”

pathSet[]=“runtime.cpu.maxUsage”
 “runtime.memory.maxUsage”

PropertySpec

[...]

[VirtualMachine folder]

[Network folder]

network

name

resourcePool

[...]

summary

Network

[...]

runtime

[ComputeResource folder]

ResourcePool

[...]

TraversalSpec

path=“view”

selectSet[]

[...]
Server Inventory

VirtualMachine

 type=“ContainerView”

TraversalSpec

path=“resourcePool”

[...]

type=“VirtualMachine”

TraversalSpec

path=“network”

[...]

type=“VirtualMachine”

[...]

Traverse the Inventory By Using the Property Collector

To traverse inventory objects, you define one or more TraversalSpec objects. In each

TraversalSpec object, you specify a property of one managed object that holds a reference

to another managed object. The TraversalSpec defines a path that the PropertyCollector can

follow between objects.

vSphere Web Services SDK Programming Guide

VMware, Inc. 93

To define inventory traversal, use the following steps.

Procedure

1 Create a ContainerView for virtual machines.

2 Create an ObjectSpec that uses the container view as the collection starting point.

3 Create a TraversalSpec to be applied to the ContainerView to select VirtualMachine
objects.

4 Create additional TraversalSpec objects to select additional objects.

The SelectSet list for the container view TraversalSpec has two TraversalSpec objects.

Both specify a VirtualMachine object context. One object uses the network property

to extend traversal to the Network managed object. The other uses the resourcePool
property to extend traversal to the ResourcePool managed object.

5 Create PropertySpec objects to retrieve VirtualMachine, Network, and ResourcePool
properties.

To retrieve properties that are embedded in data objects, the PropertySpec.PathSet
property uses dot notation to specify the property paths.

Inventory Traversal Example in Java

This example shows a complete Java program that collects and prints selected properties
from the inventory, using traversal specs with a property collector. The example lists networks,
resource pool status, and virtual machines.

Example: Inventory Traversal in Java

import com.vmware.vim25.*;

import java.util.*;
import javax.net.ssl.HostnameVerifier;
import javax.net.ssl.HttpsURLConnection;
import javax.net.ssl.SSLSession;
import javax.xml.ws.BindingProvider;
import javax.xml.ws.soap.SOAPFaultException;

// PropertyCollector example
// command line input: server name, user name, password

public class PCollector_traversal {

 private static void collectProperties(VimPortType methods,
 ServiceContent sContent) throws Exception {

 // Get references to the ViewManager and PropertyCollector
 ManagedObjectReference viewMgrRef = sContent.getViewManager();
 ManagedObjectReference propColl = sContent.getPropertyCollector();

vSphere Web Services SDK Programming Guide

VMware, Inc. 94

 // use a container view for virtual machines to define the traversal
 // - invoke the VimPortType method createContainerView (corresponds
 // to the ViewManager method) - pass the ViewManager MOR and
 // the other parameters required for the method invocation
 // (use a List<String> for the type parameter's string[])
 List<String> vmList = new ArrayList<String>();
 vmList.add("VirtualMachine");

 ManagedObjectReference cViewRef =
 methods.createContainerView(viewMgrRef,
 sContent.getRootFolder(),
 vmList,
 true);

 // create an object spec to define the beginning of the traversal;
 // container view is the root object for this traversal
 ObjectSpec oSpec = new ObjectSpec();
 oSpec.setObj(cViewRef);
 oSpec.setSkip(true);

 // create a traversal spec to select all objects in the view
 TraversalSpec tSpec = new TraversalSpec();
 tSpec.setName("traverseEntities");
 tSpec.setPath("view");
 tSpec.setSkip(false);
 tSpec.setType("ContainerView");

 // add the traversal spec to the object spec;
 // the accessor method (getSelectSet) returns a reference
 // to the mapped XML representation of the list; using this
 // reference to add the spec will update the selectSet list
 oSpec.getSelectSet().add(tSpec);

 // extend from virtual machine to network
 TraversalSpec tSpecVmN = new TraversalSpec();
 tSpecVmN.setType("VirtualMachine");
 tSpecVmN.setPath("network");
 tSpecVmN.setSkip(false);

 // extend from virtual machine to resourcepool
 TraversalSpec tSpecVmRp = new TraversalSpec();
 tSpecVmRp.setType("VirtualMachine");
 tSpecVmRp.setPath("resourcePool");
 tSpecVmRp.setSkip(false);

 // add the network and resource pool traversal specs
 // to the virtual machine traversal;
 // the accessor method (getSelectSet) returns a reference
 // to the mapped XML representation of the list; using this
 // reference to add the spec will update the selectSet list
 tSpec.getSelectSet().add(tSpecVmN);
 tSpec.getSelectSet().add(tSpecVmRp);

 // specify the properties for retrieval

vSphere Web Services SDK Programming Guide

VMware, Inc. 95

 // (virtual machine name, network summary accessible, rp runtime props);
 // the accessor method (getPathSet) returns a reference to the mapped
 // XML representation of the list; using this reference to add the
 // property names will update the pathSet list
 PropertySpec pSpec = new PropertySpec();
 pSpec.setType("VirtualMachine");
 pSpec.getPathSet().add("name");

 PropertySpec pSpecNs = new PropertySpec();
 pSpecNs.setType("Network");
 pSpecNs.getPathSet().add("summary.accessible");

 PropertySpec pSpecRPr = new PropertySpec();
 pSpecRPr.setType("ResourcePool");
 pSpecRPr.getPathSet().add("runtime.cpu.maxUsage");
 pSpecRPr.getPathSet().add("runtime.memory.maxUsage");
 pSpecRPr.getPathSet().add("runtime.overallStatus");

 // create a PropertyFilterSpec and add the object and
 // property specs to it; use the getter methods to reference
 // the mapped XML representation of the lists and add the specs
 // directly to the objectSet and propSet lists
 PropertyFilterSpec fSpec = new PropertyFilterSpec();
 fSpec.getObjectSet().add(oSpec);
 fSpec.getPropSet().add(pSpec);
 fSpec.getPropSet().add(pSpecNs);
 fSpec.getPropSet().add(pSpecRPr);

 // Create a list for the filters and add the spec to it
 List<PropertyFilterSpec> fSpecList = new ArrayList<PropertyFilterSpec>();
 fSpecList.add(fSpec);

 // get the data from the server
 RetrieveOptions ro = new RetrieveOptions();
 RetrieveResult props = methods.retrievePropertiesEx(propColl,fSpecList,ro);

 // go through the returned list and print out the data
 if (props != null) {
 for (ObjectContent oc : props.getObjects()) {
 String value = null;
 String path = null;
 List<DynamicProperty> dps = oc.getPropSet();
 if (dps != null) {
 for (DynamicProperty dp : dps) {
 path = dp.getName();
 if (path.equals("name")) {
 value = (String) dp.getVal();
 }
 else if (path.equals("summary.accessible")) {
 // summary.accessible is a boolean
 value = String.valueOf(dp.getVal());
 }
 else if (path.equals("runtime.cpu.maxUsage")) {
 // runtime.cpu.maxUsage is an xsd:long
 value = String.valueOf(dp.getVal());

vSphere Web Services SDK Programming Guide

VMware, Inc. 96

 }
 else if (path.equals("runtime.memory.maxUsage")) {
 // runtime.memory.maxUsage is an xsd:long
 value = String.valueOf(dp.getVal());
 }
 else if (path.equals("runtime.overallStatus")) {
 // runtime.overallStatus is a ManagedEntityStatus enum
 value = String.valueOf(dp.getVal());
 }

 System.out.println(path + " = " + value);
 }
 }
 }
 }
 }//end collectProperties()

 // Authentication is handled by using a TrustManager and supplying
 // a host name verifier method. (The host name verifier is declared
 // in the main function.)
 //
 // For the purposes of this example, this TrustManager implementation
 // will accept all certificates. This is only appropriate for
 // a development environment. Production code should implement certificate support.
 private static class TrustAllTrustManager
 implements javax.net.ssl.TrustManager,
 javax.net.ssl.X509TrustManager {

 public java.security.cert.X509Certificate[] getAcceptedIssuers() {
 return null;
 }

 public boolean isServerTrusted(java.security.cert.X509Certificate[] certs) {
 return true;
 }

 public boolean isClientTrusted(java.security.cert.X509Certificate[] certs) {
 return true;
 }

 public void checkServerTrusted(java.security.cert.X509Certificate[] certs, String
authType)
 throws java.security.cert.CertificateException {
 return;
 }

 public void checkClientTrusted(java.security.cert.X509Certificate[] certs, String
authType)
 throws java.security.cert.CertificateException {
 return;
 }
 }

 public static void main(String [] args) throws Exception {

vSphere Web Services SDK Programming Guide

VMware, Inc. 97

 // arglist variables
 String serverName = args[0];
 String userName = args[1];
 String password = args[2];
 String url = "https://"+serverName+"/sdk/vimService";

 // Variables of the following types for access to the API methods
 // and to the vSphere inventory.
 // -- ManagedObjectReference for the ServiceInstance on the Server
 // -- VimService for access to the vSphere Web service
 // -- VimPortType for access to methods
 // -- ServiceContent for access to managed object services
 ManagedObjectReference SVC_INST_REF = new ManagedObjectReference();
 VimService vimService;
 VimPortType vimPort;
 ServiceContent serviceContent;

 // Declare a host name verifier that will automatically enable
 // the connection. The host name verifier is invoked during
 // the SSL handshake.
 HostnameVerifier hv = new HostnameVerifier() {
 public boolean verify(String urlHostName, SSLSession session) {
 return true;
 }
 };

 // Create the trust manager.
 javax.net.ssl.TrustManager[] trustAllCerts = new javax.net.ssl.TrustManager[1];
 javax.net.ssl.TrustManager tm = new TrustAllTrustManager();
 trustAllCerts[0] = tm;

 // Create the SSL context
 javax.net.ssl.SSLContext sc = javax.net.ssl.SSLContext.getInstance("SSL");

 // Create the session context
 javax.net.ssl.SSLSessionContext sslsc = sc.getServerSessionContext();

 // Initialize the contexts; the session context takes the trust manager.
 sslsc.setSessionTimeout(0);
 sc.init(null, trustAllCerts, null);

 // Use the default socket factory to create the socket for the secure connection
 javax.net.ssl.HttpsURLConnection.setDefaultSSLSocketFactory(sc.getSocketFactory());

 // Set the default host name verifier to enable the connection.
 HttpsURLConnection.setDefaultHostnameVerifier(hv);

 // Set up the manufactured managed object reference for the ServiceInstance
 SVC_INST_REF.setType("ServiceInstance");
 SVC_INST_REF.setValue("ServiceInstance");

 // Create a VimService object to obtain a VimPort binding provider.
 // The BindingProvider provides access to the protocol fields
 // in request/response messages. Retrieve the request context
 // which will be used for processing message requests.

vSphere Web Services SDK Programming Guide

VMware, Inc. 98

 vimService = new VimService();
 vimPort = vimService.getVimPort();
 Map<String, Object> ctxt = ((BindingProvider) vimPort).getRequestContext();

 // Store the Server URL in the request context and specify true
 // to maintain the connection between the client and server.
 // The client API will include the Server's HTTP cookie in its
 // requests to maintain the session. If you do not set this to true,
 // the Server will start a new session with each request.
 ctxt.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY, url);
 ctxt.put(BindingProvider.SESSION_MAINTAIN_PROPERTY, true);
 // Retrieve the ServiceContent object and login
 serviceContent = vimPort.retrieveServiceContent(SVC_INST_REF);
 vimPort.login(serviceContent.getSessionManager(),
 userName,
 password,
 null);

 // retrieve data
 collectProperties(vimPort, serviceContent);

 // close the connection
 vimPort.logout(serviceContent.getSessionManager());

 }
}

SelectionSpec Traversal

The selectSet array in ObjectSpec and TraversalSpec objects can include TraversalSpec
objects and SelectionSpec objects. SelectionSpec is the base class for TraversalSpec
objects. SelectionSpec defines the name property. You can use a SelectionSpec object in

a selectSet array as a reference to a named TraversalSpec object. By using SelectionSpec
references, you can reuse a TraversalSpec and you can define recursive traversal.

Simple Reference SelectionSpec

Use SelectionSpec references to avoid writing duplicate TraversalSpec declarations.

The TraversalSpec identified in a SelectionSpec reference must be within the same

PropertyFilterSpec. Figure 6-3. SelectionSpec Reference shows the use of SelectionSpec
references to a virtual machine TraversalSpec. The SelectionSpec references are associated

with Network and Datastore traversals.

vSphere Web Services SDK Programming Guide

VMware, Inc. 99

Figure 6-3. SelectionSpec Reference

If the ObjectSpec.selectSet array contains a SelectionSpec, the referenced TraversalSpec
must identify the same object type. TraversalSpec.type must match the type of the object

specified in ObjectSpec.obj. The PropertyCollector applies the TraversalSpec to the

object and uses the TraversalSpec.path property to extend its traversal.

Recursive Traversal

Use a SelectionSpec to apply a TraversalSpec to the results of its own traversal.

To use a recursive filter construction, create a SelectionSpec that specifies the name

of a TraversalSpec and add it to the named TraversalSpec selection set. The

recursive construction extends inventory traversal beyond the paths directly represented by
TraversalSpec objects.

You can use recursive traversal on any inventory objects that can be nested. See Inventory
Hierarchies and ServiceInstance for a general representation of the structure of an inventory.
For example, on a vCenter Server, folders can nest to arbitrary depths. To describe a
traversal path through a succession of folders, you can add a SelectionSpec to the Folder
TraversalSpec. The SelectionSpec must reference the TraversalSpec. Figure 6-4. Recursive

TraversalSpec and SelectionSpec shows a representation of a TraversalSpec and its associated

SelectionSpec for nested folder traversal.

vSphere Web Services SDK Programming Guide

VMware, Inc. 100

Figure 6-4. Recursive TraversalSpec and SelectionSpec

Use Recursive TraversalSpec to Traverse Nested Inventory Folders

To traverse inventory objects that are nested to a variable depth, define one or more recursive
TraversalSpec objects. In each TraversalSpec object, you specify a property of one managed

object that holds a reference to another managed object. The TraversalSpec defines a path that

the property collector can follow between objects.

To define recursive inventory traversal, use the following steps.

Procedure

1 Use the SearchIndex managed object to retrieve the managed object reference for the

top-level virtual machine folder.

This folder is used as the beginning of the inventory traversal. For more information see
SearchIndex.

2 Create an ObjectSpec object that references the top-level virtual machine folder.

3 Create a SelectionSpec object that references the Folder TraversalSpec by name.

4 Create a named TraversalSpec for Folder objects.

The TraversalSpec.path property identifies the Folder.childEntity property for

traversal to any child objects.

5 Add the SelectionSpec to the TraversalSpec to create the recursive filter.

6 Add the TraversalSpec to the ObjectSpec.

7 Create a PropertySpec for the Folder name.

8 Add the object and property specifications to the PropertyFilterSpec.

9 Call the RetrievePropertiesEx method.

Nested Folder Traversal in Java

This example shows the use of a recursive TraversalSpec with the property collector. The

recursive traversal spec enables the property collector to navigate a chain of nested objects of
the same type.

vSphere Web Services SDK Programming Guide

VMware, Inc. 101

Example: Nested Folder Traversal

import com.vmware.vim25.*;

import java.util.*;
import javax.net.ssl.HostnameVerifier;
import javax.net.ssl.HttpsURLConnection;
import javax.net.ssl.SSLSession;
import javax.xml.ws.BindingProvider;
import javax.xml.ws.soap.SOAPFaultException;

// PropertyCollector example
// command line input: server name, user name, password

public class nestedTraversal {

 private static void collectProperties(VimPortType methods,
 ServiceContent sContent)
 throws Exception {

 // Get reference to the PropertyCollector
 ManagedObjectReference propColl = sContent.getPropertyCollector();

 // get the top-level vm folder mor
 ManagedObjectReference sIndex = sContent.getSearchIndex();
 ManagedObjectReference rootVmFolder =
 methods.findByInventoryPath(sIndex,"datacenter1/vm");
 // create an object spec to define the beginning of the traversal;
 // root vm folder is the root object for this traversal
 ObjectSpec oSpec = new ObjectSpec();
 oSpec.setObj(rootVmFolder);
 oSpec.setSkip(true);

 // folder traversal reference
 SelectionSpec sSpecF = new SelectionSpec();
 sSpecF.setName("traverseFolder");

 // create a folder traversal spec to select childEntity
 TraversalSpec tSpecF = new TraversalSpec();
 tSpecF.setType("Folder");
 tSpecF.setPath("childEntity");
 tSpecF.setSkip(false);
 tSpecF.setName("traverseFolder");

 // use the SelectionSpec as a reflexive spec for the folder traversal;
 // the accessor method (getSelectSet) returns a reference to the
 // mapped XML representation of the list; using this reference
 // to add the spec will update the list
 tSpecF.getSelectSet().add(sSpecF);

 // add folder traversal to object spec
 oSpec.getSelectSet().add(tSpecF);

 // specify the property for retrieval (folder name)
 PropertySpec pSpec = new PropertySpec();

vSphere Web Services SDK Programming Guide

VMware, Inc. 102

 pSpec.setType("Folder");
 pSpec.getPathSet().add("name");

 // create a PropertyFilterSpec and add the object and
 // property specs to it; use the getter method to reference
 // the mapped XML representation of the lists and add the specs
 // directly to the lists
 PropertyFilterSpec fSpec = new PropertyFilterSpec();
 fSpec.getObjectSet().add(oSpec);
 fSpec.getPropSet().add(pSpec);

 // Create a list for the filter and add the spec to it
 List<PropertyFilterSpec> fSpecList = new ArrayList<PropertyFilterSpec>();
 fSpecList.add(fSpec);

 // get the data from the server
 RetrieveOptions ro = new RetrieveOptions();
 RetrieveResult props = methods.retrievePropertiesEx(propColl,fSpecList,ro);

 // go through the returned list and print out the data
 if (props != null) {
 for (ObjectContent oc : props.getObjects()) {
 String folderName = null;
 String path = null;
 List<DynamicProperty> dps = oc.getPropSet();
 if (dps != null) {
 for (DynamicProperty dp : dps) {
 folderName = (String) dp.getVal();
 path = dp.getName();
 System.out.println(path + " = " + folderName);
 }
 }
 }
 }
 }//end collectProperties()

 // Authentication is handled by using a TrustManager and supplying
 // a host name verifier method. (The host name verifier is declared
 // in the main function.)
 //
 // For the purposes of this example, this TrustManager implementation
 // will accept all certificates. This is only appropriate for
 // a development environment. Production code should implement certificate support.
 private static class TrustAllTrustManager
 implements javax.net.ssl.TrustManager,
 javax.net.ssl.X509TrustManager {

 public java.security.cert.X509Certificate[] getAcceptedIssuers() {
 return null;
 }

 public boolean isServerTrusted(java.security.cert.X509Certificate[] certs) {
 return true;
 }

vSphere Web Services SDK Programming Guide

VMware, Inc. 103

 public boolean isClientTrusted(java.security.cert.X509Certificate[] certs) {
 return true;
 }

 public void checkServerTrusted(java.security.cert.X509Certificate[] certs, String
authType)
 throws java.security.cert.CertificateException {
 return;
 }

 public void checkClientTrusted(java.security.cert.X509Certificate[] certs, String
authType)
 throws java.security.cert.CertificateException {
 return;
 }
 }

 public static void main(String [] args) throws Exception {

 // arglist variables
 String serverName = args[0];
 String userName = args[1];
 String password = args[2];
 String url = "https://"+serverName+"/sdk/vimService";
 // Variables of the following types for access to the API methods
 // and to the vSphere inventory.
 // -- ManagedObjectReference for the ServiceInstance on the Server
 // -- VimService for access to the vSphere Web service
 // -- VimPortType for access to methods
 // -- ServiceContent for access to managed object services
 ManagedObjectReference SVC_INST_REF = new ManagedObjectReference();
 VimService vimService;
 VimPortType vimPort;
 ServiceContent serviceContent;

 // Declare a host name verifier that will automatically enable
 // the connection. The host name verifier is invoked during
 // the SSL handshake.
 HostnameVerifier hv = new HostnameVerifier() {
 public boolean verify(String urlHostName, SSLSession session) {
 return true;
 }
 };

 // Create the trust manager.
 javax.net.ssl.TrustManager[] trustAllCerts = new javax.net.ssl.TrustManager[1];
 javax.net.ssl.TrustManager tm = new TrustAllTrustManager();
 trustAllCerts[0] = tm;

 // Create the SSL context
 javax.net.ssl.SSLContext sc = javax.net.ssl.SSLContext.getInstance("SSL");

 // Create the session context
 javax.net.ssl.SSLSessionContext sslsc = sc.getServerSessionContext();

vSphere Web Services SDK Programming Guide

VMware, Inc. 104

 // Initialize the contexts; the session context takes the trust manager.
 sslsc.setSessionTimeout(0);
 sc.init(null, trustAllCerts, null);

 // Use the default socket factory to create the socket for the secure connection
 javax.net.ssl.HttpsURLConnection.setDefaultSSLSocketFactory(sc.getSocketFactory());

 // Set the default host name verifier to enable the connection.
 HttpsURLConnection.setDefaultHostnameVerifier(hv);

 // Set up the manufactured managed object reference for the ServiceInstance
 SVC_INST_REF.setType("ServiceInstance");
 SVC_INST_REF.setValue("ServiceInstance");

 // Create a VimService object to obtain a VimPort binding provider.
 // The BindingProvider provides access to the protocol fields
 // in request/response messages. Retrieve the request context
 // which will be used for processing message requests.
 vimService = new VimService();
 vimPort = vimService.getVimPort();
 Map<String, Object> ctxt = ((BindingProvider) vimPort).getRequestContext();

 // Store the Server URL in the request context and specify true
 // to maintain the connection between the client and server.
 // The client API will include the Server's HTTP cookie in its
 // requests to maintain the session. If you do not set this to true,
 // the Server will start a new session with each request.
 ctxt.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY, url);
 ctxt.put(BindingProvider.SESSION_MAINTAIN_PROPERTY, true);

 // Retrieve the ServiceContent object and login
 serviceContent = vimPort.retrieveServiceContent(SVC_INST_REF);
 vimPort.login(serviceContent.getSessionManager(),
 userName,
 password,
 null);

 // retrieve data
 collectProperties(vimPort, serviceContent);

 // close the connection
 vimPort.logout(serviceContent.getSessionManager());

 }
}

Client Data Synchronization with WaitForUpdatesEx

To maintain a client-side representation of server object state (by monitoring the properties for
the inventory), use the CreateFilter and WaitForUpdatesEx methods. WaitForUpdatesEx
supports an incremental retrieval model.

vSphere Web Services SDK Programming Guide

VMware, Inc. 105

When the WaitForUpdatesEx call returns an UpdateSet, apply the updates as patches to the

properties of managed objects in your client-side copy. In some circumstances, the server can
return redundant updates. If the client response includes side effects in addition to updating
client data, the additional actions should be idempotent.

The WaitForUpdatesEx call cannot guarantee synchronization between client and server in

the presence of rapid server data changes, but when the server state is static calls to
WaitForUpdatesEx result in eventual synchronization.

Note If you create additional instances of PropertyCollector, each instance uses independent

version IDs for data synchronization. You should maintain a separate client copy of server data
for each PropertyCollector instance when you use WaitForUpdatesEx.

Important The filters you use for incremental retrieval persist for the duration of the session or
until you destroy them.

Property Filtering

A PropertyCollector can have one or more associated PropertyFilter objects. A

PropertyFilter object has one associated PropertyFilterSpec object.

Some differences apply when filtering properties for RetrievePropertiesEx or for

WaitForUpdatesEx.

When you call RetrievePropertiesEx, you supply a specSet parameter that can specify

more than one PropertyFilterSpec. When you call CreateFilter you can specify only one

PropertyFilterSpec.

A call to CreateFilter creates a persistent server-side filter belonging to the PropertyCollector.

These filters are for use with successive calls to WaitForUpdatesEx, made for the same

PropertyCollector instance. A call to RetrievePropertiesEx creates a set of nonpersistent

filters that the server uses to select properties for the RetrievePropertiesEx call and for any

associated ContinueRetrievePropertesEx calls made with the returned token.

To create persistent property filter specifications, use the CreateFilter method. When you

call CreateFilter, you pass a PropertyFilterSpec object to the method. The method

adds the new filter to the PropertyCollector associated with the method invocation and

returns a reference to the new filter. After you have created the filter, you can add additional
PropertyFilterSpec objects. You cannot share a filter with a PropertyCollector in another

session.

A RetrievePropertiesEx call returns a change set consisting of the union of results for all the

filter specifications in the specSet parameter of the call. A WaitForUpdatesEx call returns a

change set consisting of individual results, one result set for each persistent PropertyFilter
attached to the PropertyCollector.

vSphere Web Services SDK Programming Guide

VMware, Inc. 106

You can call WaitForUpdatesEx when the PropertyCollector has no PropertyFilter objects,

but the call will block until you create a filter or until the call times out.

WaitForUpdatesEx

The WaitForUpdatesEx method supports a polling mechanism for property collection that is

based on a specified wait time.

Specify the following parameters when you call WaitForUpdatesEx:

n Managed object reference to a PropertyCollector instance.

n version value that identifies a sequence value. The first time you call WaitForUpdatesEx,

specify an empty string (““) to retrieve a complete set of results for the specified properties.
Your subsequent calls should use the version value returned in the previous call. If you don’t
include the version value, the server returns everything. For more information about data
versions, see Server Data Transmission.

n options specifying the amount of data to transmit in a single response

(the WaitOptions.maxObjectUpdates property) and the number of seconds the

PropertyCollector should wait for updates (the WaitOptions.maxWaitSeconds
property).

The value of the WaitOptions.maxWaitSeconds property determines whether the

PropertyCollector uses an instant retrieval or a polling model. When you call

WaitForUpdatesEx with a wait time of 0, it checks for updates and returns immediately. When

you call WaitForUpdatesEx with a wait time greater than 0, the method waits until the specified

time or until a change. WaitForUpdatesEx will not return a result until updates occur or until the

call times out. The time-out is affected by the maxWaitSeconds value, the amount of time it takes

to collect updated property values, and PropertyCollector policy.

If the property collection operation times out, and there are no updates to the requested
properties, the PropertyCollector returns null for the WaitForUpdatesEx response.

n maxWaitSeconds is an optional property. If you do not specify a value, the

PropertyCollector waits as long as possible for updates. Therefore, if maxWaitSeconds
is unset, the waitForUpdatesEx method will cause the server to wait if there are no more

changes to report, until the server times out the communication and drops the request. You
can use maxWaitSeconds to specify a shorter time-out interval if the client-side firewall times

out sooner than the server.

n maxWaitSeconds set to zero specifies an immediate call and response. The

PropertyCollector checks for updates for all properties specified by the union of all filters

associated with that instance of the PropertyCollector. The PropertyCollector returns

any results, or null if there have been no updates.

vSphere Web Services SDK Programming Guide

VMware, Inc. 107

n maxWaitSeconds greater than zero specifies how long the server should wait before

timing out the request. If there are no updates available within maxWaitSeconds,

WaitForUpdatesEx returns null instead of a set of updates.

Comparing Usage of MaxWaitSeconds
The following table lists some of the advantages and disadvantages of these two operations.

Operation Advantages Disadvantages

MaxWaitSeconds
=0

Returns only properties that have changed
since the version specified. Use this to poll
for changes without waiting for changes.

Returns an empty set when nothing has
changed on the server. Depending on your
client application, this might be inefficient.

MaxWaitSeconds
>0

Waits until an update occurs or a time-out
occurs. Efficient use of network resources.

This can block a thread until updates
occur. However, you can cancel
this call while waiting, by using
CancelWaitForUpdates.

UpdateSet Data Object from the Property Collector

The WaitForUpdatesEx method returns an UpdateSet data object, the composite data structure

shown in the following figure.

Figure 6-5. UpdateSet Data Object Returned by WaitForUpdates Operations

Server Data Transmission

Property collection can involve the retrieval of large amounts of data, depending on the number
of properties implied in the collection request. The server supports segmented data transmission,
or chunking, when it sends collected data to a client. If the amount of collected data exceeds the
chunk size, the server returns a chunk of data in a single response, and indicates additional data
can be retrieved.

n The WaitForUpdatesEx method returns an UpdateSet data object. The

UpdateSet.truncated property indicates whether the server has returned all the updates

in its reply. The reply size can be limited by options.maxObjectUpdates in the call to

vSphere Web Services SDK Programming Guide

VMware, Inc. 108

WaitForUpdatesEx, or by server policy. On your first call to WaitForUpdatesEx, you

can test UpdateSet.truncated in the response to see if all properties are present.

If not, use UpdateSet.version in another call to WaitForUpdatesEx, repeating until

UpdateSet.truncated is false. At that point, you can be sure that your client copy of the

filtered properties is complete.

n The RetrievePropertiesEx method returns a RetrieveResult data object.

The RetrieveResult.token property indicates whether you must call the

ContinueRetrievePropertiesEx method to retrieve additional data. If the token property

has a value, it identifies chunked data. When your client application receives an indication
that additional data are available, it must send the returned token in the subsequent call to
ContinueRetrievePropertiexEx to retrieve the next chunk of data.

Version strings and tokens are sequenced. Your client application must keep track of the
sequence of values. If an error interrupts the collection operation, resume the operation by using
the version string or token that was submitted before the interruption.

For information about chunk size, see descriptions of properties RetrieveOptions.maxObjects
and WaitOptions.maxObjectUpdates in the vSphere API Reference.

Note If you resend a version string with WaitForUpdatesEx, you might receive more updates

than the first time you used that version string. When you resend, the server repeats the data
collection and more changes might have happened in between calls to WaitForUpdatesEx.

PropertyCollector Performance

Various factors affect the performance of a PropertyCollector for any given session.

n Number of objects

n Number of properties

n Density of property data (composite, nested data objects)

n Frequency of changes to the objects and properties on the server

n Depth of traversal (number of properties traversed)

In addition, a vSphere server is affected by the number of PropertyCollector instances and

the number of filters each instance is supporting across all sessions on the server.

To minimize PropertyCollector overhead and the amount of network traffic for your client

application, use View objects with the PropertyCollector. Simple PropertyCollector Example

(Java) illustrates using views with the PropertyCollector.

vSphere Web Services SDK Programming Guide

VMware, Inc. 109

SearchIndex

The SearchIndex managed object provides a set of methods to retrieve references to managed

objects in the vSphere inventory. You can search by managed objects inventory path, IP address,
datastore path, DNS name, and various other identifying attributes.

For example, if you know the IP address of a virtual machine, you can obtain its managed object
reference by using the SearchIndex.FindByIp method. You can use SearchIndex to obtain

the reference to a server object, and then use that reference as the starting object for property
collection. See the sample applications SearchIndex.java and SearchIndex.cs for more

information about using SearchIndex. See the vSphere API Reference for more information

about SearchIndex methods.

vSphere Web Services SDK Programming Guide

VMware, Inc. 110

Authentication and Authorization 7
VMware vSphere implements mechanisms to ensure that only valid users can access virtual
infrastructure components.Each property and method in the API has an associated privilege
requirement, and only uses with corresponding privileges can access the entities. This chapter
discusses approaches to securing the system and the related service interfaces. The chapter also
discusses the user model, which is different in ESXi systems and vCenter Server systems.

See the vSphere Datacenter Administration Guide for a list of required privileges for common
tasks and best practices for roles and permissions.

Read the following topics next:

n Objects for Authentication and Authorization Management

n Authentication and Authorization for ESXi and vCenter Server

n Obtaining User and Group Information from UserDirectory

n Managing ESXi Users with HostLocalAccountManager

n Managing Roles and Permissions with AuthorizationManager

n Authenticating Users Through SessionManager

n Using the Credential Store for Automated Login

n Managing Licenses with LicenseManager

Objects for Authentication and Authorization Management

VMware vSphere includes the following interfaces for authenticating users and protecting virtual
infrastructure components from unauthorized access:

n HostLocalAccountManager is used to create and manage user accounts on ESXi systems.

Authenticated users can view objects or invoke operations on the server depending
on the permissions associated with their account. See Managing ESXi Users with
HostLocalAccountManager.

VMware, Inc. 111

n AuthorizationManager protects vSphere components from unauthorized access. Access to

components is role-based: Users are assigned roles that encompass the privileges needed
to view and perform operations on vSphere objects. AuthorizationManager has operations

for creating new roles, modifying roles, setting permissions on entities, and handling the
relationship between managed objects and permissions.

n UserDirectory provides a look-up mechanism that returns user-account information to

AuthorizationManager or to another requestor, such as a client application. See Obtaining

User and Group Information from UserDirectory.

n SessionManager provides an interface to the authentication infrastructure on the target

server system (see Authenticating Users Through SessionManager).

n For vCenter Server systems, SessionManager supports single sign-on based on SSO

tokens obtained from a VMware SSO Server. See Establishing a Single Sign-On Session
with a vCenter Server.

n For ESXi systems, SessionManager supports authenticating user accounts as defined

on the host system, such as accounts created using vSphere Client or accounts created
programmatically through the HostLocalAccountManager API.

n Even if a user is authorized to perform operations on a vSphere object, the operation fails if
the licenses for the host or the feature have not been assigned. You use LicenseManager
and LicenseAssignmentManager to manage the licenses. See Managing Licenses with

LicenseManager.

Authentication and Authorization for ESXi and vCenter
Server

Several server-side mechanisms authenticate a human user when a client application, such as the
vSphere Client or a vSphere Web Services SDK application, connects to the server. Because ESXi
uses Linux-based authentication, and vCenter Server ran on Windows, the two systems can use
different approaches for handling user accounts. The following illustration shows two different
user management mechanisms associated with the VMware vSphere server.

vSphere Web Services SDK Programming Guide

VMware, Inc. 112

Figure 7-1. Managed Objects for Handling User Accounts

These services work together to ensure that only authenticated users can connect to ESXi or
vCenter Server systems, and that they can access only those objects—folders, virtual machines,
datacenters, virtual services, and so on—for which they have the required privileges and which
they are authorized to use or to view.

In addition, the vSphere Web Services SDK supports automated login through a credential store.
See Using the Credential Store for Automated Login.

ESXi User Model

When users enter their user account and credential from a client application, the server consults
the appropriate user account store and validates the authenticity of the user account and the
associated credential. Currently, the credential consists of a password, but vSphere also supports
certificates, such as X.509 certificates. Authenticated users can then access objects they are
authorized to use. Authentication succeeds if a user identity exists as a user account on the
target system or in a supported directory service.

ESXi leverages standard Linux infrastructure, including the Linux pluggable authentication module
(PAM) mechanism for user account creation and management. The VMware authentication
daemon (vmware-authd) is implemented as a PAM module. You can create and manage user

accounts on an ESXi system by using HostLocalAccountManager.

vSphere Web Services SDK Programming Guide

VMware, Inc. 113

vCenter Server User Model

The pre-appliance vCenter Server was a Windows-based service using native Windows facilities
and the Windows user model for identification and authentication. The vCenter Server Web
service is associated with the Windows user account that was logged in to the machine for
vCenter Server installation. This vCenter Server administrator account was a member of the local
Windows Administrator group on the machine.

VMware recommended creating a dedicated Windows user account for installing and managing
the vCenter Server system. Other vCenter Server users who connect to the Web service also
needed a Windows account on the local Administrator group.

More recently the vCenter Server Appliance uses the Platform Services Controller for
authentication.

Important Even if a user with the same name exists on an ESXi host and a vCenter Server
system, the two users have different accounts.

For details, see the Datacenter Administration Guide in the VMware vSphere documentation set.

Organizations that are using Microsoft Active Directory can use the user identities contained in a
Windows Server domain controller or Active Directory service across their virtual infrastructure.
Microsoft Active Directory identities are supported for all clients that run vSphere Web Services
SDK applications from Windows-based systems.

A vCenter Server client uses a SAML token to establish a single sign on session with the Server.
See Establishing a Single Sign-On Session with a vCenter Server.

vSphere Security Model

Although the details of authentication and authorization differ between ESXi and vCenter Server,
the model itself is the same for both systems. It relies on privileges, roles, and permissions.

Privileges

A privilege is a system-defined requirement associated with a VMware vSphere object. Privileges
are defined by VMware. Privileges are static, and do not change for a single version of a product.
Each managed object has one or more privileges that a principal (user, group member) must
have to invoke an operation or to view a property. For example, managed entities such as
Folder and VirtualMachine require the principal to have the System.Read privilege on the

entity to view the values of its properties.

The vSphere API Reference includes information about privileges required to invoke operations
and to view properties on the Required Privileges labels on the documentation page for each
managed object. Privileges for vSphere components are defined as follows:

<group>[.<group>].privilege

vSphere Web Services SDK Programming Guide

VMware, Inc. 114

For example:

Datacenter.Create
Host.Config.Connection
Host.Config.Snmp

A privilege might be specific to vCenter Server or to ESXi systems. For example, the
Alarm.Create privilege is defined on vCenter Server. Setting alarms is done through the

AlarmManager service interface, which requires a running vCenter Server system.

Privilege requirements apply to system objects regardless of how a given client application
attempts to access server content (vSphere Client, CLI, or SDK). For example, you can use the
following URL to access virtual machine datastore files:

https://<hostname>/folder[/<path>]/?dcPath=<datacenter_path>[&dsName=<datastore_name>]

The URL accesses a Datastore object in the inventory. You must have privileges to access each

object in the hierarchy, corresponding to the elements of the URL.

Privileges for Datastore Objects in the Web Services API

The following table shows the privileges needed by methods that access datastore objects..

Object Associated with File URL Element Required Privileges

Root folder /folder System.View

Datacenter ?dcPath Datastore.Browse

Datastore.FileManagement

Datastore &dsName Datastore.Browse

Datastore.FileManagement

Host /host Host.Config.AdvancedConfig

/tmp/ Host.Config.SystemManagement

Roles

A role is a predefined set of privileges. Users are granted privileges to objects through roles.

When you assign user or group permissions, you pair the user or group with a role and associate
that pairing with an inventory object. A single user might have different roles for different objects
in the inventory.

For example, if you have two resource pools in your inventory, Pool A and Pool B, you might
assign a particular user the role Virtual Machine User on Pool A and the role ReadOnly on Pool B.

These assignments allow that user to turn on virtual machines in Pool A. In Pool B, the user can
view the status of virtual machines, but cannot turn on virtual machines.

vSphere Web Services SDK Programming Guide

VMware, Inc. 115

Permissions

In vSphere, a permission consists of a user or group and an assigned role for an inventory object,
such as a virtual machine or ESXi host. Permissions grant users the right to perform the activities
specified by the role on the object to which the role is assigned.

For example, to configure memory for an ESXi host, a user must be granted a role that includes
the Host.Configuration.Memory privilege. By assigning different roles to users or groups for

different objects, you can control the tasks that users can perform in your vSphere environment.

Many tasks require permissions on more than one object.

Setting Up Users, Groups, and Permissions

Setting up users, groups, and permissions consists of these tasks:

1 Get information about privilege requirements and privileges associated with system and
sample roles.

n Find out which operations on vSphere objects require which privileges. See the API
Reference.

n Find out which operations the system roles and sample roles can perform. See
Description of Roles on vSphere Servers.

2 If necessary, create additional roles (sets of privileges). See Modifying Sample Roles to Create
New Roles.

3 Retrieve information about existing users and groups (see Obtaining User and Group
Information from UserDirectory) and create additional groups if needed.

4 Associate users or groups with roles using permissions. See Managing Roles and Permissions
with AuthorizationManager.

At runtime, use SessionManager to log in to the server. vCenter Servers support single sign-on

sessions. To establish a single sign-on session, use the SessionManager.LoginByToken method.

To establish a session with a standalone ESXi host, use the SessionManager.Login method.

Obtaining User and Group Information from UserDirectory

The UserDirectory managed object allows a client application to obtain information about

users and groups on a VMware vSphere server. Properties and results vary, depending on
whether the server is a vCenter Server or an ESXi system.

n vCenter Server system. Domain controller, Active Directory, or local Windows account
repository.

n ESXi host. Linux password file in /etc/passwd on the host.

For example, vCenter Server user accounts can be managed in a Windows Active Directory
server or domain controller from which the domainList property of UserDirectory is derived.

For ESXi systems, the domainList property is empty.

vSphere Web Services SDK Programming Guide

VMware, Inc. 116

Figure 7-2. UserDirectory Managed Object

RetrieveUserGroups Method

UserDirectory allows you to obtain information about users and groups using the

RetrieveUserGroups method. The method can obtain a list of all user accounts from the host,

and can search for specific users or groups based on specific criteria to filter the results. You can
search by user name, by group name, for an exact match, or for a partial string (substring).

n ESXi does not support local user groups, so this method will not return group information for
a host. This method will return information about Active Directory groups.

n For ESXi systems, search returns all users from the passwd file. If this file contains Network

Information System (NIS) or NIS+ users, RetrieveUserGroups returns these accounts as

well.

n For vCenter Server, search is limited to the specified Windows domain. If the domain is
omitted, the search is performed on local users and groups.

Important Do not configure an ESXi system to use NIS or NIS+, unless
it is acceptable to have NIS (or NIS+) user information available through the
UserDirectory.RetrieveUserGroups API.

Managing ESXi Users with HostLocalAccountManager

The HostLocalAccountManager managed object supports user administration tasks.

HostLocalAccountManager is available only on ESXi system.

Important vCenter Server systems use different methods. See vCenter Server User Model.

vSphere Web Services SDK Programming Guide

VMware, Inc. 117

Figure 7-3. HostLocalAccountManager Managed Object

Methods Available for Local Account Management

HostLocalAccountManager provides the following methods for local user account management:

n CreateUser

n RemoveUser

n UpdateUser

These methods accept a HostAccountSpec data object. Specify the object properties according

to the requirements on the target system. Examples of user account requirements are password
length requirements and restricted use of dictionary words.

Create a Local User Account on an ESXi System

You can use the API to create a user account on an ESXi system.

Procedure

1 Obtain a managed object reference to the HostLocalAccountManager of the target system.

2 Create a HostAccountSpec data object that defines the properties of the user account,

including description and password.

Define account names and passwords according to the configuration required by your ESXi
system for user account naming conventions and password requirements, such as minimum
length, character set, and other requirements.

3 Call the HostLocalAccountManager.CreateUserAccount method, passing in the managed

object reference (from step 1) and the HostAccountSpec data object (step 2).

After creating user accounts on the ESXi system, you can grant these users access to
virtual components by using AuthorizationManager methods. See Managing Roles and

Permissions with AuthorizationManager.

Managing Roles and Permissions with AuthorizationManager

AuthorizationManager is the service interface for handling permissions and roles assigned

to the users and groups you define with HostLocalAccountManager. AuthorizationManager
methods allow you to create, modify, and manage roles and permissions, and to obtain

vSphere Web Services SDK Programming Guide

VMware, Inc. 118

information about the roles and permissions defined in the system. If a predefined role does
not meet your needs, define a new one that contains only the minimum set of required privileges.

The AuthorizationManager also allows access and prevents access to specific server objects

based on the permissions associated with the object.

AuthorizationManager includes methods for managing roles and for managing permissions:

n Roles Management. AddAuthorizationRole, RemoveAuthorizationRole, and

UpdateAuthorizationRole. See Using Roles to Consolidate Sets of Privileges and Modifying

Sample Roles to Create New Roles.

n Permissions Management. MergePermissions, RemoveEntityPermission,

ResetEntityPermissions, RetrieveAllPermissions, RetrieveEntityPermissions,

RetrieveRolePermissions, and SetEntityPermissions. See Granting Privileges Through

Permissions.

The following diagram shows these methods in a UML diagram for AuthorizationManager and

some of its associated data objects.

Figure 7-4. AuthorizationManager Managed Object

vSphere Web Services SDK Programming Guide

VMware, Inc. 119

AuthorizationManager properties allow access to information. For example:

n The privilegeList property returns a list of all privileges defined on the system, as an array

of AuthorizationPrivilege data objects. Privileges are defined by VMware, on the objects

and properties contained in the system. These privileges are fixed and cannot be changed by
client applications.

n The roleList property returns a list of all currently defined roles, including the system-

defined roles, as an array of AuthorizationRole data objects.

Using Roles to Consolidate Sets of Privileges

A role is a named set of one or more privileges. A role is normally defined for a group of people
who have common responsibilities in the system, for example, administrators. Each role can have
zero to multiple privileges. ESXi defines system roles and user roles.

n System roles. Cannot be modified or deleted.

n User roles. Apply to different user communities or restrict access for add-on tools. Several
predefined user roles are included with vCenter Server and with ESXi systems. You can
create new roles using these predefined user roles as a starting point.

Description of Roles on vSphere Servers

The following table describes system roles and user roles in more detail and lists currently
available roles as examples.

Type Role name
Role
ID Description

System
Roles

Administrator -1 Superuser access. Encompasses the set of all defined privileges.
This role cannot be deleted. By default, the Administrator role is
granted to the user or group that owns the root node.

Anonymous -4 Cannot be granted. Default access role associated with any user
account that has logged in.

No Access -5 No access. Explicitly denies access to the user or group with this
role. Assigning this role to a user account prevents the user from
seeing any objects. Use the No Access role to mask subobjects

under a higher-level object that has propagated permissions
defined.

Read-Only -2 Read-only access. Encompasses the set of all
nonmutable privileges. (System.Anonymous, System.Read, and

System.View). Equivalent to a user role with no permissions.

Users with this role can read data or properties and call query
methods, but cannot make changes to the system.

View -3 Visibility access consisting of System.Anonymous and

System.View privileges. Cannot be granted.

Sample
Roles

Virtual Machine
Administrator

1 Set of privileges necessary to manage virtual machines and
hosts within the system.

vSphere Web Services SDK Programming Guide

VMware, Inc. 120

Type Role name
Role
ID Description

Datacenter
Administrator

2 Set of privileges necessary to manage resources, but not
interact with virtual machines.

Virtual Machine
Provider

3 Set of privileges necessary to provision resources.

Virtual Machine
Power User

4 Set of privileges for a virtual machine user that can also make
configuration changes and create new virtual machines.

Virtual Machine User 5 Set of privileges necessary to use virtual machines only. Cannot
reconfigure virtual machines.

ResourcePool
Administrator

6 Available on vCenter Server systems only.

VMware
Consolidated
Backup Utility

7 Available on vCenter Server systems only. Set of privileges
necessary to run the Consolidated Backup Utility.

Modifying Sample Roles to Create New Roles

The system roles cannot be modified or deleted. However, you can create new roles, or modify
the sample roles.

To create new roles using the API, use the following steps.

Procedure

1 Starting with the ServiceContent object in ServiceInstance.content, obtain a managed

object reference to the AuthorizationManager for the server.

2 Invoke the AddAuthorizationRole method. Parameters are a reference to

AuthorizationManager, a name for the role (as a string), and an array of privileges (array of

strings) that should be assigned to the role.

AddAuthorizationRole returns an integer (xsd:int) value for the roleId that the system

assigns to the newly defined role.

3 In subsequent code, use the roleID to assign the role to specific users or groups.

Granting Privileges Through Permissions

When you use one of the AuthorizationManager objects to assign or modify permissions, you

use a Permission data object. Permission associates a principal with a set of privileges. A

permission identifies:

n The user or group (principal) to which the permission applies.

n The role containing the privileges that should be granted to the user or group.

n The managed object reference to the entity to which the permission applies.

vSphere Web Services SDK Programming Guide

VMware, Inc. 121

Every managed entity has at least one Permission object associated with it. A managed entity

can have more than one Permission assigned to it, effectively granting different privileges

to different users or groups. Permissions are defined for managed entities either explicitly or
through inheritance.

Obtaining Information About Permissions

Users with the Administrator role can obtain information about Permission objects at different

levels of detail.

n For an array of Permission objects, call the

AuthorizationManager.RetrieveAllPermissions method.

n For specific inventory objects, such as managed entities, folders, datacenters, or virtual
services, call the AuthorizationManager.RetrieveEntityPermissions method.

n For a role defined in the system, call the
AuthorizationManager.RetrieveRolePermissions method.

See the vSphere API Reference.

Setting, Changing, or Deleting Permissions

The Permission data object associates the privileges required to perform an action on an object

with the principals (user, group). Principals have privileges through their role. To set or update
permissions on an object, use the AuthorizationManager.SetEntityPermissions method.

To set permissions on an entity, use the following steps.

Procedure

1 Obtain a reference to the AuthorizationManager for the server from the ServiceContent
object associated with the ServiceInstance. For example:

ManagedObjectReference hostAuthorizationManager = service.getAuthorizationManager();

2 Create a Permission data object that identifies the user (or group) name, the role, the entity

to which the permission should apply, and whether the permission should be applied to the
entity’s children.

For example, the following code fragment creates a permission on the root folder of the
inventory granting a user Administrator role to the root folder and all its children.

Permission per = new Permission();
per.setGroup(false);
per.setPrincipal(“new_user_name”);
per.setRoleId(-1);
per.setPropagate(true);
per.setEntity(rootFolder);

vSphere Web Services SDK Programming Guide

VMware, Inc. 122

Permissions cannot be set directly on children in a complex entity. For complex entities, set
permissions on the parent entity and set the propagate flag to true to apply permissions to

the child entities.

To replace existing permissions with a new set of permissions, use the
AuthorizationManager.ResetEntityPermissions method.

Impact of Group Membership on Permissions

Users can be members of multiple groups. The system handles multigroup membership as
follows:

n Permissions are applied to inventory objects from the containing object to each of its child
entities.

n If a user has no explicit user-level permissions, group-level permissions apply as if granted to
the user directly.

n Membership in multiple groups with permissions on the same object results in a union of
permissions.

n User-level permissions always take precedence over group-level permissions.

Applying Permission to a Managed Entity

The following example shows some of the code required to create a user account and apply a
permission to an entity that grants access to the user account based on a role.

The role with role ID 4, assigned in this example, is defined as a “Virtual Machine Power User.”
The sample uses AuthorizationManager to grant permissions to the user and to associate

the permission with the managed entity in the inventory—in this example, the rootFolder. The

example uses the apputil helper classes to access the objects.

Example: Creating a User Account

...
ManagedObjectReference _authManRef = _sic.getAuthorizationManager();
public class CreateUser {
private static AppUtil appUtil= null;
private void createUser() throws Exception {
ManagedObjectReference hostLocalAccountManager =
appUtil.getConnection().getServiceContent().getAccountManager();
ManagedObjectReference hostAuthorizationManager =
 appUtil.getConnection().getServiceContent().getAuthorizationManager();

// Create a user
HostAccountSpec hostAccountSpec = new HostAccountSpec();
hostAccountSpec.setId(userName);
hostAccountSpec.setPassword(password);
hostAccountSpec.setDescription("my delegated admin auto-agent software");
appUtil.getConnection().getService().createUser(hostLocalAccountManager, hostAccountSpec);
ManagedObjectReference rootFolder =
appUtil.getConnection().getServiceContent().getRootFolder();

vSphere Web Services SDK Programming Guide

VMware, Inc. 123

Permission permission = new Permission();
permission.setGroup(false);
permission.setPrincipal(userName);

// Assign the Virtual Machine Power User role
permission.setRoleId(4);
permission.setPropagate(true);
permission.setEntity(rootFolder);
appUtil.getConnection().getService().setEntityPermissions(hostAuthorizationManager,
rootFolder,
 new Permission [] {permission});
...

Authenticating Users Through SessionManager

The SessionManager managed object controls user access to the server. SessionManager
includes methods for logging in to the server, obtaining a session, and logging out. The
SessionManager defines the lifetime and visibility of many objects. Session-specific objects are

not visible outside the session in which they are created.

Important Each user session uses system resources and creates locks on the server side. Too
many concurrent sessions can slow down the server. By default, vCenter Server terminates a
session after 30 minutes.

Upon successful authentication of a user account, SessionManager returns a UserSession data

object to the client application. The session is associated with that user account for the duration
of the session. The client application can save the session locally, to a secure file, and reuse the
session later to reconnect to the server. You can also configure an ESXi or vCenter Server system
to support local sessions, which enable users with credentials on the host to log in based on
those privileges.

The SessionManager provides these capabilities:

n Log in and log out. Basic operations to log in to ESXi or vCenter Server system, obtain a
session, and log out. When a session terminates, all session-specific objects are destroyed.

n Impersonation. One user session adopts the authorization level of another user session.
Impersonation is common in Web based scenarios in which a middle-tier application
functions as a central account that interacts with other back-end servers or processes.
Windows services impersonate a client when accessing resources on behalf of the client.
SesssionManager supports impersonation through its ImpersonateUser method.

n Delegation. A client application that is running on behalf of a local user can call the
SessionManager.AcquireLocalTicket method to obtain a one-time user name and

password for logging in. Delegation is useful for host-based utilities that run in the local
console.

vSphere Web Services SDK Programming Guide

VMware, Inc. 124

If the user account associated with the session does not have the permissions required to
perform an action, the AuthorizationManager returns a NoPermission fault to the client

application.

Using VMware Single Sign On for vCenter Server Sessions

vSphere supports single sign on for a single point of authentication for vCenter Server
clients. To use VMware Single Sign On, your vSphere Web Services SDK client connects
to the VMware SSO Server to obtain an SSO token. Your client includes the token in the
SessionManager.LoginByToken request to start a vSphere session.

For more information about creating a session, see Establishing a Single Sign-On Session with a
vCenter Server.

Using the Credential Store for Automated Login

To facilitate automated login for unattended applications, the vSphere Web Services SDK
includes client-side credential store libraries and tools for automating the login process in a more
secure manner. The libraries eliminate the need for system administrators to keep passwords in
local scripts.

Important These libraries are built on top of the vSphere Web Services SDK.

The credential store has the following components:

n A persistence file (credential store backing file) that stores authentication credentials.
Currently, only passwords are supported. The persistence file maps a remote user account
from an ESXi host to the password for that user on the server.

n Java and Perl libraries for managing the credential store programmatically. See Credential
Store Methods for available methods.

n Java and Microsoft PowerShell-based command-line utilities for managing the credential
store.

In addition to the libraries listed in Credential Store Libraries, the vSphere Web Services SDK
includes the CredentialStoreAdmin tool for creating, examining, and managing the credential

store. You can use the tool to examine the contents of the credential store, for example, the
generated user accounts and passwords.

If you use these credential store client libraries in an application, you must set up the credential
store on all client machines that run your application.

Credential Store Libraries

The following table shows the credential management libraries for Java.

vSphere Web Services SDK Programming Guide

VMware, Inc. 125

Package com.vmware.security.credstore (Java)

CredentialStore.java

CredentialStoreFactory.java

Several of the helper classes provided with the sample applications use the credential store
mechanism.

Credential Store Methods

The following table shows the methods used in Java clients for managing credentials.

Java Description

addPassword(hostname,
username, password)

Stores the password for the specified
host and user. Overwrites any existing
password for that user in the
credential store. Creates the default
credential store backing file in the
default location (if it does not exist).

removePassword(hostname,
username)

Deletes the password for the
specified user from the credential
store.

clearPasswords() Deletes all passwords from the
credential store.

getPassword(hostname,
username)

Returns the password for the
specified host and user from the
credential store.

getHosts() Returns the set of hosts contained in
the credential store.

getUsernames(hostname) Returns the collection of all user
names that have passwords stored for
the specified hostname.

close() Closes the credential store, preventing
further method invocations. Releases
associated resources.

Credential Store Backing File

The credential store backing file is an XML file that is saved locally on the client machine for
access at runtime. Unless otherwise specified, the backing file is located in the following location:

n Linux. $HOME/.vmware/credstore/vicredentials.xml

n Windows Vista and later. C:\Users\[user_name]
\AppData\Roaming\VMware\credstore\vicredentials.xml

vSphere Web Services SDK Programming Guide

VMware, Inc. 126

n Windows XP and Windows 2000.
C:\Documents and Settings\[user_name]\Application
Data\VMware\credstore\vicredentials.xml

The credential store persists locally on a per-user basis—each user has his or her own credential
store backing file.

Caution The credential store backing files use filesystem-level permissions to ensure that
passwords remain confidential. Protect the credential store backing file with appropriate file
permissions.

Credential Store File Format shows the XML elements that are read and written to the file.

Example: Credential Store File Format

<?xml version="1.0" encoding="UTF-8"?>
 <viCredentials>
 <version>1.0</version>
 <passwordEntry>
 <host>mi6.vmware.com</host>
 <username>agent007</username>
 <password>IhWS1saIhtsw2FbIh0w2F2...</password>
 </passwordEntry>
 <passwordEntry>
 ...
 </passwordEntry>
 ...
 </viCredentials>

Credential Store Samples

The CreateUser and SimpleAgent sample applications demonstrate how to use the credential

store client libraries.

n The CreateUser sample creates a user account and password for the server based on

random-number-generation scheme. The sample populates the local credential store backing
file with this information. If the backing file does not exist, it is created in the default location.

When you run CreateUser, specify the name of an ESXi system, and an administrator

user name and password. A user account name and password are created on the server.
Specify --ignorecert unless your system has a secure connection to the target. Do not use

--ignorecert in a production environment.

java com.vmware.samples.simpleagent.CreateUser --server <servername> --url
https://<servername>/sdk --username <adminuser> --password <pwd> --ignorecert ignorecert

Caution The CreateUser sample application is for demonstration purposes only and

should not be used as a model for production code. The sample breaks the principle of
least privilege by granting the user account the Administrator role (-1). Never do this in a
production environment.

vSphere Web Services SDK Programming Guide

VMware, Inc. 127

n The SimpleAgent sample application demonstrates how to use credential store libraries to

extract the user account and password at runtime to authenticate a user noninteractively.

java com.vmware.samples.simpleagent.SimpleAgent <servername>

Specifying Roles and Users with the Credential Store

VMware recommends that you apply the principle of least privilege to any agent-like software
or automated application that uses the credential store in a production environment. Give user
accounts the minimal number of privileges on the system that they require to do their jobs.

Specify roles and users as follows:

Procedure

1 For each SDK-based application, use one specific role, newly created or predefined, that has
appropriate privileges.

For example, if you are developing an agent-like application to automatically start the
VMware Consolidated Backup utility, you might use the “VMware Consolidated Backup
Utility” role (roleID 7).

If no predefined user role that meets the needs of your application exists, create a role
with only those privileges needed for the application. See Using Roles to Consolidate Sets of
Privileges for more information about roles.

2 Create a user account for use with the agent or application.

3 Apply the role created in Step 1 to the user account created in Step 2.

4 Store the user account and password in the credential store, using the
CredentialStoreAdministration tool.

Never grant administrator privileges to a user account associated with an automated script or
software agent, especially one that uses the credential store.

Managing Licenses with LicenseManager

When you want to perform tasks in the vSphere environment, you must have licenses to do
so. Licensing applies to ESXi hosts, vCenter Server, and special features such as VMware HA or
VMware vMotion.

The vSphere Datacenter Administration Guide explains how to manage ESXi and vCenter Server
licenses using the vSphere Client, and gives background information about license keys, license
inventory, and related topics.

vSphere Web Services SDK Programming Guide

VMware, Inc. 128

You can also manage licenses using the LicenseManager and LicenseAssignmentManager
managed objects. You use LicenseManager to explicitly manage the pool of available licenses

on ESXi systems released before vSphere 4.0. You use LicenseAssignmentManager, available

through the LicenseManager.licenseAssignmentManager property, to manage assignment of

licenses to entities in the vCenter Server inventory. You can retrieve information, add licenses,
and remove licenses.

Retrieve Information

n Retrieve the LicenseManager.evaluation and LicenseManager.licenses properties to

obtain information on evaluation licenses and full licenses.

n Call LicenseManager.DecodeLicense to decode license information. The call returns

a LicenseManagerLicenseInfo data object, which encapsulates information about the

license.

n Call LicenseAssignmentManager.QueryAssignedLicenses for information about assigned

licenses.

Add Licenses

n Call LicenseManager.AddLicense, passing in a license key, to add a license to the inventory

of available licenses.

n Call LicenseAssignmentManager.UpdateAssignedLicense, passing in a license key, to

update the licenses for an entity, for example, a host system.

Remove Licenses

n Call LicenseAssignmentManager.RemoveAssignedLicense to remove all licenses from an

entity, passing in an entity to remove licenses from. You can then assign those licenses to
other entities.

n Call LicenseManager.RemoveLicense, passing in a license key, to remove a license from the

inventory of available licenses.

vSphere Web Services SDK Programming Guide

VMware, Inc. 129

Hosts 8
Many of the operations in your vSphere environment involve setting up the ESXi hosts on which
the virtualization layer runs. You can set up storage and networking, and those settings directly
affect the virtual machine. You must also manage other aspects of the host, as discussed in this
chapter.

Important See the ESX Configuration Guide and the ESXi Configuration Guide for important
information on security considerations, not included here.

Read the following topics next:

n Host Management Objects

n Retrieving Host Information

n Configuring and Reconfiguring Hosts

n Managing the Host Lifecycle

n Querying and Changing the Host Time

n Querying Virtual Machine Memory Overhead

Host Management Objects

The vSphere Web Services SDK includes several objects for host management.

The central object is HostSystem. Each property of HostSystem is a data object that

encapsulates some information about the host. For example, the capability property is a

HostCapability object, the runtime property is a HostRuntimeInfo object. See the API
Reference for a list of the properties and the corresponding data objects.

HostSystem methods allow you to perform certain tasks on ESX/ESXi hosts. However,

many tasks are not performed through HostSystem methods, but through methods in

managed objects related to HostSystem. For example, you manage the host time using the

HostDateTimeSystem and you manage kernel modules using HostKernelModuleSystem.

VMware, Inc. 130

Retrieving Host Information

You retrieve information about the host by accessing data objects defined for the HostSystem.

n HostSystem.capability is a HostCapability object. The HostCapability
properties indicate the features that are supported by the host, for example,
maintenanceModeSupported or recursiveResourcePoolsSupported.

n HostSystem.runtimeInfo is a HostRuntimeInfo object that contains several data objects

with detailed information about the current state of the host. You can, for example,
extract the health status as a HealthSystemRuntime object or the power state as a

HostPowerState object.

n HostSystem.hardware is a HostHardwareInfo object that allows you to retrieve the host’s

hardware configuration including CPU and NUMA information and memory size.

n HostSystem.config is a HostConfigInfo object. This data object type encapsulates a

typical set of host configuration information that is useful for displaying and configuring a
host. You can access the HostConfigInfo object only on managed hosts, and only if the

host is connected.

HostSystem has several additional properties that allow you to directly access the virtual

machines, datastores, and networks associated with that system.

The QueryHostConnectionInfo, QueryMemoryOverhead, and QueryMemoryOverheadEx
methods are available for information retrieval.

Figure 8-1. HostSystem and Information Properties

vSphere Web Services SDK Programming Guide

VMware, Inc. 131

Configuring and Reconfiguring Hosts

When you configure or reconfigure an ESX/ESXi host, you usually do not use the methods in
HostSystem directly, but work with managed objects available for configuration of that part

of the system. For example, HostNetworkSystem allows you to configure the network, and

HostAuthorizationManager is for managing users, groups, and permissions on a host. The

objects and related methods are discussed in the corresponding chapters of this guide.

Some methods are defined locally in HostSystem. See the vSphere API Reference for details on

each method.

n CIM Management – AcquireCimServicesTicket. For additional information on using

vSphere with CIM, see the VMware CIM APIs documentation.

n Host Lifecycle – RebootHost_Task, ShutdownHost_Task,
PowerDownHostToStandBy_Task, PowerUpHostFromStandBy_Task,

DisconnectHost_Task, ReconnectHost_Task. See Managing the Host Lifecycle.

n Maintenance Mode – EnterMaintenanceMode_Task, ExitMaintenanceMode_Task.

n Updates – UpdateFlags, UpdateIpmi, UpdateSystemResources.

Managing the Host Lifecycle

A host’s lifecycle depends in part on whether the host is a standalone host or managed by a
vCenter Server system.

Reboot and Shutdown

You can reboot and shut down managed and standalone hosts. The ShutdownHost_Task
method is not supported on all hosts. Check the host capability shutdownSupported.

You can call both methods with a force parameter, which specifies whether to reboot hosts

even when virtual machines are running or other operations are in progress on the host. If you
set the parameter to false, hosts are rebooted only when they are in maintenance mode.

n ShutdownHost_Task – Shuts down a host. If connected directly to the host, the client never

receives an indicator of success in the returned task, but temporarily loses connection to the
host. If the method does not succeed, an error is returned.

n RebootHost_Task – Reboots a host. If the command is successful, then the host has been

rebooted. Clients connected directly to the host do not receive an indication of success in the
returned task, but temporarily lose connection to the host. If the method does not succeed,
an error is returned.

Using Standby Mode

Standby is a power state in which the host does not support provisioning or power
on of virtual machines. VMware power management module might evacuate and put a

vSphere Web Services SDK Programming Guide

VMware, Inc. 132

host in standby mode to save power. The host can be powered up remotely by using
PowerUpHostFromStandBy_Task.

The following methods support standby mode. Both methods are cancelable.

n PowerDownHostToStandBy_Task – Puts the host in standby mode, a mode in which the

host is in a standby state from which it can be powered up remotely. The command is only
supported on hosts on which the host capability standbySupported is true.

While this task is running, no virtual machines can be powered on and no provisioning
operations can be performed on the host.

Calling this method does not directly initiate any operations to evacuate or power down
powered-on virtual machines. However, if VMware DRS is enabled, the vCenter Server
migrates powered-off virtual machines or recommends migration to a different host,
depending on the automation level. If the host is part of a cluster and the task is issued
with a vCenter Server target with the method’s evacuatePoweredOffVms parameter set to

true, the task does not succeed unless all the powered-off virtual machines are reregistered

to other hosts.

n PowerUpHostFromStandBy_Task – Takes the host out of standby mode. If the command is

successful, the host wakes up and starts sending heartbeats. This method might be called
automatically by VMware DRS to add capacity to a cluster, if the host is not in maintenance
mode.

Disconnecting and Reconnecting Hosts

You can make a host a managed host by adding it to the vCenter Server system. You can later
disconnect and reconnect the host, for example, to refresh the agents.

You can use the following methods, which are only supported if you access the host through a
vCenter Server system.

n QueryHostConnectionInfo – Returns a HostConnectInfo object, which is the same object

that the Datacenter.QueryConnectionInfo returns. The information in this object can be

used by a connection wizard, like the wizard used in the vSphere Client.

n DisconnectHost_Task – Disconnects from a host and instructs the vCenter Server system

to stop sending heartbeats to the host.

n ReconnectHost_Task – Reconnects a host to the vCenter Server system. This process

reinstalls agents and reconfigures the host, if it has gotten out of sync with the server. The
reconnection process checks for the correct set of licenses and for the number of CPUs
on the host, ensures the correct set of agents is installed, and ensures that networks and
datastores are discovered and registered with the vCenter Server system.

Client applications can change the IP address and port of the host when doing a reconnect
operation. This can be useful if the client wants to preserve existing metadata, such as
statistics, alarms, and privileges, even though the host is changing its IP address.

vSphere Web Services SDK Programming Guide

VMware, Inc. 133

Querying and Changing the Host Time

The HostDateTimeSystem supports date and time related configuration on a host and supports

both Network Time Protocol (NTP) and Precision Time Protocol (PTP) configuration.

The HostDateTimeSystem.dateTimeInfo property allows you to retrieve and set date and time

information. The HostDateTimeInfo data object’s properties contain these data objects for date

and time management:

n HostNTPConfig contains a list of NTP servers for use by the host.

n HostPTPConfig contains device and networking information.

n HostDateTimeSystemTimeZone specifies the time zone including the GMT offset, identifier

for the time zone, and name.

You can also query the host’s time information by calling one of the HostDateTimeSystem
methods.

n QueryAvailableTimeZones – Retrieves the list of available timezones on the host. The

method uses the public domain tz timezone database. The method returns an array of

HostDateTimeSystemTimeZone objects.

n QueryDateTime – Returns the current date and time on the host.

You can modify the host’s date and time information by calling one of the following
HostDateTimeSystem methods:

n RefreshDateTimeSystem – Refreshes the date and time related settings to pick up any

changes that might have occurred.

n UpdateDateTime – Updates the date and time on the host using the date and time passed

into the method. Use with caution. Network delays or execution delays can result in time
skews.

n UpdateDateTimeConfig – Updates the date and time configuration of the host. You call

this method with a HostDateTimeConfig parameter, which allows you to specify NTP

configuration, PTP configuration, and the time zone.

Querying Virtual Machine Memory Overhead

Each virtual machine you power on requires a certain amount of memory for its use. In addition,
the host must have some memory overhead available for each virtual machine. To find out
about memory overheat, call the HostSystem.QueryMemoryOverheadEx method. The method

takes a virtualMachineConfigInfo data object as an argument, and determines the amount of

overhead necessary to power on a virtual machine with those characteristics.

The methods returns the amount of memory required, in bytes.

vSphere Web Services SDK Programming Guide

VMware, Inc. 134

Storage 9
A virtual machine uses a virtual disk to store its operating system, program files, and other data.
A virtual disk is a large physical file, or a set of files, that can be copied, moved, archived, and
backed up like other files. To store and manipulate virtual disk files, a host requires dedicated
storage space. ESX/ESXi supports storage in multiple ways. Hosts that are managed by a
vCenter Server system can share storage.

Any type of network-attached storage requires complete configuration of networking in the
VMkernel to support network-based access to the storage media. The VMkernel requires its own
IP address. See Chapter 10 vSphere Networks.

Read the following topics next:

n Storage Management Objects

n Introduction to Storage

n Choosing the Storage API to Use

n Configuring Disk Partitions

n Multipath Management

n Configuring iSCSI Storage

n Creating and Managing Datastores

n Managing VMFS Volume Copies (Resignaturing)

n Managing Diagnostic Partitions

n Sample Code Reference

Storage Management Objects

You can access the objects that support storage management through the HostSystem
managed object.

n HostStorageSystem – The HostSystem.storageSystem property is a managed object

reference to the HostStorageSystem of the ESX/ESXi system. HostStorageSystem is a

low-level interface that is used mainly for configuring the physical storage. See Configuring
Disk Partitions.

VMware, Inc. 135

n HostDatastoreSystem – The HostSystem.datastoreSystem property is a managed object

reference to a HostDatastoreSystem managed object. HostDatastoreSystem methods

allow you to create, configure, extend, and remove datastores. While HostStorageSystem
supports access and configuration of physical storage, HostDatastoreSystem supports

access and configuration of logical storage through the volumes (Datastore managed

objects) the host can use for virtual machines. See Creating and Managing Datastores.

n HostDatastoreBrowser – Provides access to the contents of one or more datastores. The

items in a datastore are files that contain configuration, virtual disk, and other data associated
with a virtual machine.

n Datastore – The Datastore managed entity provides methods for mounting datastores,

browsing datastores, and obtaining information about the datastores associated with a virtual
machine. See Creating and Managing Datastores.

n HostDiagnosticPartition – Supports creating and querying diagnostic partitions for your

ESX/ESXi host. See Managing Diagnostic Partitions.

Introduction to Storage

The VMware vSphere storage architecture consists of layers of abstraction that hide and
manage the complexity and differences of physical storage subsystems, shown in the following
illustration.

Figure 9-1. Storage Architecture

vSphere Web Services SDK Programming Guide

VMware, Inc. 136

How Virtual Machines Access Storage

Virtual machines use virtual disks for their operating system, application software, and other data
files. A virtual disk is stored as a VMDK file on a datastore. The virtual disk hides the physical
storage layer from the virtual machine’s operating system. Regardless of the type of storage
device that your host uses, the virtual disk always appears to the virtual machine as a local SCSI
device. As a result, you can run operating systems that are not certified for specific storage
equipment, such as SAN, in the virtual machine.

When a virtual machine communicates with its virtual disk stored on a datastore, it issues
SCSI commands. Because datastores can exist on different types of physical storage, these
commands are encapsulated into other forms, depending on the protocol that the ESX/ESXi host
uses to connect to the physical storage device.

To the applications and guest operating systems running on each virtual machine, the storage
subsystem appears as a virtual SCSI controller connected to one or more virtual SCSI disks as
shown in the top half of Figure 9-1. Storage Architecture. These controllers are the only types of
SCSI controllers that a virtual machine can see and access, and include the objects that extend
VirtualSCSIController:

n ParaVirtualSCSIController

n VirtualBusLogicController

n VirtualLsiLogicController

n VirtualLsiLogicSASController

How precisely a virtual machine accesses storage depends on the setup of the host. Figure 9-2.
Storage API Architecture gives an overview of the different possibilities.

vSphere Web Services SDK Programming Guide

VMware, Inc. 137

Figure 9-2. Storage API Architecture

Datastores

A datastore is a manageable storage entity, usually used as a repository for virtual machine files
including log files, scripts, configuration files, virtual disks, and so on. vSphere supports two types
of datastores, VMFS and NAS.

n If you want to use a NAS volume, mount it using CreateNasDatastore and unmount it using

RemoveDatastore. The two commands are host specific, you must invoke the create and

remove methods on each host on which you want to mount or unmount the datastore.

n To create a VMFS datastore, call CreateVmfsDatastore, passing in any existing disk. As a

result of the call, the disk is formatted with VMFS and the datastore is automounted on all
ESX/ESXi hosts on which the disk is visible the next time you perform a rescan. When you
call RemoveDatastore on a VMFS datastore, the datastore is destroyed. After a rescan, the

datastore is no longer available to any ESX/ESXi systems. In contrast to NAS datastores, you
do not have to invoke methods for creation and removal of the datastore on each host.

An ESX/ESXi host automatically discovers the VMFS volume on attached Logical Unit Numbers
(LUNs) on startup and after re-scanning the host bus adapter. When you create a VMFS
datastore, the datastore label is based on the VMFS volume label. If there is a conflict with
an existing datastore, the label is made unique by appending a suffix. The VMFS volume label
remains unchanged.

vSphere Web Services SDK Programming Guide

VMware, Inc. 138

Destroying a VMFS datastore removes the partitions that compose the VMFS volume.

Datastores can span multiple physical storage devices. A single VMFS volume can contain one
or more LUNs from a local SCSI disk array on a physical host, a Fibre Channel SAN disk farm,
or iSCSI SAN disk farm. The ESX/ESXi system detects new LUNS that are added to any of the
physical storage subsystems. When the user queries for a list of available devices, the newly
discovered devices are included. You can extend storage capacity on an existing VMFS volume
without powering down physical hosts or storage subsystems.

If any of the LUNs within a VMFS volume fails or becomes unavailable, only virtual machines with
data on that LUN are affected. An exception is the LUN that has the first extent of the spanned
volume (multi-extent volume). All other virtual machines with virtual disks residing on other LUNs
continue to function normally.

Choosing the Storage API to Use

The HostStorageSystem APIs are low-level enough for performing VMFS provisioning

operations. They require a knowledge of partitioning details and VMFS extent composition. They
do not enforce VMFS best practices like partition alignment and optimum VMFS block sizes, and
they allow you to mix extents from different datastores on the same LUN and to add extents
even though expansion is preferable in most cases.

The HostDatastoreSystem APIs are primarily used for managing VMFS volumes. They don’t

require an in-depth knowledge of storage systems, and do enforce best practices.

Figure 9-3. Storage APIs gives an overview of the different APIs. See Managed Objects for
Working with Storage to determine which tasks are commonly performed with which API.

vSphere Web Services SDK Programming Guide

VMware, Inc. 139

Figure 9-3. Storage APIs

Managed Objects for Working with Storage

The Web Services API provides several managed objects that are designed to work with ESXi
storage devices.

Managed Object Task See

HostStorageSystem Low-level operations associated with
individual hosts, such as resizing or
updating disk partitions.

Configuring Disk Partitions

HostStorageSystem Multipath management. Multipath Management

HostStorageSystem iSCSI Storage setup and configuration. Configuring iSCSI Storage

HostDatastoreSyste
m

Creating and managing VMFS
datastores and remote datastores.

Creating and Managing Datastores

HostDatastoreSys
tem
HostStorageSyste
m

Managing VMFS volume copies
(resignature or force mount).

Managing VMFS Volume Copies
(Resignaturing)

HostDiagnosticSy
stem

Creating and managing diagnostic
partitions.

Managing Diagnostic Partitions

vSphere Web Services SDK Programming Guide

VMware, Inc. 140

Configuring Disk Partitions

HostStorageSystem manages low-level storage components including HBAs, SCSI LUNs, file

system volumes, and so on. You can use this API to set up the partitions before creating,
extending, or expanding a VMFS file system.

n ComputeDiskPartitionInfo – Computes the disk partition information based on the

specified disk layout. The server computes a new HostDiskPartitionInfo object for a

specific disk using the layout that is specified by the HostDiskPartitionLayout object.

Inside the HostDiskPartitionLayout object, you specify the list of block ranges for that

partition, and optionally the total number and size of the blocks. You can then use that
information inside the HostDiskPartitionSpec when updating a disk partition.

n ComputeDiskPartitionInfoForResize – Computes the disk partition information to

support resizing a given partition. Returns the resized disk partition information as
a HostDiskPartitionInfo object. You can then use that information inside the

HostDiskPartitionSpec when resizing the disk partition.

n RetrieveDiskPartitionInfo – Allows you to specify an array of device path names that

identify disks and returns an array of HostPartitionInfo objects for each of those disks.

n UpdateDiskPartitions – Changes the partitions on a disk by supplying a partition

specification (HostDiskPartitionSpec) and device name.

After you have updated the disk partitions for the host, you must perform a rescan by using one
of the following methods. Complete rescans might take a long time.

n RefreshStorageSystem – Refreshes the storage information and settings to pick up

changes, but does not explicitly issue commands to discover new devices.

n RescanAllHba – Rescans all host bus adapters for new storage devices. This method might

take a long time.

n RescanHba – Rescans a specific host bus adapter for new devices.

HostStorageSystem methods are also used for setting up iSCSI storage. See Configuring iSCSI

Storage.

Multipath Management

The vSphere Storage documentation includes information about using multipathing
for failover and load balancing. You can manage multipathing using the vSphere
Client, the esxcli command, or using the following commands. Use the

HostStorageSystem.multipathStateInfo property to access the HostMultipathStateInfo
data object that describes runtime information about the state of multipathing on a given host.

n EnableMultipathPath – Enables a disabled path for a device. Use the pathname from

HostMultipathStateInfoPath or HostMultipathInfoPath.

vSphere Web Services SDK Programming Guide

VMware, Inc. 141

n QueryPathSelectionPolicyOptions – Obtains the set of path-selection-policy options.

These options determine the path that can be used by a device that is managed by native
multipathing. A HostMultipathInfo data object identifies the devices that are managed

through native multipathing.

n QueryStorageArrayTypePolicyOptions – Obtains the set of storage-array-type policy

options. These options determine the storage-array-type policies that a device that is
managed by native multipathing might use. A HostMultipathInfo data object identifies the

devices that are managed through native multipathing.

n SetMultipathLunPolicy – Updates the path selection policy for a LUN. Specify the LUN

using the LUN UUID from the HostMultipathInfoLogicalUnit object.

n DisableMultipathPath – Disables an enabled path for a device. Use the pathname from

HostMultipathStateInfoPath or HostMultipathInfoPath.

Configuring iSCSI Storage

vSphere supports software iSCSI, dependent hardware iSCSI, and independent hardware iSCSI.
See Configuring iSCSI Adapters and Storage in the vSphere Storage documentation for a detailed
discussion.

The following HostStorageSystem methods are available for iSCSI storage management.

n Add a dynamic or static target.

n AddInternetScsiSendTarget – Adds send target entries to the host bus adapter

discovery list if the DiscoveryProperties.sendTargetsDiscoveryEnabled flag is set

to true.

n AddInternetScsiStaticTargets – Adds static target entries to the host bus adapter

discovery list. The DiscoveryProperty.staticTargetDiscoveryEnabled flag must be

set to true.

n Configure targets.

n UpdateInternetScsiAdvancedOptions – Updates the advanced options that the iSCSI

host bus adapter or the discovery addresses and targets associated with it.

n UpdateInternetScsiAlias – Updates the alias of an iSCSI host bus adapter.

n UpdateInternetScsiAuthenticationProperties – Updates the authentication

properties for one or more targets or discovery addresses associated with an iSCSI host
bus adapter.

n UpdateInternetScsiDigestProperties – Updates the digest properties for the iSCSI

host bus adapter or the discovery addresses and targets associated with it.

n UpdateInternetScsiDiscoveryProperties – Updates the discovery properties for an

iSCSI host bus adapter.

vSphere Web Services SDK Programming Guide

VMware, Inc. 142

n UpdateInternetScsiIPProperties – Updates the IP properties for an iSCSI host bus

adapter.

n UpdateInternetScsiName – Updates the name of an iSCSI host bus adapter.

n UpdateSoftwareInternetScsiEnabled – Enables and disables software iSCSI in the

VMkernel.

n Remove a dynamic or static target.

n RemoveInternetScsiSendTargets – Removes send target entries from the host bus

adapter discovery list. The DiscoveryProperty.sendTargetsDiscoveryEnabled must

be set to true. If any of the targets provided as parameters are not found in the existing
list, the other targets are removed and an exception is thrown.

n RemoveInternetScsiStaticTargets – Remove static target entries from the host bus

adapter discovery list. The DiscoveryProperty.staticTargetDiscoveryEnabled must

be set to true. If any of the targets provided as parameters are not found in the existing
list, the other targets are removed and an exception is thrown.

iSCSI initiators and targets have unique, permanent iSCSI names and addresses. An iSCSI name
correctly identifies a specific iSCSI initiator or target, regardless of physical location. Names must
be in EUI or IQN format, as specified by the storage vendor’s hardware.

Configure the VMkernel To Support Software iSCSI

Before you can set up iSCSI on a system, you must create a dedicated VMkernel network
interface. See. You can then enable the VMkernel to support iSCSI and configure the initiator.

To enable the VMkernel to support software iSCSI, use the following steps.

Procedure

1 Obtain a managed object reference to the host system’s HostStorageSystem.

2 Invoke the UpdateSoftwareInternetScsiEnabled method, passing the reference to the

HostStorageSystem and the value true.

Configure iSCSI Initiators

After you have configured the VMkernel to support software iSCSI, you can configure the
storage initiators for iSCSI.

To configure iSCSI initiators, use the following steps.

vSphere Web Services SDK Programming Guide

VMware, Inc. 143

Procedure

1 Access the list of available HBAs on the host system.

You can do this by creating a property collector with HostSystem as the starting point. See

Chapter 6 Property Collector. From the HostSystem.config property, you can obtain the list

(array) of host bus adapters by specifying this property path:

config.storageDevice.hostBusAdapter

The property path returns an array of host bus adapters. For example:

hostBusAdapter["key-vim.host.BlockHba-vmhba32"]
hostBusAdapter["key-vim.host.BlockHba-vmhba33"]
hostBusAdapter["key-vim.host.BlockHba-vmhba34"]
hostBusAdapter["key-vim.host.BlockHba-vmhba35"]
hostBusAdapter["key-vim.host.BlockHba-vmhba1"]
...

2 From the array, select the host bus adapter (instance of HostHostBusAdapter) that you

want to configure and obtain its key property, which is the device name of the host bus

adapter as a string.

3 Determine the capabilities of the adapter by retrieving the properties of the
HostHostBusAdapter object.

4 Configure the initiator.

n For an independent hardware initiator, configure the IP address.

n For a software initiator, enable the software initiator in the VMkernel.

5 Configure the iSCSI name by calling HostStorageSystem.UpdateInternetScisiName and

the alias by running HostStorageSystem.UpdateInternetScisiAlias.

6 Configure target discovery by calling
HostStorageSystem.UpdateInternetScisiHbaDiscoveryProperties.

The method takes a HostInternetScisiHbaDiscoveryProperties data object that you

can configure.

7 (Optional) Set the authentication information by calling
HostStorageSystem.UpdateInternetScisiAuthenticationProperties.

The HostInternetScsiHbaAuthenticationProperties object you pass into that method

includes properties for configuring CHAP and Mutual CHAP. See the vSphere Storage
documentation for information about securing your iSCSI storage array.

8 Configure access to the targets.

vSphere Web Services SDK Programming Guide

VMware, Inc. 144

9 Rescan the HBAs.

Rescan enables the HBAs to discover the new storage devices. You can either rescan a single
HBA with HostStorageSystem.RescanHba, specifying the HBA ID as a parameter, or rescan

all HBAs using HostStorageSystem.RescanAllHba.

Creating and Managing Datastores

Each datastore is a logical container, analogous to a file system on a logical volume, where
the host places virtual disk files and other virtual machine files. Datastores hide specifics of the
physical storage device and provide a uniform model for storing virtual machine files.

The HostDatastoreSystem managed object provides methods for creating and managing

datastores. All HostDatastoreSystem methods require a managed object reference to

HostDatastoreSystem, and return a reference to the Datastore object after it is created.

HostDatastoreSystem allows you to create and expand, query, and remove or update

datastores. HostDatastoreSystem also allows you to configure a datastore principal for a host

by calling ConfigureDatastorePrincipal. All virtual machine-related file I/O is performed

under this user.

VMFS provisioning tasks are often performed as follows:

1 Call QueryAvailableDisksForVmfs to get the subset of disks that are well suited for holding

VMFS datastores.

QueryAvailableDisksForVmfs obtains a list of disks that can be used to contain VMFS

datastore extents. You can provide a datastore name to obtain the list of disks that can
contain extents for the specified VMFS datastore. The operation does not return disks
currently used by the VMFS datastore, nor does it return management LUNs and disks that
are referenced by RDMs. RDM disks are not usable for VMFS datastores.

2 Get information about provisioning options by calling one of the following methods, passing
in the selected disk:

n QueryVmfsDatastoreCreateOptions – Obtains information about options for creating a

new VMFS datastore on a disk. The method returns an array of VmfsDatastoreOption
data objects.

n QueryVmfsDatastoreExpandOptions – Obtains information about options for expanding

the extents of an existing VMFS datastore.

n QueryVmfsDatastoreExtendOptions – Obtains information about options for extending

an existing VMFS datastore for a disk.

3 If required, change the layout by calling HostStorageSystem.ComputeDiskPartitionInfo
and then HostStorageSystem.UpdateDiskPartition to resize the partition.

4 Call CreateVmfsDatastore, ExtendVmfsDatastore, or ExpandVmfsDatastore to complete

the VMFS provisioning operation.

vSphere Web Services SDK Programming Guide

VMware, Inc. 145

Accessing Datastores

The following diagram illustrates how you can access or specify datastores.

n Each Datacenter managed object has a datastore property that contains an array of

datastores.

n Each Datacenter managed object has a datastoreFolder property that is a reference to

the folder (or folder hierarchy) that contains the datastores for this datacenter.

n Each Datacenter managed object has a hostFolder property that is a reference to the

folder (or folder hierarchy) that contains the compute resources, including hosts and clusters,
for this datacenter. Each HostSystem or ComputeResource has a datastore property that is

an array of Datastore managed objects.

Figure 9-4. Datastore Managed Object

For more information about the hierarchy of managed objects, see Chapter 5 Datacenter
Inventory.

Creating and Modifying a VMFS Datastore

A datastore is a manageable storage entity, usually used as a repository for virtual machine files
including log files, scripts, configuration files, virtual disks, and so on.

VMFS is a proprietary file system VMware designed for virtual machines. VMFS is well suited for
storing a small number of large data files like virtual disks. These files are mostly used by a single
host. VMFS differs from other filesystem formats like FAT16/FAT32 and so on in that it can be
accessed by multiple hosts connected to the same SAN LUN.

vSphere Web Services SDK Programming Guide

VMware, Inc. 146

You can set up a VMFS datastore on any SCSI-based storage device that the host can access.
VMFS volume creation, extension, and expansion requires first partitioning operations and the
VMFS volume operations.

Set Up Disk Partitions

The Web Services API enables you to manage disk partitions on ESXi host storage devices.

To set up the disk partitions, use the following steps.

Procedure

1 Call HostStorageSystem.RetrieveDiskPartitionInfo to retrieve information about

existing partitions.

2 Call HostStorageSystem.ComputeDiskPartition, passing in the desired disk layout. The

server computes a new partition information object for a specific disk representing the
desired layout and returns a HostDiskPartitionInfo object that you can use in the

HostDiskPartitionSpec you pass into UpdateDiskPartitions.

3 Call HostStorageSystem.UpdateDiskPartitions to update partitions by passing in a

HostDiskPartitionSpec.

Create the VMFS Datastore

After you create disk partitions on host storage, you can configure VMFS datastores.

To create a VMFS datastore, use the following steps.

Procedure

1 Configure and install any third-party adapter your storage requires and rescan the adapters
by calling HostStorageSystem.RescanAllHba.

2 Call HostDatastoreSystem.QueryAvailableDisksForVmfs for information about disks that

can be used to contain VMFS datastore.

This method filters out disks that are currently in use by an existing VMFS unless the VMFS
using the disk is one being extended. It will also filter out management LUNs and disks that
are referenced by RDMs. These disk LUNs are also unsuited for use by a VMFS. The method
returns an array of HostScisiDisk objects.

3 Call HostDatastoreSystem.QueryVmfsDatastoreCreateOptions for information about

options for for creating a new VMFS datastore. The call returns an array of
VmfsDatastoreCreateOption data objects that allow you to access the UUIDs of suitable

data stores.

4 (Optional) If no suitable partitions for your VMFS volume exist, you might have to
create them. Use the ComputeDiskPartitionInfo and UpdateDiskPartitions methods

in HostStorageSystem.

vSphere Web Services SDK Programming Guide

VMware, Inc. 147

5 Create the datastore.

n Call HostDatastoreSystem.CreateVmfsDatastore to create a VMFS datastore. The

method takes a VmfsDatastoreCreateSpec data object that consists of a a partition,

a HostVmfsSpec, and an optional extent. The HostVmfsSpec allows you to specify the

block size, extent, major version, and volume name for the VMFS.

n Call HostDatastoreSystem.CreateNasDatastore to create a network-attached storage

based datastore.

Results

You can later expand and extend the VMFS datastore by calling one of the following methods.

n Call first QueryVmfsDatastoreExpandOptions and then ExpandVmfsDatastore to

expand an existing VMFS datastore using the specification provided in the
VmfsDatastoreExpandSpec data object (which contains the name of the extent and partition

information). ExpandVmfsDatastore increases the size of the datastore up to the full size

provisioned for the datastore, if necessary.

n Call first QueryVmfsDatastoreExtendOptions and then ExtendVmfsDatastore to

extend an existing VMFS datastore using the specification provided in the
VmfsDatastoreExtendSpec data object.

Removing and Updating Datastores

The Web Services API has methods to update and remove datastores.

n RemoveDatastore – Removes a datastore from a host.

n UpdateLocalSwapDatastore – Choose the localSwapDatastore for this host. Any

change to this setting affects virtual machines that subsequently power on or resume from a
suspended state at this host, or that migrate to this host while powered on. Virtual machines
that are currently powered on at this host are not affected.

See the vSphere API Reference for more information about the HostDatastoreSystem
operations, including constraints and limitations.

Managing VMFS Datastores with HostStorageSystem

In most cases, the Datastore methods are appropriate for creating and managing VMFS

datastores. However, in some cases the following HostStorageSystem commands are used

instead:

n AttachVmfsExtent – Extends a VMFS by attaching a disk partition as an extent.

n ExpandVmfsExtent – Expands a VMFS extent as specified by the disk partition specification.

vSphere Web Services SDK Programming Guide

VMware, Inc. 148

n FormatVmfs – Formats a new VMFS on a disk partition based on the HostVmfsSpec that

you pass in. Returns a HostVmfsVolume that represents the new VMFS file system. The

HostVmfsVolume includes the block size, list of partition names of the disk’s VMFS extents,

and other information including the UUID.

This command is a low-level API you can use to partition disks explicitly. In most cases, the
Datastore VMFS commands are more suitable.

n RescanVmfs – Rescans for new VMFS instances.

n UpgradeVmfs – Upgrades the VMFS to the current VMFS version.

Update and Upgrade with HostStorageSystem

You can use the HostStorageSystem managed object to alter characteristics of storage units.

n HostStorageSystem.UpdateScsiLunDisplayName – Update the mutable display name

associated with a SCSI LUN. The SCSI LUN to be updated is identified using the LUN UUID.

n HostStorageSystem.UpgradeVmLayout – Iterates over all registered virtual machines. For

each virtual machine, upgrades the layout and logs an event. After the method has been
called, the information in the VirtualMachineFileLayout data object data object is correct.

Managing VMFS Volume Copies (Resignaturing)

By default, ESX/ESXi hosts mount all VMFS datastores. Each VMFS datastore that is created in a
partition on a LUN has a unique UUID that is stored in the file system superblock. In addition, the
LUN ID of the source LUN is unique and is stored in the VMFS metadata.

When a LUN is replicated or a copy is made, the resulting LUN copy is identical, byte-for-byte,
with the original LUN. As a result, if the original LUN contains a VMFS datastore with UUID X,
the LUN copy appears to contain an identical VMFS datastore, or a VMFS datastore copy, with
exactly the same UUID X. ESX/ESXi can determine whether a LUN contains the VMFS datastore
copy, and considers the copy unresolved and does not mount it automatically.

To make the data on the LUN copy available, you can either force mount the copy if you are
sure the original is not in use, or you can resignature the copy. When you perform datastore
resignaturing, consider the following points:

n Datastore resignaturing is irreversible because it overwrites the original VMFS UUID.

n The LUN copy that contains the VMFS datastore that you resignature is no longer treated as
a LUN copy, but instead appears as an independent datastore with no relation to the source
of the copy.

n A spanned datastore can be resignatured only if all its extents are online.

n The resignaturing process is crash and fault tolerant. If the process is interrupted, you can
resume it later.

vSphere Web Services SDK Programming Guide

VMware, Inc. 149

n You can mount the new VMFS datastore without a risk of its UUID colliding with UUIDs of any
other datastore, such as an ancestor or child in a hierarchy of LUN snapshots.

See the vSphere Storage documentation for additional information.

Resignaturing Volumes with
ResignatureUnresolvedVmfsVolume_Task
The easiest way to resignature unresolved volumes is by using the
HostDatastoreSystem.ResignatureUnresolvedVmfsVolume_Task method. The method

assigns a new DiskUuid to a VMFS volume, but keep its contents intact. The method supports

safe volume sharing across hosts and is appropriate in most cases.

You can instead use the low-level HostStorageSystem methods to find, force mount, or

unmount unresolved volumes:

n HostStorageSystem.QueryUnresolvedVmfsVolume – Obtains the list of unbound VMFS

volumes. For sharing a volume across hosts, a VMFS volume is bound to its underlying
block device storage. When a low-level block copy is performed to copy or move the VMFS
volume, the copied volume is unbound.

n HostStorageSystem.ResolveMultipleUnresolvedVmfsVolumes – Resignatures

or force mounts unbound VMFS volumes. This method takes
a HostUnresolvedVmfsResolutionSpec data object as input. The

HostUnresolvedVmfsResolutionSpec.resolutionSpec property is an array

of HostUnresolvedVmfsResolutionSpec data objects that contain

a HostUnresolvedVmfsResolutionSpecVmfsUuidResolution enumeration. The

enumeration is either forceMount or resignature.

n UnmountForceMountedVmfsVolume – Unmounts a force mounted VMFS volume. When a

low-level block copy is performed to copy or move the VMFS volume, the copied volume is
unresolved. For the VMFS volume to be usable, a resolution operation is applied. As part of
resolution operation, you might decide to keep the original VMFS UUID. Once the resolution
is applied, the VMFS volume is mounted on the host for its use. This method allows you to
unmount the VMFS volume if it is not used by any registered virtual machines.

Managing Diagnostic Partitions

Your host must have a diagnostic partition (dump partition) to store core dumps for debugging
and for use by VMware technical support.

For more information about diagnostic bundles, see Generating Diagnostic Bundles. For
information about how to collect diagnostic partitions for a purple screen fault in ESXi, see the
VMware knowledge base article at http://kb.vmware.com/kb/1004128.http://kb.vmware.com/kb/
1004128.

vSphere Web Services SDK Programming Guide

VMware, Inc. 150

http://kb.vmware.com/kb/1004128
http://kb.vmware.com/kb/1004128

A 100MB diagnostic partition for each host is recommended. If more than one ESX/ESXi host
uses the same LUN as the diagnostic partition, that LUN must be zoned so that all the ESX/
ESXi host can access it. Each host needs 100MB of space, so the size of the LUN determines
how many servers can share it. Each ESX/ESXi host is mapped to a diagnostic slot. VMware
recommends at least 16 slots (1600MB) of disk space if servers share a diagnostic partition. You
can set up a SAN LUN with FibreChannel or hardware iSCSI. SAN LUNs accessed through a
software iSCSI initiator are not supported.

Caution If two hosts that share a diagnostic partition fail and save core dumps to the same
slot, the core dumps might be lost. To collect core dump data, reboot a host and extract log files
immediately after the host fails. If another host fails before you collect the diagnostic data of the
first host, the second host does not save the core dump.

Retrieving Diagnostic Partition Information

The HostDiagnosticSystem managed object allows you to retrieve information in several ways.

n Retrieve the HostDiagnosticPartition object from the

HostDiagnosticSystem.activePartition property to examine the properties of the

active partition.

n Call the HostDiagnosticPartition.QueryAvailablePartition method to retrieve a list

of available diagnostic partitions, in order of suitability.

n Call the HostDiagnosticPartition.QueryPartitionCreateOptions method to retrieve a

list of disks with sufficient space to contain a diagnostic partition of the specified type. The
choices are returned in order of suitability.

Create a Diagnostic Partition

Creating a diagnostic partition requires that you find a suitable partition using one of the query
methods. You can then retrieve a creation specification, and perform the actual creation.

To create a diagnostic partition, use the following steps.

Procedure

1 Find a suitable partition by calling HostDiagnosticPartition.QueryAvailablePartition
or HostDiagnosticPartition.QueryPartitionCreateOptions.

2 Call HostDiagnosticPartition.CreateDiagnosticPartition, passing in a

HostDiagnosticPartitionCreateSpec, which includes information about the diagnostic

type, id, storage type, and so on.

Results

On success, this method creates the partition and makes the partition the active partition if
specified in the active parameter. On failure, the diagnostic partition might exist, but will not be

active even if the partition was supposed to be made active.

vSphere Web Services SDK Programming Guide

VMware, Inc. 151

Sample Code Reference

The following table lists the sample applications included with the vSphere Web Services SDK
that demonstrate some of the topics discussed in this chapter.

Java (SDK\vsphere-
ws\java\JAXWS\samples\com\vmware\)

scsilun\SCSILunName.java

httpfileaccess\GetVMFiles.java

vSphere Web Services SDK Programming Guide

VMware, Inc. 152

vSphere Networks 10
Before you add storage and virtual machines to an ESXi system, you should have completed
networking setup. This chapter describes how to set up virtual switches in the vSphere
environment.

Read the following topics next:

n Virtual Switches

n Using a Distributed Virtual Switch

n VMware Standard Virtual Switch

n Sample Code Reference

Virtual Switches

vSphere supports the use of virtual switches to manage network traffic to and from virtual
machines.

n vCenter Server supports a distributed network model in which a distributed virtual switch
manages ESXi host proxy switch configuration. In the distributed network model, a host
proxy switch reflects the distributed virtual switch port settings, describes how physical
network adapters are bridged to the switch, and performs network I/O.

n On a standalone ESXi host, you can use a VMware standard virtual switch to support network
traffic to and from virtual machines on the host.

To configure a vSphere network you perform the following operations:

n Set up virtual switches

n Define portgroups

n Configure physical network adapters

Port Groups

Port groups aggregate multiple ports under a common configuration. Each port can connect to a
network adapter of a virtual machine, or an uplink adapter on the physical machine.

VMware, Inc. 153

Each port group is identified by a network label, which is unique to the current host. Network
labels make virtual machine configuration portable across hosts. All port groups in a datacenter
that are physically connected to the same network (in the sense that each can receive
broadcasts from the others) are given the same label. Conversely, if two port groups cannot
receive broadcasts from each other, they have distinct labels.

You can use a VLAN ID to restrict port group traffic to a logical Ethernet segment within the
physical network. For a port group to reach port groups located on other VLANs, the VLAN ID
must be set to 4095. If you use VLAN IDs, you must change the port group labels and VLAN IDs
together so that the labels properly represent connectivity.

Virtual Machine Network Interfaces

When you create a virtual machine, you include a VirtualMachineConfigSpec, which, in turn,

includes a VirtualDeviceConfigSpec. The device property of VirtualDeviceConfigSpec is

a VirtualDevice data object.

One of the available virtual devices is VirtualEthernetCard. You can use one of the subtypes

of VirtualEthernetCard to specify the virtual card to use and to specify the MAC address and

whether wake-on-LAN is enabled for this virtual card. See Adding Devices to Virtual Machines. A
limited number of adapters is supported. KB article 1001805 (http://kb.vmware.com/kb/1001805)
discusses available network adapters and which adapter is appropriate in which situation.

VMkernel Network Interfaces

The network services that the VMkernel provides (iSCSI, NFS, and VMotion) use a TCP/IP stack in
the VMkernel. This stack accesses various networks by attaching to one or more port groups on
one or more virtual switches.

The VMware VMkernel TCP/IP networking stack handles iSCSI, NFS, and VMotion in the following
ways.

n iSCSI as a virtual machine datastore

n iSCSI for the direct mounting of ISO files, which are presented as CD-ROMs to virtual
machines

n NFS as a virtual machine datastore

n NFS for the direct mounting of ISO files, which are presented as CD-ROMs to virtual machines

n Migration with VMotion

If you have two or more physical NICs for iSCSI, you can create multiple paths for the
software iSCSI by using port binding. For more information on port binding, see the iSCSI SAN
Configuration Guide.

vSphere Web Services SDK Programming Guide

VMware, Inc. 154

http://kb.vmware.com/kb/1001805

A freshly installed ESX/ESXi system does not include VMkernel network interfaces. When you
wish to migrate a virtual machine with VMotion, your VMkernel networking stack must be set up
properly. When you want to use storage types that use TCP/IP network communications, such as
iSCSI, you must provide a separate VMkernel network interface for that storage device. You must
create any VMkernel ports you might need (see Adding a VMkernel Network Interface).

Physical Network Adapter (pnic)

The term pnic refers to the physical network adapters as seen by the primary operating system.
When using the vSphere Web Services SDK, you can manipulate the adapter directly. When
using the vSphere Client GUI, you manipulate instead the uplink adapter. On an ESXi host, each
pnic has one associated uplink adapter.

In a vDS environment, you use a DVS uplink instead of an uplink adapter.

Using a Distributed Virtual Switch

A DistributedVirtualSwitch managed object is a virtual network switch that is located

on a vCenter Server. A distributed virtual switch manages configuration for proxy switches
(HostProxySwitch). A proxy switch is located on an ESXi host that is managed by the vCenter

Server and is a member of the switch. A distributed switch also provides virtual port state
management so that port state is maintained when vCenter Server operations move a virtual
machine from one host to another.

A proxy switch performs network I/O to support the following network traffic and operations:

n Network traffic between virtual machines on any hosts that are members of the distributed
virtual switch.

n Network traffic between a virtual machine that uses a distributed virtual switch and a virtual
machine that uses a VMware standard virtual switch.

n Network traffic between a virtual machine and a remote system on a physical network
connected to the ESXi host.

n vSphere system operations to support capabilities such as VMotion or High Availability.

A DistributedVirtualSwitch is the base distributed switch implementation. It supports a

VMware distributed virtual switch implementation and it supports third party distributed switch
implementations. The base implementation provides the following capabilities (defined in the
DVSFeatureCapability object):

n NIC teaming

n Network I/O control

n Network resource allocation

n Quality of service tag support

n User-defined resource pools

vSphere Web Services SDK Programming Guide

VMware, Inc. 155

n I/O passthrough (VMDirectPath Gen2)

A VmwareDistributedVirtualSwitch supports the following additional capabilities (defined in

the DVSFeatureCapability and VMwareDVSFeatureCapability objects):

n Backup, restore, and rollback for a VMware distributed virtual switch and its associated
portgroups.

n Maximum Transmission Unit (MTU) configuration.

n Health check operations for NIC teaming and VLAN/MTU support.

n Monitoring switch traffic using Internet Protocol Flow Information Export (IPFIX).

n Link Layer Discovery Protocol (LLDP).

n Virtual network segmentation using a Private VLAN (PVLAN).

n VLAN-based SPAN (VSPAN) for virtual distributed port mirroring.

n Link Aggregation Control Protocol (LACP) defined for uplink portgroups.

Distributed Virtual Switch Configuration

To use a distributed virtual switch, you create a switch and portgroups on a vCenter Server, and
add hosts as members of the switch.

Procedure

1 Use the Folder.CreateDVS_Task method to create a distributed virtual switch.

Use a DVSConfigSpec to create a switch for a third-party implementation. Use a

VMwareDVSConfigSpec to create a VMware distributed virtual switch.

2 Use the CreateDVPortgroup_Task method to create portgroups for host and

virtual machine network connections and for the connection between proxy switches
and physical NICs. A DistributedVirtualPortgroup specifies how virtual ports

(DistributedVirtualPort) will be used. When you create a distributed virtual switch,

the vCenter Server automatically creates one uplink portgroup (config.uplinkPortgroup).

Uplink portgroups are distributed virtual portgroups that support the connection between
proxy switches and physical NICs.

Port creation on a distributed switch is determined by the portgroup type
(DVPortgroupConfigSpec.type):

n If a portgroup is early binding (static), then DVPortgroupConfigSpec.numPorts
determines the number of ports that get created when the portgroup is created. This
number can be increased if DVPortgroupConfigSpec.autoExpand is true.

n If a portgroup is ephemeral (dynamic), then numPorts is ignored and ports are created as

needed.

You can also specify standalone ports that are not associated with a port group and
uplink ports that are created on ESXi hosts (DVSConfigSpec.numStandalonePorts).

vSphere Web Services SDK Programming Guide

VMware, Inc. 156

The DVPortgroupConfigInfo.numPorts property is the total number of ports for a

distributed virtual switch. This total includes the ports generated by the static and
dynamic portgroups and the standalone ports.

3 If you have created additional uplink portgroups, use the ReconfigureDvs_Task method to

add the portgroup(s) to the DVSConfigSpec.uplinkPortgroup array.

4 Retrieve physical NIC device names from the host
(HostSystem.config.network.pnic[].device).

5 Add host member(s) to the distributed virtual switch. To configure host members:

n Specify hosts (DVSConfigSpec.host[]).

n For each host, specify one or more physical NIC device names to identify the pNIC(s) for
the host proxy connection to the network
(DistributedVirtualSwitchHostMemberConfigSpec.backing.pnicSpec[].pnicDev
ice)

n Use the DistributedVirtualSwitch.ReconfigureDvs_Task method to update the switch

configuration.

When you add a host to a distributed virtual switch
(DistributedVirtualSwitch.config.host), the host automatically creates a proxy switch.

The proxy switch is removed automatically when the host is removed from the distributed
virtual switch.

6 Connect hosts and virtual machines to the distributed virtual switch.

Host
connection

Specify port or portgroup connections in the host virtual
NIC spec (HostVirtualNicSpec.distributedVirtualPort or

HostVirtualNicSpec.portgroup).

Virtual machine
connection

Specify port or portgroup connections in the distributed virtual port
backing (VirtualEthernetCardDistributedVirtualPortBackingInfo)

for the virtual Ethernet cards on the virtual machine
(VirtualEthernetCard.backing).

Backup, Rollback, and Query Operations

If you are using a VmwareDistributedVirtualSwitch, you can perform backup and rollback

operations on the switch and its associated distributed virtual portgroups.

vSphere Web Services SDK Programming Guide

VMware, Inc. 157

When you reconfigure a VMware distributed virtual switch (ReconfigureDvs_Task), the server

saves the current switch configuration before applying the configuration updates. The saved
switch configuration includes portgroup configuration data. The server uses the saved switch
configuration as a checkpoint for rollback operations. You can rollback the switch or portgroup
configuration to the saved configuration, or you can rollback to a backup configuration
(EntityBackupConfig).

n To backup the switch and portgroup configuration, use the
DistributedVirtualSwitchManager.DVSManagerExportEntity_Task method. The

export method produces a EntityBackupConfig object. The backup configuration contains

the switch and/or portgroups specified in the SelectionSet parameter. To backup the

complete configuration you must select the distributed virtual switch and all of its portgroups.

n To rollback the switch configuration, use the DVSRollback_Task method to determine if the

switch configuration has changed. If it has changed, use the ReconfigureDvs_Task method

to complete the rollback operation.

n To rollback the portgroup configuration, use the
DistributedVirtualPortgroup.DVPortgroupRollback_Task method to determine

if the portgroup configuration has changed. If it has changed, use the
ReconfigureDVPortgroup_Task method to complete the rollback operation.

To perform query operations on a distributed virtual switch, use the
DistributedVirtualSwitchManager methods.

VMware Standard Virtual Switch

Network setup for ESXi hosts can consist of several parts:

n Setting up one or more virtual switches. Virtual switches provide the connectivity between
virtual machines on the same host or on different hosts. Virtual switches also support
VMkernel network access for VMotion, iSCSI, and NFS. You set up virtual switches
independently on each host. See Adding a Standard Virtual Switch.

n Adding virtual machine port groups. A virtual machine always accesses the network through
a port group. See Adding a Virtual Port Group.

n Specifying the adapter for the virtual machine. This adapter is specified as a virtual device,
configured as part of virtual machine setup, and discussed in Configuring a Virtual Machine.

n Adding VMkernel network interfaces, for example, to support iSCSI storage or VMotion. See
Adding a VMkernel Network Interface.

n Configuring a physical adapter (pnic), the actual connection from the host to the network.
You can configure the pnic through the HostNetworkSystem.pnic property, which is a

PhysicalNic data object. You can specify the set of pnics associated with a virtual switch

through the VirtualSwitch.pnic property, which takes an array of physical network

adapters.

vSphere Web Services SDK Programming Guide

VMware, Inc. 158

n Network configuration for the host (IP routing, DNS, SNMP). See Adding Networking Services.

Configuring a Standard Virtual Switch

To use a VMware standard virtual switch, you use the following elements to configure the switch
on an ESXi host.

n HostNetworkSystem – Managed object that represents the host’s networking configuration.

This object’s properties point to the networking data objects you can use for network
management, including HostDnsConfig and HostIpRouteConfig.

HostNetworkSystem properties allow you to access HostNetCapabilities and

HostNetworkInfo data objects, and access and modify the HostNetworkConfig data

object.

HostNetworkSystem includes methods for retrieving and changing the network

configuration. See the API Reference for a complete list of methods and the permissions
required to run them.

n HostNetworkConfig – Allows you to specify the network configuration for the host. You

can apply the configuration by running the HostNetworkSystem.UpdateNetworkConfig
method.

n Network – Represents a network accessible by either hosts or virtual machines. This can be a

physical network or a logical network, such as a VLAN.

When you add a host to a vCenter Server system, or when you add a virtual machine to an
ESX/ESXi host, a Network is added automatically.

n HostSystem.QueryHostConnectionInfo and Datacenter.QueryConnectionInfo both

return a HostConnectInfo data object, which describes the current network configuration.

HostSNMPSystem – Supports SNMP setup. See Setting Up SNMP.

vNetwork Standard Switch Environment

A vNetwork Standard Switch (vSS) can route traffic internally between virtual machines and can
link virtual machines to external networks.

The following diagram shows the elements of a vSS environment.

vSphere Web Services SDK Programming Guide

VMware, Inc. 159

Figure 10-1. vSS Environment

Virtual Switches

At the center of networking with vSS is the virtual switch itself. The vSS can send network traffic
between virtual machines on the same host (private network) or network traffic to an external
network (public network). The public network uses the Ethernet adapter associated with the
physical host (uplink adapter).

When two or more virtual machines are connected to the same vSS, network traffic between
them is routed locally. If an uplink adapter is attached to the vSS, each virtual machine can access
the external network that the adapter is connected to.

Setting Up Networking with vSS

You can use the HostNetworkSystem managed object to access and manipulate the elements of

an ESXi network.

Retrieving Information About the Network Configuration

You can retrieve information about the network configuration as follows:

n The properties of the HostNetworkConfig object, which you access through

HostNetworkSystem.networkConfig, allow you to retrieve configuration information. This

information is comprehensive and includes the physical adapters, virtual switches, virtual
network interfaces, and so on.

You can also use HostNetworkConfig to make changes to the configuration.

n The properties of the HostNetworkInfo object, which you access through

HostNetworkSystem.networkInfo, allow you to retrieve runtime information.

vSphere Web Services SDK Programming Guide

VMware, Inc. 160

Adding a Standard Virtual Switch

You call the HostNetworkSystem.AddVirtualSwitch method to add one or more virtual

switches. Pass in the name of the virtual switch and a HostVirtualSwitchSpec data object

as parameters.

Inside HostVirtualSwitchSpec you can specify the MTU, number of ports, network policy, and

bridge specification. The bridge specifies how the virtual switch connects to the physical adapter.
The currently supported bond bridge provides network adapter (NIC) teaming capabilities
through the use of a list of physical devices and, optionally, a beacon probe to test connectivity
with physical adapters.

After you have created the virtual switch, you can connect it to a pnic for connection to the
outside, and to a VMkernel port or a port group.

To add a virtual switch, use the following steps.

Procedure

1 Obtain information about the current networking configuration.

You can use a property collector to retrieve the HostNetworkSystem managed object and

several of its properties, such as networkInfo.

2 Define a HostVirtualSwitchSpec that specifies the attributes of the virtual switch. You can

specify the number of ports (56 to 4088 on ESXi systems) and the HostNetworkPolicy. See

“Defining the Host Network Policies” on page 122.

3 Call HostNetworkSystem.AddVirtualSwitch to add a virtual switch. Specify a unique name

and a HostVirtualSwitchSpec that defines the switch attributes.

The following fragment from AddVirtualSwitch.java illustrates this.

Example: Adding a Virtual Switch

vswitchId = vSwitch42;
...
ManagedObjectReference nwSystem = configMgr.getNetworkSystem();
HostVirtualSwitchSpec spec = new HostVirtualSwitchSpec();
spec.setNumPorts(8);
service.addVirtualSwitch(nwSystem, vswitchId, spec);
System.out.println(" : Successful creating : " + vswitchId);

Adding a Virtual Port Group

Port groups allow you to differentiate between different kinds of traffic passing through a
virtual switch. You can also use port groups as a boundary for communication or for security
policy configuration. The default port groups for ESXi systems are Management Network and VM
Network.

vSphere Web Services SDK Programming Guide

VMware, Inc. 161

When you create a port group, you can specify a VLAN ID for it. VLANs are an important part of
ESXi networking because they allow you to group traffic. For example, you could create separate
network segments for VMotion, for management and for development. Using VLANS, you only
need to have a separate uplink adapter for each network segment and a single virtual switch
connecting to that adapter. That setup can greatly reduce the number of switches you need.

To add a virtual port group, use the following steps.

Procedure

1 Define a HostPortgroupSpec. For each port group, you can specify the network policy, the

VLAN ID, and the virtual switch to which the port group belongs.

2 Call HostNetworkSystem.AddPortGroup, passing in the PortGroupSpec.

Adding a VMkernel Network Interface

VMkernel network interfaces provide the network access for the VMkernel TCP/IP stack. You
must create new VMkernel ports for your ESXi system if you plan on using VMotion, VMware
FT, or iSCSI and NAS storage. A VMkernel port consists of a port on the virtual switch and a
VMkernel interface.

To add a VMkernel Network Interface to your ESXi system, use the following steps.

Procedure

1 Create a HostVirtualNicSpec data object. Inside the object, you can specify the IP

configuration in a HostIpConfig data object. For vSS, specify the portgroup property. For

vDS, specify the distributedVirtualPort property.

2 Call HostNetworkSystem.AddVirtualNic, passing in the HostVirtualNicSpec.

3 You can then use the VMkernel network interface for software iSCSI or NAS, or call the
HostVmotionSystem.SelectVnic method to use this VMkernel NIC for VMotion.

Adding a VMkernel Network Interface, a code fragment from the AddVirtualNic example,

illustrates this. The sample retrieves the IP address from the command line using the
cb.get_option call.

Example: Adding a VMkernel Network Interface

private HostVirtualNicSpec createVNicSpecification() {
 HostVirtualNicSpec vNicSpec = new HostVirtualNicSpec();
 HostIpConfig ipConfig = new HostIpConfig();
 ipConfig.setDhcp(false);
 ipAddr = cb.get_option("ipaddress");
 ipConfig.setIpAddress(ipAddr);
 ipConfig.setSubnetMask("255.255.255.0");
 vNicSpec.setIp(ipConfig);
 return vNicSpec;
}

vSphere Web Services SDK Programming Guide

VMware, Inc. 162

HostVirtualNicSpec vNicSpec = createVNicSpecification();
service.addVirtualNic(nwSystem, portGroup, vNicSpec);

Defining the Host Network Policies

When you configure host networks, you can define specific policies for the network. The
HostNetworkPolicy data object type describes network policies for both virtual switches and

port groups. If the settings are not specified for the port group explicitly, the port group inherits
policy settings from the virtual switch with which it is associated.

The policies are defined by the following data objects available as properties of
HostNetworkPolicy.

n HostNicTeamingPolicy – Defines the connection to the physical network. This includes

failure criteria, active and standby NICs, and failover and load balancing information. See NIC
Teaming.

n HostNetworkSecurityPolicy – Defines the security policies for the network. See the ESXi
Configuration Guide.

n HostNetworkTrafficShapingPolicy – Establishes parameters for three traffic

characteristics: average bandwidth, peak bandwidth, and maximum burst size.

You can also specify the VLAN policy by assigning an integer to the
HostPortgroupSpec.vlanid property. The VMkernel takes care of tagging and untagging

the packets as they pass through the virtual switch. See the HostPortgroupSpec and

HostNetworkPolicy data objects in the API Reference.

NIC Teaming

Virtual machines connect to the public network through a virtual switch, which, in turn, connects
to the physical network interface (pnic). When the physical adapter or the adapter’s network
connection fails, connectivity for the associated virtual switch and all port groups and virtual
machines is lost.

To resolve this issue, you can set up your environment so each virtual switch connects to two
uplink adapters. Each uplink adapter connects to two different physical switches. The teams can
then either share the load of traffic between physical and virtual networks among some or all of
its members, or provide passive failover in the event of a hardware failure or a network outage.

You set up NIC teaming by setting the HostNetworkPolicy. The path to the

HostNicTeamingPolicy is:

HostConfigSpec.network.vswitch[].spec.policy.nicTeaming

If you specify NIC teaming for a virtual switch, the HostVirtualSwitchSpec.bridge property

must be set to HostVirtualSwitchBondBridge.

vSphere Web Services SDK Programming Guide

VMware, Inc. 163

Figure 10-2. NIC Teaming

Setting Up IPv6 Networking

vSphere supports both Internet Protocol version 4 (IPv4) and Internet Protocol version 6 (IPv6)
environments. With IPv6, you can use vSphere features such as NFS in an IPv6 environment.

An IPv6-specific configuration in vSphere involves providing IPv6 addresses, either by entering
static addresses or by using DHCP for all relevant vSphere networking interfaces. IPv6 addresses
can also be configured using stateless autoconfiguration sent by router advertisement.

You can set up IPv6 networking for a host by changing the HostIpConfig.ipV6Config
property, which is a HostIpConfigIpV6AddressConfiguration data object.

HostIpConfigIpV6AddressConfiguration allows you to specify whether auto-configuration

is enabled, whether DHCP for ipV6 addresses is enabled, and an array of IPv6 addresses
(HostIpConfigIpV6Address data objects).

HostIpConfigIpV6Address allows you to specify all aspects of the IPv6 address including the

state of the address, the address (unless DHCP is enabled), life time, operation, origin, and prefix
length. See the API Reference. The following code fragment illustrates setting the VMkernel
NIC to get an automatic IPv6 address from router advertisements and through DHCP. The user
provides the IP address on the command line when calling the program from which the fragment
is taken. The sample retrieves the address using the cb.get_option utility applications call.

Example: IPv6 Setup

private HostVirtualNicSpec createVNicSpecification() {
 HostVirtualNicSpec vNicSpec = new HostVirtualNicSpec();
 HostIpConfig ipConfig = new HostIpConfig();

vSphere Web Services SDK Programming Guide

VMware, Inc. 164

 //setting the vnic to get an automatic ipv6 address from router advertisements
 // and through dhcp

 ipV6Config = new HostIpConfigIpV6AddressConfiguration();
 ipV6Config.setAutoConfigurationEnabled(true);
 ipV6Config.setDhcpV6Enabled(true);
 ipConfig.setIpV6Config(ipV6Config);
 vNicSpec.setIp(ipConfig);
 return vNicSpec;
....

Adding Networking Services

You can set up network services for your ESXi system by using HostConfigManager properties

and methods.

Adding an NTP Service

The HostConfigManager.dateTimeSystem property contains a HostDateTimeSystem data

object. This object allows you to perform NTP and date and time related configuration.

n Query and update the date and time information by using one of the methods defined in
HostDateTimeSystem.

n Modify the HostDateTimeSystem.dateTimeInfo property, which contains a

HostDateTimeInfo object, to set up NTP. The NTP information is stored in

the HostDateTimeInfo.ntpConfig property, which is a HostNtpConfig object. The

HostNtpConfig objects’s server property contains a list of time servers, specified by IP

address or fully qualified domain name.

Important You can start and stop the NTP daemon and retrieve information about it by
using the HostServiceSystem object.

Setting Up the IP Route Configuration

You can use the HostNetworkSystem.UpdateIPRouteConfig method to specify the IP route

configuration for an ESXi system. The method takes a HostIPRouteConfig data object as an

argument. In this object, you can specify the default gateway address and the IPv6 gateway
address.

Setting Up SNMP

Simple Network Management Protocol (SNMP) allows management programs to monitor and
control networked devices. vCenter Server and ESXi systems include different SNMP agents:

n The SNMP agent included with vCenter Server can send traps when the vCenter Server
system is started or when an alarm is triggered on vCenter Server. The vCenter Server SNMP
agent functions only as a trap emitter and does not support other SNMP operations such as
GET.

vSphere Web Services SDK Programming Guide

VMware, Inc. 165

n ESXi 4.0 includes an SNMP agent embedded in the host daemon (hostd) that can send traps

and receive polling requests such as GET requests.

Versions of ESX released before ESX/ESXi 4.0 included a Net-SNMP-based agent. You can
continue to use this Net-SNMP-based agent in ESX 4.x with MIBs supplied by your hardware
vendor and other third-party management applications. However, to use the VMware MIB files,
you must use the embedded SNMP agent. To use the NET-SNMP based agent and embedded
SNMP agent at the same time, make one of the agents listen on a nondefault port. By default,
both agents use the same port.

The SDK supports SNMP agent configuration through the HostSnmpSystem managed object. This

object includes two methods, ReconfigureSnmpAgent and SendTestNotification.

n HostSnmpSystem.ReconfigureSnmpAgent allows you to specify agent properties through

a HostSnmpConfigSpec. That data object allows you to specify the SNMP port,

read only communities, and the trap targets in an HostSnmpDestination object. The

HostSnmpDestination object allows you to specify the community, and a host and port

listening for notification.

n HostSnmpSystem.SendTestNotification allows you to test your configuration.

A HostSnmpSystemAgentLimits data object in the HostSnmpSystem.limits property specifies

limits of the agent.

Sample Code Reference

The following table lists the sample applications included with the vSphere SDK that demonstrate
how to use some of the managed objects discussed in this chapter.

Java

(SDK\vsphere-
ws\java\JAXWS\samples\com\vmware\host
)

AddVirtualNic.java

AddVirtualSwitch.java

AddVirtualSwitchPortGroup.java

RemoveVirtualNic.java

RemoveVirtualSwitch.java

RemoveVirtualSwitchPortGroup.java

vSphere Web Services SDK Programming Guide

VMware, Inc. 166

Virtual Machine Configuration 11
A virtual machine is a software computer that, like a physical computer, runs an operating system
and applications. Virtual machines are compatible with all standard x86 computers. Each virtual
machine encapsulates a complete computing environment and runs independently of underlying
hardware.

Read the following topics next:

n VirtualMachine Management Objects and Methods

n Creating Virtual Machines and Virtual Machine Templates

n Configuring a Virtual Machine

n Adding Devices to Virtual Machines

n Performing Virtual Machine Power Operations

n Registering and Unregistering Virtual Machines

n Customizing the Guest Operating System

n Installing VMware Tools

n Upgrading a Virtual Machine

VirtualMachine Management Objects and Methods

Virtual machines are the central elements of your vSphere environment.

You create a virtual machine by calling Folder.CreateVM_Task, and configure the virtual

machine by using properties and methods of the VirtualMachine managed object. Most of

the properties point to data objects that the methods use as input. Figure 11-1. VirtualMachine
Managed Object with Some Properties and Methods shows some of the properties and methods.

Client applications commonly access and manipulate the following virtual machine related
objects:

n VirtualMachine – Managed object used for most virtual machine manipulation. Includes

methods that create templates, clones, or snapshots of a virtual machine, perform power
operations and guest OS management, and install VMware Tools.

VMware, Inc. 167

n VirtualMachineConfigInfo – Data object which allows you to retrieve configuration-

specific information from a virtual machine.

n VirtualMachineCloneSpec – Data object which allows you to specify virtual machine

properties for a clone operation. Argument to VirtualMachine.CloneVM_Task.

Figure 11-1. VirtualMachine Managed Object with Some Properties and Methods

Creating Virtual Machines and Virtual Machine Templates

To create a virtual machine, you use the Folder.CreateVM_Task method. The method takes

a VirtualMachineConfigSpec data object as input argument. VirtualMachineConfigSpec
allows you to specify the attributes of the virtual machine you are creating.

If you need several identical virtual machines, you can convert an existing virtual machine to a
template and create multiple copies (clones) from the template. You can also create multiple
virtual machines by cloning an existing virtual machine directly.

Creating a Virtual Machine Using VirtualMachineConfigSpec

Use the Folder.CreateVM_Task method to create a virtual machine by specifying its attributes.

You must specify either a host or a resource pool (or both). The virtual machine uses the CPU
and memory resources from the host or resource pool.

vSphere Web Services SDK Programming Guide

VMware, Inc. 168

Calling the CreateVM_Task Method

Create a virtual machine by calling the Folder.CreateVM_Task method with the following

arguments:

n _this —Folder where you want to place the virtual machine.

n config— VirtualMachineConfigSpec data object that specifies CPU, memory, networking,

and so on. See Specifying Virtual Machine Attributes with VirtualMachineConfigSpec)

n pool— Resource pool for the virtual machine to draw resources from.

n host— HostSystem managed object that represents the target host on which to run the

virtual machine. If you invoke this method on a standalone host, omit this parameter. If the
target host is part of a VMware DRS cluster, this parameter is optional; if no host is specified,
the system selects one.

Important All objects must be located in the same datacenter.

Specifying Virtual Machine Attributes with VirtualMachineConfigSpec

The actual customization of the virtual machine happens through the properties of the
VirtualMachineConfigSpec that is passed in as an argument to Folder.CreateVM_Task. For

example, you can specify the name, boot options, number of CPUs, and memory for the virtual
machine. All properties of VirtualMachineConfigSpec are optional to support incremental

changes. See the API Reference.

The following example fragment from the VMCreate sample program illustrates how to define a

VirtualMachineConfigSpec.

Example: Defining a VirtualMachineConfigSpec Data Object

VirtualMachineConfigSpec vmConfigSpec = new VirtualMachineConfigSpec();
 ...
 vmConfigSpec.setName(“MyVM”);
 vmConfigSpec.setMemoryMB(new Long(Integer.parseInt 500));
 vmConfigSpec.setNumCPUs(Integer.parseInt 4);
 vmConfigSpec.setGuestId(cb.get_option("guestosid"));
 ...

The VMware SDK SDK/samples/Axis/java/com/vmware/apputils/vim/VMUtils.java
sample defines a more comprehensive virtual machine that also includes a Floppy, CD-ROM, disk,
and virtual NIC. See Configuring a Virtual Machine for a discussion of commonly set properties.

When you create a virtual machine, the virtual machine files are added at the virtual machine’s
storage location. See Table 11-1. Default Files.

vSphere Web Services SDK Programming Guide

VMware, Inc. 169

Additional Configuration Information

The VirtualMachineConfigInfo and VirtualMachineConfigSpec objects provide the

extraConfig property for additional configuration information. The extraConfig property is an

array of key/value pairs that identify configuration options. The Server stores the extraConfig
options in the .vmx file for the virtual machine. As the vSphere API evolves from version to

version, an extraConfig option may become a standard configuration property that is part of the
defined inventory data model. In this case, you must use the standard data model property for
access; you cannot use the extraConfig property.

Creating Virtual Machine Templates

Templates allow you to create multiple virtual machines with the same characteristics, such as
resources allocated to CPU and memory, or type of virtual hardware. A virtual machine template
is a virtual machine that cannot be powered on and that is not associated with a resource pool.

You can convert any powered off virtual machine to a template by calling
VirtualMachine.MarkAsTemplate. After the conversion, the original virtual machine no longer

exists. You can use the template to create multiple clones of the same configuration.

Cloning a Virtual Machine

A clone is a copy of a virtual machine. The main difference between a virtual machine and a clone
is that the VirtualMachine.config.template property is set to true.

You can create a clone in one of the following ways:

n If you no longer need a specific instance of a virtual machine, but you want to use the virtual
machine’s configuration as a template, use the VirtualMachine.MarkAsTemplate method.

This method sets the config.template property to true, and disables the virtual machine.

n If you want to use an existing virtual machine as a template, but keep the virtual machine, call
the VirtualMachine.CloneVM_Task method to create a duplicate of the virtual machine.

If you use the VirtualMachine.CloneVM_Task method, you can customize certain attributes of

the clone by specifying them in the VirtualMachineCloneSpec data object you pass in when

you call the method.

The following code fragment from VMClone.java illustrates how you can customize a clone and

specify a new location for it.

Example: Cloning a Virtual Machine

VirtualMachineCloneSpec cloneSpec = new VirtualMachineCloneSpec();
VirtualMachineRelocateSpec relocSpec = new VirtualMachineRelocateSpec();
cloneSpec.setLocation(relocSpec);
cloneSpec.setPowerOn(false);
cloneSpec.setTemplate(false);

String clonedName = cloneName;

vSphere Web Services SDK Programming Guide

VMware, Inc. 170

ManagedObjectReference cloneTask
 = service.cloneVM_Task(vmRef, vmFolderRef, clonedName, cloneSpec);

The VirtualMachine.CloneVM_Task method takes the source virtual machine, target folder,

name, and VirtualMachineCloneSpec as arguments.

The VirtualMachineCloneSpec data object includes the location, power state, and whether

the clone should be a template. The location, in turn, is a VirtualMachineRelocateSpec data

object that specifies the target location (datastore, disk, and host or resource pool) and any
transformation to be performed on the disk.

Converting a Template to a Virtual Machine

You can change a template back to an operational virtual machine.

n To convert the template to a virtual machine, call the MarkAsVirtualMachine method on the

template. You must specify a resource pool and, optionally, a host for the virtual machine.
Host and resource pool must be under the same ComputeResource. When the operation

completes, the template no longer exists.

n To keep the template, clone the template by calling the CloneVM_Task method on the

template. In the VirtualMachineCloneSpec (the spec parameter), set the template
property to false.

Accessing Information About a Virtual Machine

After you have created a virtual machine, you can retrieve information about the virtual machine
through the VirtualMachineConfigInfo properties. See the API Reference for a complete list.

Checking Default Files

After you have created a virtual machine, several files are generated and placed in the directory
specified in the VirtualMachineConfigSpec.files property.

Table 11-1. Default Files

File Usage File Description File Format

.vmx .vmname.vmx Virtual machine configuration file. ASCII

.vmxf vmname.vmxf Additional virtual machine configuration files, available, for
example, with teamed virtual machines.

ASCII

.vmdk vmname.vmdk Virtual disk file. ASCII

.flat.vmd
k

vmname.flat.vm
dk

Preallocated virtual disk in binary format. Binary

.vswp vmname.vswp Swap file.

.nvram vmname.nvram or
nvram

Non-volatile RAM. Stores virtual machine BIOS information.

.vmss vmname.vmss Virtual machine suspend file.

vSphere Web Services SDK Programming Guide

VMware, Inc. 171

Table 11-1. Default Files (continued)

File Usage File Description File Format

.log vmware.log Virtual machine log file. ASCII

#.log vmware-#.log Old virtual machine log files. # is a number starting with 1. ASCII

.vmtx vmname.vmtx Virtual machine template file. ASCII

If you are using snapshots, the following additional files might be available. See Snapshots.

File Extension Usage File Description

.vmsd vmname.vms
d

Virtual machine snapshot file.

.vmsn vmname.vms
n

Virtual machine snapshot data file.

**.delta.vmdk Snapshot difference file. A number preceding the extension increases
with more snapshots.

**.vmdk Metadata about a snapshot.

-Snapshot#.vmsn Snapshot of virtual machine memory. Snapshot size is equal to the size of
you virtual machine’s maximum memory.

Checking Default Devices

When you create a virtual machine, you are also creating a set of default devices, based
on the hardware version associated with your SDK. You can see these devices using the
EnvironmentBrowser.QueryConfigOption method. For example, the IDE controllers are

created by default. Many of these default devices contain properties that you cannot change.

However, you can add the following optional devices to the default
set: VirtualSerialPort, VirtualParallelPort, VirtualFloppy, VirtualCdrom,
VirtualUSB, VirtualEthernetCard, VirtualDisk, and VirtualSCSIPassthrough. See the

VirtualDevice Data Object in the API Reference for more information about each of these optional
devices.

Caution Do not try to change default device properties using the
VirtualMachineConfigSpec.deviceChange method discussed in Adding Devices to Virtual

Machines, because the deviceChange method is not applicable to default device properties.

Configuring a Virtual Machine

You can configure a virtual machine during creation (Folder.CreateVM_Task) or cloning

(VirtualMachine.CloneVM_Task). You can also reconfigure a virtual machine using

VirtualMachine.ReconfigVM_Task.

vSphere Web Services SDK Programming Guide

VMware, Inc. 172

In vSphere 5.5 and later, the ReconfigVM_Task method will throw an error when it attempts to

change certain virtual machine properties while the virtual machine is powered on. In previous
releases, the server would modify the properties in the configuration specification and the
changes would take effect after the virtual machine resets, reboots, or performs a fast suspend
and resume.

Since vSphere 5.5, a reconfigure operation modifies the virtual machine in real time, so that the
virtual machine properties have been changed by the time the method returns control to the
client.

You cannot reconfigure a powered on virtual machine successfully if you specify any of the
following properties in the VirtualMachineConfigSpec when you call the ReconfigVM_Task
method.

Property VirtualMachineConfigSpec Path

VirtualDevice.unitNumber deviceChange.device.unitNumber

VirtualDevicePciBuslSlotInfo.pciSlotNumber deviceChange.device.slotInfo.pciSlotNumber

VirtualDiskFlatVer1BackingInfo.diskMode

VirtualDiskFlatVer2BackingInfo.diskMode

VirtualDiskRawDiskMappingVer1BackingInfo.diskMode

VirtualDiskSeSparseBackingInfo.diskMode

VirtualDiskSparseVer1BackingInfo.diskMode

VirtualDiskSparseVer2BackingInfo.diskMode

deviceChange.device.backing.diskMode

VirtualDiskFlatVer2BackingInfo.digestEnabled

VirtualDiskSeSparseBackingInfo.digestEnabled

deviceChange.device.backing.digestEnabled

VirtualMachineConfigSpec.changeTrackingEnabled changeTrackingEnabled

VirtualEthernetCard.addressType deviceChange.device.addressType

VirtualEthernetCard.macAddress deviceChange.device.macAddress

VirtualEthernetCard.wakeOnLanEnabled deviceChange.device.wakeOnLanEnabled

VirtualSCSIController.sharedBus deviceChange.device.sharedBus

VirtualSerialPort.yieldOnPoll deviceChange.device.yieldOnPoll

VirtualUSBController.autoConnectDevices

VirtualUSBXHCIController.autoConnectDevices

deviceChange.device.autoConnectDevices

VirtualUSBController.ehciEnabled deviceChange.device.ehciEnabled

VirtualMachineVideoCard.useAutoDetect deviceChange.device.useAutoDetect

VirtualMachineVideoCard.videoRamSizeInKB deviceChange.device.videoRamSizeInKB

VirtualMachineVideoCard.numDisplays deviceChange.device.numDisplays

VirtualMachineVideoCard.use3dRendererSupported deviceChange.device.use3dRendererSupported

vSphere Web Services SDK Programming Guide

VMware, Inc. 173

The API Reference lists all properties and includes information about required permissions
for these configuration methods. The following sections describe some commonly specified
attributes.

Name and Location

You can specify the display name for the virtual machine by setting the
VirtualMachineConfigSpec.name property. Any % (percent) character used in this name
parameter must be escaped, unless it is used to start an escape sequence. Clients can also
escape any other characters in this name parameter.

Use the annotation field to provide a description of the virtual machine. To remove an existing

description, specify the empty string as the value of annotation.

The location of the virtual machine is determined implicitly during creation because you call a
Folder.CreateVM_Task method and specify resource pool and optional target host the virtual

machine should belong to. See Chapter 16 Resource Management for a discussion of resource
pools and virtual machine location.

Hardware Version

The hardware version of a virtual machine indicates the lower-level virtual hardware features
a virtual machine supports, such as BIOS, number of virtual slots, maximum number of CPUs,
maximum memory configuration, and other hardware characteristics.

For a newly created virtual machine, the default hardware version is the most recent version
available on the host where the virtual machine is created. To increase compatibility, you
might want to create a virtual machine with a hardware version older than the highest
supported version. You can do so by specifying the VirtualMachineConfigSpec.version
property during virtual machine creation. For existing virtual machines, call the
VirtualMachine.UpgradeVM_Task method.

The hardware version of a virtual machine can be lower than the highest version supported by
the ESXi host it is running on under the following conditions:

n You migrate a virtual machine to a newer version of ESXi after it was created on a host that
was running an earlier version of ESXi.

n You create a virtual machine on a newer version of ESXi by using an existing virtual disk that
was created on a host that was running an earlier version of ESXi.

n You add a virtual disk created on a host that was running an earlier version of ESXi to a virtual
machine created on a newer version of ESXi.

Virtual machines with hardware versions lower than 4 can run on ESX/ESXi 4.x hosts but have
reduced performance and capabilities. In particular, you cannot add or remove virtual devices on
virtual machines with hardware versions lower than 4 when they reside on an ESX/ESXi 4.x host.
To make full use of these virtual machines, upgrade the virtual hardware.

vSphere Web Services SDK Programming Guide

VMware, Inc. 174

Boot Options

You can control a virtual machine’s boot behavior by setting the
VirtualMachineConfigSpec.bootOptions property. The VirtualMachineBootOptions data

object in that property allows you to specify the following properties:

n bootDelay – Delay before starting the boot sequence, in milliseconds.

n bootRetryDelay – Delay before a boot retry, in milliseconds. This property is only

considered if the bootRetryEnabled property is set to true.

n bootRetryEnabled – If set to true, a virtual machine that fails to boot tries again after the

bootRetryDelay time period has elapsed.

n enterBIOSSetup – If set to true, the virtual machine enters BIOS setup the next time it

boots. The virtual machine resets this flag to false so subsequent boots proceed normally.

Operating System

The guest operating system that you specify affects the supported devices and available number
of virtual CPUs. You specify the guest operating system in the following two properties:

n guestosid – Specify one of the constants in the VirtualMachineGuestOsIdentifier as a

string.

n alternateGuestName – Full name for the guest operating system. Use this property

if guestosid is one of the values of VirtualMachineGuestOsIdentifier starting with
other*.

CPU and Memory Information

To manage compute and memory resources at the virtual machine level, you use several
properties of the VirtualMachineConfigSpec data object. These properties specify the CPU

and memory configuration for the virtual machine. You can also specify the operational
boundaries for resource allocation, and the priority of the virtual machine in case of resource
contention.

Configuring Virtual CPUs and Memory

To configure the capabilities of a virtual machine, you use properties of the
VirtualMachineConfigSpec data object to specify the machine characteristics available to the

guest operating system. The guest uses these capabilities in the same way as resources on a
physical machine.

Configuring Virtual CPUs

Set the number of virtual CPU cores for the virtual machine with the
VirtualMachineConfigSpec.numCPUs property. Legal values for this property change depending

on the guestosid value you specify. If you use VirtualMachineConfigSpec to update the virtual

machine properties, you can omit this property to leave it unchanged.

vSphere Web Services SDK Programming Guide

VMware, Inc. 175

The guest operating system acts as if it had numCPUs cores available at all times, but the host's

physical resources are shared by all its virtual machines. The host allocates physical cores in time
slices aa backing for virtual cores. For information about how to specify guidance for resource
allocation, see Configuring Resource Allocation Constraints for Virtual Machines.

Configuring Multi-Core CPUs

Set the number of cores per CPU chip with the VirtualMachineConfigSpec.numCoresPerSocket
property. The value must be an integral divisor of VirtualMachineConfigSpec.numCPUs. The

default value is 1 if the property is omitted for virtual machine creation. If you use

VirtualMachineConfigSpec to update the virtual machine properties, you can omit this property

to leave it unchanged.

Configuring Memory

Set the RAM size for a virtual machine with the VirtualMachineConfigSpec.memoryMB property. If

you use VirtualMachineConfigSpec to update the virtual machine properties, you can omit this

property to leave it unchanged.

The guest operating system acts as if it had memoryMB available at all times, but the host's physical

resources are shared by all its virtual machines. The amount of physical memory available as
backing for virtual machines can vary over time, and it can affect virtual machine performance.
For information about how to specify guidance for resource allocation, see Configuring Resource
Allocation Constraints for Virtual Machines.

CPU Processors and Memory Affinity

If your virtual machine is on an ESXi system, and if you have a license that supports Symmetric
Multiprocessors (SMP), you can configure the virtual machine to have multiple virtual CPUs by
setting cpuAffinity and memoryAffinity. You define a set of integers that represents the

processors (for CPU) and NUMA nodes (for memory). If you are reconfiguring the affinity setting
and leave the array empty, any existing affinity is removed. See the Resource Management Guide
for a discussion of NUMA nodes and affinity.

CPU Features

You can use the VirtualMachineConfigSpec.cpuFeatureMask[].info property to represent

the CPU features requirements for a virtual machine or guest operating system. See the
HostCpuIdInfo data object discussion in the API Reference for a detailed discussion.

CPU and Memory Modification for Running Virtual Machines

Set CpuHotAddEnabled and CpuHotRemoveEnabled to specify whether virtual processors can

be added to or removed from a virtual machine while the virtual machine is running. Set
MemoryHotAddEnabled to specify whether memory can be added while the virtual machine is

running.

vSphere Web Services SDK Programming Guide

VMware, Inc. 176

Configuring Resource Allocation Constraints for Virtual Machines

The host hypervisor allocates physical resources as backing for the virtual resources needed
by guest operating systems. You can specify resource allocation preferences that guide and
constrain the hypervisor when allocating resources to running virtual machines.

To specify allocation preferences for CPU and memory, use the cpuAllocation and

memoryAllocation properties of VirtualMachineConfigSpec. Both properties are data

objects of type ResourceAllocationInfo objects. The ResourceAllocationInfo object has

properties to specify upper and lower allocation limits, and properties to specify relative priorities
when virtual machines contend for resources.

Resource Total

VM cannot use
more than its limit

VM limit

VM reservation

0

VM shares can be
used here to resolve
resources contention.

VM does not
start unless reserved
amount is available

Resource Pool usage
(compute or memory)

To specify boundaries for resource allocation, use these properties of
ResourceAllocationInfo:

n reservation – Lower limit for resource allocation to the virtual machine. If the hypervisor

cannot reserve this amount, it does not start the virtual machine. If the running virtual
machine uses less than its reserved amount, other running virtual machines can use a part
of the reserved resources temporarily.

vSphere Web Services SDK Programming Guide

VMware, Inc. 177

n limit – Upper limit for CPU or memory resources assigned to this virtual machine. The virtual

machine does not exceed this limit, even if unused resources are available. This property is
typically used to limit the impact of the virtual machine on other running virtual machines.
If the property is set to -1, the configured virtual memory size or the configured number of
virtual cores limits the resource allocation.

Note Although the number of virtual CPU cores limits the compute resource allocated, the
virtual bandwidth allocated also depends on the speed of the physical CPU cores assigned as
backing.

To specify preferences for resource allocation in case of contention, use the shares property of

ResourceAllocationInfo. The shares property is a nested data object of type SharesInfo,

which specifies a relative priority for resolving resource contention between virtual machines. The
SharesInfo data object has two properties, level and shares:

n level – An enum type with four potential values: high, normal, low, and custom. If you

specify the value custom, you must also specify the shares property. If you specify any

other value for level, the shares property is ignored.

n shares – In a situation of resource contention, the shares value is compared against the

shares values of other virtual machines, and resources are allocated first to the virtual

machine with the highest shares value.

The most direct way to specify resource priority is to set the shares values manually. This is

most useful in environments where all virtual machines use custom shares values. In a mixed

environment, the configuration settings do not compare directly, which can lead to unexpected
results.

A more sophisticated way of specifying priority is to specify high, normal, or low for the level
property. These settings cause the host to calculate the shares of a virtual machine in a way that
factors in the configured memory size or the configured virtual CPU cores of the virtual machine.
The result gives more priority shares to virtual machines with larger configurations.

Note Both the custom shares values and the calculated shares values prioritize virtual machines
only among their siblings running in the same resource pool. For a system of virtual machines
running only in the default root resource pool, determining priority is fairly simple. For data
centers with nested resource pools, a virtual machine's priority in the larger context of all running
virtual machines depends also on the priority of its parent resource pool.

For a detailed examination of resource pools and how they affect priority shares calculations,
see Resource Management. The Resource Management Guide includes a detailed discussion of
resource allocation in the vSphere environment.

Networks

You configure network settings so that a virtual machine can communicate with the host and with
other virtual machines.

vSphere Web Services SDK Programming Guide

VMware, Inc. 178

Virtual Network Interfaces

You can add a virtual network interface to a virtual machine using a subclass of
VirtualEthernetCard, you can set the addressType to Manual, Generated, or Assigned. If

you choose Assigned, you can specify a MAC address explicitly.

For more information about virtual devices in general, see Adding Devices to Virtual Machines.

The number of virtual network interfaces depends on the hardware version you specify for a
virtual machine. Hardware version 7 virtual machines support up to ten virtual NICs. Hardware
version 4 virtual machines support up to four virtual NICs.

Virtual Machine MAC Address

Upon virtual machine creation, ESXi or vCenter Server systems assign each virtual network
interface its own unique MAC address. The first three bytes of the MAC address that is generated
for each virtual network adapter consists of a manufacturer-specific Organizationally Unique
Identifier (OUI). The MAC address-generation algorithm produces the other three bytes. vSphere
generates MAC addresses that are checked for conflicts. After the MAC address has been
generated, it does not change unless the virtual machine is moved to a different location.

All MAC addresses that have been assigned to virtual network interfaces of running and
suspended virtual machines on a given physical machine are tracked. The MAC address of
a powered off virtual machine is not checked against those of running or suspended virtual
machines. It is possible that a virtual machine acquires a different MAC address after a move.

The ESXi Configuration Guide discusses virtual machine MAC addresses in detail.

Fibre Channel NPIV Settings

N-port ID virtualization (NPIV) supports sharing a single physical FC HBA port among multiple
virtual ports, each with unique identifiers. This capability lets you control virtual machine access
to LUNs on a per-virtual machine basis.

Each virtual port is identified by a pair of world wide names (WWNs): a world wide port name
(WWPN) and a world wide node name (WWNN). These WWNs are assigned by vCenter Server.
For detailed information on how to configure NPIV for a virtual machine, see the Fibre Channel
SAN Configuration Guide.

NPIV support is subject to the following limitations:

n NPIV must be enabled on the SAN switch. Contact switch vendors for information about
enabling NPIV on their devices.

n NPIV is supported only for virtual machines with RDM disks. Virtual machines with regular
virtual disks continue to use the WWNs of the host’s physical HBAs.

n Virtual machines on a host have access to a LUN using their NPIV WWNs if the physical HBAs
on the ESXi host have access to a LUN using its WWNs. Ensure that access is provided to
both the host and the virtual machines

You can set up NPIV with the VirtualMachineConfigSpec properties that start with npiv.

vSphere Web Services SDK Programming Guide

VMware, Inc. 179

File Locations

File locations for a virtual machine are specified in the following properties:

n VirtualMachineConfigSpec.files is a VirtualMachineFileInfo data object that allows

you to specify the log directory, snapshot directory, suspend directory, and configuration file
location. Most locations have a default that you can change as needed.

n VirtualMachineConfigSpec.locationID is a 128-bit hash based on the virtual machine’s

configuration file location and the UUID of the host the virtual machine is assigned to. This
property is not usually set by developers; however, clearing this property by setting it to an
empty string is recommended if you move the virtual machine.

If a virtual machine’s VirtualMachineCapability.swapPlacementSupported property

is true for a virtual machine, you can specify a value for the

VirtualMachineConfigSpec.swapPlacement property. The value must be one of the values

of the VirtualMachineConfigInfoSwapPlacementType enumeration, as a string.

Adding Devices to Virtual Machines

You can add devices to a virtual machine during creation using the
VirtualMachineConfigSpec.deviceChange property, which is a VirtualDeviceSpec. You

specify the host device that the virtual device should map to by using a backing object. A
backing object represents the host device associated with a virtual device.

n Backing option objects – You can find out which devices the host supports by extracting the
relevant backing option object.

n Backing information object – The backing information object allows you to supply data for
virtual device configuration. You access a VirtualDeviceBackinInfo object as follows:

VirtualMachineConfigSpec.deviceChange[].device.backing

To add a device to a virtual machine, you must first find out which devices are supported on the
corresponding ESXi host, and then specify a VirtualDevice object. Perform these tasks to add

a device to a virtual machine:

vSphere Web Services SDK Programming Guide

VMware, Inc. 180

Procedure

1 Find out which devices your ESXi system supports by calling the QueryConfigOption
method, which you can access through the VirtualMachine.environmentBrowser
property. The method returns a VirtualMachineConfigOption data object that specifies

what the ESXi supports. For example, VirtualMachineConfigOption.hardwareOptions
includes information about supported CPU and memory and an array of
VirtualDeviceOption data objects.

Note You cannot use the QueryConfigOption method to create another instance of a

default device. If you attempt to add a default device, such as an IDE controller, the server
ignores the operation.

2 Specify the backing information object for the device. The actual process for defining the
object differs for different objects. For example, for a CD-ROM passthrough device, you use a
VirtualCdromPassthroughBackingInfo device. The VirtualDevice.backing property is

a VirtualDeviceBackingInfo object which is extended by devices.

The following code fragment adds a CD-ROM passthrough device:

VirtualCdromPassthroughBackingInfo vcpbi = new VirtualCdromPassthroughBackingInfo();
// Does the virtual device have exclusive access to the CD-ROM device?
vcpbi.setExclusive(false);
// Specifies the device name.
vcpbi.setDeviceName('cdrom0');

3 Specify connection information for the device.

The VirtualDevice.connectable property is a VirtualDeviceConnectInfo data object.

This object provides information about restrictions on removing the device while a virtual
machine is running. This property is null if the device is not removable.

VirtualDeviceConnectInfo vdci = new VirtualDeviceConnectInfo();
// Allow the guest to control whether the virtual device is connected?
vdci.setAllowGuestControl(false);
// Is the device currently connected?
vdci.setConnected(true);
// Connect the device when the virtual machine starts?
vdci.setStartConnected(true);

4 Define the controller key, the virtual device key, and the unit number.

You define these items with the integer properties: controllerKey, key, and unitNumber.

See the VirtualDevice data object in the API Reference.

vSphere Web Services SDK Programming Guide

VMware, Inc. 181

5 Specify device Information.

The deviceInfo property is a Description data object that has a name property and a

summary property. You can supply a string value for each, describing the device.

Description vddesc = new Description();
vddesc.setLabel('CD-ROM Device cdrom0');
vddesc.setSummary('The CD-ROM device for this virtual machine.');

6 Specify the virtual device as the device property of a VirtualDeviceConfigSpec.

7 Specify the VirtualDeviceConfigSpec as the deviceChange property to the

VirtualMachineConfigSpec that you pass in to a Folder.CreateVM_Task or

VirtualMachine.ReconfigVM_Task method.

Example

Here’s the complete code fragment for a CD-ROM passthrough device:

VirtualDevice vd = new VirtualDevice();
vd.setBacking(vcpbi);
vd.setConnectable(vdci);
vd.setControllerKey(257);
vd.setDeviceInfo(vddesc);
vd.setKey(2);
vd.setUnitNumber(25);

Performing Virtual Machine Power Operations

Just like physical machines, virtual machines have power states.

n Powered on – The virtual machine is running. If no OS has been installed, you can perform OS
installation as you would for a physical machine.

n Powered off – The virtual machine is not running. You can still update the software on the
virtual machine’s physical disk, which is impossible for physical machines.

n Suspended – The virtual machine is paused and can be resumed; like a physical machine in
standby or hibernate state.

Important Before you power on a virtual machine, you must make sure that the host
has sufficient resources. You must have enough memory for the virtual machine, and some
memory overhead. See Querying Virtual Machine Memory Overhead.

VirtualMachine power operations allow you to change the power state. Each operation is

sensitive to the current power state, for example, powering on a powered off virtual machine has
the desired result while powering on a powered on virtual machine results in an error. You must
check the current state before you run one of these tasks.

n PowerOnVM_Task – Powers on a virtual machine. If the virtual machine is suspended, this

method resumes execution from the suspend point.

vSphere Web Services SDK Programming Guide

VMware, Inc. 182

n PowerOffVM_Task – Powers off a virtual machine.

n ResetVM_Task – Resets power on this virtual machine. If the current state is poweredOn,

ResetVM_Task first performs a hard powerOff operation. After the power state is

poweredOff, ResetVM_Task performs a powerOn operation.

Although this method functions as a powerOff followed by a powerOn, the two operations

are atomic with respect to other clients, meaning that other power operations cannot be
performed until the reset method completes.

n SuspendVM_Task – Suspends the virtual machine. You can later power on the suspended

virtual machine to the same state.

Virtual machines are often configured to start up the guest operating system when they are
started, and try to shut down the guest operating system when being shut down. However,
starting and stopping a virtual machine differs from starting and stopping the guest operating
system (see Customizing the Guest Operating System).

Important Power operations might affect other virtual machines that are participating in a DRS
cluster or VMware HA. See Chapter 16 Resource Management for information about DRS clusters
and VMware HA.

You can use the Datacenter.PowerOnMultiVM_Task to power on multiple virtual machines in

a datacenter. Pass an array of VirtualMachine managed object references and an array of

option values to the method. If any of the virtual machines in the list is manually managed
by VMware DRS, the system generates a DRS recommendation that the user needs to apply
manually. Standalone or DRS disabled virtual machines are powered on for the current host.
Virtual machines managed by DRS, to be placed by DRS, are powered on for the recommended
host.

Registering and Unregistering Virtual Machines

When you create a virtual machine, it becomes part of the inventory (inside the folder from which
you called the creation method by default), and it is registered. If you copy virtual machine files
to relocate the virtual machine, or if you remove the files from the inventory using the vSphere
Client, it becomes unregistered and unusable. You cannot power on a virtual machine that is not
part of the inventory.

To restore the virtual machine to the inventory, and make it usable again, you can use the
RegisterVM_Task method, defined in the Folder managed object. You can register the virtual

machine to a host or to a resource pool. You can register the virtual machine as a template if you
want to use it to clone other virtual machines from.

vSphere Web Services SDK Programming Guide

VMware, Inc. 183

The ColdMigration.java sample illustrates both registering and reconfiguring a virtual

machine. At the heart of the sample is the following call, which registers the virtual machine.
Arguments include the virtual machine’s current folder, datastore path, and name, whether to
register as a template, and the resource pool or host to register the machine in.

ManagedObjectReference taskmor = cb.getConnection().getService().registerVM_Task(
 vmFolderMor,vmxPath,getVmName(),false,resourcePool,host);

After registration, the virtual machine takes its resources (CPU, memory, and so on) from the
resource pool or host to which it is registered.

The RemoveManagedObject.java sample illustrates unregistering a virtual machine.

Customizing the Guest Operating System

You install the guest operating system on the virtual machine just as you would install it on a
physical machine. Afterwards, you can use the Web Services API to retrieve information and
perform some customization if VMware Tools is installed on top of the guest operating system.

VirtualMachine includes the following methods for managing the guest operating system:

n ShutdownGuest and RebootGuest shut down and reboot the guest OS, and StandbyGuest
puts the guest in hybernate mode. In each case, you perform the action on the guest OS. For
example, you might shut down Windows but leave the virtual machine running.

n ResetGuestInformation clears cached guest information. Guest information can be cleared

only if the virtual machine is powered off. Use this method if stale information is cached,
preventing reuse of an IP address or MAC address.

n SetScreenResolution sets the console screen size of the guest operating system. When

you call this method, the change is reflected immediately the virtual machine console you can
access in the vSphere Client.

You can customize the identity and network settings of the guest OS with the
CustomizationSpec data object that is a parameter to VirtualMachine.CustomizeVM_Task.

The CustomizationSpec is also a property of the VirtualMachineCloneSpec you pass in when

cloning a virtual machine.

The settings you customize with this method are primarily virtual machine settings, but because
the virtual machine and the guest OS share the information, you are also customizing the guest
OS with this method.

The CustomizationSpec allows you to set the following properties:

n encryptionKey – Array of bytes that can be used as the public key for encrypting

passwords of administrators.

n globalIPSettings – Contains a CustomizationGlobalIPSettings data object which

specifies a list of DNS servers and a list of name resolution suffixes for the virtual network
adapter.

vSphere Web Services SDK Programming Guide

VMware, Inc. 184

n identity – Allows you to specify the network identity and settings, similar to the Microsoft

Sysprep tool.

n nicSettingMap – Custom IP settings that are specific to a particular virtual network adapter.

n options – Optional operations (either LinuxOptions or WinOptions).

Installing VMware Tools

VMware Tools is a suite of utilities that enhances the performance of a virtual machine's guest
operating system and improves virtual machine management. For each guest OS, VMware
provides a specific binary-compatible version of VMware Tools. The SDK requires that you install
VMware Tools, or some operations related to the guest operating system fail.

Important You must install the guest operating system before you install VMware Tools.

With VMware Tools installed on the guest OS, the virtual machine obtains its DNS (domain name
server) name and an IP address and is therefore reachable over the network.

VirtualMachine includes three methods for automating installation and upgrade of VMware

Tools.

n MountToolsInstaller – Mounts the VMware Tools CD installer as a CD-

ROM for the guest operating system. To monitor the status of the tools
installallation, check GuestInfo.toolsStatus. Check GuestInfo.toolsVersionStatus
and GuestInfo.toolsRunningStatus for related information.

n UnmountToolsInstaller – Unmounts the VMware Tools installer CD.

n UpgradeToolsTask – Performs an upgrade of VMware Tools. This method assumes

VMware Tools has been installed and is running. The method takes one argument,
InstallerOptions, which allows you to specify command-line options passed to the

installer to modify the installation procedure for tools.

Use theToolsConfigInfo data object in VirtualMachineConfigSpec.toolsInfo property to

specify the settings for the VMware Tools software running on the guest operating system.

Upgrading a Virtual Machine

You can upgrade virtual machine hardware by running the VirtualMachine.UpgradeVM_Task
method. The method upgrades this virtual machine's virtual hardware to the latest revision that
is supported by the virtual machine's current host. You can specify the version number as an
argument. This method is useful if you want to run your virtual machine on a newer hypervisor
that supports newer versions of the hardware.

vSphere Web Services SDK Programming Guide

VMware, Inc. 185

Virtual Machine Management 12
Virtual machines can perform like physical computers and can be configured like physical
computers. Virtual machines also support special features that physical computers do not
support. This chapter discusses some of these features: migrating virtual machines, using
snapshots, and using linked virtual machines.

For more information about configuring virtual machines, see the chapter Configuring a Virtual
Machine.

Read the following topics next:

n Virtual Machine Migration

n Snapshots

n Linked Virtual Machines

Virtual Machine Migration

Migration is the process of moving a virtual machine from one host or storage location to
another. Copying a virtual machine creates a new virtual machine. It is not a form of migration.
vSphere supports the following migration types:

Migration Type Description

Cold migration Moves a powered-off virtual machine to a new host. Optionally, you can relocate
configuration and disk files to new storage locations.

Migration of a
suspended virtual
machine

Moves a suspended virtual machine to a new host. Optionally, you can relocate
configuration and disk files to new storage location.

Migration with
vMotion

Moves a powered-on virtual machine to a new host. Migration with vMotion allows you
to move a virtual machine to a new host without interruption in the availability of the
virtual machine.

Migration with
Storage vMotion

Moves the virtual disks or configuration file of a powered-on virtual machine to a new
datastore. Migration with Storage vMotion allows you to move a virtual machine’s
storage without interruption in the availability of the virtual machine.

Migration of a suspended virtual machine and migration with vMotion are both sometimes called
hot migration, because they allow migration of a virtual machine without powering it off.

VMware, Inc. 186

You can move virtual machines manually or set up a scheduled task to perform the cold
migration.

Cold Migration

If a virtual machine is shut down, you can move it to a different cluster, resource pool, or host by
copying all virtual machine files to a different directory. The ColdMigration example illustrates

this.

Migration with vMotion

VMware vMotion supports the live migration of running virtual machines from one physical server
to another with no downtime. The source and destination physical servers may be in the same
datacenter or in different datacenters.

When calling the VirtualMachine object’s MigrateVM_Task method, you can specify a host

or resource pool to migrate to, and optionally the task priority and power state of the virtual
machine. The VMotion example makes the following queries, and performs the migration if

possible:

n Uses QueryVMotionCompatibility_Task to check that two hosts are compatible.

n Uses CheckMigrate_Task to check whether migration is feasible. If two hosts are not

compatible, virtual machines cannot be migrated from one to the other.

n Uses CheckRelocation_Task to check whether relocation is possible.

MigrateVM_Task was deprecated in vSphere 6.5 and can be replaced with RelocateVM_Task.

Using Storage vMotion

Storage vMotion allows you to move a running virtual machine from one storage cluster to
another. Taking the virtual machine or its associated storage offline is not required. All datastore
types are supported, including local storage, VMFS, NAS (network attached storage), and VVols
(virtual volumes).

You can place the virtual machine and all its disks in a single location, or select separate locations
for the virtual machine configuration file and each virtual disk. The virtual machine remains on the
same host during Storage vMotion.

To perform Storage vMotion, call the VirtualMachine object's RelocateVM_Task method. The

RelocateVMSpec passed in to the method allows you to specify the target datastore and target

host or resource pool.

As of vSphere 6.5, you should call RelocateVM_Task for all types of vMotion:

n cold relocate, whether VM storage moves or not

n vMotion within a cluster

n Storage vMotion

vSphere Web Services SDK Programming Guide

VMware, Inc. 187

n cross-datacenter vMotion (XvMotion)

n Folder moves not involving VM moves

Snapshots

A snapshot is reproduction of the virtual machine just as it was when you took the snapshot. The
snapshot includes the state of the data on all virtual machine disks and the virtual machine power
state (on, off, or suspended). You can take a snapshot when a virtual machine is powered on,
powered off, or suspended.

When you create a snapshot, the system creates a delta disk file for that snapshot in the
datastore and writes any changes to that delta disk. You can later revert to the previous state of
the virtual machine.

The VirtualMachine object has methods for creating snapshots, reverting to any snapshot in

the tree, and removing snapshots.

Figure 12-1. Virtual Machine Snapshots

Snapshot hierarchies can become fairly complex. For example, assume that, in the example in
Figure 12-1. Virtual Machine Snapshots, you revert to snapshot_a. You might then work with and

make changes to the snapshot_a virtual machine, and create a new snapshot, creating, in effect,

a branching tree.

Creating a Snapshot

The VirtualMachine.CreateSnapshot_Task method creates a new snapshot of a virtual

machine. As a side effect, the current snapshot becomes the parent of the new snapshot.

vSphere Web Services SDK Programming Guide

VMware, Inc. 188

The method allows you to specify a name for the snapshot and also requires you set the memory
and quiesce properties:

n memory – If true, a dump of the internal state of the virtual machine (basically a memory

dump) is included in the snapshot. Memory snapshots consume time and resources, and take
a while to create. When set to false, the power state of the snapshot is set to powered off.

n quiesce – If true and the virtual machine is powered on when the snapshot is taken,

VMware Tools is used to quiesce the file system in the virtual machine. This ensures that
a disk snapshot represents a consistent state of the guest file systems. If the virtual machine
is powered off or VMware Tools is not available, the quiesce flag is ignored.

The VMSnapshot.java example calls this method as follows:

ManagedObjectReference taskMor = service.createSnapshot_Task(
 vmMor, snapshotName, desc, false, false);

The method returns MOR to a Task object with which to monitor the operation. The

info.result property in the Task contains the newly created VirtualMachineSnapshot upon

success.

Reverting to a Snapshot

When you revert to a snapshot, you restore a virtual machine to the state it was in when the
snapshot was taken. The VirtualMachine.RevertToSnapshot_Task allows you to specify a

target host and whether the virtual machine should be powered on.

If the virtual machine was running when the snapshot was taken, and you restore it, you must
either specify the host to restore the snapshot to, or set the SupressPowerOn flag to true.

Deleting a Snapshot

You can delete all snapshots by calling VirtualMachine.RemoveAllSnapshots or by calling the

VirtualMachineSnapshot.RemoveSnapshot_Task method. The VirtualMachineSnapshot
object was previously returned in the task returned by the CreateSnapshot_Task method.

Linked Virtual Machines

Linked virtual machines are two or more virtual machines that share storage and support efficient
sharing of duplicated data.

Linked Virtual Machines and Disk Backings

In its simplest form, shared storage is achieved through the use of delta disk backings. A delta
disk backing is a virtual disk file that sits on top of a standard virtual disk backing file. Each
time the guest operating system on a virtual machine writes to disk, the data is written to the
delta disk. Each time the guest operating system on a virtual machine reads from disk, the virtual

vSphere Web Services SDK Programming Guide

VMware, Inc. 189

machine first targets the disk block in the delta disk. If the data is not on the delta disk, the virtual
machine looks for it on the base disk.

Linked virtual machines can be created from a snapshot or from the current running point. After
you create a set of linked virtual machines, they share the base disk backing and each virtual
machine has its own delta disk backing, as shown in Figure 12-2. Linked Virtual Machines with
Shared Base Disk Backing and Separate Delta Disk Backing.

Figure 12-2. Linked Virtual Machines with Shared Base Disk Backing and Separate Delta Disk
Backing

Caution We recommend a limit of up to eight host virtual machines accessing the same base
disk in a linked virtual machine group. However, you can have an unlimited number of linked
virtual machines within each host virtual machine in the group.

Limitation for HA Clusters

Virtual machines in a linked clone group can be part of a VMware HA (high availability) cluster.
The number of hosts in a cluster might affect HA’s ability to restart a failed virtual machine.

n Clusters that contain ESXi 5.0 or earlier hosts – If a cluster has eight or fewer hosts, then
linked virtual machines restart properly. However, if the cluster has more than eight hosts and
any of the hosts are ESXi 5.0 or earlier, HA might not be able to restart a virtual machine
after it fails. HA is not aware that virtual machines in the linked clone group are subject to the
eight host limit. In this case, when HA responds to a failure, it might try to restart the virtual
machine on a host that cannot participate in the group due to the maximum host limit. HA
will attempt failover five times to different hosts. Thus, in clusters with 13 or more hosts, it is
possible that HA will never try a host that is associated with the linked clone group.

n Clusters that contain only ESXi 5.1 or later hosts – The maximum host limit for a linked clone
group is the maximum number of hosts allowed in a cluster. In this case, the number of hosts
in the cluster does not affect the ability to restart failed virtual machines.

Creating a Linked Virtual Machine

You can create linked virtual machines in one of two ways:

n Clone the virtual machine from a snapshot.

vSphere Web Services SDK Programming Guide

VMware, Inc. 190

n Clone the virtual machine from the current virtual machine state. This state might differ from
the snapshot point.

Creating a Linked Virtual Machine From a Snapshot

You first create a snapshot, and then create the linked virtual machine from the snapshot.

Procedure

1 To create the snapshot, call the CreateSnapshot_Task method for the virtual machine. The

virtual machine can be in any power state. The following pseudo code creates a snapshot
named snap1. The code does not include a memory dump. VMware Tools is used to quiesce

the file system in the virtual machine if the virtual machine is powered on.

myVm.CreateSnapshot("snap1", "snapshot for creating linked virtual machines", False, True)

2 To create the linked virtual machine, specify the snapshot you
created and use a VirtualMachineRelocateDiskMoveOptions.diskMoveType of

createNewDeltaDiskBacking, as illustrated in Creating a Linked Virtual Machine from a

Snapshot. Creating linked virtual machines from a snapshot works with virtual machines in
any power state.

Example: Creating a Linked Virtual Machine from a Snapshot

relSpec = new VirtualMachineRelocateSpec()
relSpec.diskMoveType = VirtualMachineRelocateDiskMoveOptions.createNewChildDiskBacking

cloneSpec = new VirtualMachineCloneSpec()
cloneSpec.powerOn = False
cloneSpec.template = False
cloneSpec.location = relSpec
cloneSpec.snapshot = myVm.snapshot.currentSnapshot

myVm.Clone(myVm.parent, myVm.name + "-clone", cloneSpec)

The result is a virtual machine with the same base disk as the original, but a new delta disk
backing.

Figure 12-3. Creating a Linked Virtual Machine from a Snapshot

vSphere Web Services SDK Programming Guide

VMware, Inc. 191

Creating a Linked Virtual Machine From the Current Running Point

To create a virtual machine from the current running point, clone the virtual machine, as in , but
use a diskMoveType of moveChildMostDiskBacking. The virtual machine can be in any power

state.

For more information about cloning a virtual machine, see Creating a Linked Virtual Machine from
a Snapshot.

Example: Creating a Linked Virtual Machine from the Current Running Point

relSpec = new VirtualMachineRelocateSpec()
relSpec.diskMoveType = VirtualMachineRelocateDiskMoveOptions.moveChildMostDiskBacking

cloneSpec = new VirtualMachineCloneSpec()
cloneSpec.powerOn = False
cloneSpec.template = False
cloneSpec.location = relSpec

myVm.Clone(myVm.parent, myVm.name + "-clone", cloneSpec)

Figure 12-4. Creating a Linked Virtual Machine from the Current Running Point

Instant Clone Virtual Machines

The instant clone operation creates a running virtual machine that continues running from the
current state of the source virtual machine. There is no delay to power on the cloned virtual
machine.

An instant clone virtual machine is a kind of linked clone with these characteristics:

n The clone starts out powered on and running.

n The clone replicates the running state of the source virtual machine.

n The clone shares memory pages with the source virtual machine as long as they remain
unmodified.

The instant clone operation facilitates rapid deployment of virtual machines for low-latency
response to peak computing demand. It also uses memory and disk space as efficiently as
possible.

vSphere Web Services SDK Programming Guide

VMware, Inc. 192

Because the clone replicates the running state of the source virtual machine, it usually requires
customization of some network properties in the guest operating system to eliminate conflicts
with the source. An instant clone virtual machine may also require new backings for some
dedicated virtual devices, such as ISO files that back virtual optical drives.

Instant Clone Terminology

The instant clone feature has its own set of terminology, which uses some terms in ways specific
to the feature.

stun

To stop the clock of a virtual machine temporarily, preventing guest operations during an
instant clone operation.

freeze

To stop the clock of a virtual machine indefinitely, allowing a series of instant clone
operations that reproduce the exact process state of the source virtual machine.

suspend

Save the state of a virtual machine so applications can resume, and put it to sleep.

resume

Continue running the virtual machine that was suspended, including its applications.

unstun

To release a stunned source virtual machine, allowing I/O operations to proceed.

source

A virtual machine that is cloned during an instant clone operation.

instant clone

1 An operation that quickly creates a new virtual machine that is an exact copy of a source
virtual machine.

2 A new virtual machine created by an instant clone operation.

Run State of the Instant Clone Source

An instant clone can be created either from a source virtual machine in a frozen state, or from the
current running point of a source virtual machine. Certain characteristics of the process and of
the result can affect your choice of frozen virtual machine or current running point for the source
virtual machine.

Advantages of Cloning from the Current Running Point

An instant Clone created from the current running point of a source virtual machine does not
require an agent running in the guest operating system to invoke the frozen state.

vSphere Web Services SDK Programming Guide

VMware, Inc. 193

If you create an instant clone from the current running point, the source virtual machine continues
running from that point after a very brief delay, whereas a frozen source virtual machine requires
intervention by the host to thaw it.

Advantages of Cloning from a Frozen Virtual Machine

A source virtual machine in the frozen state allows you to deploy any number of instant clones
in exactly the same state, because the guest operating system retains its state after the clone
operation.

When you create instant clones from the current running point of a source virtual machine, each
cloning operation adds another delta disk to the source virtual machine. Each delta disk adds
a small performance penalty, but a long chain of delta disks causes a noticeable performance
penalty for virtual disk accesses.

The Instant Clone Process from a Frozen Source

The process to create an instant clone from a frozen source virtual machine requires one-time
initial preparation, but after that it proceeds faster than creating an instant clone from the current
running point. The source virtual machine must be booted and running, in a state that you want
to replicate to other virtual machines. VMware Tools must be installed and running in the guest
operating system so that you can run the command to freeze the source virtual machine .

Freezing the Source Virtual Machine for an Instant Clone Operation

Before you start the instant clone operation, you issue a VMware Tools command in the guest
operating system, which freezes the source virtual machine. This is only needed one time, prior
to the first instant clone operation. After that, the source virtual machine remains frozen. When
VMware Tools receives the command to freeze the virtual machine, it passes the command
through a back door to the host hypervisor.

The command to freeze the virtual machine depends on the guest operating system.

n For a Linux guest operating system, either of the following commands will freeze the virtual
machine:

n vmware-rpctool "instantclone.freeze"

n vmtoolsd -cmd "instantclone.freeze"

n For a Windows guest operating system, the following command will freeze the virtual
machine:

n C:\Program Files\VMware\VMware Tools\vmtoolsd.exe --cmd "instantclone.freeze"

When a virtual machine is frozen, the hypervisor prevents future context switches to the guest
operating system, which in effect stops the virtual machine's clock, although the virtual machine
status continues to indicate that it is running. You can determine whether the virtual machine is
frozen by examining the runtimeinfo.InstantCloneFrozen flag.

vSphere Web Services SDK Programming Guide

VMware, Inc. 194

Instant Clone API Methods

The vSphere Web Services API offers several methods that implement different parts of the
instant clone operation. By dividing the functionality into separate methods, the API provides
flexibility in the timing and customization of the operation.

You can think of the instant clone operation as having three divisions: preparation, cloning, and
customization.

Preparation includes these options:

n Installing the guest customization engine. The engine assists with customization of the
guest network from the Web Services API. For more information, see Installing the Guest
Customization Engine.

n Disconnecting virtual NICs. You have the option to disconnect the NICs in the source virtual
machine before you start the clone operation, to avoid network collisions between the source
and its clones. For more information, see Avoiding Network Identity Collisions after Instant
Clone Operations.

n Freezing the source virtual machine. If you need to create a large number of clones, consider
cloning from a frozen source. For more information, see Run State of the Instant Clone
Source.

Creating a clone of the source virtual machine requires a single method call. The
VirtualMachine.InstantClone_Task method takes a parameter of type InstantCloneSpec, which

enables you to give the clone a new name and configuration values. By using the key-value pairs
in the config array, you can specify that the virtual NICs of the clone will start in a disconnected

state, which avoids network conflicts with the source virtual machine. The location property of

InstantCloneSpec is ignored.

Customization of a clone virtual machine takes place after the InstantClone_Task method

completes. To customize, you invoke methods of the VirtualMachineGuestCustomizationManager
managed object, as well as optional steps for application-dependent customization. For more
information, see Guest Network Customization for Instant Clone Virtual Machines.

How the Instant Clone Operation Works

The instant clone operation involves the following sequence of steps.

Stunning the Instant Clone Source Virtual Machine

When you issue the API command to initiate an instant clone operation, the host begins by doing
a stun operation on the source virtual machine. The stunned condition lasts a very short time, and
is not directly visible to the API user.

The stunned condition blocks all I/O operations of the source virtual machine while the instant
clone is created. The stun is redundant in the case of a frozen virtual machine. During the time
the source virtual machine is stunned, the host creates a delta disk for the source virtual machine,
which remains empty as long as the source virtual machine is stunned or frozen.

vSphere Web Services SDK Programming Guide

VMware, Inc. 195

Copying Virtual Disks During the Instant Clone Operation

Then the host creates an empty delta disk for the instant clone virtual machine. This delta disk
links to the base disk of the source virtual machine. More precisely, if the source virtual machine
already had one or more delta disks, the instant clone delta disk links to the second delta disk in
the disk chain of the source. The second delta disk is the delta disk that was the topmost delta
disk when the stun operation was invoked.

Copying Memory During the Instant Clone Operation

The host creates a new virtual memory paging file for the instant clone virtual machine, whose
page tables link to the paging file of the source virtual machine. When the instant clone virtual
machine is complete and is allowed to run instructions, all its memory pages will be shared with
the source virtual machine until either virtual machine does a write to memory.

Configuring the Instant Clone Virtual Machine

Then the host creates a virtual machine configuration file for the instant clone, which links to its
delta disk and memory paging file. At this point, the instant clone virtual machine is capable of
running instructions, and the host unstuns it. Both the memory and the virtual disks are shared
with the source virtual machine, so the instant clone is identical to the source virtual machine,
from the guest operating system point of view.

When you create virtual machines with identical guest operating systems, the network settings
conflict. Usually you will want to customize these settings and reset the network stack for each
instance of the guest operating system.

Limitations of Instant Clones

The instant clone feature provides good performance and scalability, but it has a few limitations:

n The instant clone feature is not available when you connect directly to ESXi. Instant clone
depends on functionality available only in vCenter Server.

n Delta disks created during the instant clone operation are not visible in the snapshot trees
of the virtual machines. They cannot be managed with the VirtualMachineSnapshot managed
object. Instead, you must manage the delta disks using the VirtualMachine.Reconfigure()
method.

n The instant clone operation is partly parallel and partly serialized. You can start several
operations concurrently, but part of the process is exclusive and requires serialization of
requests.

n The instant clone operation responds to errors by backing out changes, such as delta disks,
to restore the previous state of the file system and the source virtual machine. However,
there is a small window of failure at the end of the operation where the cloned virtual
machine is independent and cannot be backed out to recover from an error. This is a low risk
situation.

vSphere Web Services SDK Programming Guide

VMware, Inc. 196

n Instant clones create a delta disk for both the source and generated virtual machine, so
resources can run out after vSphere raises a warning. The source virtual machine may be
frozen to avoid excess growth. For current limits and ways to deal with failures, see the KB
article Instant Clone fails due to exceeding maximum number of delta disks.

n The instant clone operation does not allow you to specify a different host for the clone. The
clone must be on the same host as the source virtual machine because they share memory
and virtual disk files.

Guest Customization of Instant Clone Virtual Machines

The instant clone operation produces a virtual machine whose memory is exactly the same
as the source virtual machine. This can cause conflicts in network addressing, if two different
virtual machines respond concurrently with the same network identity. The conflicting network
attributes are usually the host name, IP address, and MAC address.

In the case of an instant clone derived from a frozen source virtual machine, a conflict might
not immediately arise, because the source virtual machine is not active on the network. The
instant clone simply assumes the identity of the source virtual machine when the host unstuns it.
However, a second clone derived from the same frozen virtual machine could create a network
conflict by duplicating the same identity as the first instant clone.

For an instant clone derived from the current running point of the source virtual machine, the
problem is more acute because the source virtual machine resumes operation simultaneously
with the instant clone.

To avoid network conflicts, you customize the instant clone to adopt a new identity, before
allowing both the source virtual machine and the instant clone to run concurrently. In a situation
where temporary network disruption is tolerable, you can ignore the conflict while you customize
the network settings in the guest operating system of the instant clone.

Otherwise, you have two options to avoid the race condition that results when both virtual
machines resume running from the same point. You can either disable the virtual NIC before the
instant clone operation, or else you can specify that the virtual NIC in the instant clone will be
disabled at the time when it resumes running after the operation. You specify the latter by setting
the config property of the spec parameter when you invoke the InstantClone_Task method.

Avoiding Network Identity Collisions after Instant Clone Operations

To avoid a network conflict between a source virtual machine and its instant clone, you must
disable at least one of the two conflicting virtual NICs until you complete network customization
in the guest operating system of the instant clone. Here are some common approaches:

If the source virtual machine is frozen, its virtual NIC is effectively disabled, and you can
reconfigure the guest network settings of the instant clone at any time before the source virtual
machine is thawed.

vSphere Web Services SDK Programming Guide

VMware, Inc. 197

If you derive the instant clone from the current running point of the source virtual machine, you
can set the connected property of the virtual NIC backing to false, which disables it in the source

before you start the instant clone operation. Then you re-enable the virtual NIC after the instant
clone operation completes. After you customize the network settings in the guest operating
system of the instant clone, you must re-enable the virtual NIC in the instant clone as well. This
approach requires that you tolerate a network interruption until the instant clone operation is
complete.

To avoid a network interruption, you can issue the instant clone operation with an
InstantCloneSpec that specifies that the virtual NIC in the instant clone will be disconnected.

The virtual NIC in the source virtual machine is not affected. After you complete guest operating
system customization in the instant clone, you set the connected property of its virtual NIC back

to true, and the instant clone operates under its new network identity.

In any case where you change the network identity settings in the guest operating
system of the instant clone, you must reset the network stack for the virtual
NIC to cause it to adopt the new settings. You can do this by invoking the
VirtalMachineGuestCustomizationManager.StartGuestNetwork_Task method after you customize

the clone's network settings, or you do the reset from the guest operating system, as with a
physical machine. For more information, see Restarting the Guest Network After Customization
and Resetting the Network Stack in a Running Virtual Machine.

Removing Snapshots and Deleting Linked Virtual Machines

After you have created a group of linked virtual machines, you can remove a snapshot that was
the basis for a linked virtual machine, or delete a virtual machine. Those actions affect disks in the
linked virtual machine group. Perform the actions when connected to a vCenter Server system
for disk consolidation or deletion.

n Snapshot removal – During snapshot removal, the snapshot metadata is also removed,
and the virtual machine from which the snapshot was taken is no longer shown as having
snapshots. If you remove a snapshot while connected to the ESXi host directly, shared disks
are not consolidated and unnecessary levels of delta disks might result. If you remove a
snapshot while connected to a vCenter Server system, shared disks are not consolidated, but
unshared disks are consolidated.

n Virtual machine deletion – When you delete a virtual machine by directly connecting to the
ESXi host, shared disks are not deleted. When you delete a virtual machine by connecting to
a vCenter Server system, shared disks are not deleted, but unshared disks are deleted.

Caution Delete all linked virtual machines before deleting the source virtual machine from
which they were created, so that you don’t have orphaned or corrupt disk files on your file
system.

vSphere Web Services SDK Programming Guide

VMware, Inc. 198

Relocating a Virtual Machine in a Linked Virtual Machine Group

You can move the virtual machines in a linked virtual machine group between datastores and
save storage. The contents of the delta disk might not be as important as the contents of the
base, and you can save storage by removing the delta disk.

For more information, see Figure 12-3. Creating a Linked Virtual Machine from a Snapshot.

Example: Relocating a Linked Virtual Machine

relSpec = new VirtualMachineRelocateSpec()
relSpec.diskMoveType = VirtualMachineRelocateDiskMoveOptions.moveChildMostDiskBacking
relSpec.datastore = localDatastore
myVm.Relocate(relSpec)

You can relocate multiple linked virtual machines to a new datastore, but keep all shared storage
during the relocation. To achieve the relocation, relocate the desired virtual machines one by
one, giving the option to allow reattaching to an existing disk, as shown in Relocating Multiple
Linked Virtual Machines.

Example: Relocating Multiple Linked Virtual Machines

relSpec = new VirtualMachineRelocateSpec()
relSpec.diskMoveType =
VirtualMachineRelocateDiskMoveOptions.moveAllDiskBackingsAndAllowSharing
relSpec.datastore = targetDatastore
myVm.Relocate(relSpec)

Promoting a Virtual Machine's Disk

Promoting a virtual machine’s disk improves performance.

Important You can use the PromoteDisks API only when connected to a vCenter Server

system.

You can use PromoteDisks to copy disk backings or to consolidate disk backings.

n Copy – If the unlink parameter is true, any disk backing that is shared by multiple virtual

machines is copied so that this virtual machine has its own unshared version. Files are
copied into the home directory of the virtual machine. This setting results in improved read
performance, but higher space requirements. The following call copies and shares disks, and
then collapses all unnecessary disks.

myVm.PromoteDisks(True, [])

vSphere Web Services SDK Programming Guide

VMware, Inc. 199

n Consolidate – If the unlink parameter is false, any disk backing that is not shared between

multiple virtual machines and not associated with a snapshot is consolidated with its child
backing. The net effect is improved read performance at the cost of inhibiting future sharing.
The following call eliminates any unnecessary disks:

myVm.PromoteDisks(False, [])

Promoting a virtual machine’s disk might also be useful if you end up with disk backings that are
not needed for snapshots or for sharing with other virtual machines.

Both uses of PromoteDisks take an optional second argument, which allows you to apply the

method to only a subset of disks. For example, you can unshare and consolidate only the virtual
disk with key 2001 as follows:

for any of my VMs in dev
 if (dev.key == 2001)
 disk2001 = dev

myVm.PromoteDisks(True, [disk2001])

Performing Advanced Manipulation of Delta Disks

For advanced manipulation of delta disks, you can use VirtualDeviceConfigSpec methods

such as VirtualDeviceConfigSpec.create and VirtualDeviceConfigSpec.add.

Together add and create allow you to create a blank delta disk on top of an existing disk. For the

VirtualDeviceConfigSpec you specify add to prepare the VM for a new delta disk, then create
to initiate the file operation for the delta disk whose parent property is an existing disk. These

methods create a new delta disk whose parent is the pre-existing disk.

One use case is adding a delta disk on top of an existing virtual disk in a virtual machine without
creating a snapshot. Adding a Delta Disk Backing illustrates how to add the delta disk for the first
virtual disk in the virtual machine.

Example: Adding a Delta Disk Backing

disk = None
for any of my VMs in dev
 if (VirtualDisk.isinstance == dev):
 disk = dev

Remove the disk
removeDev = new VirtualDeviceConfigSpec()
removeDev.operation = "remove"
removeDev.device = disk

Create a new delta disk which has the
original disk as its parent disk
addDev = new VirtualDeviceConfigSpec()
addDev.operation = "add"
addDev.fileOperation = "create"

vSphere Web Services SDK Programming Guide

VMware, Inc. 200

addDev.device = copy.copy(disk)
addDev.device.backing = copy.copy(disk.backing)
addDev.device.backing.fileName = "[" + disk.backing.datastore.name + "]"
addDev.device.backing.parent = disk.backing

spec = new VirtualMachineConfigSpec()
spec.deviceChange = [removeDev, addDev]

For working code with a similar use case, see the JAXWS sample program VMDeltaDisk.java in

the SDK under vsphere-ws/java.

vSphere Web Services SDK Programming Guide

VMware, Inc. 201

Virtual Machine Guest Operations 13
The vSphere Web Services SDK enables you to do operations inside a virtual machine, by
communicating with the guest operating system.

Read the following topics next:

n Authenticating with the Guest Operating System

n Running Guest OS Operations

n Guest Operating System Customization

n Guest Customization for Stopped Virtual Machines

n Guest Customization Using cloud-init

n Guest Network Customization for Instant Clone Virtual Machines

n Resetting the Network Stack in a Running Virtual Machine

Authenticating with the Guest Operating System

Authentication is required for most guest operations. Before you invoke a method that affects
the guest, you must establish your credentials with the guest operating system and acquire a
GuestAuthentication object that you pass to the method.

The GuestAuthentication type has several subclasses that hold guest credentials acquired by

different methods. You can choose from several ways to authenticate:

n NamePasswordAuthentication

n SAMLTokenAuthentication

n SSPIAuthentication

n TicketedSessionAuthentication

Running Guest OS Operations

Guest OS operations manipulate processes, files, folders, and environment variables in a virtual
machine's guest operating system.

VMware, Inc. 202

The vSphere API offers the following managed object types for guest operations:

n GuestAuthManager – authenticate to acquire credentials in the guest OS.

n GuestFileManager – manipulate files, directories, and remote copying in the guest OS.

n GuestProcessManager – manipulate processes in the guest OS.

n GuestAliasManager – support single sign-on for guest operations; create and delete user
aliases.

n GuestWindowsRegistryManager – manipulate keys and values in the Windows registry.

n VirtualMachineGuestCustomizationManager – customize guest settings, especially for instant
clone virtual machines.

All the above managed objects are subclasses that inherit properties from
GuestOperationsManager. In the vSphere API, the VirtualMachine and GuestInfo managed
objects contain information about what guest operations might be running and relevant virtual
machine state:

vim.VirtualMachine.guest()
vim.vm.GuestInfo.guestOperationsReady
vim.vm.GuestInfo.interactiveGuestOperationsReady

VMware Tools must be present to run guest operations. To perform interactive guest operations,
the user must be logged into the console, for example through the vSphere Client. Steps involved
are:

1 Java program translates to SOAP bindings.

2 Directives of vSphere API pass through vCenter Server.

3 Directives are relayed to ESXi host agent process.

4 Virtual machine executable passes guest operations to VMware Tools.

5 Guest OS performs guest operations.

vSphere Web Services SDK Programming Guide

VMware, Inc. 203

Figure 13-1. Guest operations control flow

The following table summarizes the methods available for guest operations.

Table 13-1. GuestOperationsManager methods

Managed Object Methods Description

GuestAliasManager AddGuestAlias define alias for guest account

ListGuestAliases list guest aliases for specified user

ListGuestMappedAliases list alias map for in-guest user

RemoveGuestAliasByCert remove certificate associated aliases

GuestAuthManager AcquireCredentialsInGuest authenticate, return session object

ReleaseCredentialsInGuest release session object

ValidateCredentialsInGuest check authentication data or timeout

GuestFileManager ChangeFileAttributesInGuest change attributes of file in guest

CreateTemporaryDirectoryInGuest make a temporary directory

CreateTemporaryFileInGuest create a temporary file

DeleteDirectoryInGuest remote directory in guest OS

DeleteFileInGuest remove file in guest OS

InitiateFileTransferFromGuest start file transfer from guest OS

InitiateFileTransferToGuest start file transfer to guest OS

ListFilesInGuest list files or directories in guest

vSphere Web Services SDK Programming Guide

VMware, Inc. 204

Table 13-1. GuestOperationsManager methods (continued)

Managed Object Methods Description

MakeDirectoryInGuest make a directory in guest

MoveDirectoryInGuest move or rename a directory in guest

MoveFileInGuest rename a file in guest

GuestWindowsRegistryManager CreateRegistryKeyInGuest create a registry key

DeleteRegistryKeyInGuest delete a registry key

DeleteRegistryValueInGuest delete a registry value

ListRegistryKeysInGuest list registry subkeys for a given key

ListRegistryValuesInGuest list registry values for a given key

SetRegistryValueInGuest set or create a registry value

GuestProcessManager ListProcessesInGuest list processes running in guest OS

ReadEnvironmentVariableInGuest read environment variable in guest

StartProgramInGuest start running program in guest

TerminateProcessInGuest stop a running process in guest

InitiateFileTransferFromGuest and InitiateFileTransferToGuest are useful for transferring

small files between the host and guest. For large file transfers, virtual machines should be
connected to the network because networking transfers are much faster.

Java Source Code Samples

Four Java code samples based on JAX-WS are available in the vSphere SDK for Web services, in
this directory:

SDK/vsphere-ws/java/JAXWS/samples/com/vmware/guest

CreateTemporaryFile.java creates a temporary file inside a virtual machine, by calling the

following method:

vimPort.createTemporaryFileInGuest(fileManagerRef, vmMOR, auth, prefix, suffix,
directoryPath);

DownloadGuestFile.java downloads a file from the guest to a specified path on the host

where the client is running. The destination, a local file on the client host, is specified on the
command line as --localfilepath.

vimPort.initiateFileTransferFromGuest(fileManagerRef, vmMOR, auth, guestFilePath);

vSphere Web Services SDK Programming Guide

VMware, Inc. 205

RunProgram.java runs a specified program inside a guest operating system, with output re‐
directed to a temporary file, and downloads the resulting output to a file on the local client.
The program must already exist on the guest, and is specified on the command line as --
guestprogrampath. The output file to store on the client host is specified on the command line

as --localoutputfilepath.

vimPort.startProgramInGuest(processManagerRef, vmMOR, auth, spec);

UploadGuestFile.java uploads a file from the client machine to a specified location inside

the guest. The source, a local file on the client host, is specified on the command line as
--localfilepath.

vimPort.initiateFileTransferToGuest(fileManagerRef, vmMOR, auth, guestFilePath,
 guestFileAttributes, fileSize, optionsmap.containsKey("overwrite"));

Guest Operating System Customization

You can use the vSphere Web Services SDK to customize several attributes of the guest
operating system. The CustomizationSpec data object allows you to specify network and identity

settings in the guest operating system.

Use the CustomizationSpec data object to specify the settings that you choose to modify. You

can specify the following areas:

n IP addresses and gateway addresses for virtual NIC devices

n DNS servers

n Virtual hostname

n Domain name

n Time zone

You can customize a guest operating system while the virtual machine is stopped,
by invoking the VirtualMachine.CustomizeVM_Task method. You can customize the

guest operating system while the virtual machine is running, by invoking the
VirtualMachineGuestCustomizationManager.CustomizeGuest_Task method. The instant clone

feature requires that you customize the virtual machine while it is running. To initialize a virtual
machine for a cloud environment, you must customize the virtual machine while it is stopped.

The two ways to customize a virtual machine are compared in the following table.

vSphere Web Services SDK Programming Guide

VMware, Inc. 206

Table 13-2. Comparing Guest Operating System Customization

Customization While Stopped Instant Clone Customization

vSphere Compatibility n vSphere 5 and later

n Both vSphere and VMC

n vSphere 7 and later

n vSphere only (not VMC)

API Method VirtualMachine.CustomizeVM_Task() n VirtualMachineGuestCustomizati
onManager.CustomizeGuest_Task(
)

n VirtualMachineGuestCustomizati
onManager.StartGuestNetwork_Ta
sk()

n VirtualMachineGuestCustomizati
onManager.AbortCustomization_T
ask()

Creating CustomizationSpec Create customization specifications in
vSphere Client or in API.

Create customization specifications in
API.

Virtual Machine State Must be powered off. Must be powered on.

vmtools Must be installed.

For Linux cloud-init customization,
use open-vm-tools.

Must be installed and running.

cloud-init Must be installed if using cloud-init
customization.

Not used.

Customization Engine Not used. Required.

Supported Guests Both Linux and Windows. For
supported versions, see https://
partnerweb.vmware.com/programs/
guestOS/guest-os-customization-
matrix.pdf.

Linux only. Supported distributions
are listed in Customizing Guest
Network Settings for Running Virtual
Machines.

Network Adapter State For Sysprep or Linuxprep
customization, CustomizeVM_Task()
disconnects virtual adapters and
prepares customization. The next
time the virtual machine powers on,
the customization will take effect
and vmtools will reconnect virtual

adapters.

For CloudinitPrep customization,
CustomizeVM_Task() does not

disconnect virtual adapters.

InstantClone_Task() disconnects

virtual adapters before creating
a clone. Use StartGuestNetwork()
to restart virtual adapters after
customization.

Rebooting the Guest vmtools reboots the guest operating

system after reconnecting virtual
network adapters.

No reboot needed after Linux cloud-
init customization, either LinuxPrep or
CloudinitPrep.

No reboot needed.
StartGuestNetwork() restarts

network services after customization.

vSphere Web Services SDK Programming Guide

VMware, Inc. 207

https://partnerweb.vmware.com/programs/guestOS/guest-os-customization-matrix.pdf
https://partnerweb.vmware.com/programs/guestOS/guest-os-customization-matrix.pdf
https://partnerweb.vmware.com/programs/guestOS/guest-os-customization-matrix.pdf
https://partnerweb.vmware.com/programs/guestOS/guest-os-customization-matrix.pdf

Guest Customization for Stopped Virtual Machines

You can customize certain settings in the guest operating system with the help of the vSphere
Web Services SDK. Customization is simpler for a virtual machine that is not running.

Use this general procedure to customize a guest operating system that you can shut
down without a significant service impact. However, to initialize a virtual machine in a cloud
environment, by using the cloud-init utility, see Guest Customization Using cloud-init.

Prerequisites

A guest operating system can be easily customized while it is not running. If stopping the guest
will cause a significant service impact, such as in an instant clone virtual machine, see Guest
Network Customization for Instant Clone Virtual Machines instead.

Procedure

1 Shut down the guest operating system by using the ShutdownGuest method or the

PowerOffVM_Task method.

2 Prepare a CustomizationSpec data object that specifies the desired global IP settings, virtual

NIC settings, and so on.

3 Invoke the CustomizeVM_Task method of the VirtualMachine managed object.

4 Start the guest operating system by using the PowerOnVM_Task method of the VirtualMachine
managed object.

What to do next

For more information about customizing the guest operating system, in the context of virtual
machine configuration, see Customizing the Guest Operating System.

Guest Customization Using cloud-init

You can customize certain settings in a Linux guest operating system with the help of the
vSphere Web Services SDK. The cloud-init utility is a standardized way to initialize a virtual
machine when you deploy it in a cloud environment.

Guest operating systems can be customized in one of several ways, depending on certain cloud-
init configuration flags and on the subtype of the identity property of the CustomizationSpec
data object. The following table shows the combinations needed to achieve raw data
cloud-init customization, LinuxPrep with traditional customization, or LinuxPrep with cloud-init
customization. Other combinations are not allowed.

vSphere Web Services SDK Programming Guide

VMware, Inc. 208

Table 13-3. Enabling Guest Customization Types

Flags CustomizationSpec.identity Result

allow_raw_data: true or absent

(default=true)

CloudInitPrep VMware Tools will work with cloud-
init to customize the guest with the
unprocessed metadata and userdata
from CloudinitPrep.

disable_vmware_customization:
true or absent (default=true)

LinuxPrep VMware Tools will do traditional
customization on the guest.

disable_vmware_customization:
false

LinuxPrep VMware Tools will work with
cloud-init to customize the guest
with configuration derived from
LinuxPrep.

Use the following procedures to apply settings to a virtual machine by passing raw configuration
data to the cloud-init utility. You will use the CustomizeVM_Task method with a CustomizationSpec
that contains configuration data compatible with the cloud-init standard.

Prepare a Virtual Machine Template for Raw Data cloud-init
Customization

The following steps prepare a virtual machine template for customization with raw cloud-init data.

1 In the guest operating system, install open-vm-tools version 11.3.0 or later. Configure the
Linux guest to run open-vm-tools services when the guest operating system starts.

Example for an Ubuntu 20.04 guest operating system:

$ sudo apt update
$ sudo apt install open-vm-tools
$ sudo vmtoolsd -v
$ sudo systemctl is-enabled open-vm-tools.service

2 In the guest operating system, install cloud-init version 21.1 or later. Configure the Linux guest
to run cloud-init services when the guest operating system starts.

Example for an Ubuntu 20.04 guest operating system:

$ sudo apt update
$ sudo apt install cloud-init
$ sudo cloud-init -v
$ sudo systemctl is-enabled cloud-init.service
$ sudo systemctl is-enabled cloud-init-local.service

3 Configure cloud-init to accept the OVF data source for VMware raw cloud-init configuration.

Edit the cloud-init configuration file in /etc/cloud/cloud.cfg or in /etc/cloud/cloud.cfg.d/*,

depending on the Linux distribution. Add OVF to the list of datasources accepted by cloud-init.

vSphere Web Services SDK Programming Guide

VMware, Inc. 209

Example line for cloud-init version 21.3:

datasource_list: [NoCloud, ConfigDrive, Azure, OVF, OpenStack, Ec2]

4 Configure cloud-init to enable VMware customization with raw cloud-init data.

Edit the cloud-init configuration file in /etc/cloud/cloud.cfg or in /etc/cloud/cloud.cfg.d/*,

depending on the Linux distribution. Set the flag disable_vmware_customization to true and

set the flag allow_raw_data to true. If customization time-out is an issue, you can set the

value of vmware_cust_file_max_wait (default: 15 seconds).

Example lines for cloud-init version 21.3:

disable_vmware_customization: true
datasource:
 OVF:
 allow_raw_data: true
vmware_cust_file_max_wait: 25

5 Run the cloud-init clean step to remove any artifacts from previous configuration failures.

$ sudo cloud-init clean

6 Power off the virtual machine template.

$ sudo poweroff

Prepare a cloud-init Metadata File

Use the following information to prepare your cloud-init metadata file. The metadata file is
required for cloud-init.

n The metadata file is a plain-text file formatted as YAML or JSON.

n The maximum file size is 512KB.

n All standard v1 keys are accepted, such as:

n distro

n local_hostname

n platform

n public_ssh_keys

n The instance-id key is required. All other keys are optional.

n For network configuration, both v1 and v2 keys are accepted.

vSphere Web Services SDK Programming Guide

VMware, Inc. 210

This example shows a metadata file in YAML format that includes a minimal network
configuration:

instance-id: cloud-vm-example-1
local hostname: cloud-vm
network:
 version: 2
 ethernets:
 nics:
 match:
 name: eth*
 dhcp4: yes

This example shows a metadata file in JSON format that specifies a fixed IP network
configuration:

{
 "instance-id": "cloud-vm-example-2",
 "local-hostname": "cloud-vm",
 "cloud-name": "vSphere",
 "distro": "ubuntu",
 "distro-version": "20.04",
 "distro-release": "focal",
 "network": {
 "version": 2,
 "ethernets": {
 "nics": {
 "match": {
 "name": "eth*"
 },
 "nameservers": {
 "addresses": ["203.0.113.1"],
 "search": ["www.example.com", "example.com"]
 },
 "gateway4": "192.0.2.253",
 "dhcp4": false,
 "addresses": ["192.0.2.0/24"]
 }
 }
 }
}

Prepare a cloud-init Userdata File

Use the following information to prepare your cloud-init userdata file. The userdata file is optional
for cloud-init.

n The userdata file is a plain-text file in raw cloud-init format, without compression or base64
encoding.

n The maximum file size is 512KB.

vSphere Web Services SDK Programming Guide

VMware, Inc. 211

n Userdata configuration can be used to accomplish a number of configuration tasks in the
guest operating system. For instance, some of the more common tasks include:

n Add user accounts

n Install software

n Run scripts

n Import SSH keys

This example shows a userdata file that adds a new user to the guest operating system:

#cloud-config

users:
 - default
 - name: testuser
 primary_group: testgroup
 sudo: ALL=[ALL] NOPASSWD:ALL
 groups: sudo, wheel
 ssh_import_id: None
 lock_passwd: true
 ssh_authorized_keys:
 - ssh-rsa myRsaPubKey

Initiate Raw Data cloud-init Customization with the vSphere Web
Services API

Use the following steps to initiate customization with raw cloud-init data by using the vSphere
Web Services API.

1 Build a customization specification of type CustomizationSpec. Set the following properties in

the spec:

a The globalIPSettings property must be present but need not contain its optional child

properties. If the child properties are present, they will be ignored during the method call.

b The identity property must be present and must have type CloudinitPrep.

n The child property identity.metadata is required. It contains the entire text of the

metadata file, less any final new line character.

n The child property identity.userdata is optional. If present, it contains the entire text

of the userdata file, less any final new line character.

vSphere Web Services SDK Programming Guide

VMware, Inc. 212

Example:

CloudinitPrep cloudinit = new CloudinitPrep();
cloudinit.setMetadata(metadataText);
cloudinit.setUserdata(userdataText);
CustomizationGlobalIPSettings ipSettings = new CustomizationGlobalIPSettings();
CustomizationSpec custSpec = new CustomizationSpec();
custSpec.setIdentity(cloudinit);
custSpec.setGlobalIPSettings(ipSettings);

Note The nicSettingsMap property, if present, will be ignored for raw data customization.

The cloud-init tool accepts network customization only from the identity.metadata property.

2 Invoke the method VirtualMachine.CustomizeVM_Task, passing the customizationSpec as

parameter. The method returns a Task object that you can use to monitor completion of
the customization steps.

Example:

ManagedObjectReference custTask = service.CustomizeVM_Task(vmRef, custSpec);

3 Power on the virtual machine. As it boots, cloud-init applies the metadata configuration
settings to the guest operating system. After the guest finishes booting and before it opens a
shell window, cloud-init applies the userdata configuration.

Guest Network Customization for Instant Clone Virtual
Machines

You can customize the network settings in the guest operating system with the help of the
vSphere Web Services SDK. For instant clone operations, you must customize the clone without
stopping the guest operating system.

Guest network customization for a running virtual machine involves several steps:

n Installation of the guest customization engine

n Disconnecting virtual NICs

n Customizing guest network settings

n Reconnecting virtual NICs

n Restarting the guest network

n Recovering from guest customization errors

n Running scripts for application-dependent customization

vSphere Web Services SDK Programming Guide

VMware, Inc. 213

You can use these steps independently and you can run your own scripts in between steps as
needed to customize, reset status, or restart processes in the guest.

Note You must authenticate using credentials accepted by the guest operating system before
you can run guest operations.

Installing the Guest Customization Engine

The guest customization engine needs to be installed in a virtual machine before using the
VirtualMachineGuestCustomizationManager.CustomizeGuest_Task method.You can download

the installer from the VMware Customer Connect web site.

The guest customization engine is available for most popular Linux distributions, using either an
RPM package or a DEB package. To download and install it within the guest operating system,
use the following steps.

Prerequisites

Start a web browser in a running virtual machine. For instant clone operations, prepare the
source virtual machine by installing the customization engine before creating clones.

Procedure

1 Login to https://my.vmware.com.

2 Navigate to the Download VMware vSphere page for vSphere7.0.

3 Click the Drivers & Tools tab.

4 Find the entry for the instant clone customization engine.

5 Download the installation package appropriate for your Linux distribution:

n The .rpm file for RHEL or SLES

n The .deb file for Ubuntu

6 Run the command to install the package in the guest:

n For the .rpm package, use this command:

sudo /bin/rpm -i --force yourdpkgFilePath >> ./rpm.log 2>&1

n For the .deb package, use this command:

sudo /usr/bin/dpkg -i --force-all yourdpkgFilePath >> ./dpkg.log 2>&1

What to do next

After the guest customization engine is installed, the
guest is prepared to invoke VirtualMachine.InstantClone_Task or

VirtualMachineGuestCustomizationManager.CustomizeGuest_Task. You can delete the

installation package to save virtual disk space.

vSphere Web Services SDK Programming Guide

VMware, Inc. 214

https://my.vmware.com

Disconnecting Virtual NICs

Before you customize the guest network, you should disconnect the virtual NICs to quiesce
network traffic during the operation. Disconnecting virtual NICs is a key step in the instant clone
process.

You can disconnect a virtual NIC in one of these ways:

n In the spec parameter to the InstantClone_Task method you can specify that the virtual NIC

should be disconnected during the instant clone operation. This way leaves the NIC in the
source virtual machine active immediately after the clone operation, while the NIC in the clone
is idle and ready for customization.

n In the spec parameter to the ReconfigVM_Task method you can change the connection state

of a virtual NIC. This way is available either with or without an instant clone operation.

Disconnecting a Virtual NIC with InstantClone_Task

To disconnect a virtual NIC during an instant clone operation, prepare a
VirtualMachineInstantCloneSpec data object that specifies the device should be in the

disconnected state after the clone operation completes. You pass the clone specification
in the spec parameter of InstantClone_Task. Assign a value of disconnect to the property

spec.location.deviceChange[].device.connectable.migrateConnect.

Disconnecting a Virtual NIC with ReconfigVM_Task

To disconnect a virtual NIC by reconfiguring the virtual machine, prepare a
VirtualMachineConfigSpec data object that specifies a disconnected virtual NIC. You pass the

config specification in the spec parameter of the ReconfigVM_Task method. Assign a value of

False to the property spec.deviceChange[].device.connectable.connected.

Customizing Guest Network Settings for Running Virtual Machines

You can use a method of the VirtualMachineGuestCustomizationManager managed

object to apply new settings to the virtual NICs in the guest. The
VirtualMachineGuestCustomizationManager uses the guest customization engine designed for

instant clone operations to customize the guest while it continues running.

The customization step applies new settings for IP address, DNS server, and gateway server of
one or more virtual NICs.

Note DNS settings can be specific to individual NICs in Windows operating systems. DNS
settings are global in a Linux operating system.

The guest customization engine must be installed in the virtual machine before you call this
method. See Installing the Guest Customization Engine for instructions.

vSphere Web Services SDK Programming Guide

VMware, Inc. 215

Customization applies the new guest network settings that you specify in the spec parameter

to the VirtualMachineGuestCustomizationManager.CustomizeGuest_Task method. The spec
parameter is a data object of type CustomizationSpec, which contains a nicSettingMap property

that holds an array that maps MAC address to network settings for one or more virtual NICs in
the guest.

There are two ways to use the nicSettingsMap array in the spec parameter. You can do one of

the following:

n Specify each virtual NIC explicitly by its MAC address, in spec.nicSettingMap[i].macAddress,

and specify the virtual NIC's new settings in the properties of
spec.nicSettingMap[i].adapter.

n Omit spec.nicSettingMap[i].macAddress for all virtual NICs and specify the new settings for

each NIC in PCI bus order.

In addition to virtual NIC settings, you can customize these properties of a virtual machine:

n You can set the CustomizationSpec.identity property to a data object derived from

the type CustomizationIdentitySettings. You must choose a subclass of the type that

corresponds to the guest operating system installed in the virtual machine. In the identity
object you can specify a new host name, domain name, and system time settings.

n You can set the CustomizationSpec.globalIPSettings property to a data object of type

CustomizationGlobalIPSettings in which you specify DNS settings for all virtual NICs. Use

this for Linux guest operating systems.

The CustomizeGuest_Task method supports the following guest operating systems:

n Red Hat Enterprise Linux 6.8 and higher

n Red Hat Enterprise Linux 7.4 and higher

n CentOS 7.4 and higher

n SUSE 11SP4

n SUSE 12SP3 and higher

n Ubuntu 16.04 and higher (LTS distributions)

The toolsd service must be running and available for this customization step.

Note The CustomizeGuest_Task method is asynchronous, but a critical part of the operation,

which uses the customization engine, is synchronous.

You can pipeline the instant clone and customization operations to minimize the time needed to
clone a virtual machine.

Note During an instant clone operation, the toolsd service is briefly offline while it resets
connections in the clone. This results in no noticeable delay, but you might need to allow for a
retry if you run pre-customization code.

vSphere Web Services SDK Programming Guide

VMware, Inc. 216

The customization data is stored in the Namespace database in a cust.cfg format containing
name-value pairs. This makes the customization process resilient to vMotion operations. It also
means that you can access the data if needed as input for user-supplied customization scripts.

Reconnecting Virtual NICs in a Running Virtual Machine

After you customize a guest network in a running virtual machine, you must reconnect the virtual
NICs before the guest operating system can use them.

To reconnect a virtual NIC by reconfiguring the virtual machine, prepare a
VirtualMachineConfigSpec data object that specifies a connected virtual NIC. You pass the

config specification in the spec parameter of the ReconfigVM_Task method. Assign a value of

True to the property spec.deviceChange[].device.connectable.connected.

Restarting the Guest Network After Customization

After customizing guest network settings, you can restart the guest network
manually from within the guest operating system, or by using a method of the
VirtualMachineGuestCustomizationManager managed object. This method is important for instant

clone operations, but it can be used for other purposes as well.

To restart the guest network manually, see Resetting the Network Stack in a Running Virtual
Machine.

To restart the guest network using the vSphere Web Services API, use the
VirtualMachineGuestCustomizationManager.StartGuestNetwork_Task method. This method both

reconnects the virtual NICs to the network and restarts the guest network service.

The StartGuestNetwork_Task method is supported on most popular Linux distributions.

Recovering from Guest Network Customization Errors

Guest network customization is a long-running operation with several potential failure points. If
you encounter a failure, consider the following steps.

The guest network customization engine holds a lock on the
VirtualMachineGuestCustomizationManager interface while it applies changes to the guest. A

failure during customization or while restarting the network might leave a hung process or an
orphaned lock.

If any step of the network cutsomization returns an error, use the
VirtualMachineGuestCustomizationManager.AbortCustomization_Task method to stop all

running instances of the customization engine and to release the lock.

To troubleshoot a failure, you can examine the log file used by the
VirtualMachineGuestCustomizationManager.CustomizeGuest_Task method. The log file is on the

host file system at /var/log/vmware-gosc/instant_clone_customization.log for Linux hosts.

vSphere Web Services SDK Programming Guide

VMware, Inc. 217

When you abort a guest customization operation, the guest network can be left in an
inconsistent state. After the abort operation completes, you should check your customization
settings and retry the CustomizeGuest_Task method in case of transient error conditions.

Note When you use the VirtualMachineGuestCustomizationManager, the customization

procedure tolerates vMotion without failure.

Application-Dependent Customization

After you customize and restart the guest network, the virtual machine might need additional
customization steps, depending on the applications that run in the guest operatin system. For
example, you might need to generate new encryption keys for an instant clone, or signal an
application to close and re-open network sockets when you have configured new network IP
addresses.

To do additional customization steps in the guest, use the GuestFileManager and the

GuestProcessManager interfaces in the GuestOperationsManager managed object.

Resetting the Network Stack in a Running Virtual Machine

In any case where you change the network identity settings in the guest operating
system of a running virtual machine, you must reset the network stack for the
virtual NIC to cause it to adopt the new settings. You can do this by invoking the
VirtualMachineGuestCustomizationManager.RestartNetwork_Task method after you customize

the network settings, or you can do the reset from the guest operating system, as with a physical
machine. The way to reset a NIC differs, depending on the operating system.

For information about the RestartNetwork_Task method, see Restarting the Guest Network After

Customization.

Resetting the Network Stack in a Linux Virtual Machine

When you change network settings in an instant clone, you must reset the network stack of the
virtual NIC to adopt the new settings. For a Linux guest operating system, you must unbind and
rebind the network driver so it adopts a new MAC address.

The following shell script rebinds all network drivers:

#!/bin/bash
for NETDEV in /sys/class/net/*
do
 DEV_LABEL=`basename \`readlink -f $NETDEV/device\``
 DEV_DRIVR=`basename \`readlink -f $NETDEV/device/driver\``
 echo $DEV_LABEL > /sys/bus/pci/drivers/$DEV_DRIVR/unbind
 echo $DEV_LABEL > /sys/bus/pci/drivers/$DEV_DRIVR/bind
done

If the guest operating system was configured to use DHCP, you must also force a DHCP refresh
after the MAC addresses refresh has completed.

vSphere Web Services SDK Programming Guide

VMware, Inc. 218

Tip: Avoid resetting the network stack in the guest operating system while you are working over
a network connection, such as SSH. You can run the shell commands to reset the stack as part
of a customization script installed in the guest operating system of the source virtual machine
before running the instant clone operation.

Resetting the Network Stack in a Windows Virtual Machine

When you change network settings in a Windows virtual machine, you must disable and re-
enable the network object. There are several ways to do that in Windows.

Reset the Network Stack in a Windows Virtual Machine Using the Control Panel

When you change network settings in a Windows virtual machine, you must reset the network
stack of the virtual NIC to adopt the new settings. For a Windows guest operating system, you
must disable and re-enable the network connection so it adopts a new MAC address. You can do
this using the Control Panel.

Procedure

1 In the Control Panel, navigate to Control Panel > Networks and Internet > Network
Connections.

2 Right-click the network adapter icon and choose disable.

3 Right-click the network adapter icon and choose enable.

4 Repeat these steps for each network adapter.

Reset the Network Stack in a Windows Virtual Machine Using PowerShell

When you change network settings in a Windows virtual machine, you must reset the network
stack of the virtual NIC to adopt the new settings. For a Windows guest operating system, you
must disable and re-enable the network connection so it adopts a new MAC address. To perform
this task with PowerShell, use the Restart-NetAdapter cmdlet.

The cmdlet is described in more detail at https://technet.microsoft.com/en-us/itpro/powershell/
windows/netadapter/restart-netadapter.

Procedure

1 List the virtual network adapters in the guest operating system.

Get-NetAdapter

The names of the virtual network adapters appear in the first column of output.

2 Restart the network adapter representing the external interface.

Restart-NetAdapter -Name "Ethernet0"

3 If you have more than one virtual interface, repeat the previous step for each one.

vSphere Web Services SDK Programming Guide

VMware, Inc. 219

HTTPS://TECHNET.MICROSOFT.COM/EN-US/ITPRO/POWERSHELL/WINDOWS/NETADAPTER/RESTART-NETADAPTER
HTTPS://TECHNET.MICROSOFT.COM/EN-US/ITPRO/POWERSHELL/WINDOWS/NETADAPTER/RESTART-NETADAPTER

Reset the Network Stack in a Windows Virtual Machine Using netsh

When you change network settings in a Windows virtual machine, you must reset the network
stack of the virtual NIC to adopt the new settings. For a Windows guest, you must disable and
re-enable the network connection so it adopts a new MAC address. To perform this task, run
netsh with interface command.

Run the following commands in a command prompt (Run > cmd).

Procedure

1 List the network interfaces.

netsh interface show interface

2 Choose the interface that represents the external network connection and disable it.

netsh interface set interface name="Ethernet0" admin=DISABLED

3 Re-enable the interface with a similar command.

netsh interface set interface name="Ethernet0" admin=ENABLED

4 Repeat the previous two commands if you have more than one NIC that needs to be reset.

vSphere Web Services SDK Programming Guide

VMware, Inc. 220

Virtual Machine Security 14
Encryption in vSphere protects virtual machines, virtual disks, and related files. First you set up a
trusted connection between vCenter Server and a key management server (KMS), then vCenter
Server can retrieve keys from the KMS as needed. Physical device security and advanced options
are additional concerns.

Various aspects of virtual machine encryption are handled differently. You manage setup of
the KMS trusted connection and perform most encryption workflows from the vSphere Client.
You manage automation of some advanced features using the vSphere Web Services SDK, as
discussed in this chapter. You use the crypto-util command-line tool directly on ESXi hosts for

some special cases, for example, to decrypt the core dumps in a vm-support bundle.

Read the following topics next:

n How Virtual Machine Encryption Protects a Datacenter

n vSphere Virtual Machine Encryption Components

n Prerequisites and Required Privileges for Encryption Tasks

n API Methods for vSphere Virtual Machine Encryption

n Workflows for vSphere Virtual Machine Encryption

n Best Practices for Virtual Machine Encryption

n Configuring Advanced Options

n Physical Platform Resources

How Virtual Machine Encryption Protects a Datacenter

With vSphere virtual machine encryption, you can create encrypted virtual machines and
encrypt existing ones. Because all virtual machine files with sensitive information are encrypted,
the virtual machine is protected. Only administrators with encryption privileges can perform
encryption and decryption tasks.

VMware, Inc. 221

What Keys are Used

Two types of keys are used for encryption.

n The ESXi host generates and uses internal keys to encrypt virtual machines and disks. These
keys are used as the disk encryption key (DEK) and are XTS-AES-256 keys.

n The key management server (KMS) sends keys to the vCenter Server upon request. These
keys are used as the key encryption key (KEK) and are AES-256 keys. vCenter Server stores
only the ID of each KEK, but not the key itself.

n ESXi hosts use the KEK to encrypt their internal keys, and store only the encrypted internal
keys on disk, but not the KEK itself. When an ESXi host reboots, vCenter Server requests the
necessary KEKs by sending the corresponding IDs to the KMS, and upon receipt, make the
KEKs available to the ESXi host, which can then decrypt its internal keys as needed.

What Is Encrypted

Virtual machine encryption supports encrypting virtual machine files, virtual disk files, and core
dump files.

Virtual Machine Files

Most virtual machine files, in particular guest data that are not stored in the VMDK file, are
encrypted. This set of files includes but is not limited to the NVRAM (memory), VSWP (swap),
and VMSN (snapshot) files. The key that vCenter Server retrieves from the KMS unlocks an
encrypted bundle in the VMX file that contains internal keys and other secrets.

If you use the vSphere Client to create an encrypted virtual machine, all virtual disks are
encrypted by default. For other encryption tasks, such as encrypting an existing virtual machine,
you can encrypt and decrypt virtual disks separate from virtual machine files.

Note You cannot associate an encrypted virtual disk with an unencrypted virtual machine.

Virtual Disk Files

Data in an encrypted virtual disk (VMDK) file are never written in cleartext to storage or physical
disk, and is never transmitted over the network in cleartext. The VMDK descriptor file is mostly
cleartext, but contains a key ID for the KEK and the internal key (DEK) in the encrypted bundle.

You can use the vSphere API to perform either a shallow recrypt operation with a new KEK, or a
deep recrypt operation with new internal keys.

Core Dump Files

Core dumps on an ESXi host that has encryption mode enabled are always encrypted. You can
decrypt and password protect ESXi core dumps using the crypto-util command-line tool on

the ESXi host.

Note Core dumps on the vCenter Server (Appliance) are not encrypted. Be sure to protect
access to all vCenter Server systems.

vSphere Web Services SDK Programming Guide

VMware, Inc. 222

What Is Not Encrypted

Some files that are associated with a virtual machine are not encrypted or partially encrypted.

Log Files

Log files are not encrypted because they should not contain sensitive data.

Virtual Machine Configuration Files

Most of the virtual machine configuration information, stored in the VMX and VMSD files, is not
encrypted. Information about the KMS and the key ID is visible in those files.

Virtual Disk Descriptor File

To support disk management without a key, most of the virtual disk descriptor file is not
encrypted.

Who Can Perform Cryptographic Operations

Only users who are assigned the Cryptographic Operations privileges can perform cryptographic
operations. The privilege set is fine grained; see the vSphere Security guide. The default
Administrator system role includes all Cryptographic Operations privileges. A new system
role, No Cryptography Administrator, supports all Administrator privileges except for the
Cryptographic Operations privileges.

You can create additional custom roles, for example, to allow a group of users to encrypt virtual
machines but to prevent them from decrypting virtual machines.

For a full list of privileges, see the section “Cryptographic Operations Privileges” in the vSphere
Security manual.

How Can I Perform Cryptographic Operations

The vSphere Client supports many cryptographic operations. For other tasks, you must use the
API.

vSphere Web Services SDK Programming Guide

VMware, Inc. 223

Table 14-1. Interfaces for performing cryptographic operations

Interface Operations Information

vSphere Client Create encrypted virtual machines

Encrypt and decrypt virtual machines

The vSphere Security
guide.

vSphere Web Services SDK Create encrypted virtual machines

Encrypt and decrypt virtual machines

Perform a deep recrypt of virtual machines
(use a different KEK and DEK).

Perform a shallow recrypt of virtual machines
(use a different KEK).

This chapter.

crypto-util Decrypt encrypted core dumps, check whether
files are encrypted, and perform other
management tasks directly on the ESXi host,

Command-line help and
the vSphere Security
guide.

vSphere Virtual Machine Encryption Components

An external key management server (KMS), the vCenter Server system, and ESXi hosts all
contribute to the vSphere virtual machine encryption solution.

Figure 14-1. vSphere Virtual Machine Encryption Architecture

Key Management Server

The vCenter Server requests keys from an external KMS. The KMS generates and stores the keys,
and passes them to vCenter Server for distribution.

You can use the vSphere Client or the vSphere API to add a cluster of KMS instances to the
vCenter Server system. If you use multiple KMS instances in a cluster, all instances must be from
the same vendor and must replicate keys.

vSphere Web Services SDK Programming Guide

VMware, Inc. 224

If your environment uses different KMS vendors in different environments, you can add a KMS
cluster for each KMS and specify a default KMS cluster. The first cluster that you add becomes
the default cluster. You can explicitly change the default later.

As a KMS client, vCenter Server uses the Key Management Interoperability Protocol (KMIP) and
makes it easy to use the KMS of your choice.

vCenter Server

Only vCenter Server has credentials for logging in to the KMS. The ESXi hosts do not have those
credentials. The vCenter Server obtains keys from the KMS and pushes them to the ESXi hosts.
The vCenter Server does not store the KMS keys, it merely keeps a list of key IDs.

The vCenter Server checks the privileges of users who perform cryptographic operations. You
can use the vSphere Client to assign cryptographic privileges or to assign the No cryptography
administrator custom role to groups of users. See Prerequisites and Required Privileges for
Encryption Tasks.

The vCenter Server adds cryptography events to the list of events that you can view and
export from the vSphere Client Event Console. Each event includes the user, time, key ID, and
cryptographic operation.

ESXi Hosts

ESXi hosts are responsible for several aspects of the encryption workflow.

n Accepting keys and storing them in memory (never on disk). If a host has encryption mode
enabled, and the current user’s role includes cryptographic operations privileges, vCenter
Server pushes keys to the ESXi host upon request. See Prerequisites and Required Privileges
for Encryption Tasks.

n Ensuring that guest data for encrypted virtual machines are encrypted when stored on disk.

n Ensuring that guest data for encrypted virtual machines are never sent unencrypted over the
network.

The keys that the ESXi host generates are called internal keys in this document. These keys are
typically act as data encryption keys (DEKs).

Encryption Process Flow

After vCenter Server is connected to the KMS, users with the required privileges can create
encrypted virtual machines and disks. Those users can also perform other encryption tasks such
as encrypting existing virtual machines and decrypting encrypted virtual machines. During the
encryption process, different components interact as follows.

1 When the user performs an encryption task, for example, creating an encrypted virtual
machine, vCenter Server requests a new key from the default KMS. This key will be used
as the KEK.

vSphere Web Services SDK Programming Guide

VMware, Inc. 225

2 The vCenter Server stores the key ID and passes the key to an ESXi host. If the ESXi host is
part of a cluster, vCenter Server sends the KEK to each host in the cluster. The key itself is
not stored on the vCenter Server system. Only the key ID is stored.

3 The ESXi host generates internal keys (DEKs) for the virtual machine and its disks, using the
KEK that it received from vCenter Server to encrypt the internal keys. The the internal keys
are kept in memory only. Only the encrypted data are stored on disk.

4 The ESXi host encrypts the virtual machine and its disks with the encrypted internal key.

ESXi hosts that have the KEK and can access the encrypted key file can perform operations on
an encrypted virtual machine or disk. Because they come from the KMS, ESXi hosts can use the
same KEK across reboots.

If you later want to decrypt a virtual machine, you change its storage policy either for the virtual
machine or for its disks. If you want to decrypt individual components, first decrypt selected
disks, then decrypt the virtual machine by changing the storage policy for VM Home. Both keys
are required for decryption of each component, virtual disks or VM Home.

When you encrypt an existing virtual machine, you need at least twice the space that the virtual
machine is currently using, in most cases.

Prerequisites and Required Privileges for Encryption Tasks

Users who perform encryption related tasks must have the appropriate privileges. Additional
privileges are required if virtual machine encryption tasks require changing the host encryption
mode. An extensive number of Cryptographic Operations privileges allow fine-grained control.

Encryption tasks are possibly only in environments that include a vCenter Server. Additionally,
the ESXi host must have encryption mode enabled for most encryption tasks. The user who
performs an encryption task must have the appropriate privileges. Additional privileges are
required if virtual machine encryption tasks require changing the host encryption mode. An
extensive number of Cryptographic Operations privileges allow fine-grained control.

Cryptography Privileges and Roles

By default, the user with the vCenter Server Administrator role has all Cryptographic Operations
privileges. You can assign the No cryptography administrator role to all vCenter Server
administrators who do not need cryptographic privileges.

The user with the vCenter Server Administrator role has all privileges by default. You can assign
the No cryptography administrator role to vCenter Server users who do not need Cryptographic
Operations privileges. The No cryptography administrator lacks the following privileges for
cryptographic operations:

n Add Cryptographic Operations privileges

n Global.Diagnostics

n Host.Inventory.Add host to cluster

vSphere Web Services SDK Programming Guide

VMware, Inc. 226

n Host.Inventory.Add standalone host

n Host.Local operations.Manage user groups

To further limit what users can do, you can clone the No cryptography administrator role and
create a custom role with only some of the Cryptographic Operations privileges. For example,
you can create a role that allows users to encrypt but not to decrypt virtual machines, or that
does grant privileges for management operations. See the vSphere Security manual for details.

Host Encryption Mode

You can encrypt virtual machines only if host encryption mode is enabled for the ESXi host. Host
encryption mode is often enabled automatically, but it can be enabled explicitly.

You can check and explicitly set the current host encryption mode from the vSphere Client or by
using the vSphere API; see API Methods to Prepare an ESXi Host.

After host encryption mode is enabled, it cannot be disabled easily. See the vSphere Security
guide for details.

Automatic changes occur when encryption operations attempt to enable host encryption mode.
For example, suppose that you add an encrypted virtual machine to an ESXi host, and host
encryption mode is not enabled. If you have the required privileges on the host, encryption mode
automatically changes to enabled.

Assume a cluster that includes three ESXi hosts, host A, B, and C. You add an encrypted virtual
machine to host A. What happens depends on several factors. If all three hosts have encryption
enabled, you can create an encrypted virtual machine if you have Encrypt new privileges. If none

of the hosts has encryption enabled, and you have Register host privileges on host A, then the

virtual machine creation process enables host encryption on that host; otherwise an error results.
The scenario is more complicated if host B or C is not enabled for encryption; see the vSphere
Security guide for details.

Encrypted vSphere vMotion

vSphere vMotion always tries to use encryption when migrating encrypted virtual machines. You
cannot disable encrypted vMotion for encrypted virtual machines in a cluster.

For virtual machines that are not encrypted, you can set encrypted vMotion to Opportunistic
(use encrypted vMotion if supported) or Required (do not migrate if unsupported). See

Encrypted vSphere vMotion.

API Methods for vSphere Virtual Machine Encryption

Methods for managing vSphere virtual machine encryption are in the vSphere API, part of
the Web Services SDK. In addition, you need a few Storage Policy APIs to create and assign
encryption storage policies.

vSphere Web Services SDK Programming Guide

VMware, Inc. 227

vSphere API Methods for KMS Management

Cryptographic key management interfaces are defined in the following hierarchy.

n CryptoManager – managed object, parent of CryptoManagerKmip.

CryptoManager defines methods that are covered in vSphere API Methods for Cryptographic
Operations.

n CryptoManagerKmip – managed object for handing the cryptographic keys.

n CertificateInfo – basic information of a certificate.

n ClusterStatus – status of a KMS cluster.

n ServerCertInfo – information about the KMS certificate.

n ServerStatus – status of a KMS.

CryptoManagerKmip defines the following methods:

n String generateClientCsr(cluster) – generate a certificate signing request with its

private key.

n String generateSelfSignedClientCert(cluster) – generate self-signed client

certificate with its private key.

n KmipClusterInfo[] kmipServers() – get a list of registered KMS, grouped by clusters.

n KmipClusterInfo[] listKmipServers(limit) – get a list of registered KMS.

n void markDefault(clusterId) – set the default KMS cluster.

n void registerKmipServer(server) – register a KMS.

n void removeKmipServer(clusterId, serverName) – remove a KMS, even if in use.

n String retrieveClientCert(cluster) – get the client certificate of the KMS cluster.

n String retrieveClientCsr(cluster) – get the generated client certificate signing

request.

n ServerCertInfo retrieveKmipServerCert(keyProvider, server) – get the server

certificate.

n ClusterStatus[] retrieveKmipServersStatus(clusters[]) – get status of the KMS

instances.

n String retrieveSelfSignedClientCert(cluster) – get generated self signed client

certificate.

n void updateKmipServer(server) – update a KMS.

n void updateKmsSignedCsrClientCert(cluster, certificate) – Set KMS signed

certificate as the client certificate for a KMS cluster.

vSphere Web Services SDK Programming Guide

VMware, Inc. 228

n void updateSelfSignedClientCert(cluster, certificate) – set a self-signed

certificate as the client certificate for the KMS cluster.

n void uploadClientCert(cluster, certificate, privateKey) – set a client

certificate with private key for the KMS cluster.

n void uploadKmipServerCert(cluster, certificate) – upload a server certificate.

n CryptoKeyResult generateKey(keyProvider) – generate a new encryption key.

The generateKey method is out of alphabetic order because it is called after the others.

API Methods to Prepare an ESXi Host

Encryption interfaces for ESXi hosts are additions to a previously existing managed object,
HostSystem.

n HostSystem – managed object providing access to the ESXi host, including these additions:

n HostCryptoState – enumeration indicating whether the ESXi host is incapable of,

prepared for encryption mode, or cryptography safe with its host key already set. Safe
means that the ESXi host can encrypt virtual machines and will not leak keys.

n ConfigureCryptoKey – vCenter Server calls this method to set or change the key used for

core dump encryption, and to place the host in safe mode. It is like calling PrepareCrypto
and EnableCrypto in quick succession. Not supported if called on an ESXi host. As

of vSphere 7.0 you can disable encryption on a host, after next reboot, by setting
pendingIncapable in HostCryptoState.

n PrepareCrypto – this method puts the ESXi host in prepared mode so it can receive

sensitive data, after being enabled.

n EnableCrypto – this method sets or changes the key for core dump encryption and puts

the ESXi host in safe mode. It must be called in sequence after PrepareCrypto.

The following data objects are used by the ConfigureCryptoKey and EnableCrypto methods

above, and by the CryptoManager methods below in vSphere API Methods for Cryptographic
Operations.

n CryptoKeyPlain – data object representing a plain text cryptographic key.

n CryptoKeyId – data object representing a cryptographic key.

n CryptoKeyResult – data object representing the result of a cryptographic key operation.

vSphere API Methods for Cryptographic Operations

Cryptographic operations are defined in the following hierarchy.

n CryptoManager – managed object for handling cryptographic keys.

CryptoManager defines the following methods:

n void addKey(CryptoKeyPlain key) – add plain key to the vCenter Server.

vSphere Web Services SDK Programming Guide

VMware, Inc. 229

n CryptoKeyResult[] addKeys(CryptoKeyPlain[] keys) – add multiple plain keys to

vCenter.

n boolean enabled() – indicate if the encryption feature is enabled.

n CryptoKeyId[] listKeys(int limit) – list keys.

n void removeKey(CryptoKeyId key, boolean force) – remove a key (only its ID is

needed).

n CryptoKeyResult[] removeKeys(CryptoKeyId[] keys, boolean force) – multiple

keys.

n VirtualMachineConfigSpec – previously existing data object passed as parameter to

CreateVM_Task and ReconfigVM_Task. One of its newly added properties is crypto, a

CryptoSpec with one of the following options, which is inherited by all virtual disks and virtual
machine configuration files (VM home).

n CryptoSpecEncrypt – indicates that the virtual machine should be encrypted.

n CryptoSpecDecrypt – indicates that the virtual machine should be decrypted.

n CryptoSpecDeepRecrypt – indicates that all KEKs and DEKs should be replaced.

n CryptoSpecShallowRecrypt – indicates that only KEKs should be replaced.

n CryptoSpecNoOp – indicates that encryption settings should not be changed.

n CryptoSpecRegister – indicates that the operation should send keys but should not

modify the encryption settings of the virtual machine or virtual disk. When an encrypted
disk is hot attached, the program must pass CryptoSpecRegister with the key ID that

encrypted the disk. The key can be obtained from the Datastore Browser.

These data objects are informational properties of VMConfigFileInfo and VMDiskFileInfo,

respectively. They can be used to check whether the VM home and its virtual disks are
encrypted.

n VmConfigFileEncryptionInfo – the encryption information of a virtual machine

configuration.

n VmDiskFileEncryptionInfo – the encryption information of a virtual disk.

The enumeration EncryptedVMotionModes controls whether encrypted vMotion is disabled,

required, or opportunistic (fall back to unencrypted vMotion if necessary, the default

option).

More information about the encryption interfaces is available in vSphere Management SDK
Documentation under vSphere Web Services SDK, in the vSphere API Reference.

vSphere Web Services SDK Programming Guide

VMware, Inc. 230

SPBM API Methods for Encryption

The managed object PbmProfileProfileManager (pbm.profile.ProfileManager) provides

methods to set encryption related storage policies, including create and update.

n PbmCreate(createSpec) – create a capability-based storage profile defining storage

requirements.

n PbmUpdate(profileId, createSpec) – update a storage profile with new capability

requirements.

Workflows for vSphere Virtual Machine Encryption

The sections below present vSphere API methods for key acquisition and encryption.

Set Up the Key Management Server Cluster

Before you can start encrypting virtual machines, you must set up the Key Management Server
(KMS) cluster. This includes adding the KMS, establishing trust with the KMS, and setting the
default KMS cluster. The KMS must support the KMIP (Key Management Interoperability Protocol)
1.1 standard, and it must be capable of acting as a symmetric key foundry and server.

Add Key Management Server(s) to Your Datacenter

Your organization’s security administrator may be responsible for this task. This person will
need to provide the cluster name (if it already exists), the KMS server name, its IP address, its
connection port number, and possibly a proxy address, proxy port number, KMS user name, and
corresponding password.

The CryptoManager.java code to add a KMS and set the default KMS cluster appears in

CryptoManager Java program to add KMS and set default cluster. The user running this program
must have Cryptographic operations.Manage key servers privileges.

Establish a Trusted Connection by Exchanging Certificates

There are four ways to establish trust between a KMS and vCenter Server. Different KMS vendors
require different ways.

Java examples for these four ways follow.

1 Upload your Root CA Certificate to the KMS. Obtain it manually and upload with the self-
signed call.

2 Upload a self-signed vCenter Certificate to the KMS.

3 Have vCenter Server generate a certificate signing request (CSR), which the KMS signs and
returns.

4 Download a security certificate and private key generated by the KMS to vCenter Server.

vSphere Web Services SDK Programming Guide

VMware, Inc. 231

Example: CryptoManager Java program to add KMS and set default cluster

package com.vmware.general;
import com.vmware.common.annotations.Action;
import com.vmware.common.annotations.Option;
import com.vmware.common.annotations.Sample;
import com.vmware.connection.ConnectedVimServiceBase;
import com.vmware.vim25.CryptoKeyId;
import com.vmware.vim25.CryptoKeyResult;
import com.vmware.vim25.CryptoManagerKmipServerCertInfo;
import com.vmware.vim25.KeyProviderId;
import com.vmware.vim25.KmipServerInfo;
import com.vmware.vim25.KmipServerSpec;
import com.vmware.vim25.ManagedObjectReference;
import com.vmware.vim25.RuntimeFaultFaultMsg;
/**
 * CryptoManager. Demonstrates uses of the CryptoManager API. Parameters:
 * url [required] : web service url, for example https://10.9.8.7/sdk
 * username [required] : username for the authentication
 * password [required] : corresponding password
 * Command line to run CryptoManager code:
 * run.bat com.vmware.general.CryptoManager ^
 * --url webserviceurl --username name --password pass ^
 * --kmsname kms --kmsip ipaddr --kmsclusterid providerId
 */
@Sample(name = "CryptoManager", description = "Demonstrates uses of the CryptoManager API")
public class CryptoManager extends ConnectedVimServiceBase {
 private ManagedObjectReference cryptoManager = null;
 private KmipServerSpec kmipSpec = null;
 private String kmsName;
 private String kmsIp;
 private int kmsPort = 5696; // default
 private String kmsClusterId;

 public void initCryptoManager() throws RuntimeFaultFaultMsg {
 if (serviceContent != null) {
 cryptoManager = serviceContent.getCryptoManager();
 if (cryptoManager == null) {
 throw new RuntimeFaultFaultMsg("CryptoManager could not be obtained", null);
 }
 } else {
 throw new RuntimeFaultFaultMsg("ServiceContent could not be obtained", null);
 }
 }
 public void registerKmipServer() throws RuntimeFaultFaultMsg {
 KmipServerInfo serverInfo = new KmipServerInfo(); // Create KMS info
 serverInfo.setName(kmsName); // Set the name of your KMS here
 serverInfo.setAddress(kmsIp); // Set the IP addr of your KMS
 serverInfo.setPort(kmsPort); // Set KMS port, if different from default
 KeyProviderId providerId = new KeyProviderId(); // Set the name of KMS cluster here
 providerId.setId("KMScluster");
 kmipSpec = new KmipServerSpec();
 kmipSpec.setInfo(serverInfo); // KMS spec with server and cluster ID
 kmipSpec.setClusterId(providerId);
 vimPort.registerKmipServer(cryptoManager, kmipSpec); // Register server

vSphere Web Services SDK Programming Guide

VMware, Inc. 232

 }
 public void trustKmip() throws RuntimeFaultFaultMsg { // Get KMS certificate
 CryptoManagerKmipServerCertInfo certInfo = vimPort.retrieveKmipServerCert(
 cryptoManager, kmipSpec.getClusterId(), kmipSpec.getInfo());
 // Upload retrieved certificate to vCenter Server and trust it
 vimPort.uploadKmipServerCert(
 cryptoManager, kmipSpec.getClusterId(), certInfo.getCertificate());
 }
 public void establishTrust() throws RuntimeFaultFaultMsg {
 // Make KMS trust vCenter Server by uncommenting and calling one of these lines
 // - establishTrustUsingSelfSignedCert() - see Example 12-2 for source code
 // - establishTrustUsingSignedCsr() - see Example 12-3 for source code
 // - establishTrustUsingCertAndKey() - see Example 12-4 for source code
 trustKmip(); // Now make the vCenter Server trust KMS
 }
 public void setDefaultKmipCluster() throws RuntimeFaultFaultMsg {
 vimPort.markDefault(cryptoManager, kmipSpec.getClusterId()); // Mark cluster as default
 }
 public void generateNewKey() throws RuntimeFaultFaultMsg {
 CryptoKeyResult keyResult = vimPort.generateKey(cryptoManager, kmipSpec.getClusterId());
 CryptoKeyId keyId = keyResult.getKeyId(); // Generate new key for encryption
 }
 @Action
 public void action() throws RuntimeFaultFaultMsg {
 initCryptoManager();
 registerKmipServer();
 establishTrust();
 setDefaultKmipCluster();
 generateNewKey();
 }
 @Option(name = "kmsname", description = "Name of the KMS", required = true)
 public void setKMSName(String name) {
 this.kmsName = name;
 }
 @Option(name = "kmsip", description = "IP address of the KMS", required = true)
 public void setKMSIp(String ip) {
 this.kmsIp = ip;
 }
 @Option(name = "kmsport", description = "KMS port", required = false)
 public void setKMSPort(String port) {
 this.kmsPort = Integer.parseInt(port);
 }
 @Option(name = "kmsclusterid", description = "KMS cluster Id", required = true)
 public void setKMSClusterId(String clusterId) {
 this.kmsClusterId = clusterId;
 }
}

Example: Trust with self-signed certificate or Root CA certificate

This example method uploads a self-signed vCenter certificate, or the Root CA certificate, to the
KMS.

public void establishTrustUsingSelfSignedCert() throws RuntimeFaultFaultMsg {
 // Generate self-signed cert, or obtain the Root CA certificate

vSphere Web Services SDK Programming Guide

VMware, Inc. 233

 String selfSignedCert = vimPort.generateSelfSignedClientCert(
 cryptoManager, kmipSpec.getClusterId());
 // Follow steps for KMS to trust self-signed or Root CA cert, update vCenter to use it
 vimPort.updateSelfSignedClientCert(
 cryptoManager, kmipSpec.getClusterId(), selfSignedCert);
}

Example: Trust with CSR then downloading KMS signed certificate

This example method generates a CSR and downloads the KMS signed certificate onto vCenter
Server.

public void establishTrustUsingSignedCsr() throws RuntimeFaultFaultMsg {
 // Generate a Certificate Signing Request
 String csr = vimPort.generateClientCsr(cryptoManager, kmipSpec.getClusterId());
 String signedCert = null;
 // Follow steps for your KMS to sign CSR and get the signedCert to update on vCenter
 vimPort.updateKmsSignedCsrClientCert(
 cryptoManager, kmipSpec.getClusterId(), signedCert);
}

Example: Trust by downloading KMS certificate and private key

This example method downloads a certificate and private key generated by the KMS to vCenter
Server.

public void establishTrustUsingCertAndKey() throws RuntimeFaultFaultMsg {
 String certFromKms = null;
 String privateKeyKms = null;
 // Follow steps for KMS to generate certificate and private key (certFromKms,
privateKeyKms)
 vimPort.uploadClientCert(
 cryptoManager, kmipSpec.getClusterId(), certFromKms, privateKeyKms);
}

Create an Encryption Storage Policy

Before any virtual machines can be encrypted, vCenter Server must contain an encryption
storage policy. The policy only needs to be created once; it can be assigned to any virtual
machines that you want to encrypt.

Example: Java program to set storage policy for encryption

package com.vmware.spbm.samples;
import java.util.ArrayList;
import java.util.List;
import com.vmware.common.annotations.Action;
import com.vmware.common.annotations.Option;
import com.vmware.common.annotations.Sample;
import com.vmware.pbm.InvalidArgumentFaultMsg;
import com.vmware.pbm.PbmCapabilityConstraintInstance;
import com.vmware.pbm.PbmCapabilityInstance;
import com.vmware.pbm.PbmCapabilityMetadata;

vSphere Web Services SDK Programming Guide

VMware, Inc. 234

import com.vmware.pbm.PbmCapabilityMetadataPerCategory;
import com.vmware.pbm.PbmCapabilityProfileCreateSpec;
import com.vmware.pbm.PbmCapabilityPropertyInstance;
import com.vmware.pbm.PbmCapabilityPropertyMetadata;
import com.vmware.pbm.PbmCapabilitySubProfile;
import com.vmware.pbm.PbmCapabilitySubProfileConstraints;
import com.vmware.pbm.PbmCapabilityVendorNamespaceInfo;
import com.vmware.pbm.PbmCapabilityVendorResourceTypeInfo;
import com.vmware.pbm.PbmDuplicateNameFaultMsg;
import com.vmware.pbm.PbmFaultProfileStorageFaultFaultMsg;
import com.vmware.pbm.PbmProfileId;
import com.vmware.pbm.PbmServiceInstanceContent;
import com.vmware.spbm.connection.ConnectedServiceBase;
import com.vmware.spbm.connection.helpers.PbmUtil;
import com.vmware.vim25.ManagedObjectReference;
import com.vmware.vim25.RuntimeFaultFaultMsg;
/**
 * CreateVMEncryptionProfile
 * Create new Storage Profile with one rule-set based on vmwarevmcrypt capabilities.
 * Parameters:
 * vcurl [required] : web service url, for example https://10.9.8.7/sdk
 * username [required] : username for the authentication
 * password [required] : corresponding password
 * profilename [required] : name of the storage profile
 * Command Line:
 * run.bat com.vmware.spbm.samples.CreateVMEncryptionProfile --vcurl [webserviceurl] ^
 * --username [username] --password [password] --profilename [Storage Profile Name]
 */
@Sample(name = "CreateVMEncryptionProfile",
 description = "Create a new storage profile with "
 + "one rule-set based on vmwarevmcrypt capabilities.")
public class CreateVMEncryptionProfile extends ConnectedServiceBase {
 private PbmServiceInstanceContent spbmsc;
 private String profileName;

 // Build capability instance based on capability name associated with vmwarevmcrypt
provider
 PbmCapabilityInstance buildCapability(String capabilityName,
 List<PbmCapabilityMetadataPerCategory> metadata)
 throws InvalidArgumentFaultMsg {
 // Create Property Instance with capability vmwarevmcrypt
 PbmCapabilityMetadata capabilityMeta =
 PbmUtil.getCapabilityMeta(capabilityName,metadata);
 if (capabilityMeta == null)
 throw new InvalidArgumentFaultMsg("Specified Capability does not exist", null);
 // Create and associate Property Instances with a Rule
 PbmCapabilityConstraintInstance rule = new PbmCapabilityConstraintInstance();
 for (PbmCapabilityPropertyMetadata propMeta : capabilityMeta.getPropertyMetadata()) {
 PbmCapabilityPropertyInstance prop = new PbmCapabilityPropertyInstance();
 prop.setId(propMeta.getId());
 prop.setValue(propMeta.getDefaultValue());
 rule.getPropertyInstance().add(prop);
 }
 // Associate Rule with a Capability Instance
 PbmCapabilityInstance capability = new PbmCapabilityInstance();

vSphere Web Services SDK Programming Guide

VMware, Inc. 235

 capability.setId(capabilityMeta.getId());
 capability.getConstraint().add(rule);
 return capability;
 }
 @Action
 public void createProfile() throws RuntimeFaultFaultMsg,
 com.vmware.pbm.RuntimeFaultFaultMsg, InvalidArgumentFaultMsg,
 PbmDuplicateNameFaultMsg, PbmFaultProfileStorageFaultFaultMsg {
 // Get PBM Profile Manager & Associated Capability Metadata
 spbmsc = connection.getPbmServiceContent();
 ManagedObjectReference profileMgr = spbmsc.getProfileManager();
 // Step 1: Check if there is a vmwarevmcrypt Provider
 Boolean encryptionCapable = false;
 List<PbmCapabilityVendorResourceTypeInfo> vendorInfo =
 connection.getPbmPort().pbmFetchVendorInfo(profileMgr, null);
 for (PbmCapabilityVendorResourceTypeInfo vendor : vendorInfo)
 for (PbmCapabilityVendorNamespaceInfo vnsi : vendor .getVendorNamespaceInfo())
 if (vnsi.getNamespaceInfo().getNamespace().equals("vmwarevmcrypt")) {
 encryptionCapable = true;
 break;
 }
 if (!encryptionCapable)
 throw new RuntimeFaultFaultMsg(
 "Cannot create storage profile. 'vmwarevmcrypt' Provider not found.", null);
 // Step 2: Get PBM Supported Capability Metadata
 List<PbmCapabilityMetadataPerCategory> metadata =
 connection .getPbmPort().pbmFetchCapabilityMetadata(profileMgr,
 PbmUtil.getStorageResourceType(),
 "com.vmware.iofilters");
 // Step 3: Add Provider Specific Capabilities
 List<PbmCapabilityInstance> capabilities = new ArrayList<PbmCapabilityInstance>();
 capabilities.add(buildCapability("vmwarevmcrypt@ENCRYPTION", metadata));
 // Step 4: Add Capabilities to a RuleSet
 PbmCapabilitySubProfile ruleSet = new PbmCapabilitySubProfile();
 ruleSet.getCapability().addAll(capabilities);
 // Step 5: Add Rule-Set to Capability Constraints
 PbmCapabilitySubProfileConstraints constraints = new
PbmCapabilitySubProfileConstraints();
 ruleSet.setName("Rule-Set " + (constraints.getSubProfiles().size() + 1));
 constraints.getSubProfiles().add(ruleSet);
 // Step 6: Build Capability-Based Profile
 PbmCapabilityProfileCreateSpec spec = new PbmCapabilityProfileCreateSpec();
 spec.setName(profileName);
 spec.setDescription("Storage Profile in SDK. Rule based on Encryption capability");
 spec.setResourceType(PbmUtil.getStorageResourceType());
 spec.setConstraints(constraints);
 // Step 7: Create Storage Profile
 PbmProfileId profile = connection.getPbmPort().pbmCreate(profileMgr, spec);
 System.out.println("Profile " + profileName + " with ID: " + profile.getUniqueId());
 }
 @Option(name = "profilename", description = "Name of the storage profile", required = true)
 public void setProfileName(String profileName) {
 this.profileName = profileName;
 }
}

vSphere Web Services SDK Programming Guide

VMware, Inc. 236

Create an Encrypted Virtual Machine

The Web Services SDK provides Java code to create a virtual machine. The Java code can
be modified to create an encrypted virtual machine. Steps below show how to implement
virtual machine encryption in the VMCreate.java sample program. The crypto property in

VirtualMachineConfigSpec should be set to CryptoSpecEncrypt, and an encryption key

provided. The storage profile must have been previously set to specify encryption. If the
CryptoSpec is unset, but a storage profile with encryption is set, vCenter Server automatically

generates new keys and sets CryptoSpec, if a default KMS has been configured.

To enhance the com.vmware.spbm.samples.VMCreate program for encryption, follow these

steps:

1 Import the following classes:

import com.vmware.vim25.CryptoKeyId;
import com.vmware.vim25.CryptoSpecEncrypt;
import com.vmware.vim25.KeyProviderId;
import com.vmware.vim25.VirtualDeviceConfigSpecBackingSpec;

2 Declare the following variables:

private CryptoKeyId cryptoKeyId;
private String keyId;
private String providerId;

3 In the createVirtualDisk() function, find the following line:

diskSpec.setOperation(VirtualDeviceConfigSpecOperation.ADD);

4 In the createVirtualDisk() function, add the following code after the line you found in the

previous step:

if ((keyId != null) && (providerId != null)) {
 CryptoSpecEncrypt cSpec = new CryptoSpecEncrypt();
 VirtualDeviceConfigSpecBackingSpec backingSpec =
 new VirtualDeviceConfigSpecBackingSpec();
 cSpec.setCryptoKeyId(buildCryptoKeyId());
 backingSpec.setCrypto(cSpec);
 diskSpec.setBacking(backingSpec);
}

5 In the createVmConfigSpec() function, find the following line:

VirtualMachineConfigSpec configSpec = new VirtualMachineConfigSpec();

vSphere Web Services SDK Programming Guide

VMware, Inc. 237

6 In the createVmConfigSpec() function, add the following code after the line you found in

the previous step:

if ((keyId != null) && (providerId != null)) {
 CryptoSpecEncrypt cryptoSpecForVMHome = new CryptoSpecEncrypt();
 cryptoSpecForVMHome.setCryptoKeyId(buildCryptoKeyId());
 configSpec.setCrypto(cryptoSpecForVMHome);
}

7 Add the following options toward the end of file:

@Option(name = "keyid", description = "Key Id", required = false)
public void setKeyId(String kid) {
 this.keyId = kid;
}
@Option(name = "providerid", description = "Cluster/Provider Id", required = false)
public void setProviderId(String pid) {
 this.providerId = pid;
}

The SPBM sample code is in the Storage Policy SDK, not in the vSphere Web Services SDK.

Clone an Encrypted Virtual Machine

Set the crypto property in RelocateSpec at cloneSpec.location. The virtual machine must

be powered off, with no existing snapshots. The encrypted virtual machine will be cloned, still
encrypted.

Example: Clone an encrypted virtual machine

// Step 5: Create Specs
VirtualMachineRelocateSpec relocSpec = new VirtualMachineRelocateSpec();
VirtualMachineCloneSpec cloneSpec = new VirtualMachineCloneSpec();
VirtualMachineConfigSpec configSpec = new VirtualMachineConfigSpec();
// Step 6: Associate Storage Profile
relocSpec.getProfile().add(getVMDefinedProfileSpec(profileName));
cloneSpec.setConfig(configSpec);
cloneSpec.setLocation(relocSpec);
cloneSpec.setPowerOn(false);
cloneSpec.setTemplate(false);
// Step 7: Clone VM
ManagedObjectReference
 cloneTask = connection.getVimPort().cloneVMTask(vmRef, vmFolderRef, cloneName,
cloneSpec);

Encrypt an Existing Virtual Machine or Disk

First set the crypto property in the VirtualMachineConfigSpec to CryptoSpecEncrypt and

provide a key. The virtual machine must be powered off, with no existing snapshots.

vSphere Web Services SDK Programming Guide

VMware, Inc. 238

Storage profiles must also be set to specify encryption. If the CryptoSpec is unset, but a storage

profile with encryption is set, the vCenter Server automatically generates new keys and sets
CryptoSpec, if the default KMS cluster has been configured.

Example: Encrypt a virtual machine based on storage profile

void Encrypt() throws Exception {
 // Create VirtualMachineConfigSpec
 VirtualMachineConfigSpec vmConfigSpec = new VirtualMachineConfigSpec();
 // Create VirtualDeviceConfigSpec
 VirtualDeviceConfigSpec diskSpec = new VirtualDeviceConfigSpec();
 // Get VirtualMachineProfileSpec for new encryption profile and name it encryptionProfile
 VirtualMachineProfileSpec encryptionProfile = new VirtualMachineDefinedProfileSpec();
 // Get VirtualDisk for disk to reconfigure as in com.vmware.vm.VMReconfig, name it disk
 diskSpec.setDevice(disk);
 diskSpec.setOperation(VirtualDeviceConfigSpecOperation.EDIT);
 // Add encryption profile to VirtualDeviceConfigSpec
 diskSpec.getProfile().add(encryptionProfile);
 // Create CryptoSpec for encryption
 // Get Key Id from CryptoManager as keyId
 // See CryptoManager for details on generating or retrieving CryptoKeyId
 CryptoSpecEncrypt cryptoSpec = new CryptoSpecEncrypt();
 cryptoSpec.setCryptoKeyId(keyId);
 // Add CryptoSpecEncrypt to diskSpec backing
 VirtualDeviceConfigSpecBackingSpec backingSpec = new VirtualDeviceConfigSpecBackingSpec();
 backingSpec.setCrypto(cryptoSpec);
 diskSpec.setBacking(backingSpec);
 // When encrypting a VirtualDisk, the VM home needs to be encrypted also.
 // You can choose the same key to encrypt VM home and virtual disk, or use different keys.
 // Set cryptoSpec and profile for encrypting virtual machine home.
 vmConfigSpec.setCrypto(cryptoSpec);
 vmConfigSpec.getVmProfile().add(encryptionProfile);
 // Set the device changes
 vmConfigSpec.getDeviceChange().add(diskSpec);
 // Issue reconfigure - See reConfig() in com.vmware.vm.VMReconfig to reconfigure VM.
}

Decrypt an Encrypted Virtual Machine or Disk

This is similar to encrypting an existing virtual machine, but with a different CryptoSpec. First

set the crypto property in the VirtualMachineConfigSpec to CryptoSpecDecrypt. The virtual

machine must be powered off, and the storage profiles must be set not to specify encryption.

If the CryptoSpec is unset, but a storage profile without encryption is set, the vCenter Server

sets CryptoSpecDecrypt. The ConfigSpec.crypto parameter must be set explicitly. Only

encryption is deduced from the storage profile.

Example: Decrypt a virtual machine based on storage profile

void Decrypt() throws Exception {
 // Create VirtualMachineConfigSpec
 VirtualMachineConfigSpec vmConfigSpec = new VirtualMachineConfigSpec();

vSphere Web Services SDK Programming Guide

VMware, Inc. 239

 // Create VirtualDeviceConfigSpec
 VirtualDeviceConfigSpec diskSpec = new VirtualDeviceConfigSpec();
 // Create Empty VirtualMachineProfileSpec for decryption
 VirtualMachineProfileSpec emptyProfile = new VirtualMachineEmptyProfileSpec();
 // Get VirtualDisk for disk to reconfigure in com.vmware.vm.VMReconfig, name it disk.
 diskSpec.setDevice(disk);
 diskSpec.setOperation(VirtualDeviceConfigSpecOperation.EDIT);
 // Remove any encryption profile set for the disk
 diskSpec.getProfile().add(emptyProfile);
 // Create CryptoSpec for decryption
 CryptoSpecDecrypt cryptoSpec = new CryptoSpecDecrypt();
 // Add CryptoSpecEncrypt to diskSpec backing
 VirtualDeviceConfigSpecBackingSpec backingSpec = new VirtualDeviceConfigSpecBackingSpec();
 backingSpec.setCrypto(cryptoSpec);
 diskSpec.setBacking(backingSpec);
 // Decrypting virtual machine home is not necessary when decrypting a virtual disk.
 // If no encrypted disk is present on virtual machine after that disk is decrypted,
 // you can choose to decrypt virtual machine home.
 // Set cryptoSpec and profile for decrypting virtual machine home
 vmConfigSpec.setCrypto(cryptoSpec);
 vmConfigSpec.getVmProfile().add(emptyProfile);
 // Set the device changes
 vmConfigSpec.getDeviceChange().add(diskSpec);
 // Issue reconfigure - See reConfig() in com.vmware.vm.VMReconfig to reconfigure VM.
}

Encrypt with Different Keys for VM and Disk

This method shows how to use two different keys to encrypt the virtual machine (VM home) and
its disk.

Example: Different encryption keys for VM home and virtual disk

void EncryptUsingDifferentKeys() throws Exception {
 // Create VirtualMachineConfigSpec and VirtualDeviceConfigSpec
 VirtualMachineConfigSpec vmConfigSpec = new VirtualMachineConfigSpec();
 VirtualDeviceConfigSpec diskSpec = new VirtualDeviceConfigSpec();
 // Get VirtualMachineProfileSpec for encryption profile you created and name it
 VirtualMachineProfileSpec encryptionProfile = new VirtualMachineDefinedProfileSpec();
 // Get VirtualDisk for disk to be reconfigured as shown in VMReconfig and name it
 diskSpec.setDevice(disk);
 diskSpec.setOperation(VirtualDeviceConfigSpecOperation.EDIT);
 // Add encryption profile to VirtualDeviceConfigSpec
 diskSpec.getProfile().add(encryptionProfile);
 // Create CryptoSpec for disk encryption and get KeyId from from CryptoManager
 // See CryptoManager for details on generating or retrieving CryptoKeyId
 CryptoSpecEncrypt cryptoSpecForDisk = new CryptoSpecEncrypt();
 cryptoSpecForDisk.setCryptoKeyId(keyIdForDiskEncryption);
 // Add CryptoSpecEncrypt to diskSpec backing
 VirtualDeviceConfigSpecBackingSpec backingSpec = new VirtualDeviceConfigSpecBackingSpec();
 backingSpec.setCrypto(cryptoSpecForDisk);
 diskSpec.setBacking(backingSpec);
 // When encrypting a VirtualDisk, the virtual machine home must also be encrypted.

vSphere Web Services SDK Programming Guide

VMware, Inc. 240

 // You can choose the same key to encrypt VM home and disk, or use different keys.
 // Create CryptoSpec for VM Home encryption and get KeyId from CryptoManager.
 CryptoSpecEncrypt cryptoSpecForVMHome = new CryptoSpecEncrypt();
 cryptoSpecForVMHome.setCryptoKeyId(keyIdForVMHomeEncryption);
 // Set cryptoSpec and profile for encrypting virtual machine home
 vmConfigSpec.setCrypto(cryptoSpecForVMHome);
 vmConfigSpec.getVmProfile().add(encryptionProfile);
 // Set the device changes
 vmConfigSpec.getDeviceChange().add(diskSpec);
}

Recrypt (Rekey) Encrypted Virtual Machines

You can recrypt virtual machines using either the vSphere API or the vSphere Client (as of 7.0.x).
In the vSphere Security manual, recrypt is usually called rekey, or sometimes re-encrypt.

There are two kinds of recryption operations. Deep recrypt replaces all keys, rewriting encrypted
data in a powered-off virtual machine and its disks. Shallow recrypt replaces only top-level keys
and is comparatively fast.

For details on generating or retrieving the CryptoKeyId, see CryptoManager code in
CryptoManager Java program to add KMS and set default cluster.

Recrypt Only Key Encryption Keys

For shallow recrypt, which affects only the key encryption keys (KEKs), set the crypto property

in the VirtualMachineConfigSpec to CryptoSpecShallowRecrypt and call the Reconfigure
method.

Example: Shallow Recrypt

void ShallowRecrypt() throws Exception {
 // Shallow recrypt follows the same flow as encrypt. The two differences are:
 // - Instead of using a new encryption profile, just get the previously
 // applied profile from the virtual machine to be reconfigured and use it.
 // - The type of CryptoSpec object created is CryptoSpecShallowRecrypt()
 // Create CryptoSpec for shallow recrypt
 // Get Key Id from CryptoManager as newKeyId
 CryptoSpecShallowRecrypt cryptoSpec = new CryptoSpecShallowRecrypt();
 cryptoSpec.setNewKeyId(newKeyId);
 // Follow steps from Encrypt()
}

Shallow recrypt can be done with the virtual machine powered on. Deep recrypt requires power
off.

Recrypt Both Key and Disk Encryption Keys

For deep recrypt, which affects both KEKs and disk encryption keys (DEKs), set the
crypto property in the VirtualMachineConfigSpec to CryptoSpecDeepRecrypt and call the

Reconfigure method.

vSphere Web Services SDK Programming Guide

VMware, Inc. 241

Example: Deep Recrypt

void DeepRecrypt() throws Exception {
 // Deep recrypt follows the same flow as encrypt. The two differences are:
 // - Instead of using a new encryption profile, just get the previously
 // applied profile from the virtual machine to be reconfigured and use it.
 // - The type of CryptoSpec object created is CryptoSpecDeepRecrypt()
 // Create CryptoSpec for deep recrypt
 // Get Key Id from CryptoManager as newKeyId
 CryptoSpecDeepRecrypt cryptoSpec = new CryptoSpecDeepRecrypt();
 cryptoSpec.setNewKeyId(newKeyId);
 // Follow steps from Encrypt()
}

Query Crypto Key In-Use Status

Sometimes it is useful to determine key status, for example whether a key is available on
vCenter Server, which virtual machines and ESXi hosts are using it, and if third party applications
reference it.

As of vSphere 6.7 Update 2, the queryCryptoKeyStatus method is available to check use of a

KMS key, such as if vCenter Server can access the key, if the key is being used by some virtual
machines, or as a host key. The first parameter is a key ID or an array of key IDs to query. The
second parameter is a bitmap defining items to check:

n 0x01 - ask if key data is available to vCenter Server

n 0x02 - query which virtual machines use this key

n 0x04 - check the ESXi hosts using this as a host key

n 0x08 - check third party programs using this key.

Key status results are returned in a CryptoManagerKmip::CryptoKeyStatus data object, called

keyStatusArray in the code below. If your program queried multiple keys, an array of results is

returned.

The queryCryptoKeyStatus method and its returned data object are new in vSphere 6.7 U2, so it

does not work in earlier releases.

The following Java code checks all items above by passing 15, a bitwise OR of the settings above.

CryptoManagerKmipCryptoKeyStatus[] keyStatusArray =
 vimPort.queryCryptoKeyStatus(cryptoManager,
 [vmKeyId, diskKeyId, srcHostkey, dstHostkey], 15);
for (CryptoManagerKmipCryptoKeyStatus keyStatus : keyStatusArray[]) {
 System.out.println("keyId: " + keyStatus.getKeyId);
 System.out.println("keyAccessible: " + keyStatus.getKeyAvailable)
 System.out.println("reason: " + keyStatus.getReason)
 System.out.println("encryptedVMs: " + keyStatus.getEncryptedVMs)
 System.out.println("affectedHosts: " + keyStatus.getAffectedHosts)
 System.out.println("referencedByTags: " + keyStatus.getReferencedByTags)
}

vSphere Web Services SDK Programming Guide

VMware, Inc. 242

The keyAccessible means the key is available on vCenter Server. The reason is either valid, or

indicates why the key is not available. The encryptedVMs is an array of virtual machine MoRefs,

and affectedHosts is an array of MoRefs to ESXi hosts. The referencedByTags field gives names

of third party applications using the key.

Encrypted vSphere vMotion

When virtual machines and data move across the network, all sensitive data remain encrypted.

Enable Encrypted vMotion

The enumeration VirtualMachineConfigSpecEncryptedVMotionModes controls whether
encrypted vMotion is disabled, opportunistic (fall back to default unencrypted vMotion if
necessary), or required. If encrypted vMotion is required, or opportunistic and available, the
vCenter Server can migrate either encrypted or unencrypted virtual machines within a disk
cluster, or from one disk cluster to another using Storage vMotion.

Virtual Disk Manager

The following methods in managed object VirtualDiskManager are affected by encryption:

copyVirtualDisk – If the source disk is encrypted, its copied disk is encrypted with the same

key, regardless of the crypto spec. When calling copyVirtualDisk_Task on vCenter Server,

do not specify the destSpec parameter, which throws a Not Implemented fault; destSpec is

supported only on ESXi hosts.

createVirtualDisk – Given a valid crypto spec, this task creates an encrypted virtual disk.

moveVirtualDisk – Encrypted virtual disk cannot be moved to an unencrypted virtual machine.

createChildDisk – The child disk of an encrypted disk remains encrypted with the same key.

reparentDisks – Encrypted child disk cannot be reparented to a new disk that is not in the

same disk chain.

Best Practices for Virtual Machine Encryption

This section gives tips for optimum use of keys and virtual machine encryption.

Key Lifecycle and Removal

The removeKey and removeKeys methods delete key(s) from vCenter Server, but they do not

delete keys from the KMS. Key lifecycle is managed entirely from the KMS, where stale keys
persist. You can invoke the listKeys method to show keys in use on the vCenter Server, but

there is currently no method to query whether a specific key is in use.

vSphere Web Services SDK Programming Guide

VMware, Inc. 243

Be Careful with Force Remove

The force parameter of removeKey and removeKeys should be used judiciously. With the force
option, the removeKey and removeKeys methods delete key(s) from both the vCenter Server

and ESXi hosts, even if the key is currently in use. The result can leave virtual machines in a
locked state until the key is replaced. The use case for the force option is for customers to
prevent a key from being used anywhere, after it was compromised or expired.

Remove Keys on ESXi host

If you call removeKey on an ESXi host, even without the force option, the key gets deleted from

the host’s key cache, and the encrypted virtual machine becomes unusable. ESXi hosts do not
track which keys are in use. Rebooting the ESXi host causes vCenter Server to push all keys to
the host again, but the virtual machine may not be fully recoverable from its failed state.

Carefully Manage Differential Keys

When you encrypt both a virtual machine and its virtual disks from the vSphere Client, the same
key is used for both. When you encrypt a virtual machine and its disks using the API, you can
set different encryption keys for the virtual machine and each virtual disk. If one of the disk keys
is missing, the power on operation may fail. If the missing key is for a non-boot virtual disk, you
can remove that disk from the virtual machine and retry the power on operation. Take care when
managing the lifecycle of different keys for a virtual machine and its disks.

Rename During Registration

The registerVM_Task method can rename a virtual machine at registration time. In

vSphere 6.5 this required a two-step workaround for encrypted virtual machines, but as
of vSphere 6.7, this operation is supported with encryption. Also as of vSphere 6.7, the
reloadVirtualMachineFromPath_Task is supported for encrypted virtual machines. The reload API

is equivalent to unregistering and registering a virtual machine on a different configuration path.

Encryption on vSAN Datastores

For security on vSAN datastores, you should use vSAN encryption instead of virtual machine
encryption. This is because vSAN encryption is designed to be compatible with deduplication and
compression, whereas virtual machine encryption causes vSAN deduplication and compression
to become less effective.

Unlocking Encrypted Virtual Machines

There are many reasons why an encrypted virtual machine could be, in effect, locked. For
solutions, see section “Resolve Missing Key Issues” in the vSphere Security manual.

vSphere Web Services SDK Programming Guide

VMware, Inc. 244

In vSphere 6.7 and later you can unlock locked virtual machines with the cryptoUnlock_Task
method. A vCenter Server alarm notifies you when an encrypted virtual machine is in a locked
state. To unlock it you must have Cryptographic operations.RegisterVM privilege. Before
unlocking, it is a good idea to troubleshoot and attempt to fix the cause of the locked virtual
machine. The cryptoUnlock_Task method takes one parameter, the MoRef of a virtual machine.

Configuring Advanced Options

The advanced options settings of an ESXi host can affect virtual machine security.

Advanced options include welcome messages, sshd prompts, SOAP session timeout, eager

zeroing of VM memory, login attempts before lockout, seconds delay after lockout, password
history, password duration, password quality, DCUI timeout, shell timeout, and host client session
timeout. Eager zeroing of memory can be helpful for security.

Setting advanced options on individual ESXi hosts using the UI can be impractical at scale. The
vSphere API offers a programmatic interface to manipulate advanced options. The UI is built on
top of the API calls.

Advanced options are controlled by the OptionManager managed object, a property of

HostConfigManager. You can show advanced options with QueryOptions, and set them with

UpdateOptions. For details, see the vSphere API Reference.

Querying Advanced Options

The full list of advanced options is available in the OptionManager.supportedOption[] field, and

the list of non-default settings is available in the OptionManager.setting[] field. The contents of

these arrays are fixed for a particular ESXi build and do not change at runtime.

You can use the QueryOptions method to get the setting for any supported option.

Setting Advanced Options

To set an advanced option, call the UpdateOptions method with the desired key and value. The

following pseudo-code sets the advanced option for memory zeroing to "1" for true:

MoRef optionMgr = hostSystem.configManager.advancedOption;
opts = new OptionValue[]
opts[0].key = "Mem.MemEagerZero"
opts[0].value = "1"
optionMgr.UpdateOptions(changedValue=opts)

Physical Platform Resources

ESXi hosts allow direct access to physical devices in limited scenarios.

vSphere Web Services SDK Programming Guide

VMware, Inc. 245

Many vSphere devices are implemented as virtual devices. Access attempts from the guest are
trapped and implemented in software. For example, the keyboard is implemented by trapping
I/O port access in the guest and transmitting keycode data obtained using a remote console
connection; it is not possible to connect the physical keyboard to any VM.

Several categories of devices can be configured for direct access, including USB, storage,
optical disc drives, virtual GPU, and PCI passthrough (DirectPath I/O) devices. Use of physical
"passthrough" resources is uncommon, because it prevents vMotion. Some physical resources
can be configured for access and still allow vMotion.

Physical device access can be revoked by removing an associated virtual device from its VM
configuration.

USB

In its hardware devices field, data object VirtualMachineConfigInfo may contain the type

VirtualUSB. Virtual devices can have a backing field, which specifies access to a particular

physical device. For USB connectivity, the VM must have a compatible virtual controller
configured for the VM. Programs can set the type of backing object:

n vim.vm.device.VirtualUSB.USBBackingInfo – USB device is attached to the ESXi host as a

passthrough device, which disallows vMotion.

n vim.vm.device.VirtualUSB.RemoteHostBackingInfo – USB device is attached to a particular

remote ESXi host, which remains attached to the device during vMotion.

n vim.vm.device.VirtualUSB.RemoteClientBackingInfo – USB device gets forwarded over the

network along with the VM’s remote console.

See data object VirtualUSB in the vSphere API Reference for details. You can use the esxcli
command to find host-attached USB devices for connection to a VM. The following command
prints available devices, including VID (Vendor ID) and PID (Product ID), which programs use to
configure backing objects types above:

esxcli hardware usb passthrough device list

You can also attach USB devices to a VM using the Host Client. See procedure "Add a USB
Device to a Virtual Machine in the VMware Host Client" on https://docs.vmware.com.

Storage

Passthrough storage devices are known as Raw Device Mappings (RDM) and represent
essentially a passthrough of SCSI commands to a particular LUN. RDM can be used with vMotion
if LUN IDs are kept consistent across participating ESXi hosts.

Configuring an RDM occurs through the vim.vm.ConfigInfo.hardware.devices[] array,

with instances of type vim.vm.device.VirtualDisk that have backing field of type

vim.vm.device.VirtualDisk.RawDiskVer2BackingInfo.

vSphere Web Services SDK Programming Guide

VMware, Inc. 246

https://docs.vmware.com

Physical CD-ROM or DVD

A physical disc drive on a host can be attached directly to a VM. Such drives are automatically
detected by the host; no configuration is required. You can configure VMs to access a physical
disc drive. See procedure "Add a CD or DVD Drive to a Virtual Machine in the vSphere Client" on
https://docs.vmware.com.

Virtual GPU (vGPU)

When used in conjunction with an nVidia graphics card and the nVidia GRID software package,
a vGPU can be passed through to one or more VMs for GPU or general purpose GPU (GPGPU)
acceleration.

PCI Passthrough

ESXi allows specific PCI devices to be configured for passthrough use by a VM instead of by the
host. This feature is called DirectPath I/O and is used in limited cases for improved low-latency
performance. When operating in this configuration, the PCI device must be behind a VT-d bridge
that implements an IOMMU. VMkernel arranges for this IOMMU to be programmed with only
pages that the guest is allowed to access. This ensures that the guest can program the PCI
device to access only pages that the guest should access. If the VM powers off or becomes
unavailable, the PCI device receives a PCI “reset” to clear any pending DMA transactions before
detaching the IOMMU domain from the device.

The host configuration that indicates which devices are eligible for assignment to VMs
is through the vim.host.PciPassthruSystem managed object, accessible using the host’s

ConfigManager.pciPassthruSystem. The UpdatePassthruConfig method on this managed object

can be used to enable or disable PCI passthrough for a particular PCI bus address
(bus:slot:function). Making a device eligible for passthrough usually requires host reboot. Devices
not configured for PCI passthrough on the host are instead claimed by ESXi and are thus
unavailable to VMs.

The VM configuration uses vim.vm.ConfigInfo.hardware.devices[]. When an instance in

that array is of type vim.vm.device.VirtualPCIPassthrough, the backing field has type

vim.vm.device.VirtualPCIPassthrough.DeviceBackingInfo and this object describes the exact

PCI device that is being passed through.

To enable power-on of a VM, the administrator must specify a PCI device that can be configured
for assignment to the VM.

Physical Network

ESXi does not allow guests to have direct access to a physical network except when the
administrator configures a virtual switch with a network interface attached to specific physical
network interfaces. Any VMs expected to have external network access may be configured to
have their virtual network interfaces connected to this virtual switch. See Using a Distributed
Virtual Switch for information about configuring virtual switches and virtual network interface
backings.

vSphere Web Services SDK Programming Guide

VMware, Inc. 247

https://docs.vmware.com

Alternatively, the administrator can configure a virtual switch to connect with a specific VLAN on
the physical network and then connect VMs to that virtual switch. This provides logical isolation
of the VMs from the physical network. See Adding a Virtual Port Group for information about
configuration of the management network.

vSphere Web Services SDK Programming Guide

VMware, Inc. 248

Virtual Applications: the vApp 15
A virtual application consists of one or more virtual machines, which are deployed, managed, and
maintained as a single unit. This chapter explains how to use the vSphere Web Services SDK for
building and managing a virtual application.

Read the following topics next:

n About Virtual Applications

n Creating a VirtualApp

n Managing VirtualApp Children

n Exporting a Virtual Application

n Importing an OVF Package

n Virtual Application Life Cycle

About Virtual Applications

A virtual application specifies and encapsulates the components of virtual machines and
applications, and the operational policies and service levels associated with those components.
A virtual application can be as simple as an individual virtual machine with a specific operating
system (virtual appliance), or as complex as a complete corporate Web site. Each virtual machine
in a virtual application contains a preinstalled, preconfigured operating system and might contain
an application stack optimized to provide a specific set of services.

In the vSphere Web Services SDK, the VirtualApp managed object represents a virtual

application. A VirtualApp object extends ResourcePool with the following capabilities:

n Store product information such as product name, vendor, properties, and licenses in
vAppConfigInfo.

n Specify power-on and power-off sequence specification.

n Import and export of VirtualApp objects as OVF packages.

n Perform application-level customization using the OVF environment.

VMware, Inc. 249

Management Overview

You can use the Web Services SDK to create and manage virtual applications by following these
steps:

Procedure

1 Call the CreateVApp method to create a virtual application without children. See Creating a

VirtualApp.

2 Add child objects. See Managing VirtualApp Children.

3 Export the VirtualApp to OVF (ExportVApp method) See Exporting a Virtual Application.

You can then import the OVF to create and customize the virtual application.

Direct and Linked Children

A virtual application consists of one or more child virtual machines or virtual applications.
VirtualApp children have the following characteristics:

n Each child has exactly one parent VirtualApp.

n Each child can participate in power-on and power-off sequences.

n The lifetime of each child is determined by the parent VirtualApp object.

VirtualApp children are either direct or linked, based on where a child derives its resources.

n Direct Children. A direct child of a virtual application is a virtual machine or virtual application
object that you add explicitly. See Managing VirtualApp Children for a list of methods. Direct
children share resources with the parent VirtualApp object. Both virtual machines and

virtual application can be direct children.

n Linked Children. A linked child of a virtual application is a virtual machine or virtual application
that you add by calling the UpdateLinkedChildren method. Linked children increase the

flexibility of the VirtualApp by allowing child entities to use different resources from the

parent VirtualApp object. Linked children can be part of a different clusters, but a virtual

application and its children must be in the same Datacenter. Both virtual machines and

virtual applications can be linked children.

Linked children gives better flexibility. In particular, you can create virtual applications that span
clusters. The vSphere Client does not support adding or removing links, though it does show
links.

When you add a linked child to a virtual application, the following rules apply:

n An InvalidArgument fault is thrown if the UpdateLinkedChildren method is called on a

link target that is a direct child of another virtual application.

n When you add a virtual machine or virtual application that is already a linked child of another
virtual application, the existing link is removed and replaced with the new link.

vSphere Web Services SDK Programming Guide

VMware, Inc. 250

n The life-time of a linked child is determined by the destroyWithParent property on the

VAppEntityConfigInfo data object. If set to true, the child is destroyed when the parent

VirtualApp is destroyed. Otherwise, the link is removed when the VirtualApp is destroyed.

If you add a virtual application that consists of multiple entities, for example multiple virtual
machines, the entities are moved sequentially and committed one at a time, as specified in the
list. If a failure is detected, the method terminates with an exception.

OVF Packages

Open Virtualization Format (OVF) is a distribution format for virtual applications. vSphere uses
the OVF package as a unit of distribution and storage for virtual applications. Because these
entities are uploaded, downloaded, and stored in OVF package format, vSphere supports access
to and deployment of a wide variety of virtual applications.

A virtual application typically consists of one or more virtual disk files and a configuration file.

n The virtual disk files contain the operating systems and applications that run on the virtual
machines in the virtual application.

n The configuration file contains metadata that describes how the virtual application is
configured and deployed.

An OVF package might also include certificate and manifest files.

The OVF package contains metadata that describes the capabilities and infrastructure
requirements of the virtual application, and contains references to the virtual disks and other
files that store the virtual machine state. Most of this information is stored in an XML document
called the OVF envelope. When an OVF package is instantiated into either a VirtualApp or a

VirtualMachine object (which depends on metadata in the envelope), then the configuration

stored in the OVF envelope is applied to the VirtualVApp and the VirtualMachine objects.

Some of the information in the OVF file is used unaltered, with entire ovf:Section_Type
elements included in the VirtualApp object body. Other sections are transformed or extended

by instantiation. You do not need detailed knowledge of all OVF package elements, but a basic
understanding of key parts of the package and how they relate to virtual applications is useful.

See the OVF specification at the DMTF Web site for additional information.

Creating a VirtualApp

You always create a VirtualApp without children. The CreateVApp method includes the

following parameters:

n resSpec – Properties you would specify for a ResourcePool.

n configSpec – VAppConfigSpec data object for specifying virtual-application specific

information.

vSphere Web Services SDK Programming Guide

VMware, Inc. 251

n vmFolder – Depends on the VirtualApp structure:

n When creating top-level virtual applications, that is, virtual applications with no ancestor
virtual applications, you must specify a folder.

n If the VirtualApp has another virtual application in the ancestry chain, the folder
parameter must be NULL when you create the VirtualApp.

Managing VirtualApp Children

You can add virtual machines and virtual applications to your virtual application as direct or linked
children.

You use different methods for adding or removing direct or linked children, as follows:

n Direct children. Use one of the following methods:

n CreateChildVMTask adds a new virtual machine.

n CreateVApp adds a new virtual application.

n MoveIntoResourcePool adds or removes an existing virtual machine or virtual

application

n Linked children. Use UpdateLinkedChildren to add or remove virtual machines or virtual

applications.

You can call the UpdateVappConfig method to specify how each virtual machine fits into the

virtual application.

Property Enumeration

destroyWithParen
t

True if the entity should be removed when the VirtualApp is removed.

key Key for the virtual machine or virtual application, a managed object reference to the
child.

startAction One of the strings in the VAppAutoStartAction enumeration.

startDelay Delay, in seconds, before continuing with the next entity.

startOrder Specifies the start order for this entity. Entities are started from lower numbers to
higher-numbers and reverse on shutdown. Multiple entities with the same start order
are started in parallel and the order is unspecified. This value must be 0 or higher.

stopAction Defines the stop action for the entity. Can be set to none, powerOff, guestShutdown,

or suspend. If set to none, then the entity does not participate in auto-stop.

stopDelay Delay, in seconds, before continuing with the next entity.

tag Tag for the entity.

waitingForGuest Determines if the virtual machine should start after receiving a heartbeat, from the
guest.

vSphere Web Services SDK Programming Guide

VMware, Inc. 252

For more information about direct children and linked children, see Direct and Linked Children.

Exporting a Virtual Application

To export a virtual application, you must generate an OVF package. The Web Services API
supports the generation of OVF packages. It does not support the generation of OVA files. An
OVA file is a tar file that contains an OVF package. The OVF package consists of one of more
images and an OVF file descriptor. You can create an OVA file by creating a tar file out of the
OVF package for your exported virtual application.

The following steps describe how to use the vSphere VirtualApp and OvfManager API to

generate an OVF package for a virtual application. The steps assume the simplest scenario:
downloading one image from one device URL. You use the same steps to download many
images from many device URLs. You can also export a VirtualMachine with the same steps, but
use VirtualMachine.ExportVm rather than VirtualApp.ExportVApp.

Procedure

1 Call the VirtualApp.ExportVApp method, which returns HttpNfcLease. The deviceURL is stored

in the info property of HttpNfcLease.

2 Call the HttpNfcLeaseInfo.getDeviceUrl method to access the device URL and download the

image data from the device URL.

3 Add the image to the OVF package.

4 Call the OvfManager.CreateDescriptor method, which returns OvfCreateDescriptorResult.

Write the file descriptor to a file with the file extension .ovf. Add the .ovf file to the OVF

package.

Example

Figure 15-1. Generating an OVF Package shows the major steps.

vSphere Web Services SDK Programming Guide

VMware, Inc. 253

Figure 15-1. Generating an OVF Package

image data

OvfManager.CreateDescriptor

Client

1. Get the lease.

2. Download the
 image.

3. Add the image
 to the OVF
 package.

4.Get the OVF
 descriptor and
 add it to the OVF
 package.

VirtualApp.ExportVApp

HttpNfcLease

HttpNfcLeaseInfo.getDeviceUrl

OvfCreateDescriptorResult

Server

vSphere Web Services SDK Programming Guide

VMware, Inc. 254

VirtualApp and OvfManager Methods

The following table describes the methods used by the VirtualApp and the OvfManager API:

Method Description

CreateDescriptor Creates an OVF descriptor for the specified ManagedEntity, which may be a

VirtualMachine or a VirtualApp. CreateDescriptor is a method in the OvfManager
managed object.

ExportVApp Obtains an export lease on the virtual application. The export lease contains a list of
URLs for the disks of the virtual machines in this virtual application. ExportVApp is a

method in the VirtualApp managed object.

getDeviceUrl Retrieves the device IDs and URLs from the server. getDeviceUrl is an accessor

method provided in the generated JAX-WS bindings. It does not appear in the class
diagram in VirtualApp Data Structures.

The next two sections deal with the VirtualApp and OvfManager data structures.

VirtualApp Data Structures

The VirtualApp managed object contains the ExportVApp method, which returns an

HttpNfcLease. The HttpNfcLease contains the info and state properties, where info is of type

HttpNfcLeaseInfo and state is of type HttpNfcLeaseState. The HttpNfcLeaseInfo data object

has several properties, one of which is the deviceUrl of type HttpNfcLeaseDeviceUrl[]. The

HttpNfcLeaseState has four different states—done, error, initializing and ready.

The following class diagram shows the UML representation of the data structures used in the
VirtualApp API.

vSphere Web Services SDK Programming Guide

VMware, Inc. 255

Figure 15-2. VirtualApp Class Diagram

The VirtualApp API data structures are the following:

n VirtualApp—A managed object that is a collection of virtual machines (and potentially other

VirtualApp containers) that are operated and monitored as a unit.

n HttpNfcLease—A managed object returned when you call VirtualApp.ExportVApp. It

represents a lease on the virtual application. While you hold the lease, you block the
operations that alter the state of the virtual application.

n HttpNfcLeaseInfo—A data object that holds information about the lease, such as the virtual

application covered by the lease, and the device URLs for up/downloading images.

n HttpNfcLeaseState—An enumeration that is a list of possible states of a lease.

HttpNfcLeaseDeviceUrl—A data object that provides a mapping from logical device IDs to

upload/download URLs.

OvfManager Data Structures

The OvfManager managed object has a CreateDescriptor method that returns an

OvfCreateDescriptorResult. The OvfCreateDescriptorResult has the ovfDescriptor string.

Figure 15-3. OvfManager Class Diagram shows the UML representation of the data structures
used in the OvfManager API.

vSphere Web Services SDK Programming Guide

VMware, Inc. 256

Figure 15-3. OvfManager Class Diagram

The OvfManager data structures are the following:

n OvfManager—A managed object that provides a service interface to parse and generate OVF

descriptors.

n OvfCreateDescriptorResult—A data object that contains the result of creating the OVF

descriptor for the virtual application.

Example of Generating an OVF Package

In summary, the steps in generating an OVF package are the following:

Procedure

1 Get the managed object reference to the VirtualApp object. Call the ExportVApp method,

which returns an HttpNfcLease data object. Wait for the state of the lease to turn to READY.

Get the list of device URLs from the lease and store them in an array.

2 For each of the URLs in the list of device URLs, download the images from that URL to the
client.

3 Save the image to the OVF package (directory/folder). Create an OvfFile object using the

deviceID, absolute path of the downloaded image, and the size of the image on the local

disk.

vSphere Web Services SDK Programming Guide

VMware, Inc. 257

4 Call the OvfManager.CreateDescriptor method by passing the managed object reference to

the VirtualApp and the OvfFile object wrapped in an OvfCreateDescriptorParams object.

This method returns OvfCreateDescriptorResult, which contains the file descriptor. Write the

file descriptor to a file with the file extension .ovf. Add the .ovf file to the OVF package.

The following is an example of how to generate an OVF package. The example assumes a
more complex scenario: downloading more than one image from more than one device URL.
The example is based on the OVFManagerExportVAAP.java sample, which is located in the

SDK/vsphere-ws/java/JAXWS/samples/com/vmware/vapp/ directory.

Example

You can use the ExportVM method instead of the ExportVapp method when exporting a

VirtualMachine.

package com.vmware.vapp;

import java.io.*;
import java.net.URL;
import java.util.*;

...
 /** 1. Get the MOR of the VirtualApp.
 ManagedObjectReference vAppMoRef = getVAPPByName(vApp);
...
 /** Call the ExportVApp method, which returns an HttpNfcLease data object. */
 ManagedObjectReference httpNfcLease = vimPort.exportVApp(vAppMoRef);

...
 /** Wait for the state of the lease to turn to READY. */
 Object[] result = waitForValues.wait(httpNfcLease,
 new String[]{"state"},
 new String[]{"state"},
 new Object[][]{new Object[]{
 HttpNfcLeaseState.READY,
 HttpNfcLeaseState.ERROR}});
 if (result[0].equals(HttpNfcLeaseState.READY)) {

...
 /** Get the list of device URLs from the lease. */
 List<HttpNfcLeaseDeviceUrl> deviceUrlArr = httpNfcLeaseInfo.getDeviceUrl();
 if (deviceUrlArr != null) {
...
 /** 2. For each of the URLs in the list of device URLs,
 * download the images from that URL to the client. */
 for (int i = 0; i < deviceUrlArr.size(); i++) {
 String deviceId = deviceUrlArr.get(i).getKey();
 String deviceUrlStr = deviceUrlArr.get(i).getUrl();
 String absoluteFile = deviceUrlStr.substring(deviceUrlStr.lastIndexOf("/") + 1);

 /** 3. Save the image to the OVF package (directory/folder). Create an OvfFile object using
 * the deviceID, absolute path of the downloaded image, and the size of the image on the
 * local disk.

vSphere Web Services SDK Programming Guide

VMware, Inc. 258

 */
 long writtenSize = writeVMDKFile(absoluteFile, deviceUrlStr.replace("*", host));
 OvfFile ovfFile = new OvfFile();
 ovfFile.setPath(absoluteFile);
 ovfFile.setDeviceId(deviceId);
 ovfFile.setSize(writtenSize);
 ovfFiles.add(ovfFile);
 }

 /** 4. Call the OvfManager.CreateDescriptor method by passing the managed object reference
 * to the VirtualApp and the OvfFile object wrapped in an OvfCreateDescriptorParams object.
 * This method returns OvfCreateDescriptorResult, which contains the file descriptor.
 * Write the file descriptor to a file with the file extension .ovf. Add the .ovf file to
 * the OVF package.
 */
 ovfCreateDescriptorParams.getOvfFiles().addAll(ovfFiles);
 OvfCreateDescriptorResult ovfCreateDescriptorResult =
 vimPort.createDescriptor(serviceContent.getOvfManager(),
 vAppMoRef,
 ovfCreateDescriptorParams);

 String outOVF = localpath + "/" + vApp + ".ovf";
 File outFile = new File(outOVF);
 FileWriter out = new FileWriter(outFile);

 out.write(ovfCreateDescriptorResult.getOvfDescriptor());
 out.close();

Importing an OVF Package

To import the virtual application OVF template, you follow a few basic steps. The steps are
the same for an OVF package that contains a single virtual machines or an OVF package that
contains a more complex virtual application.

Procedure

1 Parse the OVF descriptor by calling OvfManager.parseDescriptor.

2 Validate the target ESX/ESXi host by calling OvfManager.validateHost.

3 Create the VirtualAppImportSpec by calling OvfManager.createImportSpec.

This structure contains all the information needed to create the entities on the vCenter
Server, including children. Clients do not have to read or modify VirtualAppImportSpec
to perform basic OVF operations.

4 Create the vCenter Server entities by calling ResourcePool.importVApp.

The method uses a parsed OVF descriptor to create VirtualApp and VirtualMachine
objects in the vSphere environment.

vSphere Web Services SDK Programming Guide

VMware, Inc. 259

Results

The import process itself consists of two steps:

n The server creates the virtual machines and virtual applications.

You must wait for the server to create all inventory objects. During object creation, the server
monitors the state property on the HttpNfcLease object returned from the ImportVApp
call. When the server completes object creation, the server changes the lease to ready state

and you can begin uploading virtual disk contents. If an error occurs while the server is
creating inventory objects, the lease changes to the error state, and the import process is
terminated.

n The client application uploads virtual disk contents do an HTTP POST request with the
content of the disk to the provided URLs. The disk is in the stream-optimized VMDK format
(http://www.vmware.com/technical-resources/interfaces/vmdk.html). As an alternative, you
can use the OVF tool, available at http://communities.vmware.com/community/developer/
forums/ovf at VMware Communities.

When all inventory objects have been created and the HttpNfcLease has changed to ready

state, you can upload disk contents by using the URLs provided in the info property of

the HttpNfcLease object. You must call the HttpNfcLeaseProgress method on the lease

periodically to keep the lease alive and report progress to the server. Failure to do so causes
the lease to time out, terminating the import process.

When you are done uploading disks, complete the lease by calling the HttpNfcLeaseComplete
method. You can terminate the import process by calling the HttpNfcLeaseAbort method.

If the import process fails, is terminated, or times out, all created inventory objects are removed,
including all virtual disks.

Virtual Application Life Cycle

You can power a virtual application on or off and perform other lifecycle operations.

Powering a Virtual Application On or Off

You can use the PowerOnVApp_Task method to power on a VirtualApp object. This method

starts the virtual machines or child virtual applications in the order specified in the virtual
application configuration.

While a virtual application is starting, all power operations performed on subentities are disabled.

If a virtual machine in a virtual application fails to start, an exception is returned and the power-
on sequence terminates. In case of a failure, virtual machines that are already started remain
powered on.

vSphere Web Services SDK Programming Guide

VMware, Inc. 260

http://www.vmware.com/technical-resources/interfaces/vmdk.html
http://communities.vmware.com/community/developer/forums/ovf
http://communities.vmware.com/community/developer/forums/ovf

You can use the PowerOffVApp_Task method to power off a virtual application. This method

stops the virtual machines or child virtual applications in the order specified in the VirtualApp
object configuration if force is false. If force is set to true, this method stops all virtual

machines (in no specific order and possibly in parallel) regardless of the VirtualApp object

auto-start configuration.

While a virtual application is stopping, all power operations performed on subentities are
disabled.

Unregistering a Virtual Application

You can call the UnregisterVApp_Task method to remove a VirtualApp object from the

inventory without removing any of the component virtual machine files on disk. All high-level
information stored with the management server (ESXi or vCenter Server system) is removed,
including information about VirtualApp object configuration, statistics, permissions, and alarms.

Suspending a Virtual Application

You can call the SuspendVApp_Task method to suspend all running virtual machines in a virtual

application, including virtual machines running in child virtual application. The virtual machines are
suspended in the order that is used for a power off operation, which is the reverse of a power on
sequence.

While a virtual application is being suspended, all power operations performed on subentities are
disabled. If you attempt to perform a power operation, a TaskInProgress error results.

Destroying a Virtual Application

When a VirtualApp object is destroyed, all of its virtual machines and any child virtual

applications are destroyed.

The VirtualAppVAppState type defines the set of states a VirtualApp object can be in. The

transitory state between started and stopped is modeled explicitly, since the starting or stopping
of a virtual application might take minutes to complete.

The life-time of a linked child is determined by the destroyWithParent property on the

VAppEntityConfigInfo data object. If set to true, the child is destroyed when the parent

virtual application is destroyed. Otherwise, only the link is removed when the virtual application is
destroyed.

vSphere Web Services SDK Programming Guide

VMware, Inc. 261

Resource Management 16
Underlying all virtual components are the actual physical resources of the host system, such as
CPU, RAM, storage, network infrastructure, and so on. vSphere supports sharing of resources
on an individual host or across hosts using resource pools. vSphere also supports clusters for
failover or load balancing.

Read the following topics next:

n Resource Management Objects

n Introduction to Resource Management

n Resource Allocation

n Creating and Configuring Resource Pools

n Introduction to vSphere Clusters

n Creating and Configuring Clusters

n Managing DRS Clusters

n Managing HA Clusters

Resource Management Objects

Central to resource management for all environments is either a ComputeResource or a

ClusterComputeResource managed object.

n The ComputeResource managed object represents the set of resources for a set of

virtual machines. A ComputeResource is always associated with a root ResourcePool object,

representing the resources of a single host.

n The ClusterComputeResource data object aggregates the compute resources of multiple

associated HostSystem objects into a single compute resource for use by virtual machines.

VMware, Inc. 262

A ClusterComputeResource is associated with a root ResourcePool representing the combined

resources of the cluster. If you plan on using VMware cluster services such as HA (High
Availability), DRS (Distributed Resource Scheduling), or on using EVC (Enhanced vMotion
Compatibility), use ClusterComputeResource.

Important HA, DRS, and EVC may require feature licenses. If any clustering functionality
does not work properly, check whether you have licenses for it.

n The ResourcePool managed object represents a set of physical resources of a single host, a

subset of a host's resources, or resources spanning multiple hosts. Resource pools can be
subdivided by creating child resource pools. Only virtual machines associated with a resource
pool can be powered on.

Introduction to Resource Management

An ESXi host allocates to each virtual machine a portion of the underlying hardware resources
based on several factors:

n Total available resources for the ESXi host, resource pool, or cluster to which the virtual
machine belongs.

n Number of virtual machines powered on and resource usage by those virtual machines.

n Overhead required to manage the virtualization.

n Constraints defined by the user.

Resource management allows you to dynamically allocate resources to virtual machines so that
you can more efficiently use available capacity. You can change resource allocation in the
following ways.

n Specify resource allocation for individual virtual machines. See Configuring Resource
Allocation Constraints for Virtual Machines.

n Create a hierarchy of resource pools and add the virtual machine to a resource pool with
characteristics appropriate for its use. See Resource Pool Hierarchies.

n Add hosts and virtual machines to a cluster so you can take advantage of VMware DRS
for recommendations or automatic resource redistribution. See Creating and Configuring
Clusters.

Resource Allocation

When you create a virtual machine, you always specify the resource pool that the virtual machine
can draw resources from and optionally a host on which the virtual machine should run. You can
access the resource pool as follows:

n Standalone host – When you call Folder.AddStandaloneHost_Task, the call returns a Task
object that contains the ComputeResource. The ComputeResource.resourcePool property

is the root resource pool associated with the compute resource (and with the host).

vSphere Web Services SDK Programming Guide

VMware, Inc. 263

n Cluster – When you call Folder.CreateClusterEx, the method returns a managed object

reference to a ClusterComputeResource instance. Because ClusterComputeResource
inherits all properties of ComputeResource, you can access the root resource pool through

the ClusterComputeResource.resourcePool property.

Resource Pool Hierarchies

Resource pool hierarchies allow detailed control over which virtual machines are allowed how
many resources, by dividing resources between children at each level of the hierarchy. Child
resource pools can be configured with reservations and limits, similar to virtual machines. Child
resource pools can also be configured with shares settings, which take effect in resource
contention situations.

For more information about how reservations and limits apply to resource pool hierarchies, see
Configuring Reservation and Limit for Resource Pools. For more information about how shares
apply to resource pool hierarchies, see Configuring Priority Shares for Resource Pools.

Cluster Overview

vSphere supports grouping ESXi hosts that are managed by the same vCenter Server system
into clusters. Clusters take advantage of features such as VMware DRS and VMware HA.

n VMware HA (VMware High Availability) fails over virtual machines from one host in a cluster
to another host, in the event of host failure.

n VMware DRS (VMware Distributed Resource Scheduler) provides dynamic redistribution of
resources. DRS also includes support for Distributed Power Management (DPM), which makes
recommendations or decisions to power off hosts and power them on again as needed, to
save energy.

You can set up VMware DRS to automatically migrate virtual machines, or to display
recommendations if resources are not used efficiently across the cluster.

See Creating and Configuring Clusters and Managing DRS Clusters.

Creating and Configuring Resource Pools

A root resource pool is associated with each ComputeResource and with each

ClusterComputeResource.

vSphere Web Services SDK Programming Guide

VMware, Inc. 264

You can create a hierarchy of resource pools by calling
the ResourcePool.CreateResourcePool method and passing in a

ResourceConfigSpec argument. The ResourceConfigSpec.cpuAllocation and

ResourceConfigSpec.memoryAllocation properties point to ResourceAllocationInfo
objects that allow you to specify the following information.

n reservation – Amount of CPU or memory that is guaranteed available to virtual machines

within the resource pool. Reserved resources are not wasted if they are not used. If the
utilization is less than the reservation, the resources can be borrowed by virtual machines
running within other resource pools.

n expandableReservation – In a resource pool with an expandable reservation, the

reservation on a resource pool can expand beyond the specified value, if the parent resource
pool has unreserved resources. A non-expandable reservation is called a fixed reservation.
See Understanding Expandable Reservations.

n limit – Upper limit for CPU or memory resources assigned to this resource pool. The

resource pool does not allocate more resources to its children, even if resources are available
through its parent. This property is typically used to ensure consistent performance by
isolating other resource pools from the effects of the running virtual machines within this
pool. Set this property to -1 to indicate no fixed upper limit on resource usage.

n shares – Relative metric for allocating memory or processing capacity among multiple

resource pools in resource contention situations. The shares value indicates resource priority
relative to the shares values of sibling resource pools or virtual machines. The SharesInfo
data object has two properties, level and shares, that allow you to specify resource

allocation.

n level – Choose high, low, or normal to map to a predetermined set of numeric values

for shares. See the API Reference Guide for the numbers for CPU, memory, and disk
shares. Set this property to custom to specify an explicit number of shares instead.

n shares – Allows you to specify a custom value for the number of shares you want to

allocate to the resource pool. This property is ignored unless the level is set to custom.

To change the configuration, call the ResourcePool.UpdateConfig or

ResourcePool.UpdateChildResourceConfiguration method and pass in a

ResourceConfigSpec that contains values for all fields you want to update.

Configuring Reservation and Limit for Resource Pools

Resource pools are a tool to aggregate physical host resources and channel the aggregated
resources to individual virtual machines. You use resource pools to group virtual machines, either
to isolate portions af aggregated resources or to prioritize resource allocations between groups
of virtual machines.

vSphere Web Services SDK Programming Guide

VMware, Inc. 265

Resource pools, like individual virtual machines, can be configured with boundaries for resource
allocation. Resource pools can also be configured with priority shares, although shares settings
act somewhat differently for resource pools than for virtual machines. See Understanding Fixed
Shares and Understanding Scalable Shares.

You configure a reservation value for a resource pool to help protect its virtual machines from

the negative impact of virtual machines in other pools. If you configure a fixed reservation for
a resource pool, the host will always make at least that much of the resource available for the
resource pool to distribute among its children. See Understanding Fixed Reservations.

Note If a resource pool's virtual machines are not using the resource pool's entire reserved
amount of a resource, the host may allocate the unused amount to virtual machines in other
pools, on a temporary basis. The host will return the borrowed resource to the resource pool that
reserved it, whenever needed to start virtual machines within that resource pool.

You configure a limit value for a resource pool to help prevent its virtual machines from

negatively impacting performance of virtual machines in other resource pools. The host will never
allocate more than that quantity of the resource to any or all of the virtual machines within
the pool, whether immediate children or chidlren of a nested pool. After all of the resource is
allocated, a resource shortage might cause virtual machines within the pool to fail to start or fail
to progress, but it has no effect on virtual machines outside the pool.

If you configure expandable reservations for a resource pool and its siblings, and you configure
no reserved amounts for any of the siblings, then they share the parent's reservation amount

on a 'first come first serve' basis. If any siblings are configured for fixed reservations, those
siblings are guaranteed their fixed reservations but no more, while the remainder of the parent's
reservation is available to share among the pools configured for expandable reservations. See
Understanding Exxpandable Reservations.

Understanding Fixed Reservations

A fixed reservation for a resource pool provides a way to guarantee that all virtual machines
running simultaneously within the pool have access to a minimum quantity of the resource. The
pool's reservation should be large enough to allocate among the virtual machines such that each
one has its configured minimum required to start up.

To configure fixed reservations, set the epandableReservation property to false in

ResourceConfigSpec.ResourceAllocationInfo. Set the pool's reservation amount to an

aggregate value that is sufficient to support the maximum number of virtual machines that need
to run concurrently within the resource pool. If the pool has nested resource pools that are also
configured for fixed reservations, you should determine their reservation amounts in the same

way, recursively.

vSphere Web Services SDK Programming Guide

VMware, Inc. 266

When you configure a resource pool hierarchy for fixed reservations, consider these guidelines:

n A resource pool that contains only virtual machines should be configured with a reservation
amount at least as great as the sum of the reservations of its children, or as many of them as
need to run concurrently. Otherwise, one or more virtual machines will fail to get its minimum
resource allocation and the host will not start it.

n A resource pool that contains only nested resource pools configured for fixed reservations
must be configured with a reservation amount at least as great as the sum of the reservations
of its children. This ensures that its child resource pools can fulfill their obligations to their
own children, according to their configured reservation amounts. If you cannot configure

the parent pool with an adequate amount of the resource, consider configuring the nested
resource pools for expandable reservations instead.

n A resource pool that contains both virtual machines and nested resource pools is not a best
practice, because it can complicate configuration management. If you configure a resource
pool in this way, you should first make sure the virtual machines can receive their own
reservation amount, and then configure reservations for the nested pools from the remainder
of the parent's reservation after subtracting the virtual machine reservations.

Before you create new child resource pools, check available resources in the
parent pool. The ResourcePool.runtimeInfo property is a ResourcePoolRuntimeInfo data

object. The ResourcePoolRuntimeInfo.cpu and ResourcePoolRuntimeInfo.memory properties

are ResourcePoolResourceUsage objects with resource usage information, including an

unreservedForPool property. If the parent pool does not have enough available resources,

reconfigure the reservation values of child pools before adding the new pool.

Understanding Expandable Reservations

Expandable reservations enable dynamic allocation of resources to meet the minimum
requirements of virtual machines within a number of resource pools. When you set the
expandableReservation property on sibling resource pools, you enable them to act as a single

resource pool for the purpose of providing the minimum of resource that virtual machines need
to power on. When a virtual machine starts in any one of the sibling resource pools, it draws its
reservation amount from the parent's reservation amount, rather than from its own resource

pool.

If the parent resource pool is also expandable, it can draw resources in turn from its parent, and
the sequence can continue in this way until it ends with a parent resource pool that has a fixed
reservation.

To configure expandable reservations, set the expandableReservation property to true in

the ResourceConfigSpec.cpuAllocation or ResourceConfigSpec.memoryAllocation of sibling

resource pools to true. For maximum flexibility, set the reservation amount of each sibling pool

0. When sibling pools do not reserve any resources, any virtual machine that starts in the sibling

pools will take its reservation amount from the parent pool's reservation.

vSphere Web Services SDK Programming Guide

VMware, Inc. 267

If a sibling pool contains critical virtual machines whose reservations need to be prioritized, set
the pool's reservation to the sum of the reservations of the prioritized virtual machines. That
reservation amount is saved for the resource pool's virtual machines, and is unavailable for
siblings to use.

To illustrate how expandable reservations work, consider the following examples.

Expandable Reservation Example 1

Assume an administrator manages a parent pool P1, and defines two child resource pools, C1 and
C2, for two different groups of users. C1 and C2 are self-serve resource pools, allowing users to
configure their own virtual machines. The administrator does not know in advance exactly what
resources the users will need, so the administrator wants the resource pool configuration to be
flexible.

Without expandable reservations, the administrator needs to explicitly allocate fixed amounts
of resources to C1 and C2. Such specific allocations can be inflexible, especially in deep
resource pool hierarchies, and can complicate setting reservations for C1 and C2. By making
the reservations for C1 and C2 expandable, the administrator allows users to more flexibly share
and inherit the common reservation for pool P1.

Expandable reservations cause a loss of resource pool isolation in the context of admission
control. For example, if C1 and C2 have their reservation amounts set to 0, then virtual machines

in C1 might use all of P1's memory reservation, so that no memory is available to start virtual
machines in C2.

Expandable Reservation Example 2

Assume a parent resource pool RP-MOM has a reservation of 6GHz and one running virtual
machine VM-M1 that reserves 1GHz. RP-MOM also has a child resource pool RP-KID with a
reservation of 2GHz and with Expandable Reservation selected. RP-KID contains two virtual
machines, VM-K1 and VM-K2, with reservations of 2GHz each.

When a user powers on VM-K1, it can reserve the resources it needs directly from RP-KID
(which has 2GHz). When the user tries to power on VM-K2, RP-KID has already allocated its
2GHz reservation to VM-K1, but it has Expandable Reservation configured, so it tries to borrow
resources from RP-MOM's reservation. RP-MOM has 6GHz minus 1GHz (reserved by VM-M1) minus
2GHz (reserved by RP-KID), which leaves 3GHz of RP-MOM's reservation that is not reserved
by other resource pools or virtual machines in RP-MOM. With 3GHz available, VM-K2 is able to
power on.

vSphere Web Services SDK Programming Guide

VMware, Inc. 268

Figure 16-1. Admission Control with Expandable Resource Pools, Scenario 1

Expandable Reservation Example 3

Assume a parent resource pool RP-MOM has a reservation of 6GHz and two running virtual
machines, VM-M1 that reserves 1GHz, and VM-M2 that reserves 2GHz. RP-MOM also has a child
resource pool RP-KID with a reservation of 2GHz and with Expandable Reservation selected.
RP-KID contains two virtual machines, VM-K1 and VM-K2, with reservations of 2GHz each.

When a user powers on VM-K1, it can reserve the resources it needs directly from RP-KID
(which has 2GHz). When the user tries to power on VM-K2, RP-KID has already allocated its
2GHz reservation to VM-K1, but it has Expandable Reservation configured, so it tries to borrow
resources from RP-MOM's reservation. RP-MOM has 6GHz minus 3GHz (reserved by VM-M1 and
VM-M2) minus 2GHz (reserved by RP-KID), which leaves only 1GHz of RP-MOM's reservation that
is not reserved by other resource pools or virtual machines in RP-MOM. Since VM-K2 requires
2GHz to pass admission control, VM-K2 is not able to power on.

Figure 16-2. Admission Control with Expandable Resource Pools, Scenario 2

Configuring Priority Shares for Resource Pools

In cases of resource contention, data center hosts need a way to arbitrate between competing
virtual machines. You can configure the shares settings of a virtual machine to set its priority
relative to its siblings. You can configure the shares settings of a resource pool to affect the
priorities of all virtual machines within the resource pool, as a group.

vSphere Web Services SDK Programming Guide

VMware, Inc. 269

The following illustration shows a standalone host that has several virtual machines. The
marketing department uses three of the virtual machines and the QA department uses two
virtual machines. Because the QA department needs larger amounts of CPU and memory, the
administrator creates one resource pool for each group. The administrator sets CPU Shares to
High for the QA department pool and to Normal for the Marketing department pool so that the
QA department users can run automated tests. The second resource pool with fewer CPU and
memory resources is sufficient for the lighter load of the marketing staff.

Whenever the QA department is not fully using its allocation, the marketing department can use
the available resources. When there is resource contention because running virtual machines
demand more resources than are available from the host, the resource shares configuration
guides arbitration between the competing virtual machines.

Figure 16-3. Allocating Resources to Resource Pools

You have two options for priority shares configuration that cause the priorities to be applied
in different ways. The fixed shares option limits the adverse performance impact of resource
contention to a single resource pool and all its descendants. The scalable shares option
distributes the performance impact across all resource pools, in proportion to their priority levels.

The chief benefit of configuring fixed shares for a parent resource pool is the predictability of
performance for virtual machines within its child resource pools. You can know in advance that its
virtual machines can demand a fixed fraction of a virtual resource available from a host or cluster.
The drawback of configuring fixed shares is that adding virtual machines to a resource pool
impacts the performance of all virtual machines in the same pool and its descendants because
the resource pool is not entitled to allocate additional resources.

The chief benefit of configuring scalable shares for a parent resource pool is that resource
allocation during contention is adjusted at run time to achieve a fair allocation to virtual machines
beyond the boundary of a single resource pool. In effect, the child pool's resource entitlement
expands to accommodate more virtual machines as they are added to the pool. The drawback of
configuring scalable shares is that a child resource pool cannot isolate its virtual machines from
the demands of virtual machines in other pools that draw from the same scalable parent resource
pool.

vSphere Web Services SDK Programming Guide

VMware, Inc. 270

Understanding Fixed Shares

When a parent resource pool is not configured to be scalable, the shares configured for its child
resource pools provide a way to prioritize allocation of fixed fractions of the parent resource
pool to its children. This serves to isolate users of sibling resource pools so that virtual machines
in one child resource pool cannot impact the performance of virtual machines in other child
resource pools.

Suppose for example a cluster has 3 physical cores running at 2GHz, for a total of 6GHz. The root
resource pool has a total of 6GHz of virtual CPU capacity to divide between its children. If there is
no resource contention, all running virtual machines can be allocated their configured amounts of
CPU. If there is contention for CPU resources, the 6GHz is divided between child resource pools
according to the CPU shares configured for them.

This fictional data center has two child resource pools, each supporting the users in a different
division of a business. Division 1 and Division 2 start out about the same size, so the IT
department configures RP1 and RP2 with equal values for custom shares, and an equal number of
virtual machines.

Figure 16-4. Example Resource Pool Configuration with Custom Shares

VM1
1vCPU
1000

RP1
1000

Root RP: (6GHz)

1000
1.5GHz

1000
3GHz

1000
3GHz

1000
1.5GHz

1000
1.5GHz

1000
1.5GHz

RP2
1000

VM2
1vCPU
1000

VM3
1vCPU
1000

VM4
1vCPU
1000

All child resource pools and virtual machines are configured with custom settings of 1000 shares
each. Because the two resource pools are configured with the same number of shares, they can
allocate the same amount of compute resource to their virtual machines in cases of resource
contention. Likewise, all virtual machines are entitled to draw the same fraction of compute
resource as their siblings.

Note For simplicity of illustration, these examples deal only with CPU shares. A real
configuration would include both CPU and memory resources, which act independently in regard
to calculating the absolute resources available to a running virtual machine.

In effect, a non-scalable resource pool guarantees that each of its children gets a fixed fraction of
its resources. However, the amount allocated to each child is fixed only in relation to the quantity
of resources controlled by the resource pool itself. If a root resource pool gains additional
resources due to a hardware upgrade, all its children gain resource entitlements in proportion
to their configured shares.

vSphere Web Services SDK Programming Guide

VMware, Inc. 271

For example, suppose the cluster has been upgraded from 3 to 6 physical cores running at 2GHz,
for a total of 12GHz of pooled physical capacity. The root resource pool now has a total of 12GHz
of virtual CPU capacity to divide between its children. If there is contention for CPU resources,
the 12GHz is divided between child resource pools according to the CPU shares configured for
them.

Figure 16-5. Increased Physical Capcity Provides Increased Virtual Capacity to All Virtual
Machines

VM1
1vCPU
1000

RP1
1000

Root RP: 12GHz

1000
3GHz

1000
6GHz

1000
6GHz

1000
3GHz

1000
3GHz

1000
3GHz

RP2
1000

VM2
1vCPU
1000

VM3
1vCPU
1000

VM4
1vCPU
1000

After the upgrade, each virtual machine is entitled to twice its previous resource allocation, in
absolute terms. However, if another child, whether resource pool or virtual machine, is added to
a parent pool, previously existing children find their resource allocation reduced, as the pool's
resources are shared between more children.

Suppose Division 2 hires some new users, and IT adds an extra virtual machine to RP2 for their
use.

Figure 16-6. Dilution of Fixed Shares From Adding a Virtual Machine to a Resource Pool

VM1
1vCPU
1000

RP1
1000

Root RP: 12GHz

1000
3GHz

1000
6GHz

1000
6GHz

1000
3GHz

1000
2GHz

1000
2GHz

1000
2GHz

RP2
1000

VM2
1vCPU
1000

VM3
1vCPU
1000

VM4
1vCPU
1000

VM5
1vCPU
1000

Where previously all virtual machines in the business had the same priority for allocation of
scarce compute resource, increasing the virtual machine load in RP2 means that more virtual
machines contend for the same quantity of its resource. Consequently, each virtual machine in
RP2 might see its performance reduced when all virtual machines are running at full capacity.

vSphere Web Services SDK Programming Guide

VMware, Inc. 272

To continue from the previous example, some users in Division 1 might be concerned about
performance because they plan to hire more employees in the future. Suppose they persuade
the IT department that their virtual machines should be in a higher priority resource pool than
others, so they will have access to more compute resource if needed. The IT department
configures different custom shares values for RP1 and RP2, so that RP1 has twice the priority
of RP2.

Figure 16-7. Effects of Reprioritizing a Resource Pool in a Fixed Shares Configurotion

VM1
1vCPU
1000

RP1
2000

Root RP: 12GHz

1000
4GHz

2000
8GHz

1000
4GHz

1000
4GHz

1000
1.3GHz

1000
1.3GHz

1000
1.3GHz

RP2
1000

VM2
1vCPU
1000

VM3
1vCPU
1000

VM4
1vCPU
1000

VM5
1vCPU
1000

The child resource pool RP1 has 2000 shares configured, and RP2 has 1000 shares configured, so
RP1 gets 2/3 of the physical CPU resources to share among its children, and RP2 gets 1/3 of the
physical CPU resources to share among its children. You can calculate the amount of compute
resource available to RP1 for its children as 12 x 2000 / (2000+1000) = 8GHz, and the amount of

compute resource available to RP2 for its children as 12 x 1000 / (2000+1000) = 4 virtual GHz.

The children within each resource pool have identical shares settings, so they share their own
pool's resources equally.

Now suppose a new CIO joins the business and decides that from now on priority shares should
be specified as levels rather than custom values. The IT department reconfigures all the shares
settings to use the enums for shares levels.

vSphere Web Services SDK Programming Guide

VMware, Inc. 273

Figure 16-8. Priority Shares Expressed as Levels Instead of Custom Values

VM1
1vCPU

N

RP1 (4vCPU) H RP2 (4vCPU) N

Root RP: 12GHz

1 x N =
1000

4GHz

1 x N =
1000

4GHz

1 x N =
1000

1.3GHz

1 x N =
1000

1.3GHz

1 x N =
1000

1.3GHz

4 x H =
8000

8GHz

4 x N =
4000

4GHz

VM2
1vCPU

N

VM3
1vCPU

N

VM4
1vCPU

N

VM5
1vCPU

N

Legend
High:2000
Normal:1000
Low:500

When you specify shares levels, you have to make two calculations. First you convert the
specified level to a numeric value that corresponds to custom shares settings. This conversion
takes into account the number of virtual cores.

Note For memory resources, the conversion takes into account the configured memory size of
the virtual machine.

Then you use that numeric value to calculate the proportion of resources to allocate to the child
pool, in the same way as with the custom shares settings.

To convert a shares level to a numeric value, multiply the number of vCPUs by a constant that
corresponds to the level. For the purpose of this calculation, all resource pools have an implicit
size of 4 vCPUs. Use the VirtualMachine.config.hardware.numCPU value as the number of vCPUs

for virtual machines. The constant for the high priority level is 2000, and the constant for the

normal level is 1000. You can calculate that the numeric shares belonging to RP1 are 4 x 2000
= 8000. RP2 has a priority level of normal, so the numeric shares belonging to RP2 are 4 x 1000
= 4000. The compute resource that RP1 can allocate is 12 x 8000 / (8000+4000) = 8 GHz, and

the compute resource that RP2 can allocate to its children is 12 x 4000 / (8000+4000) = 4 GHz.

The new CIO is satisfied that RP1 and RP2 achieve the same result with priority levels as with the
previous custom shares values.

Note For memory shares, the constants are different. See the vSphere Web Services API
Reference.

But suppose the IT department is asked to support a 3rd division, newly acquired by the
business, which is about the same size as the division assigned to RP2. The IT department creates
a new child resource pool, RP3, and configures the same number of virtual machines and the
same shares levels as RP2. Now the division of resources looks like this:

vSphere Web Services SDK Programming Guide

VMware, Inc. 274

Figure 16-9. Resource Dilution from Adding a Resource Pool

VM1
1vCPU

N

RP1 (4vCPU) H RP2 (4vCPU) N RP3 (4vCPU) N

Root RP: 12GHz

1 x N =
1000

3GHz

1 x N =
1000

3GHz

1 x N =
1000

1GHz

1 x N =
1000

1GHz

1 x N =
1000

1GHz

1 x N =
1000

1GHz

4 x H =
8000

6GHz

4 x N =
4000

3GHz

4 x N =
4000

3GHz

1 x N =
1000

1GHz

1 x N =
1000

1GHz

VM2
1vCPU

N

VM3
1vCPU

N

VM4
1vCPU

N

VM5
1vCPU

N

VM6
1vCPU

N

VM7
1vCPU

N

VM8
1vCPU

N

Legend
High:2000
Normal:1000
Low:500

Assume the hardware resources available to the root resource pool have not changed at the
time of the acquisition, so the 12GHz of virtual compute resource must be divided into fractions
according to the configured shares of the child resource pools. After adding RP3, both RP1 and
RP2 get less of the virtual compute resource to divide among their own children.

Virtual machines available to Division 1 now compete for 12 x 8000 / (8000+4000+4000) = 6GHz

in RP1. Virtual machines available to Division 2 compete for 12 x 4000 / (8000+4000+4000)
= 3GHz in RP2. Virtual machines available to Division 3 similarly compete for 12 x 4000 /
(8000+4000+4000) = 3GHz in RP3.

In this example, Division 1 and Division 2 employees might both perceive reduced performance
until the IT department's capital budget increases to support the new configuration.

When Division 1 hires a number of new employees, IT adds two more virtual machines to RP1
to accommodate the increased size of Division 1. All four virtual machines in RP1 still benefit
from RP1's high priority level, but now that RP1's compute resources are spread among a larger

number of virtual machines, each of its virtual machines gets a smaller allocation when they are
competing for CPU cycles.

vSphere Web Services SDK Programming Guide

VMware, Inc. 275

Figure 16-10. Resource Dilution from Adding Virtual Machines to a High Priority Resource Pool

VM1
1vCPU

N

RP1 (4vCPU) H RP2 (4vCPU) N RP3 (4vCPU) N

Root RP: 12GHz

1 x N =
1000

1.5GHz

1 x N =
1000

1.5GHz

1 x N =
1000

1.5GHz

1 x N =
1000

1.5GHz

1 x N =
1000

1GHz

1 x N =
1000

1GHz

1 x N =
1000

1GHz

1 x N =
1000

1GHz

4 x H =
8000

6GHz

4 x N =
4000

3GHz

4 x N =
4000

3GHz

1 x N =
1000

1GHz

1 x N =
1000

1GHz

VM2
1vCPU

N

VM9
1vCPU

N

VM10
1vCPU

N

VM3
1vCPU

N

VM4
1vCPU

N

VM5
1vCPU

N

VM6
1vCPU

N

VM7
1vCPU

N

VM8
1vCPU

N

Legend
High:2000
Normal:1000
Low:500

Some virtual machine users who were in Division 1 before the new employees joined are noticing
greatly reduced performance. They are only getting 1.5GHz where they used to get 3GHz. When
they learn that Division 2 employees are getting 1GHz from their virtual machines in RP2, which
has normal priority, they might not be happy that they are getting only 1.5GHz from virtual

machines in RP1, which has high priority.

The disappointed users speak to the IT department, where they learn that this is the way
fixed shares for resource pools are intended to work. They isolate Division 1 virtual machine
performance from the other divisions, but not from other users of the same resource pool. These
Division 1 users learn that there are other ways to protect the performance of high priority virtual
machines.

Some Division 1 users try other ways to get more compute resource from RP1's fixed allocation.
They request changes to virtual machine configurations, which result in increased priority for
some of their virtual machines at the expense of others.

vSphere Web Services SDK Programming Guide

VMware, Inc. 276

Figure 16-11. Prioritizing Individual Virtual Machines Within a Resource Pool

VM1
1vCPU

H

RP1 (4vCPU) H RP2 (4vCPU) N RP3 (4vCPU) N

Root RP: 12GHz

1 x H =
2000

2GHz

2 x N =
2000

2GHz

1 x N =
1000

1GHz

1 x N =
1000

1GHz

1 x N =
1000

1GHz

1 x N =
1000

1GHz

1 x N =
1000

1GHz

1 x N =
1000

1GHz

4 x H =
8000

6GHz

Legend
High:2000
Normal:1000
Low:500

4 x N =
4000

3GHz

4 x N =
4000

3GHz

1 x N =
1000

1GHz

1 x N =
1000

1GHz

VM2
2vCPU

N

VM9
1vCPU

N

VM10
1vCPU

N

VM3
1vCPU

N

VM4
1vCPU

N

VM5
1vCPU

N

VM6
1vCPU

N

VM7
1vCPU

N

VM8
1vCPU

N

After VM1 is reconfigured, you calculate its numeric shares by multiplying the configured numCPU
(1) by its shares level (high), getting 1 x 2000 = 2000. You calculate its resource allocation by

using its numeric shares to prorate the allocation available to its parent resource pool: 6GHz x
2000 / (2x2000+2x1000) = 2GHz.

You calculate VM2's numeric shares by multiplying the configured numCPU (2) by its shares

level (normal), getting 2 x 1000 = 2000. You calculate its resource allocation by using its

numeric shares to prorate the allocation available to its parent resource pool: 6GHz x 2000 /
(2x2000+2x1000) = 2GHz.

In a similar way, calculate VM9's numeric shares by multiplying its configured numCPU (1) by its

shares level (normal), getting 1 x 1000 = 1000. You calculate its resource allocation by using

its numeric shares to prorate the allocation available to its parent resource pool: 6GHz x 1000 /
(2x2000+2x1000) = 1GHz. VM10's resource configuration and associated calculations are identical

to VM9.

When other Division 1 users realize that VM9 and VM10 only get 1GHz of virtual compute
resource, they might not be satisfied with this result. These virtual machines are in a high priority

resource pool, but they get the same resource allocation as Division 2's virtual machines, which
are in a normal priority resource pool. That doesn't seem fair.

Division 1 users request a meeting with the CIO, who explains that the scalable shares feature is
the best solution to their problem.

Understanding Scalable Shares

Configuring scalable shares for a parent resource pool means that all its child resource pools
are not isolated from each other. This avoids the resource dilution problem within child
resource pools, by expanding their resource entitlements when they have more virtual machines

vSphere Web Services SDK Programming Guide

VMware, Inc. 277

running.The effect is to negate resource pool isolation while retaining the proportions of resource
pool priority levels. A high priority resource pool is entitled to give twice as much of the available

resource to its virtual machines, in comparison with a normal priority sibling resource pool, but

all virtual machines suffer proportionately when many virtual machines run in the normal priority
pool.

To illustrate the use of the scalable shares option, consider how it might apply to a fictional
situation in which a data center is configured, with non-scalable shares, to support three divisions
of a business. Division 1 is supported by resource pool RP1, which is configured as high priority,

in an attempt to compensate for the dilution of RP1's resources that resulted from adding new
virtual machines to RP1. Some virtual machines in RP1 are individually configured to get higher
priority than their siblings.

Note For simplicity of illustration, these examples deal only with CPU shares. A real
configuration would include both CPU and memory resources, which act independently in regard
to calculating the absolute resources available to a running virtual machine.

Figure 16-12. Example Data Center Configured with Fixed Shares

VM1
1vCPU

H

RP1 (4vCPU) H RP2 (4vCPU) N RP3 (4vCPU) N

Root RP: 12GHz

1 x H =
2000

2GHz

2 x N =
2000

2GHz

1 x N =
1000

1GHz

1 x N =
1000

1GHz

1 x N =
1000

1GHz

1 x N =
1000

1GHz

1 x N =
1000

1GHz

1 x N =
1000

1GHz

4 x H =
8000

6GHz

Legend
High:2000
Normal:1000
Low:500

4 x N =
4000

3GHz

4 x N =
4000

3GHz

1 x N =
1000

1GHz

1 x N =
1000

1GHz

VM2
2vCPU

N

VM9
1vCPU

N

VM10
1vCPU

N

VM3
1vCPU

N

VM4
1vCPU

N

VM5
1vCPU

N

VM6
1vCPU

N

VM7
1vCPU

N

VM8
1vCPU

N

As a result of resource dilution within RP1 in a fixed shares configuration, some of RP1's virtual
machines are entitled to exactly the same resource allocation as RP2's virtual machines, even
though RP2 is configured as normal priority but RP1 is configured as high priority. Some users

in Division 1 are disappointed because they expected their virtual machines to receive twice the
allotment of RP2's virtual machines. The company's CIO agrees to reconfigure the data center to
take advantage of the scalable shares option.

vSphere Web Services SDK Programming Guide

VMware, Inc. 278

Figure 16-13. Example Scalable Shares Configuration

VM1
1vCPU

H

RP1 (4vCPU) H RP2 (4vCPU) N RP3 (4vCPU) N

Root RP: 12GHz scalable

1 x H =
2000

2.7GHz

2 x N =
2000

2.7GHz

1 x N =
1000

1.3GHz

1 x N =
1000

1.3GHz

1 x N =
1000

0.7GHz

1 x N =
1000

0.7GHz

1 x N =
1000

0.7GHz

1 x N =
1000

0.7GHz

4 x H x
(2 x 2000 + 2 x 1000)

= 48,000,000
8GHz

4 x N x
(3 x 1000)

= 12,000,000
2GHz

4 x N x
(3 x 1000)

= 12,000,000
2GHz

1 x N =
1000

0.7GHz

1 x N =
1000

0.7GHz

VM2
2vCPU

N

VM9
1vCPU

N

VM10
1vCPU

N

VM3
1vCPU

N

VM4
1vCPU

N

VM5
1vCPU

N

VM6
1vCPU

N

VM7
1vCPU

N

VM8
1vCPU

N

Legend
High:2000
Normal:1000
Low:500

With scalable shares enabled on a parent resource pool, resource entitlements change. Because
RP1 has more virtual machines than RP2 or RP3, it is entitled to a larger fraction of the
root resource pool's resources during a resource contention situation. This is represented
mathematically by multiplying the resource pool's numeric shares by the total of the shares of its
children.

Calculating resource pool allocation in a scalable shares configuration is conceptually a six-step
recursive process, working from leaf to root of the resource pool tree:

1 Convert the priority levels of its child virtual machines into numeric shares
equivalents, in the same way as in a fixed shares configuration: Multiply
VirtualMachine.config.hardware.numCPU by a constant that depends on the priority level.

The constants are 2000, 1000, and 500 for high, normal, and low respectively.

2 If the resource pool has child resource pools, convert their priority levels into numeric shares
equivalents, recursively.

3 Do the same conversion for the resource pool itself. For the purpose of this conversion, all
resource pools are assigned an implicit size of 4 vCPUs.

4 Sum the children's numeric shares and multiply the sum by the parent's numeric shares.

5 Repeat steps 1-4 for all the parent's siblings.

6 Allocate the available resources among all siblings, in proportion to the products from steps 4
and 5.

vSphere Web Services SDK Programming Guide

VMware, Inc. 279

As a result of the scalable shares configuration, Division 1 users find their virtual machine
performance improved, but Divisions 2 and 3 suffer by comparison. To rectify this, the IT
department resets the priority levels of RP1, RP2, and RP3 to normal. This adjustment leaves

virtual machine performance comparable across divisions: high priority virtual machines get twice

the resource allocation of normal priority virtual machines, even across resource pool boundaries.

Figure 16-14. Scalable Shares Configuration with All Resource Pools Configured at normal Level

VM1
1vCPU

H

RP1 (4vCPU) N RP2 (4vCPU) N RP3 (4vCPU) N

Root RP (12GHz) scalable

1 x H =
2000

2GHz

2 x N =
2000

2GHz

1 x N =
1000

1GHz

1 x N =
1000

1GHz

1 x N =
1000

1GHz

1 x N =
1000

1GHz

1 x N =
1000

1GHz

1 x N =
1000

1GHz

4 x N x
(2 x 2000 + 2 x 1000)

= 24,000,000
6GHz

4 x N x
(3 x 1000)

= 12,000,000
3GHz

4 x N x
(3 x 1000)

= 12,000,000
3GHz

1 x N =
1000

1GHz

1 x N =
1000

1GHz

VM2
2vCPU

N

VM9
1vCPU

N

VM10
1vCPU

N

VM3
1vCPU

N

VM4
1vCPU

N

VM5
1vCPU

N

VM6
1vCPU

N

VM7
1vCPU

N

VM8
1vCPU

N

Legend
High:2000
Normal:1000
Low:500

A best practice when configuring scalable shares is to configure resource pools to the normal
priority level and apply high priority levels or low priority levels to specific virtual machines.

Deleting Child Resource Pools

The ResourcePool.DestroyChildren method recursively deletes all the child resource pools

of a resource pool. The operation takes a single parameter, a reference to the parent
ResourcePool managed object. Any virtual machines associated with the child resource pool

are reassigned to the parent resource pool.

Moving Resource Pools or Virtual Machines Into a Resource Pool

You can move a resource pool and its children within a resource pool hierarchy.

The ResourcePool.MoveIntoResourcePool method lets you move virtual machines, virtual

applications, or resource pool hierarchies into a new resource pool. You call the method with
an array of ResourcePool or VirtualMachine managed object references that you want to

move. The whole resource pool hierarchy, including child resource pools and virtual machines, is
moved when you move a resource pool.

Minimum available resources of the immediate children must always be less than or equal to the
resources of the immediate parent. The root resource pool cannot be moved.

vSphere Web Services SDK Programming Guide

VMware, Inc. 280

Introduction to vSphere Clusters

Clusters are useful with VMware DRS (distributed resource scheduler) and VMware HA (high
availability). Clusters can be created quickly with VMware HCI. This guide briefly introduces the
vSphere interfaces for cluster configuration. Clusters are useful to reduce power use, downtime,
and maintenance.

n VMware DRS. vSphere Resource Management guide

n VMware HA. vSphere Availability guide

n VMware HCI, Hyper-converged infrastructure. In vSphere Client, click New Cluster.

VMware DRS

A VMware DRS cluster is a collection of ESXi hosts and associated virtual machines with shared
resources and a shared management interface. To obtain the benefits of cluster-level resource
scheduling you create a DRS cluster.

When you add a host to a DRS cluster, the host’s resources become part of the cluster’s
resources. In addition to aggregation of resources, a DRS cluster supports cluster-wide resource
pools and enforces cluster-level resource allocation policies. The following cluster-level resource
management capabilities are available.

n Load Balancing. The vCenter Server monitors distribution and use of CPU and memory
resources for all hosts and virtual machines in the cluster. DRS compares these metrics to
an ideal resource utilization given the attributes of the cluster’s resource pools and virtual
machines, the current demand, and the DRS Score, which measures the execution efficiency
of the virtual machine. DRS then performs (or recommends) virtual machine migrations. When
you first power on a virtual machine in the cluster, DRS attempts to maintain proper load
balancing either by placing the virtual machine on an appropriate host or by recommending
one.

n Power Management. When the VMware DPM (Distributed Power Management) feature is
enabled, DRS compares cluster- and host-level capacity to the demands of the cluster’s
virtual machines, including recent historical demand. DPM places (or recommends placing)
hosts in standby power mode if sufficient excess capacity is found. DPM powers on (or
recommends powering on) hosts if capacity is needed. Depending on the resulting host
power state recommendations, virtual machines might need to be migrated to and from the
hosts.

n Virtual Machine Placement. You can control the placement of virtual machines on hosts within
a cluster, by assigning DRS affinity or antiaffinity rules.

See Managing DRS Clusters.

VMware HA

VMware HA supports high availability for virtual machines by pooling the hosts they reside on
into a cluster. If one host fails, its virtual machines move to a different host in the cluster.

vSphere Web Services SDK Programming Guide

VMware, Inc. 281

VMware HA monitors ESXi hosts and in the event of host failure, migrates virtual machines to
hosts with capacity. When you add new virtual machines to a VMware HA cluster, VMware HA
checks whether enough capacity to power on that virtual machine is available on that host or a
different host.

See Managing HA Clusters.

VMware HCI

VMware HCI manages the configuration of hyper-converged compute, storage, and network
resources for a cluster, as a collection of identically configured ESXi hosts. This unified approach
simplifies cluster configuration, offering a way to configure all resource types as a group, using a
single interface.

VMware HCI clusters are ideal for newly established datacenters. Only conformant hosts are
allowed to be a part of the HCI cluster. They must have the same CPU design and contain
the minimum number of physical NICs specified in DvsProfile. Network settings are wiped

to a clean state before configuration. Non-management port groups in standard switches are
migrated to a virtual distributed switch.

The ConfigureHCI_Task method configures a VMware HCI (hyper converged infrastructure)

cluster. The ExtendHCI_Task method expands and reconfigures a VMware HCI cluster. Before

and after HCI cluster configuration, you can run the ValidateHCIConfiguration method to

check that the ClusterComputeResourceHCIConfigSpec is correct.

The BatchAddHostsToCluster_Task method adds more hosts as needed to a VMware HCI

cluster, but cannot change cluster configuration.

These configure, extend, and host add methods are composite tasks. That is, they perform
multiple operations in a single task. For example, ConfigureHCI_Task can:

n Set up cluster services such as DRS, HA, and vMotion

n For an HCI cluster, verify that all hosts have same CPU vendor

n Add new standalone hosts and set state (lockdown)

n Move all hosts into the HCI cluster

n Configure vSAN datastore

n Configure virtual distributed switch and port groups

Automatic remediation of failed hosts is not attempted. The administrator must intervene to
correct issues before attempting to place hosts back in the cluster. Remediated hosts must be
ready to participate in the vSAN datastore.

Creating and Configuring Clusters

The vSphere Web Services SDK includes objects and methods for all cluster management tasks.
Some documentation is available in the vSphere API Reference. For additional background and

vSphere Web Services SDK Programming Guide

VMware, Inc. 282

details about the failover and load balancing behavior, see vSphere Resource Management and
vSphere Availability.

Creating a Cluster

If your environment includes a vCenter Server and multiple ESXi hosts, you can create a cluster
by calling the Folder.CreateClusterEx method. You pass in a name for the new cluster and a

ClusterConfigSpecEx data object. In the data object, you can specify the following properties:

n VMware DRS

n drsConfig property in the ClusterDrsConfigInfo data object contains configuration

information for the VMware DRS service. Properties in this object specify the
cluster-wide (default) behavior for virtual machine and the threshold for generating
cluster recommendations. You can enable and disable VMware DRS with the
ClusterDrsConfigInfo.enabled property.

n drsVmConfigSpec property in the ClusterDrsVMConfigSpec data object points to a

ClusterDrsVmConfigInfo data object that specifies the DRS configuration for a single

virtual machine. ClusterDrsVmConfigInfo overrides the default DRS configuration for

an individual virtual machine and allows you to specify the DRS behavior and whether
DRS can perform migration or recommend initial placement for a virtual machine.

To update a DRS configuration, you call
ComputeResource.ReconfigureComputeResource_Task and pass in a

ClusterConfigSpecEx object. In the ClusterConfigSpecEx.drsVmConfigSpec
property, you can specify an array of ClusterDrsVMConfigSpec objects that define the

configuration for individual virtual machines.

n rulesSpec property in the ClusterRuleSpec data object points a ClusterRuleInfo
data object that specifies the affinity and antiaffinity rules DRS should use. See the
vSphere API Reference entry for ClusterRuleInfo.

n VMware HA – distributed availability service (DAS)

n dasConfig property in the ClusterDasConfigInfo data object specifies HA service on

the cluster. Properties in this object determine whether strict admission control is enabled,
what the default virtual machine settings in this cluster are, whether VMware HA restarts
virtual machines after host failure, and so on. See the vSphere API Reference.

n dasVMConfigSpec property in ClusterDasVMConfigSpec object, where the info
property is a ClusterDasVmConfigInfo data object that specifies the HA configuration

for a single virtual machine. You can apply different settings to different virtual machines,
or use the default specified in the dasConfig property for all virtual machines in the

cluster.

vSphere Web Services SDK Programming Guide

VMware, Inc. 283

n VMware HCI

n The ClusterComputeResourceHCIConfigInfo data object contains properties to

capture the configured hosts, virtual distributed switch settings, host configurations, and
HCI workflow state. The HCI cluster includes vSphere facilities for DRS, HA, vMotion, and
vSAN.

n The ClusterComputeResourceHCIConfigSpec data object specifies the virtual

distributed switch settings, host configurations, enhanced vMotion capability, and vSAN
configuration.

n Once configurations are specified, you create an HCI cluster with the
ConfigureHCI_Task method, and reconfigure an HCI cluster with the ExtendHCI_Task
method.

Adding a Host to a Cluster

The methods available for adding hosts to a cluster are useful under different circumstances.
Each method returns a managed object reference to a task.

n ClusterComputeResource.AddHost_Task adds a host to the cluster. The host may be

specified by a numeric IP address or a DNS resolvable name. If the cluster supports nested
resource pools and you pass an optional resourcePool argument, the host's resource pool

hierarchy is imported into the new nested resource pool. If a cluster does not support nested
resource pools, the host resource pool hierarchy is discarded and all virtual machines on the
host are added to the cluster's root resource pool.

n ClusterComputeResource.MoveInto_Task moves a host in the datacenter into a cluster,

or from one cluster into another. The MoveHostInto_Task method is similar, with extra

resourcePool parameter.

n Folder.BatchAddStandaloneHosts_Task adds a list of newHosts to the inventory as

standalone hosts. This operation works though the list of hosts and returns, in the task result,
a list of hosts that were successfully added.

Reconfiguring a Cluster

You can alter a vSphere cluster by calling the
ComputeResource.ReconfigureComputeResource_Task method. You can alter an HCI cluster

by calling the ClusterComputeResource.ExtendHCI_Task method.

To reconfigure a vSphere cluster, for instance to enable or disable VMware DRS or VMware
HA, you can change properties in the ComputeResourceConfigSpec data object, and pass it

in to ReconfigureComputeResource_Task. For relevant properties, see Creating a Cluster. To

enlarge a vSphere cluster, you can call AddHost_Task.

To enlarge an HCI cluster, possibly after adding hosts with BatchAddStandaloneHosts_Task,

you can call ClusterComputeResource.ExtendHCI_Task, passing in the new hosts as

parameter hostInputs.

vSphere Web Services SDK Programming Guide

VMware, Inc. 284

To move a datacenter host into a cluster, or from one cluster to another if the host is in
maintenance mode, you can call the ClusterComputeResource.MoveInto_Task method. The

MoveHostInto_Task method is similar but allows moving the host into a nested resource pool.

To move hosts out of a cluster, and make them standalone hosts in the datacenter, you can call
the Folder.MoveIntoFolder_Task method.

To remove a host from a cluster, and from the datacenter, you
can call the Folder.Destroy_Task method, if you are granted the

Host.Inventory.RemoveHostFromCluster privilege.

Managing DRS Clusters

The vSphere Client UI allows you to explore DRS cluster behavior, which is also described in the
vSphere Resource Management guide. When DRS is running, it generates recommendations and
associated information that result in a well balanced cluster, including:

n Initial placement of virtual machines

n Virtual machine migration for load balancing. Each migration recommendation has a rating,
which you can find in the ClusterRecommendation.rating property. Client applications can

choose to consider only high-priority migrations or migrations with multiple priority levels.

n Whether or not DRS clusters are valid, and have enough resources to start additional virtual
machines.

DRS recommendations are stored in the ClusterComputeResource.recommendation property,

which is an array of ClusterRecommendation data objects. Each ClusterRecommendation
includes information about the action to perform and information you can use to display
information to end users or for logging.

n Client applications can call ClusterComputeResource.ApplyRecommendation to apply one

or more recommendations.

n For more fine-grained control, client applications can perform individual actions only. The
ClusterRecommendation.action property is an array of ClusterAction objects. Each

ClusterAction includes a target for the action and the type, which is a string that is

one of the values of the ActionType enum (HostPowerV1, MigrationV1, VmPowerV1).

Client applications can use the ActionType information to act on DRS recommendations by

powering on hosts, migrating virtual machines, or powering on virtual machines by calling
Datacenter.PowerOnMultiVM_Task.

Managing HA Clusters

You can add a host to an HA cluster by calling the AddHost_Task method, or move a host into a

cluster by calling the MoveHostInto_Task method or similar.

vSphere Web Services SDK Programming Guide

VMware, Inc. 285

You might have to call HostSystem.ReconfigureHostForDAS_Task to reconfigure the host for

HA if the automatic HA configuration fails. See Adding a Host to a Cluster.

Primary and Secondary Hosts

You can add a secondary host to a cluster by calling the
ClusterComputeResource.AddHost_Task method, which requires that you specify the host

name, port, and password for the host to be added as a HostConnectSpec.

When you add a host to a VMware HA cluster, an agent is uploaded to the host and configured
to communicate with other agents in the cluster. The first five hosts added to the cluster are
designated as primary hosts, and all subsequent hosts are designated as secondary hosts. The
primary hosts maintain and replicate all cluster state and are used to initiate failover actions. If a
primary host is removed from the cluster, VMware HA promotes another host to primary status.

Any host that joins the cluster must communicate with an existing primary host to complete its
configuration (except when you are adding the first host to the cluster). At least one primary host
must be functional for VMware HA to operate correctly. If all primary hosts are unavailable (not
responding), no hosts can be successfully configured for VMware HA.

One of the primary hosts is also designated as the active primary host and its responsibilities
include:

n Deciding where to restart virtual machines

n Keeping track of failed restart attempts

n Determining when it is appropriate to keep trying to restart a virtual machine.

Failure Detection and Host Network Isolation

Agents on the different hosts contact and monitor each other through the exchange of
heartbeats, by default every second. If a 15-second period elapses without the receipt of
heartbeats from a host, and the host cannot be pinged, the host is declared as failed. The virtual
machines running on the failed host are restarted on the alternate hosts with the most available
unreserved capacity (CPU and memory).

Host network isolation occurs when a host is still running, but it can no longer communicate with
other hosts in the cluster. With default settings, if a host stops receiving heartbeats from all other
hosts in the cluster for more than 12 seconds, it attempts to ping its isolation addresses. If this
also fails, the host declares itself isolated from the network.

When the isolated host's network connection is not restored for 15 seconds or longer, the other
hosts in the cluster treat that host as failed and try to fail over its virtual machines. However,
when an isolated host retains access to the shared storage it also retains the disk lock on
virtual machine files. To avoid potential data corruption, VMFS disk locking prevents simultaneous
write operations to the virtual machine disk files. Therefore attempts to fail over the isolated
host's virtual machines do not succeed. By default, the isolated host leaves its virtual machines
powered on, but you can change HA host isolation response as described in the vSphere
Availability guide.

vSphere Web Services SDK Programming Guide

VMware, Inc. 286

Using VMware HA and DRS Together

Using VMware HA with VMware DRS combines automatic failover with load balancing. This
combination can result in faster rebalancing of virtual machines after VMware HA has moved
virtual machines to different hosts.

When VMware HA performs failover and restarts virtual machines on different hosts, its first
priority is the immediate availability of all virtual machines. After the virtual machines have been
restarted, those hosts on which they were powered on might be heavily loaded, while other
hosts might be comparatively lightly loaded. VMware HA uses the CPU and memory reservation
to determine failover, but the actual usage might be higher.

In a cluster using DRS and VMware HA with admission control turned on, virtual machines might
not be evacuated from hosts entering maintenance mode because of resources reserved to
maintain the failover level. You must manually migrate the virtual machines off of the hosts using
VMotion.

When VMware HA admission control is disabled, failover resource constraints are not passed on
to DRS and VMware Distributed Power Management (DPM). The constraints are not enforced.

n DRS evacuates virtual machines from hosts and place the hosts in maintenance mode or
standby mode regardless of the effect this might have on failover requirements.

n VMware DPM powers off hosts (place them in standby mode) even if doing so violates
failover requirements.

The VMware HCI cluster includes VMware DRS and VMware HA features, so all the above
remarks apply.

vSphere Web Services SDK Programming Guide

VMware, Inc. 287

Tasks and Scheduled Tasks 17
VMware vSphere uses an asynchronous client-server communication model. Methods that end
with _Task are non-blocking, returning a reference to a Task managed object. You can use Task
and ViewManager managed objects to monitor tasks, cancel certain tasks, and create custom

tasks.

If you are using a vCenter Server system, the ScheduledTaskManager allows you to schedule

your own tasks for a one-time run or for repeated runs.

Read the following topics next:

n Creating Tasks

n Accessing and Manipulating Multiple Tasks

n Understanding the ScheduledTaskManager Interface

n Using a TaskHistoryCollector

n Managing the HistoryCollector

n Sample Code Reference

Creating Tasks

Each time a vSphere server runs a method, it creates a Task and a corresponding TaskInfo data

object. Some methods run synchronously and return data as the Task completes. But methods

that end with _Task run asynchronously, and return a reference to a Task that will be created
and completed as a processor becomes available. They are created to perform the functions
in a non-blocking manner. Therefore, you must use the reference to the Task to monitor the

status and results of the Task. vSphere operations that include the suffix _Task in their names are

asynchronous and return Task references.

The Task object provides information about the status of the invoked operation through its

TaskInfo data object. An instance of TaskInfo populates the info property of the Task
managed object at runtime. By monitoring properties of the TaskInfo object, a client application

can take appropriate action when the Task completes, or can handle errors if the Task does not

complete successfully.

VMware, Inc. 288

When a vSphere server creates a Task, it also creates a TaskEvent object. The TaskEvent
object contains a copy of the TaskInfo object (TaskEvent.info). The TaskEvent copy of the

TaskInfo object is a snapshot of the Task state at the time of its creation. It does not change

after it is created. To find the current status of the task, use the Task.info.eventChainId
property.

Session Persistence

A Task and its associated objects are session specific, so they will not persist after the session

is closed. When your client opens a session, you can only obtain information about the Task
objects that your client is authorized to view.

Cancelling a Task

To cancel a Task that is still running, call the Task.CancelTask method, passing in the managed

object reference to the Task you want to cancel, as shown in this example:

my_conn.cancelTask(taskMoRef);

You can only cancel a Task that has its cancelable property set to true and its state property

set to running. The operation that initiates the Task sets the value of cancelable when it

creates the Task. For example, a CreateVM_Task cannot be cancelled. Before attempting to

cancel a running Task, you can check the values of the cancelable property and the state
property of the TaskInfo data object associated with the Task.

Using TaskInfo to Determine Task Status

A Task object provides information about the status of the invoked operation through its

TaskInfo data object. An instance of TaskInfo populates the info property of the Task
managed object at runtime. By monitoring properties of the TaskInfo object, a client application

can take appropriate action when the Task completes, or can handle errors if the Task does not

complete successfully.

The Task.info property contains a TaskInfo data object that contains information about the

Task the server returns to your client application.

When a Task is instantiated by the server, the TaskInfo.result property is initialized to Unset.

Upon successful completion of an operation, the result property is populated with the return

type specific to the operation. The result might be a data object, a reference to a managed

object, or any other data structure as defined by the operation.

For example:

1 The ClusterComputeResource.AddHost_Task method returns a Task object whose info
property contains a TaskInfo data object.

2 At the start of the operation, the result property is Unset.

vSphere Web Services SDK Programming Guide

VMware, Inc. 289

3 Upon successful completion of the operation, the result property of TaskInfo contains the

managed object reference of the newly added HostSystem.

TaskInfo Values

The following table lists some of the values obtained from a TaskInfo data object at the

beginning and the end of the Task instantiated by the CreateVM_Task method.

Property Datatype Start of Task Sample Values End of Task Sample Values

cancelable boolean false false

...

completeTime dateTime Unset "2009-02-19T22:53:35.015338Z
"

progress int 36 100

queueTime dateTime "2009-02-19T22:50:39.111604Z
"

"2009-02-19T22:50:39.111604Z
"

reason TaskReason reason reason

result anyType Unset 64

....

state TaskInfoState "running" "success"

Monitoring TaskInfo Properties

To monitor the state of a Task, use the PropertyCollector.WaitForUpdatesEx method.

You can monitor the values of TaskInfo properties, which change as the Task runs to

completion. For example, you can check the values of startTime, queueTime, completeTime,

progress, result, and state as the operation progresses. Monitor these properties in your

code in a separate thread until the Task completes, while the main line of your code continues

with other activities.

For more information about monitoring properties, see Client Data Synchronization with
WaitForUpdatesEx.

Your code must handle the datatype returned when the Task completes (managed object

reference, data object, and so on). In addition to success, queued, and running, an operation

can enter an error state, which your code must handle.

A Task object has a lifecycle that is independent of the TaskManager that creates it and

independent of the entity with which it is associated. It exists to convey status about an
operation. You can discard the reference to it when your application no longer needs the
information.

vSphere Web Services SDK Programming Guide

VMware, Inc. 290

The following example shows a code fragment that obtains values for the info property from

each Task object in the array.

Example: Displaying TaskInfoState Values for Tasks in recentTask Array

...
private void displayTasks(ObjectContent[] oContents) {
 for(int oci=0; oci<oContents.length; ++oci) {
 System.out.println("Task");
 DynamicProperty[] dps = oContents[oci].getPropSet();
 if(dps!=null) {
 String op="", name="", type="", state="", error="";
 for(int dpi=0; dpi<dps.length; ++dpi) {
 DynamicProperty dp = dps[dpi];
 if("info.entity".equals(dp.getName())) {
 type = ((ManagedObjectReference)dp.getVal()).getType();
 } else if ("info.entityName".equals(dp.getName())) {
 name = ((String)dp.getVal());
 } else if ("info.name".equals(dp.getName())) {
 op = ((String)dp.getVal());
 } else if ("info.state".equals(dp.getName())) {
 TaskInfoState tis = (TaskInfoState)dp.getVal();
 if(TaskInfoState.error.equals(tis)) {
 state = "-Error";
 } else if(TaskInfoState.queued.equals(tis)) {
 state = "-Queued";
 } else if(TaskInfoState.running.equals(tis)) {
 state = "-Running";
 } else if(TaskInfoState.success.equals(tis)) {
 state = "-Success";
 }
 } else if ("info.cancelled".equals(dp.getName())) {
 Boolean b = (Boolean)dp.getVal();
 if(b != null && b.booleanValue()) {
 state += "-Cancelled";
 }
 }...

Sample Run of the TaskList Java Application shows output from a run of the program. See the
source code listing for TaskList.java or for TaskList.cs in the vSphere Web Services SDK

package for details.

Example: Sample Run of the TaskList Java Application

java com.vmware.samples.general.TaskList --url https://srv/sdk --username root --password

Started
Task
Operation AcquireCimServicesTicket
Name srv
Type HostSystem
State -Success

vSphere Web Services SDK Programming Guide

VMware, Inc. 291

Error
======================
Ended TaskList

Accessing and Manipulating Multiple Tasks

Use the ViewManager’s ListView method to identify the set of Tasks you want to monitor.

You can specify a smaller and more efficient data set using one of the ViewManager views with

the Property Collector. Each view represents objects you have selected on the server. Views are
more efficient because you only need a single instance of a PropertyCollector object, instead

of multiple instances with multiple filter specifications.

Task Monitoring Example Using the Listview Object

You can use the ViewManager’s CreateListView method to specify a set of tasks that you want

to monitor with the PropertyCollector. This example shows how to initiate virtual machine cloning
operations and monitor completion by tracking the Task objects.

For general task monitoring, a best practice is to use a ViewManager to monitor specific tasks.

See the API Reference for more information about using views.

Note For simplicity, the calls to RetrievePropertiesEx() and WaitForUpdatesEx() in this

example ignore the possibility of additional chunks of data returned by the property collector.
For more information about chunking in property collector results, see Server Data Transmission.

What to read next

Procedure

1 Create an Authenticated Session with the Server

Use command-line arguments to connect to a vSphere server and log in.

2 Find Virtual Machine MOref

Use the PropertyCollector to get a managed object reference for a virtual machine named in
the command line.

3 Get_Parent_Property

Given the managed object reference for a virtual machine object, use the PropertyCollector
to get the managed object reference for its parent object.

4 Create Clones of the Virtual Machine

Create two clones of the virtual machine and build a PropertyFilterSpec that uses a ListView
managed object to track the Tasks to completion.

5 Monitor Tasks with WaitForUpdatesEx

Use the PropertyCollector.WaitForUpdatesEx method to monitor and report Task state

changes.

vSphere Web Services SDK Programming Guide

VMware, Inc. 292

Create an Authenticated Session with the Server

Use command-line arguments to connect to a vSphere server and log in.

Given the arguments on the command line, this task makes an SSL connection to the vSphere
server, retrieves a reference to the SessionManager, and authenticates a session with the
credentials passed on the command line.

Prerequisites

For this task you need:

n The Web Services API WSDL bindings file.

n The hostname of the vSphere server.

n A username and password to authenticate with the vSphere server.

n The name of a virtual machine available to be cloned.

Procedure

1 Import the vSphere Web Services API libraries and the necessary Java (and JAX-WS
connection, bindings, and SOAP) libraries:

import com.vmware.vim25.*;

import java.util.*;
import javax.net.ssl.HostnameVerifier;
import javax.net.ssl.HttpsURLConnection;
import javax.net.ssl.SSLSession;
import javax.xml.ws.BindingProvider;
import javax.xml.ws.soap.SOAPFaultException;

2 Create a class to hold data and methods.

public class cloneVMTask {
 static ManagedObjectReference pCollector;
 static ManagedObjectReference viewMgr;
 static ServiceContent serviceContent;
 static VimPortType methods;

3 Define a TrustManager implementation.

Authentication is handled by using a TrustManager and supplying a host name verifier
method.

Note For the purposes of this example, this TrustManager implementation will accept all
certificates. This is only appropriate for a development environment. Production code should
implement certificate validation.

 private static class TrustAllTrustManager
 implements javax.net.ssl.TrustManager,
 javax.net.ssl.X509TrustManager {

vSphere Web Services SDK Programming Guide

VMware, Inc. 293

 public java.security.cert.X509Certificate[] getAcceptedIssuers() {
 return null;
 }
 public boolean isServerTrusted(java.security.cert.X509Certificate[] certs) {
 return true;
 }
 public boolean isClientTrusted(java.security.cert.X509Certificate[] certs) {
 return true;
 }
 public void checkServerTrusted(java.security.cert.X509Certificate[] certs,
 String authType)
 throws java.security.cert.CertificateException {
 return;
 }
 public void checkClientTrusted(java.security.cert.X509Certificate[] certs,
 String authType)
 throws java.security.cert.CertificateException {
 return;
 }
 } // end TrustAllTrustManager

4 Read command line arguments.

 public static void main(String [] args) throws Exception {
 String serverName = args[0];
 String userName = args[1];
 String password = args[2];
 String vmName = args[3];
 String url = "https://"+serverName+"/sdk/vimService";

5 Create SSL context and session context for the connection.

 javax.net.ssl.TrustManager[] trustAllCerts = new javax.net.ssl.TrustManager[1];
 javax.net.ssl.TrustManager tm = new TrustAllTrustManager();
 trustAllCerts[0] = tm;
 // Create the SSL context
 javax.net.ssl.SSLContext sc = javax.net.ssl.SSLContext.getInstance("SSL");
 // Create the session context
 javax.net.ssl.SSLSessionContext sslsc = sc.getServerSessionContext();
 // Initialize the contexts; the session context takes the trust manager.
 sslsc.setSessionTimeout(0);
 sc.init(null, trustAllCerts, null);
 // Use the default socket factory to create the socket for the secure connection
 javax.net.ssl.HttpsURLConnection.setDefaultSSLSocketFactory(sc.getSocketFactory());

6 Set a host name verifier that will enable any connection.

The host name verifier is invoked during the SSL handshake.

 HostnameVerifier hv = new HostnameVerifier() {
 public boolean verify(String urlHostName, SSLSession session) {

vSphere Web Services SDK Programming Guide

VMware, Inc. 294

 return true;
 }
 };
 HttpsURLConnection.setDefaultHostnameVerifier(hv);

7 Create a VimService object to obtain a VimPort binding provider.

The BindingProvider provides access to the protocol fields in request/response messages.
Retrieve the request context which will be used for processing message requests.

 VimService vimService = new VimService();
 methods = vimService.getVimPort();
 Map<String, Object> ctxt = ((BindingProvider) methods).getRequestContext();

8 Store the Server URL in the request context.

Specify true to maintain the connection between the client and server. The client API will

include the Server's HTTP cookie in its requests to maintain the session. If you do not set this
to true, the Server will start a new session with each request.

 ctxt.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY, url);
 ctxt.put(BindingProvider.SESSION_MAINTAIN_PROPERTY, true);

9 Create a MOref for the ServiceIntsance and retrieve the ServiceContent.

 // -- ManagedObjectReference for the ServiceInstance on the Server
 ManagedObjectReference SVC_INST_REF = new ManagedObjectReference();
 SVC_INST_REF.setType("ServiceInstance");
 SVC_INST_REF.setValue("ServiceInstance");
 serviceContent = methods.retrieveServiceContent(SVC_INST_REF);

10 Use the SessionManager to log in.

 methods.login(serviceContent.getSessionManager(),
 userName,
 password,
 null);

11 Get references to the PropertyCollector and the ViewManager.

 pCollector = serviceContent.getPropertyCollector();
 viewMgr = serviceContent.getViewManager();

What to do next

With an authenticated session, you can use the PropertyCollector to retrieve the MOref of the
virtual machine, then create clones and monitor the Task objects:

 ManagedObjectReference vmRef = getVmRef(vmName);
 cloneVM(vmRef);

vSphere Web Services SDK Programming Guide

VMware, Inc. 295

A best practice is to close the session when done:

 methods.logout(serviceContent.getSessionManager());
 } // end main
} // end cloneVMTask

Find Virtual Machine MOref

Use the PropertyCollector to get a managed object reference for a virtual machine named in the
command line.

Given the name of a virtual machine, this function retrieves references to all of the virtual
machines in the datacenter and looks for a match to the specified name.

Prerequisites

For this task you need:

n A virtual machine name is referenced by the String variable vmName.

n An authenticated Web Services session with the vSphere server that manages the virtual
machine.

n A VimPort binding provider is referenced by the variable methods, which is attached to the

vSphere server connection context.

n The ServiceInstance content is referenced by the variable serviceContent.

n The ViewManager object is referenced by the variable viewMgr.

n The PropertyCollector object is referenced by the variable pCollector.

Procedure

1 Declare a function that accepts a virtual machine name and returns a managed object
reference.

 private static ManagedObjectReference getVmRef(String vmName)
 throws Exception
 {
 ManagedObjectReference vmRef = null;

2 Use a container view to collect references to all virtual machines in the datacenter.

Start the collection from the root folder at the top of the managed object hierarchy.

 List<String> vmList = new ArrayList<String>();
 vmList.add("VirtualMachine");
 ManagedObjectReference cViewRef =
 methods.createContainerView(viewMgr,
 serviceContent.getRootFolder(),
 vmList,
 true);

vSphere Web Services SDK Programming Guide

VMware, Inc. 296

3 Create an ObjectSpec to define the beginning of the traversal.

Use the setObj method to specify that the container view is the starting object for this

traversal. Set the skip property to true to indicate that you don't want the PropertyCollector

to collect properties from the container.

 ObjectSpec oSpec = new ObjectSpec();
 oSpec.setObj(cViewRef);
 oSpec.setSkip(true);

4 Create a traversal spec to traverse from the starting object to the objects in the view.

Set the skip property to false to indicate that you don't want the PropertyCollector to skip

the objects reached by this traversal.

 TraversalSpec tSpec = new TraversalSpec();
 tSpec.setName("traverseEntities");
 tSpec.setType("ContainerView");
 tSpec.setPath("view");
 tSpec.setSkip(false);

5 Add the traversal spec to the object spec.

 oSpec.getSelectSet().add(tSpec);

6 Specify the property for retrieval (virtual machine name).

 PropertySpec pSpec = new PropertySpec();
 pSpec.setType("VirtualMachine");
 pSpec.getPathSet().add("name");

7 Create a PropertyFilterSpec and add the object and property specs to it.

 PropertyFilterSpec fSpec = new PropertyFilterSpec();
 fSpec.getObjectSet().add(oSpec);
 fSpec.getPropSet().add(pSpec);

8 Create a list for the filters and add the spec to it.

 List<PropertyFilterSpec> fSpecList = new ArrayList<PropertyFilterSpec>();
 fSpecList.add(fSpec);

9 Get the data from the server.

 RetrieveOptions ro = new RetrieveOptions();
 RetrieveResult props = methods.retrievePropertiesEx(pCollector,fSpecList,ro);

10 Go through the returned list and look for a match to the specified vmName.

 if (props != null) {
 for (ObjectContent oc : props.getObjects()) {
 String vmname = null;

vSphere Web Services SDK Programming Guide

VMware, Inc. 297

 List<DynamicProperty> dps = oc.getPropSet();
 if (dps != null) {
 for (DynamicProperty dp : dps) {
 vmname = (String) dp.getVal();
 // If the name of this virtual machine matches
 // the specified name, save the managed object reference.
 if (vmname.equals(vmName)) {
 vmRef = oc.getObj();
 break;
 }
 }
 if (vmRef != null) { break; }
 }
 }
 }
 if (vmRef == null) {
 System.out.println("Specified Virtual Machine not found.");
 throw new Exception();
 }
 return vmRef;
 } // end getVmRef

What to do next

Given the MOref of the named virtual machine, you can use the PropertyCollector to retrieve ia
MOref to its parent folder, which you will need to clone the virtual machine.

Get_Parent_Property

Given the managed object reference for a virtual machine object, use the PropertyCollector to
get the managed object reference for its parent object.

Given the MOref of a virtual machine, this function uses the PropertyCollector to retrieve the
MOref of the parent of the virtual machine object. The MOref of the parent folder can be used to
clone the virtual machine.

A VirtualMachine can be a child of either a Folder object or a VirtualApp object. If it is a child of

a Folder object, the parent property contains the MOref of the Folder object and the parentVApp
property is null. If the VirtualMachine is a child of a VirtualApp object, the parent property is

null and the parentVApp property contains the MOref of the VirtualApp object. The method in this

example returns a key-value pair from which the caller can determine which kind of parent the
VirtualMachine has.

Prerequisites

For this task you need:

n A virtual machine managed object reference in a variable named vmRef.

n An authenticated Web Services session with the vSphere server that manages the virtual
machine.

vSphere Web Services SDK Programming Guide

VMware, Inc. 298

n A VimPort binding provider referenced by the variable methods, which is attached to the

vSphere server connection context.

n A PropertyCollector instance referenced by the variable pCollector.

Procedure

1 Declare a function that accepts a virtual machine MOref and returns a MOref to its parent
object.

 private static DynamicProperty getVMParentProperty(ManagedObjectReference vmRef)
 throws Exception {

2 Create an ObjectSpec to define the property collection. Use the setObj method to specify

that the vmRef is the starting object for this property collection. Set the skip property

to false to indicate that you want to collect properties from the starting object. Omit the

selectSet property because the property collection does not need to traverse away from

the starting object.

 ObjectSpec oSpec = new ObjectSpec();
 oSpec.setObj(vmRef);
 oSpec.setSkip(false);

3 Specify the properties for retrieval (VirtualMachine.parent and

VirtualMachine.parentVApp).

Because the VirtualMachine has two mutually exclusive parent properties, depending on the

parent type, this code collects both properties.

 PropertySpec pSpec = new PropertySpec();
 pSpec.setType("VirtualMachine");
 pSpec.getPathSet().add("parent");
 pSpec.getPathSet().add("parentVApp");

4 Create a PropertyFilterSpec and add the object and property specs to it.

 PropertyFilterSpec fSpec = new PropertyFilterSpec();
 fSpec.getObjectSet().add(oSpec);
 fSpec.getPropSet().add(pSpec);

5 Create a list for the filters and add the property filter spec to it.

 List<PropertyFilterSpec> fSpecList = new ArrayList<PropertyFilterSpec>();
 fSpecList.add(fSpec);

6 Use the filter spec to retrieve the property collection from the server.

 RetrieveOptions ro = new RetrieveOptions();
 RetrieveResult props = methods.retrievePropertiesEx(pCollector,fSpecList,ro);

vSphere Web Services SDK Programming Guide

VMware, Inc. 299

7 Unwrap the parent folder property.

 if (props != null) {
 for (ObjectContent oc : props.getObjects()) {
 List<DynamicProperty> dps = oc.getPropSet();
 if (dps != null) {
 for (DynamicProperty dp : dps) {
 if (dp.getName().equals("parent") || dp.getName().equals("parentVApp")) {
 return dp;
 }
 }
 }
 }
 }
 System.out.println("Parent not found.");
 throw new Exception();
 }

What to do next

Now that you have the reference information for the virtual machine that you specified on the
command line (vmRef) and a reference for the parent (in the dp property), you are ready to

extract the type and MOref of the parent.

Create Clones of the Virtual Machine

Create two clones of the virtual machine and build a PropertyFilterSpec that uses a ListView
managed object to track the Tasks to completion.

Given the MOref of a virtual machine and the MOref of its parent folder, this function initiates two
clone operations, resulting in two Task managed objects that you can use to monitor progress of

the clone operations. The function uses the Task objects to build a PropertyFilterSpec that you

can use to report status updates for the two Task objects.

Prerequisites

For this task you need:

n A virtual machine managed object reference in a variable named vmRef.

n An authenticated Web Services session with the vSphere server that manages the virtual
machine.

n A VimPort binding provider referenced by the variable methods, which is attached to the

vSphere server connection context.

n The ViewManager object is referenced by the variable viewMgr.

n A PropertyCollector instance referenced by the variable pCollector.

vSphere Web Services SDK Programming Guide

VMware, Inc. 300

Procedure

1 Declare a method that accepts a virtual machine MOref to clone it and monitor the Task
objects.

 private static void cloneVM(ManagedObjectReference vmRef) throws Exception {

2 Use the getVMParent method to get a MOref for the parent folder of the virtual machine.

If the parent object is a Folder, the CloneVMTask method will create the clones in the same

folder that contains the specified virtual machine. If the parent object is a VirtualApp, the

VirtualMachine cannot be cloned.

 DynamicProperty parent = getVMParentProperty(vmRef);
 if (parent.getName().equals("parentVApp")) {
 System.out.println("Will not clone VM in a VApp.");
 throw new Exception();
 } else {
 ManagedObjectReference folder = (ManagedObjectReference) parent.getVal();
 }

3 Create a clone specification. Use default values whenever possible.

 VirtualMachineCloneSpec cloneSpec = new VirtualMachineCloneSpec();
 VirtualMachineRelocateSpec vmrs = new VirtualMachineRelocateSpec();
 cloneSpec.setLocation(vmrs);
 cloneSpec.setPowerOn(true);
 cloneSpec.setTemplate(false);

4 Create two clone virtual machines.

 ManagedObjectReference cloneTask = methods.cloneVMTask(vmRef,
 folder,
 "clone__1",
 cloneSpec);
 ManagedObjectReference cloneTask2 = methods.cloneVMTask(vmRef,
 folder,
 "clone__2",
 cloneSpec);

The CloneVMTask method returns a Task object from each invocation. You can use

PropertyCollector to track task completion.

5 Create a list view to reference the clone tasks.

 List<ManagedObjectReference> taskList = new ArrayList<ManagedObjectReference>();
 taskList.add(cloneTask);
 taskList.add(cloneTask2);
 ManagedObjectReference cloneTaskList = methods.createListView(viewMgr,
 taskList);

vSphere Web Services SDK Programming Guide

VMware, Inc. 301

6 Create an object spec to describe the property collection.

Add the list of Task objects to the object spec. Set the skip property to true so the

PropertyCollector will ignore the properties of the ListView object itself.

 ObjectSpec oSpec = new ObjectSpec();
 oSpec.setObj(cloneTaskList);
 oSpec.setSkip(true);

7 Create a traversal spec to tell the PropertyCollector how to move from the ListView object to

the Task objects.

Set the skip property to false so the PropertyCollector will try to collect properties from the

managed objects at the end of this traversal step.

 TraversalSpec tSpec = new TraversalSpec();
 tSpec.setName("traverseTasks");
 tSpec.setPath("view");
 tSpec.setSkip(false);
 tSpec.setType("ListView");

8 Add the traversal spec to the object spec.

 oSpec.getSelectSet().add(tSpec);

9 Create a property spec to collect the Task.info.state and Task.info.result properties.

 PropertySpec pSpec = new PropertySpec();
 pSpec.setType("Task");
 pSpec.setAll(false);
 pSpec.getPathSet().add("info.state");
 pSpec.getPathSet().add("info.result");

10 Create a filter spec from the object spec and the property spec, and use the filter spec to
create a PropertyFilter object to guide the property collection.

The filter managed object needs to persist on the server until the PropertyCollector finishes
reporting task status.

 PropertyFilterSpec fSpec = new PropertyFilterSpec();
 fSpec.getObjectSet().add(oSpec);
 fSpec.getPropSet().add(pSpec);
 ManagedObjectReference pFilter = methods.createFilter(pCollector,
 fSpec,
 true);

Results

Two cloning operations are underway, with status of the operations reflected in Task objects. A

PropertyFitler managed object is created and configured to monitor the task status.

vSphere Web Services SDK Programming Guide

VMware, Inc. 302

What to do next

Use the PropertyCollector.WaitForUpdatesEx method to monitor the status of the Task objects.

Monitor Tasks with WaitForUpdatesEx

Use the PropertyCollector.WaitForUpdatesEx method to monitor and report Task state changes.

This example uses the waitForUpdatesEx method to look for a change in the info.state
property and the info.result.property of cloneTask and cloneTask2. When the state is

“success”, info.result is the managed object reference of the clone virtual machine.

Note The order of property retrieval is not guaranteed, and it may take more than one call to
waitForUpdatesEx to retrieve both properties for a task

.

Prerequisites

For this task you need:

n An authenticated Web Services session with the vSphere server that manages the virtual
machine.

n Managed object references for two Task objects in the variables cloneTask and cloneTask2.

n The ViewManager object is referenced by the variable viewMgr.

n The PropertyCollector object is referenced by the variable pCollector.

Procedure

1 Initialize variables for the wait loop.

 String version = "";
 Boolean wait = true;
 WaitOptions waitOptions = new WaitOptions();

 while (wait) {

2 Call WaitForUpdatesEx.

If waitForUpdatesEx returns null, that indicates that the call has timed out.

 UpdateSet uSet = methods.waitForUpdatesEx(pCollector,
 version,
 waitOptions);

 if (uSet == null) {
 wait = false;
 } else {

vSphere Web Services SDK Programming Guide

VMware, Inc. 303

3 Save the version for subsequent calls to WaitForUpdatesEx.

 version = uSet.getVersion();

4 Get the list of property updates.

 List<PropertyFilterUpdate> pfUpdates = uSet.getFilterSet();
 for (PropertyFilterUpdate pfu : pfUpdates) {

5 Get the list of object updates produced by the filter.

 List<ObjectUpdate> oUpdates = pfu.getObjectSet();
 for (ObjectUpdate ou : oUpdates) {

6 Look for ObjectUpdate.kind=="MODIFY" (property modified).

 if (ou.getKind() == ObjectUpdateKind.MODIFY) {
 String name = "";
 TaskInfoState state;
 ManagedObjectReference cloneRef = new ManagedObjectReference();

7 Get the changed data.

 List<PropertyChange> pChanges = ou.getChangeSet();

8 Output the property changes.

If the task completes successfully, the result property contains the MOref of the new clone.

 for (PropertyChange pc : pChanges) {
 name = pc.getName();
 if (name.equals("info.state")) {
 state = (TaskInfoState)pc.getVal();
 System.out.println("State is "+state.value());
 } else if (name.equals("info.result")) {
 cloneRef = (ManagedObjectReference)pc.getVal();
 System.out.println("Clone reference is "+cloneRef.getValue());
 } // end if name.equals
 } // end for pc
 } // end if ou.getKind
 } // end for ou
 } // end for pfu
 } // end if user
 } // end while wait
 } // end cloneVM

Results

This code does not set a time-out (WaitOptions.maxWaitSeconds is unset), so after it has

retrieved all of the property changes, waitForUpdatesEx will block the thread, waiting for the

TCP connection with the vSphere Server to time out.

vSphere Web Services SDK Programming Guide

VMware, Inc. 304

How a client application handles the session depends on the particular context. For example,
the client can call WaitForUpdatesEx from its own thread, look for specific updates and

then stop calling the method. For the preceding example, you might choose to watch for the
Task.info.state to transition to a value of success or error.

For more information about WaitOptions and the waitForUpdatesEx method, see Client Data

Synchronization with WaitForUpdatesEx.

Gathering Data with a TaskManager Interface

TaskManager is a service interface that you can also use for accessing and manipulating Task
objects. This approach uses a PropertyCollector that includes the recentTask property of

the TaskManager managed object that corresponds to the Recent Tasks pane at the bottom of

the vSphere client User Interface.

You can use the following TaskManager properties in your client application.

n description – TaskDescription object that includes a methodInfo property. methodInfo
contains a key-based array that TaskManager uses to populate the value of a TaskInfo
data object’s descriptionId property with the name of the operation. Examples of

two elements from this key-based array are methodInfo["Folder.createVm"] and

methodInfo["Folder.createClusterEx"].

n recentTask – Array of Task managed object references that are queued to run, running, or

completed within the past 10 minutes. On ESX/ESXi hosts that are managed by a vCenter
Server, a completed task must also be one of the 200 most recent tasks to be included in
the array. A vSphere Client connected to a vSphere Server displays queued, running, and
completed tasks in the Recent Tasks pane.

In addition to these properties, TaskManager has the following methods:

n CreateTask – Used by other methods to create a custom Task object. Developers creating

extensions can use this method to create custom Task objects.

n CreateCollectorForTasks – Creates an object that contains all tasks from the vCenter

Server database that meet specific criteria. You cannot run this method against an ESX/ESXi
system. See Using a TaskHistoryCollector.

Figure 17-1. TaskManager and Task Managed Objects shows a UML class diagram for
TaskManager and associated objects.

vSphere Web Services SDK Programming Guide

VMware, Inc. 305

Figure 17-1. TaskManager and Task Managed Objects

Examining Recent Tasks with TaskManager

To obtain the list of recent tasks, use a PropertyCollector to obtain references to the

TaskManager and to all Task objects from the recentTask property of the TaskManager.

The following example shows an excerpt from the TaskList.java sample that creates the

ObjectSpec, PropertySpec, and a TraversalSpec to obtain references to all Task objects on

the server from the TaskList. See also Chapter 6 Property Collector.

Example: PropertyFilterSpec Definition to Obtain recentTask Property Values

private PropertyFilterSpec[] createPFSForRecentTasks(ManagedObjectReference taskManagerRef) {
 PropertySpec pSpec = new PropertySpec();
 pSpec.setAll(Boolean.FALSE);
 pSpec.setType("Task");
 pSpec.setPathSet(new String[] {"info.entity", "info.entityName", "info.name",
 "info.state", "info.cancelled", "info.error"});
 ObjectSpec oSpec = new ObjectSpec();
 oSpec.setObj(taskManagerRef);
 oSpec.setSkip(Boolean.FALSE);
 TraversalSpec tSpec = new TraversalSpec();
 tSpec.setType("TaskManager");
 tSpec.setPath("recentTask");
 tSpec.setSkip(Boolean.FALSE);
 oSpec.setSelectSet(new SelectionSpec[]{tSpec});
 PropertyFilterSpec pfSpec = new PropertyFilterSpec();
 pfSpec.setPropSet(new PropertySpec[]{pSpec});
 pfSpec.setObjectSet(new ObjectSpec[]{oSpec});
 return new PropertyFilterSpec[]{pfSpec};
}

For ESXi hosts managed by vCenter Server, use a TaskHistoryCollector. See Using a

TaskHistoryCollector.

vSphere Web Services SDK Programming Guide

VMware, Inc. 306

Understanding the ScheduledTaskManager Interface

You can use the ScheduledTaskManager to schedule tasks. In the vSphere Client, scheduled

tasks display in the Task & Events tab.

You can define actions to occur on vCenter Server at different times:

n When a vCenter Server system starts up operations, such as after a reboot

n At a specific time and day

n At hourly, daily, weekly, or monthly intervals

You can schedule scripts to be run or methods to be invoked on the server. You apply the action
to an entity in the inventory, such as a virtual machine or a host.

You can perform the following actions with ScheduledTaskManager.

n Retrieve scheduled tasks for a specific managed entity by calling the
ScheduledTaskManager.RetrieveEntityScheduledTask method.

n Create a scheduled task by calling the ScheduledTaskManager.CreateScheduledTask
method. See Scheduling Tasks.

Figure 17-2. ScheduledTaskManager and ScheduledTask Managed Objects shows the
ScheduledTaskManager service interface and associated data objects.

Figure 17-2. ScheduledTaskManager and ScheduledTask Managed Objects

The ScheduledTaskManager.scheduledTask property contains an array of the

ScheduledTask objects configured for the server. If you have no actions scheduled, this

property is empty. For any ScheduledTask objects in this array, you can use the info property

of the ScheduledTask object to obtain information about the status of the scheduled action.

Information includes the task’s progress, state, previous and next runtimes, and other details

contained in the ScheduledTaskInfo data object.

vSphere Web Services SDK Programming Guide

VMware, Inc. 307

If the action specified for a ScheduledTask creates its own Task (such as with any of the

asynchronous operations), the managed object reference to the Task populates the activeTask
property of ScheduledTaskInfo.

Scheduling Tasks

You create a ScheduledTask by invoking the ScheduledTaskManager.CreateScheduledTask
method. When you invoke the method, you include a ScheduledTaskSpec object that defines

the schedule and specifies the action to take at the specified time. A scheduled action applies to
an object based on these rules:

n If you specify a container object as the entity for the scheduled action, the schedule applies
to all entities that are direct descendants of the container. You can set a ScheduledTask at

the Folder, Datacenter, or VirtualApp level and have the scheduled action apply to all

entities associated with the Folder, Datacenter, or VirtualApp.

n If you specify a node object in the inventory, such as a virtual machine, the action applies only
to the virtual machine.

Figure 17-3. Using ScheduledTaskManager to Create a ScheduledTask

Defining the Schedule and Action

The ScheduledTaskSpec data object contains all the information to create a ScheduledTask.

n action – Action to take when the ScheduledTask runs. Specify an Action data object,

which is an abstract type that is extended by several specific action types. The Action data

objects are also used by the Alarm infrastructure. See Specifying Alarm Actions.

n notification – Specifies the email address for sending notification messages about the

ScheduledTask. To use notifications, the vCenter Server system must have an SMTP email

gateway configured. By default, notification is set to an empty string.

vSphere Web Services SDK Programming Guide

VMware, Inc. 308

n scheduler – Specifies the time, frequency, and other details of the schedule. The

TaskScheduler data object is the base type for several specific schedule objects. See

Scheduling Recurring Operations.

Scheduling Recurring Operations

You can specify the times, days, or frequency of scheduled tasks by creating the
appropriate instances of TaskScheduler subtypes and setting the scheduler property of the

ScheduledTaskSpec.

The TaskScheduler base type has two properties:

n activeTime is the time at which the action should occur. If you leave this property unset,

it defaults to the time when that specification for the scheduled task was submitted to the
server.

n expireTime is the time after which the scheduled action should not occur. By default, this

property is unset, so the scheduled task does not expire.

The following table provides some usage information about the TaskScheduler subtypes. The

examples in the table are Java code fragments.

TaskScheduler Subtype Usage

AfterStartupTaskScheduler Schedule a task to start as soon as the vCenter Server system is started, or at a
defined time after startup. The value must be zero (task triggered at startup) or
higher.

Example: Schedule a task to run 10 minutes after vCenter Server startup.

AfterStartupTaskScheduler asts =
 new AfterStartupTaskScheduler();

asts.setMinute(10);

OnceTaskScheduler Schedule an action to run once only at the specified date and time.

Example: Schedule a task to run 30 minutes after the schedule is submitted to the
server.

Calendar runTime = Calendar.getInstance();
runtime.add(Calendar.MINUTE, 30);
OnceTaskScheduler ots = new OnceTaskScheduler();
ots.setRunAt(runTime);

RecurrentTaskScheduler Base type for HourlyTaskScheduler, DailyTaskScheduler,

WeeklyTaskScheduler, and MonthlyTaskScheduler objects. Set the interval

property to define how frequently a task should run. For example, setting the
interval property of an hourly task to 4 causes the task to run every 4 hours.

HourlyTaskScheduler Schedule a task to run once every hour (or every specified number of hours) at a
specified time. Set the interval property to run the task after a specified number of
hours.

Example: Schedule a task to run every 4 hours at half-past the hour.

vSphere Web Services SDK Programming Guide

VMware, Inc. 309

TaskScheduler Subtype Usage

HourlyTaskScheduler hts =
 new HourlyTaskScheduler();
hts.setMinute(30);
hts.setInterval(4);

DailyTaskScheduler Schedule a task to run daily or a specified number of days at a specified time
(hour and minutes). Use in conjunction with the interval property to run the task
after a specified number of days.

Example: Schedule a task to run daily at 9:30 am (EST).

DailyTaskScheduler dts =
 new DailyTaskScheduler();
dts.setMinute(30);
dts.setHour(14);

WeeklyTaskScheduler Schedule a task to run every week (or every specified number of weeks) on a
specified day (or days) at a specific time. The hours and minutes are set as UTC
values. At least one of the boolean values must be set to true. You can also set

the interval property to run the task after a specified number of weeks.

Example: Schedule a task to run every Tuesday and Sunday at 30 minutes past
midnight.

WeeklyTaskScheduler wts =
 new WeeklyTaskScheduler();
wts.setMonday(true);
wts.setTuesday(true);
...
wts.setSaturday(false);
wts.setSunday(true);
dts.setMinute(30);
dts.setHour(4);

MonthlyByDayTaskScheduler Schedule a task to run every month (or every specified number of months) on a
specified day at a specified time (hour and minutes). You can also set the interval
property to run the task after a specified number of months.

Example: Schedule a task to run every 3 months (on the last day of the month) at
12:30 p.m.

MonthlyByDayTaskScheduler mbdts =
 new MonthlyByDayTaskScheduler();
mbdts.setDay(31);
mbdts.setInterval(3);
mbdts.setMinute(30);
mbdts.setHour(14);

vSphere Web Services SDK Programming Guide

VMware, Inc. 310

TaskScheduler Subtype Usage

MonthlyByWeekdayTaskSchedul
er

Schedule a task to run every month (or every specified number of months) on a
specified week, weekday, and time (hour: minutes). You can also set the interval
property to run the task after a specified number of months.

Example: Schedule a task to run on the last Wednesday of each month at 12:30
a.m.

MonthlyByWeekdayTaskScheduler mbwts =
 new MonthlyByWeekdayTaskScheduler();
mbwts.setOffset(WeekOfMonth.last);
mbwts.setWeekday(DayOfWeek.wednesday);
mbwts.setHour(4);
mbwts.setMinute(30);

The hour and minute properties of all objects that extend the RecurrentTaskSchedule data

object are specified in Coordinated Universal Time (UTC) values rather than the local time of the
server. When you define the schedule, convert your local time to a UTC value.

The following code fragment defines a ScheduledTask that powers on virtual machines daily at

4:15 a.m., if the server local time is in the Pacific Standard Time (PST) time zone. For a server in
the Eastern European Summer Time (EEST) zone, the setting is read by the system as 3:15 pm.

Example: Scheduled Task for Powering-on Virtual Machines

...
// Set the schedule using the DailyTaskScheduler subtype.
DailyTaskScheduler dTScheduler = new DailyTaskScheduler();
dTScheduler.setHour(12);
dTScheduler.setMinute(15);
ScheduledTaskSpec tSpec = new ScheduledTaskSpec();
tSpec.setDescription("Start virtual machine as per schedule.");
tSpec.setEnabled(Boolean=TRUE);
tSpec.setName("Power On Virtual Machine");
tSpec.setAction(ma);
tSpec.setScheduler(dTScheduler);
tSpec.setNotification("admin@vmware.com");
my_conn.createScheduledTask(_sic.getScheduledTaskManager, vmRef, tSpec);
...

Cancelling a Scheduled Task

You can cancel a scheduled task in several ways.

n To cancel the current run of a scheduled task, call ScheduledTask.RemoveScheduledTask.

This method does not cancel subsequent runs of the ScheduledTask.

n To cancel an upcoming run of a ScheduledTask, call

ScheduledTask.ReconfigureScheduledTask with a new ScheduledTaskSpec data object

containing the new specifications for the schedule.

vSphere Web Services SDK Programming Guide

VMware, Inc. 311

n To cancel a ScheduledTask that spawns a second task, create a PropertyCollector
to obtain the reference to the Tasks and call its CancelTask method. The task must be

cancellable.

Using a TaskHistoryCollector

A TaskHistoryCollector lets you gather information about tasks. You create a

TaskHistoryCollector using the TaskManager.CreateCollectorForTasks method.

To create a TaskHistoryCollector

1 Identify the type of Task objects that you want to collect, and create an instance of a

TaskFilterSpec data object that specifies your filter criteria.

The TaskFilterSpec includes an taskTypeId property, which you use to limit the set

of collected task objects to specific types. You can also provide a time range in the
TaskFilterSpec by defining an TaskFilterSpecByTime data object for its time property.

See the vSphere API Reference.

2 Obtain the managed object reference to the TaskManager on your server instance.

3 Submit the filter and the reference to the server in the CreateTaskHistoryCollector
method. The server returns a reference to a TaskHistoryCollector object.

After a HistoryCollector has been created, the server appends new objects that meet the

filter criteria to the collection as they occur. The system appends the new object to the collection
by placing it in the first position of the latestPage and removes the oldest object from the

collection. The latestPage property of the TaskHistoryCollector object has a property that

consists of the 1000 most recent objects in the collection. Use a PropertyCollector to obtain

the items from the latestPage property.

A HistoryCollector exists only for the duration of the session that instantiated it. Call the

HistoryCollector.DestroyCollector method to delete the collector before the session ends.

Creating a TaskHistoryCollector Filter

When you create a TaskHistoryCollector, you can define filters. For example, rather than

returning all Task objects associated with virtual machines, you might create a filter to

collect only Task objects associated with virtual machines that were started by the backup-

administrator between 2:00 and 4:00 a.m. on a specific date.

The TaskFilterSpec object allows you to specify the collection criteria. Most of the properties

are optional and can be submitted as null values. The TaskFilterSpec lets you collect tasks

based on user name, entity type, time, and state of the Task.

vSphere Web Services SDK Programming Guide

VMware, Inc. 312

Managing the HistoryCollector

The HistoryCollector managed object provides operations for managing the life-cycle and

scrollable view of a collection.

n DestroyCollector – A HistoryCollector exists only for the current session. Invoke the

DestroyCollector operation to explicitly destroy the collector before the session ends.

n ResetCollector – Adjusts the starting position for the subset of objects from the collector

to the object immediately preceding the current latestPage.

n RewindCollector – Positions the latestPage to the oldest item in the array. When a

HistoryCollector is created, this is the default location.

n SetCollectorPageSize – Accepts an integer parameter to set the size of the latestPage
property of a HistoryCollector. The default size of a HistoryCollector is an array that

consists of at most 1000 objects of the appropriate type (Task, Event). The array is sorted

by creation date and time of the objects.

Sample Code Reference

The following table lists the sample applications included with the vSphere SDK that demonstrate
how to use some of the managed objects discussed in this chapter.

Java

(SDK\vsphere-
ws\java\JAXWS\samples\com\vmware\host
)

AddVirtualNic.java

AddVirtualSwitch.java

AddVirtualSwitchPortGroup.java

RemoveVirtualNic.java

RemoveVirtualSwitch.java

RemoveVirtualSwitchPortGroup.java

vSphere Web Services SDK Programming Guide

VMware, Inc. 313

Events and Alarms 18
Events are sent by vSphere to convey information about things that happen in the system. You
can monitor events directly or use an EventHistoryCollector to retrieve events from a certain

period.

Alarms are sent by vSphere to alert users to problems. You can also create your own alarm
to monitor the system and set up follow-up actions. Alarm setup includes specifying the trigger
condition and defining the action that should result.

Read the following topics next:

n Event and Alarm Management Objects

n Understanding Events

n Using an EventHistoryCollector

n Using Alarms

n Defining Alarms Using the AlarmSpec Data Object

n Sample Code Reference

Event and Alarm Management Objects

EventManager is the service interface for working with the event infrastructure.

Event subtypes define the events that the system generates. See Event Data Objects and

Creating Custom Events.

EventHistoryCollector allows you to monitor events. You can create a filter to limit the

number of events your code retrieves. You can monitor both system events and your own
events. See Using an EventHistoryCollector.

The AlarmManager is the service interface for creating, setting, and managing alarms. You create

an alarm, specifying trigger conditions and the action to take. When the conditions defined
for the Alarm occur on the system, the Action specified for the alarm starts. The alarm also

generates an Event that you can retrieve with an EventHistoryCollector.

VMware, Inc. 314

Understanding Events

An Event is a data object type that contains information about state changes of managed

entities and other objects on the server. Events include user actions and system actions that
occur on datacenters, datastores, clusters, hosts, resource pools, virtual machines, networks, and
distributed virtual switches. For example, these common system activities generate one or more
Event data objects:

n Powering a virtual machine on or off

n Creating a virtual machine

n Installing VMware Tools on the guest OS of a virtual machine

n Reconfiguring a compute resource

n Adding a newly configured ESXi system to a vCenter Server system

In the vSphere Client, information from Event objects generated on a standalone ESXi hosts

displays in the Events tab. For managed hosts, information from Event objects displays in the

Tasks & Events tab.

Persistence of Event objects depends on the system setup.

n Standalone ESXi hosts – Event objects are not persistent. Events are retained only for as

long as the host system’s local memory can contain them. Rebooting a standalone ESXi host
or powering off a virtual machine removes Event objects from local memory.

A standalone ESXi host might keep about 15 minutes worth of Event data, but this can vary

depending on the processing load of the host, the number of virtual machines, and other
factors.

n Managed ESXi systems. Event objects are persistent. Managed ESXi systems send Event
data to the vCenter Server system that manages them, and the vCenter Server system stores
the information its database.

You can use the event sample applications included in the SDK package with either managed or
standalone ESXi systems and with vCenter Server systems.

Using an EventHistoryCollector, you can obtain information about these objects as they are

being collected on a specific ESXi system, or from a specific historical period from the database.
See Using an EventHistoryCollector.

Managing Events with EventManager

EventManager is the service interface for working with the event infrastructure.

Figure 18-1. EventManager Managed Object and Associated Objects shows EventManager and

related objects. An EventManager has these properties:

n A description property, defined as an instance of an EventDescription data object,

which contains an event category and other information.

vSphere Web Services SDK Programming Guide

VMware, Inc. 315

n A latestEvent property that contains the most recent Event data object in memory.

n A maxCollector property that specifies the number of EventHistoryCollector objects

per client session that can be created. This value is set by the vCenter Server system.

Figure 18-1. EventManager Managed Object and Associated Objects

Event Data Objects

Event subtypes define the events that the system generates.

Figure 18-2. Event Data Object and Sample Subtypes shows only a few of the subtypes that
extend the Event data object. For example, TaskEvent inherits all Event properties and includes

an info property that is an instance of a TaskInfo object (see Monitoring TaskInfo Properties).

The following event objects are commonly generated by a console-style client application:

com.vmware.vim.VmPoweredOnEvent
com.vmware.vim.VmStartingEvent
com.vmware.vim.VmReconfiguredEvent
com.vmware.vim.VmCreatedEvent
com.vmware.vim.VmBeingCreatedEvent

vSphere Web Services SDK Programming Guide

VMware, Inc. 316

Figure 18-2. Event Data Object and Sample Subtypes

Formatting Event Message Content

When displayed at the console, Event data objects are not formatted and do not provide

context information. You can format an Event message using the predefined string in the

Event.fullFormattedMessage property.

You can also format an Event message based on contextual information. At runtime, the Event
data object is populated with values that contain information associated with the source of an
event, for example, the Event data object’s computeResource, datacenter, ds, dvs, host, net,

and vm properties.

You can use the properties of an Event object with the information in the

EventDescriptionEventDetail in EventManager.description.eventInfo to format event

messages.

Creating Custom Events

The Web Services API allows you to create custom Event objects that convey information
specific to your application. There are two types of custom events, the user log event and the
extended event.

Creating User Log Events

The EventManager.LogUserEvent method allows you to create user log Event objects. You can

associate your custom Event with any managed entity. User log events are useful for marking

actions or status associated with the objects your application deals with.

The following steps show how to create a user log Event.

vSphere Web Services SDK Programming Guide

VMware, Inc. 317

Procedure

1 Obtain the managed object reference to the EventManager.

..
ManagedObjectReference _svcRef = new ManagedObjectReference();
ServiceContent _sic = my_conn.retrieveServiceContent(_svcRef);
ManagedObjectReference eMgrRef = _sic.getEventManager();
...

2 Obtain the managed object reference to the entity with which you are associating the Event.

For example, suppose you have a reference to a virtual machine (myVMRef) and you want to

log a message to record the fact that a virus check completed. You want to use myVMRef as a

parameter to the LogUserEvent method in the next step.

3 Call the LogUserEvent method, passing in the EventManager and the Event reference and a

string consisting of the Event message for the msg parameter of the operation.

LogUserEvent(eMgrRef, myVMRef, "Completed virus check at 1:05 AM on Sunday December 21.");

Results

User-defined Event objects display in the vSphere Client among the other events on the system,
with the prefix User logged event: followed by the text submitted in your msg parameter. In

other client applications, such as in the console-based Event sample applications, custom events
display as com.vmware.vim.GeneralUserEvent objects.

Creating Extended Events

The EventManager.EventEx method allows you to create an event that contains an arbitrary

dictionary of key-value pairs. This kind of custom event allows greater flexibility to store
application data that is not associated with a managed entity, and is not limited to a single
string value. The custom event structure also contains more sophisticated metadata than user log
events.

The following steps show pseudocode examples of the operations you need to do in your client
code.

Procedure

1 Obtain the managed object reference to the EventManager.

si = connection.retrieveServiceContent(svc_ref);
em = si.eventManager;

2 Choose a severity for the custom event.

severity = EventEventSeverity.warning;

vSphere Web Services SDK Programming Guide

VMware, Inc. 318

3 Create a local copy of an extended event with metadata.

e = vim.event.EventEx(severity,
 eventTypeId=”com.example.events.Total_System_Backup”,
 createdTime = si.CurrentTime(),
 chainId=0,
 key=0,
 userName=local_account_name);

4 Create a set of key-value pairs to store the information you want to associate with the event.

arg_list = {};
arg1 = vmodl.KeyAnyValue(key=”reason”, value=”Upcoming governance audit”);
arg2 = vmodl.KeyAnyValue(key=”datacenter”, value=”Washington South”);
arg3 = vmodl.KeyAnyValue(key=”organization”, value=”IT Cloud Services”);
arg_list.append(arg1, arg2, arg3);

5 Add the set of key-value pairs to the event object.

e.arguments = arg_list;

6 Use the Event Manager to post the event to the server.

em.PostEvent(e);

Using an EventHistoryCollector

An EventHistoryCollector lets you gather information about events that

the server has generated. You create an EventHistoryCollector using the

EventManager.CreateCollectorForEvents method.

The following steps show how to create an EventHistoryCollector.

Procedure

1 Identify the type of Event objects that you want to collect, and create an instance

of an EventFilterSpec data object that specifies your filter criteria. See Creating an

EventHistoryCollector Filter.

The EventFilterSpec includes an eventTypeId property, which you use to limit the

set of collected event objects to specific types. You can also provide a time range in
the EventFilterSpec, by defining an EventFilterSpecByTime data object for its time
property. See the vSphere API Reference for details.

2 Obtain the managed object reference to the EventManager on your server instance.

3 Submit the filter and the reference to the server in the CreateEventHistoryCollector
operation. The server returns a reference to an EventHistoryCollector object.

vSphere Web Services SDK Programming Guide

VMware, Inc. 319

Results

After you have created the HistoryCollector, the server appends new objects that meet the

filter criteria to the collection as they occur. The system appends the new object to the collection
by placing it in the first position of the latestPage and it removes the oldest object from the

collection. The latestPage property of the EventHistoryCollector object has a property that

consists of the 1000 most recent objects in the collection. Use a PropertyCollector to obtain

the items from the latestPage property.

A HistoryCollector exists only for the duration of the session that instantiated it. You invoke

the DestroyCollector operation to explicitly eliminate the collector before the session ends.

Creating an EventHistoryCollector Filter

When you create an EventHistoryCollector, you can define filters. For example, rather than

returning all Event objects associated with virtual machines, you might create a filter to collect

only those Event objects associated with virtual machines that were started by the backup-

administrator between 2:00 and 4:00 a.m. on a specific date.

The EventFilterSpec object allows you to specify the collection criteria. Most of the properties

are optional and can be submitted as null values. The EventFilterSpec lets you collect events

based on user name, entity type, time, and state of the Event.

Managing the HistoryCollector

The HistoryCollector managed object provides operations for managing the life-cycle and

scrollable view of a collection.

n DestroyCollector – A HistoryCollector exists only for the current session. Invoke the

DestroyCollector operation to explicitly destroy the collector before the session ends.

n ResetCollector – Adjusts the starting position for the subset of objects from the collector

to the object immediately preceding the current latestPage.

n RewindCollector – Positions the latestPage to the oldest item in the array. When a

HistoryCollector is created, this is the default location.

n SetCollectorPageSize – Accepts an integer parameter to set the size of the latestPage
property of a HistoryCollector. The default size of a HistoryCollector is an array that

consists of at most 1000 objects of the appropriate type (Task, Event). The array is sorted

by creation date and time of the objects.

Using Alarms

The vSphere alarm infrastructure supports automating actions and sending different types of
notification in response to certain server conditions. Many Alarms exist by default on vCenter

Server systems. You can also create alarms yourself. For example, an Alarm can send an alert

vSphere Web Services SDK Programming Guide

VMware, Inc. 320

email message when CPU usage on a specific virtual machine exceeds 99% for more than 30
minutes.

The alarm infrastructure integrates with other server components, such as events and
performance counters.

The AlarmManager is the service interface for creating, setting, and managing alarms. You create

an alarm, specifying trigger conditions and the action to take. When the conditions defined
for the Alarm occur on the system, the Action specified for the alarm starts. The alarm also

generates an Event that is posted to the Event history database. In addition, the action initiated

by the Alarm might also post a second Event to the database, depending on the Action type.

Obtaining a List of Alarms

Use the AlarmManager.GetAlarm method to obtain an array of references to all Alarm
managed objects defined for a specific managed entity. When you call the method, you can
pass in an optional reference to a managed entity. Without a reference to a managed entity,
the GetAlarm operation returns all Alarm objects for all entities that are visible to the principal

associated with the session invoking the operation.

Figure 18-3. Alarm Managed Object

The Alarm.info property is an AlarmInfo data object. You can obtain information about active

Alarms by collecting the properties of the AlarmInfo data object.

Creating an Alarm

You create an alarm with the AlarmManager.CreateAlarm method. In the simplest case, you

specify the trigger condition in the AlarmSpec.expression property and the action to perform

in the AlarmSpec.action property. When the expression evaluates to true, the alarm performs

the action.

Figure 18-4. CreateAlarm Method Inputs and Outputs shows the CreateAlarm method.

vSphere Web Services SDK Programming Guide

VMware, Inc. 321

Figure 18-4. CreateAlarm Method Inputs and Outputs

The following steps show how to create an alarm.

Procedure

1 Obtain a managed object reference to the AlarmManager associated with the vCenter

Server.

2 Obtain a managed object reference of the entity on which you want to set the Alarm.

3 Create an AlarmSpec data object and specify the alarm details in its properties. See Defining

Alarms Using the AlarmSpec Data Object.

4 Call AlarmManager.CreateAlarm, passing in the references and the AlarmSpec data object.

The system returns a managed object reference to the Alarm (see Figure 18-4. CreateAlarm

Method Inputs and Outputs).

Results

The state of an alarm is contained in an AlarmState data object.

Defining Alarms Using the AlarmSpec Data Object

The AlarmSpec data object has properties for all aspects of an Alarm, including its expression

and the action to take when the expression evaluates to true. The following properties define the
alarm; see the API Reference for a complete list.

n action – Action to initiate when the Alarm becomes active. Specify one of the Action
subtypes. See Specifying Alarm Actions.

vSphere Web Services SDK Programming Guide

VMware, Inc. 322

n actionFrequency – Number of seconds that the Alarm remains in the state required to

initiate the specified action.

n expression – One or more AlarmExpression data objects combined in a way that

evaluates to a true-false expression. See Specifying Alarm Trigger Conditions with
AlarmExpression.

n setting – Tolerance and frequency limits for the Alarm defined in the AlarmSetting data

object. AlarmSetting contains two integer properties:

n reportingFrequency, which specifies the number of seconds between activation of an

alarm. Use 0 to specify that the alarm can activate as frequently as required.

n toleranceRange, which specifies the acceptable range (measured in hundredth

percentage) above and below the specified value defined in a MetricAlarmExpression.

Specifying Alarm Trigger Conditions with AlarmExpression

You use the AlarmExpression data object to specify the conditions under which you want the

Alarm to become active. The AlarmExpression data object is an abstract type with several

subtypes, which allow you to specify thresholds on objects, state of objects, or specify specific
events to monitor.

Figure 18-5. AlarmExpression and Its Subtypes

AlarmExpression Types

By using the appropriate type of AlarmExpression, you can set alarms for different conditions,

states, or events.

AlarmExpression Description Example

StateAlarmExpression Specifies thresholds that trigger the
alarm.

Triggered by a power state change of
a virtual machine or state change of a
distributed virtual switch.

MetricAlarmExpression Specifies levels at which the
alarm changes state. See Using
MetricAlarmExpression.

Triggered when resource utilization
metrics exceed a specified limit.

vSphere Web Services SDK Programming Guide

VMware, Inc. 323

AlarmExpression Description Example

EventAlarmExpression Specifies a type of event as the basis
for the alarm.

Triggered by power on or power off
events of primary or secondary virtual
machines in a fault-tolerant cluster.

EventAlarmComparison Specifies the property of the Event
that should trigger the alarm and
the operator to use as the basis for
comparison.

AndAlarmExpression
OrAlarmExpression

Combines one or more instances
of the AndAlarmExpression and

the OrAlarmExpression data objects

into an expression that evaluates to
true or false.

Using MetricAlarmExpression

The MetricAlarmExpression data object lets you set an alarm to monitor performance metrics.

The vSphere Client uses the data object to indicate when hosts or clusters do not have sufficient
resources in a DAS or DRS cluster environment. See the Resource Management Guide.

You set the metric property to the PerfMetricId of a performance metric that you want to

monitor on the system. Set the red or yellow properties to identify the level at which the metric

value moves from green, to yellow, to red. You must define red, yellow, or both properties. Use

each of these properties with the isAbove or isBelow MetricAlarmOperator enumerations to

complete the definition of the threshold.

In conjunction with red and yellow properties, you can use the redInterval or

yellowInterval properties. These properties enable you to set the number of seconds that

the performance metric must be in red or yellow state before the expression becomes true
and triggers the defined action.

Specifying Alarm Actions

You specify the actions that the system should take by setting the action property of the

AlarmSpec data object to the AlarmAction data object defined for the purpose.

The AlarmAction data object is an abstract type that has two descendent objects.

n The AlarmTriggeringAction data object has an action property and a transitionSpecs
property. AlarmTriggeringActionTransitionSpec allows you to define a starting state

and a final state for the Alarm. You can limit the number of Alarm objects actually

triggered to a single Alarm by specifying false for the repeats property of the

AlarmTriggeringActionTransitionSpec.

n The GroupAlarmAction data object is an array version of the AlarmAction base type. You

can create a single AlarmAction instance or an array of AlarmAction instances to take

effect when the conditions specified for your alarm are met on the system.

vSphere Web Services SDK Programming Guide

VMware, Inc. 324

The system can respond to an alarm in several ways:

n Invoking an operation. To invoke an operation, create a MethodAction data object.

n Running a Script. To run a script, create an instance of the RunScriptAction data object that

specifies the fully qualified path to the shell script on the vCenter Server.

n Send an email message. To send an email message to a system administrator, use the
SendEmailAction data object.

Figure 18-6. AlarmAction and Related Objects

For example, you can use the MethodAction data object type to invoke an operation on the

server. The MethodAction data object contains the following properties:

n name—Name of the operation that you want to invoke at the scheduled time.

n argument—Specifies required parameters, if any, as an array of MethodArgumentAction
data objects.

Depending on the entity associated with the alarm, the MethodAction.argument property

might not be needed.

Deleting or Disabling an Alarm

An Alarm remains active until you delete it or disable it. To delete the alarm, obtain a managed

object reference to the Alarm and invoke its RemoveAlarm operation.

To disable the Alarm, obtain managed object references to the AlarmManager and to the entity

on which the Alarm is set. Call AlarmManager.EnableAlarmActions operation, passing the

value false for the enabled parameter.

vSphere Web Services SDK Programming Guide

VMware, Inc. 325

Sample Code Reference

The following table lists the sample applications included with the vSphere Web Services SDK
that demonstrate some of the topics discussed in this chapter.

Java

\samples\alarms\MPowerStateAlarm.java

\samples\events\EventFormat.java

\samples\events\EventHistoryCollectorMonitor.ja
va

\samples\events\VMEventHistoryCollectorMonitor.
java

vSphere Web Services SDK Programming Guide

VMware, Inc. 326

vSphere Performance 19
VMware vSphere servers use performance counters to track resource use. At runtime, vSphere
components generate performance data which the vSphere servers store in performance
counters. You can use the PerformanceManager interface to retrieve the data.

Read the following topics next:

n vSphere Performance Data Collection

n PerformanceManager Objects and Methods

n Retrieving vSphere Performance Data

n Performance Counter Metadata

n Performance Intervals

n vSphere Performance and Data Storage

n Sample Code Reference

vSphere Performance Data Collection

In a vSphere environment, virtual and physical components generate performance data. To track
the use of resources, ESXi Servers perform real-time data collection and vCenter Servers store
the data in the vCenter database. vCenter Servers also store a historical rollup of the data
according to defined performance intervals.

n Real-time data collection – An ESXi Server collects data for each performance counter every
20 seconds and maintains that data for one hour.

n Historical data rollup – A vCenter Server collects data from all of the hosts that the vCenter
Server manages. The PerformanceManager defines performance intervals that specify time

periods for performance data rollup, a methodology for combining data values. The server
stores the rolled up performance counter data in the vCenter database.

The following figure represents vSphere performance data collection and retrieval.

VMware, Inc. 327

Figure 19-1. vSphere Performance Data Collection and Retrieval

ESXi Server vCenter Server

Virtual
Machine

CPU core 0

CPU core 1

CPU core 2

CPU core 3

Performance
Manager

vCenter Server
Database

Performance
Manager

Historical
Rollup
Data

2

vSphere client
application1

3

Real-time
Instance Data

Instance Data

Rollup Data

Aggregated
Instance Data

Summary Data

1 ESXi Servers sample performance counter instances every 20 seconds and maintain the real-

vSphere Web Services SDK Programming Guide

VMware, Inc. 328

time instance data for one hour. For example, the figure shows collection of CPU statistics for
four CPU cores.

2 The vCenter Server retrieves and stores data from the servers that it manages. The Server
produces rollup data according to the settings of the historical intervals.

3 vSphere client applications can retrieve real-time instance data, aggregated instance data,
historical rollup data, and summary data.

The following table defines terms that are used to describe vSphere performance management.

Term Definition

performance providers Performance providers include managed entities, such as hosts, virtual
machines, compute resources, resource pools, datastores, and networks.

performance counter Unit of statistical data collected on a vSphere server. For example, a vCenter
server collects the average CPU utilization for hosts, virtual machines and
clusters (the counter cpu.usage.average).

counter ID System-generated identifier for a performance counter.

instance An identifier derived from device configuration names. Examples of counter
instances are the name of a virtual Ethernet adapter such as “vmnic0:”, or a
number that identifies a CPU core, such as 0, 1, 2, or 3. Performance data is
retrieved as specific instances of performance counters.

instance data Performance data collected at 20-second intervals.

metric ID Combination of a counter ID and an instance. You use metric IDs
– PerfMetricId objects – when you construct a performance query

specification to identify the data to be collected.

There are two system-defined instances that you can use to specify aggregate
retrieval. See the description of aggregate performance data below.

n “*” – An asterisk directs the vSphere Server to return all instances plus

rollup data. This is not supported for some disk-related counters.

n ““ – A string of length zero directs the vSphere Server to return only

aggregated instance data or rollup type data.

The vSphere Server returns metric IDs embedded in the data objects that it
returns as a response to performance queries.

performance interval Data object (PerfInterval) which defines the time interval between collection

events, the collection level, and the time period that the data will be stored on
the Server.

n ESXi Servers define a built-in performance interval that specifies
data collection every 20 seconds for each performance
counter. ESXi Servers also define a single historical interval
(PerformanceManager.historicalInterval) that defines aggregate

performance data. This system-defined performance interval specifies
aggregate data collection every 300 seconds for each counter. You cannot
modify the performance intervals on an ESXi Server.

n vCenter Servers define four performance intervals that determine how
collected instance data is aggregated and stored. You can modify the
system-defined intervals on a vCenter Server to a limited extent.

vSphere Web Services SDK Programming Guide

VMware, Inc. 329

Term Definition

collection level Number between one and four that is assigned to a performance
interval (PerformanceManager.historicalInterval[].level). The interval

collection level corresponds to the level specified for individual performance
counters (PerfCounterInfo.level). A vCenter Server uses a performance

interval to perform performance data aggregation, using data for the counters
with levels that match the performance interval collection level.

rollup type Methodology for producing a single value from a set of statistical values
(PerformanceManager.perfCounter[].rollupType). Examples of rollup

types are average, latest, and summation.

aggregate performance
data

A single value that represents a set of instance data values collected for a
performance counter. The single value is derived using one of the rollup types.

PerformanceManager Objects and Methods

PerformanceManager provides methods for obtaining statistical data about various aspects of

system performance, as generated and maintained by the performance providers. It also defines
historical performance intervals and it identifies the set of performance counters that you can use
to obtain performance data. The following table shows the PerformanceManager properties.

Property Description

description Composite object that includes information about the types of counters (counterType)

and statistics (statsType) available on the system.

historicalInterval Array of system-defined performance intervals (PerfInterval data objects). Each

object defines the interval between rollup events, the collection level, and the time
period that the data is stored on the system.

n For an ESXi system, the array contains a single performance interval. You cannot
modify the ESXi performance interval.

n For vCenter Server systems, the PerfInterval objects control how ESXi

performance data are rolled up and stored in the database. You can modify some
of the PerfInterval properties on a vCenter Server.

perfCounter Array of PerfCounterInfo data objects. The array identifies all of the performance

counters known to the vCenter Server at the time a client accesses the array. The
set of counters may change as ESXi hosts are added or removed from vCenter
management. Each PerfCounterInfo object contains metadata associated with a

performance counter.

The PerformanceManager methods allow you to retrieve performance statistics and to retrieve

metadata that defines the statistics. The following table classifies the methods and describes
their purposes.

vSphere Web Services SDK Programming Guide

VMware, Inc. 330

Method Type Method Purpose

Performance data availability QueryAvailablePerfMetric Returns PerfMetricId objects which

identify the counter data available on the
specified entity. For example, a virtual
machine provides the memory counter
granted, which indicates the amount of

physical memory that is mapped for the
virtual machine. The PerfMetricId object

for the mem.granted.average counter

specifies the system-defined counter
ID. Since this is a memory counter,
the PerfMetricId.instance property is

empty.

Performance data retrieval QueryPerf Returns statistics for a specific list of
managed entities that provide performance
data.

QueryPerfComposite Returns statistics for a host and its
virtual machines. This method accepts
the refreshRate for current statistics or

the intervalId of one of the historical

intervals as a parameter. Supported for the
HostSystem managed entity only.

Performance counter
metadata retrieval

QueryPerfCounter Returns PerfCounterInfo data objects for

the specified list of counter IDs.

QueryPerfCounterByLevel Returns PerfCounterInfo data objects for

the specified collection level.

Performance provider
information

QueryPerfProviderSummary Returns the PerfProviderSummary data

object for the specified managed object.

Collection parameters ResetCounterLevelMapping Restores a set of performance counters to
their default collection levels.

UpdateCounterLevelMapping Changes the collection level for a set of
performance counters.

UpdatePerfInterval Modifies the system-defined performance
intervals.

Retrieving vSphere Performance Data

To retrieve collected data, your client application creates a query specification and passes the
specification to a performance query method. The query specification is composed of one or
more PerfQuerySpec objects. Each object identifies the following:

n Performance provider – managed entity for which the Server will return performance data
(PerfQuerySpec.entity).

n Performance counters – PerfMetricId objects that identify performance counter instances

(PerfQuerySpec.metricId).

vSphere Web Services SDK Programming Guide

VMware, Inc. 331

n Performance interval – the sampling period that defines the data rollup
(PerfQuerySpec.intervalId).

n Amount of data to be returned – start and end times (PerfQuerySpec.startTime,

PerfQuerySpec.endTime) and maximum number of values (PerfQuerySpec.maxSample) to

limit the amount of data to be returned.

n Output data format (PerfQuerySpec.format) – one of two kinds:

n Normal output returned as values contained in data objects.

n Formatted output returned as strings containing comma-separated values.

The combination of the entity and metricID properties determine the set of counters for which

the server will return performance data. The combination of the interval, startTime, endTime
properties produce instance, aggregated instance, rollup, or summarized data. The following
table summarizes the different classifications of performance data that you can retrieve from a
vCenter Server.

Performance
Data Description

Instance ESXi Servers sample performance data every 20 seconds. 20-second interval data is
called instance data or real-time data. To retrieve instance data, specify a value of 20
seconds for the PerfQuerySpec.intervalId property.

Aggregated
Instance

A vSphere client can retrieve aggregated instance data. To obtain aggregated instance
data, specify the following PerfQuerySpec properties.

n intervalId – Specify 20 seconds to indicate instance data.

n metricId[].instance – specify a zero-length string ("") for aggregated instance

data.

Rollup The vCenter Server uses the historical intervals to rollup performance data from the
servers that it manages. To retrieve historical performance data, specify the following
PerfQuerySpec properties.

n intervalId – Specify a value that corresponds to one of the historical intervals

(PerformanceManager.historicalInterval[].samplingPeriod) .

n startTime/endTime – If specified, use time values that are not within the last 30

minutes of the current time. If you do not specify a starting time, the Server will
return values starting with the earliest data. If you do not specify an end time, the
Server will return values that include the latest data.

Summary When you call the QueryPerf method and specify a performance interval

(PerfQuerySpec.intervalId) that does not match one of the historical intervals

(PerformanceManager.historicalInterval[].samplingPeriod), the Server will

attempt to summarize the stored data for the specified interval. In this case, the Server
may return values that are different from the values that were stored for the historical
intervals.

Performance Counter Example (QueryPerf)

The following code fragments are part of an example that uses the
PerformanceManager.QueryPerf method to obtain performance statistics for a virtual machine.

vSphere Web Services SDK Programming Guide

VMware, Inc. 332

The example code in this section does not include server connection code and it does not show
the code for obtaining the managed object reference for the virtual machine. See Chapter 3
Client Applications for the Web Services API for an example of server connection code.

This example retrieves the following statistics:

n disk.provisioned.LATEST – virtual machine storage capacity.

n mem.granted.AVERAGE – amount of physical memory mapped for the virtual machine.

n power.power.AVERAGE – current power usage.

The example creates a query specification (PerfQuerySpec) to identify the data to be retrieved,

calls the QueryPerf method, and prints out the retrieved performance data and corresponding

performance counter metadata. The following sections describe the basic steps involved in
retrieving performance statistics.

n Map the performance counters – Mapping Performance Counters (Counter Ids and Metadata).

n Create a performance query specification and call the QueryPerf method – Retrieving

Statistics.

n Process the returned data – Handling Returned Performance Data.

Mapping Performance Counters (Counter Ids and Metadata)

Performance counters are represented by string names, for example
disk.provisioned.LATEST or mem.granted.AVERAGE. A vSphere server tracks performance

counters by using system-generated counter IDs. When you create a performance query, you
use counter IDs to specify the statistics to be retrieved, so it is useful to map the names to IDs.

The example must specify counter IDs in the calls to QueryPerf, and it will use performance

counter metadata when it prints information about the returned data. To obtain performance
counter IDs and the corresponding performance counter metadata, the example creates two
hash maps. This example maps the entire set of performance counters to support retrieval of any
counter.

HashMap Declarations

The following code fragment declares two hash maps.

n countersIdMap – Uses full counter names to index performance counter IDs. A full counter

name is the combination of counter group, name, and rollup type. The example uses this map
to obtain counter IDs when it builds the performance query specification.

n countersInfoMap – Uses performance counter IDs to index PerformanceCounterInfo
data objects. The example uses this map to obtain metadata when it prints the returned
performance data.

/*
 * Map of counter IDs indexed by counter name.
 * The full counter name is the hash key - group.name.ROLLUP-TYPE.
 */

vSphere Web Services SDK Programming Guide

VMware, Inc. 333

private static HashMap<String, Integer> countersIdMap = new HashMap<String, Integer>();

/*
 * Map of performance counter data (PerfCounterInfo) indexed by counter ID
 * (PerfCounterInfo.key property).
 */
private static HashMap<Integer, PerfCounterInfo> countersInfoMap =
 new HashMap<Integer, PerfCounterInfo>();

The following figure shows a representation of the hash maps.

vSphere Web Services SDK Programming Guide

VMware, Inc. 334

Figure 19-2. Performance Counter Hash Maps

countersIdMap countersInfoMap

PerfCounterInfo

performance
counter name counter ID PerfCounterInfo

PerfCounterInfo

Key Value
performance
counter name counter ID

performance
counter name counter ID

counter ID

Key Value

counter ID

counter ID

performance
counter name counter ID

performance
counter name counter ID PerfCounterInfo

PerfCounterInfocounter ID

counter ID

vSphere Web Services SDK Programming Guide

VMware, Inc. 335

Creating the Map

The example uses the Property Collector to retrieve the array of performance counters
(PerfCounterInfo) known to the vCenter Server (PerformanceManager.perfCounter[]). It

then uses the data to create the maps. The code fragment uses the variable apiMethods, which

is a VimPortType object that provides access to the vSphere API methods. For information

about the VimPortType object, see Overview of a Java Sample Application for the Web Services

SDK.

The following code fragment performs these steps:

1 Create an ObjectSpec to define the property collector context. This example specifies the

Performance Manager.

2 Create a PropertySpec to identify the property to be retrieved. This example retrieves the

perfCounter property, which is an array of PerfCounterInfo objects.

3 Create a PropertyFilterSpec for the call to the PropertyCollector. The

PropertyFilterSpec creates the association between the ObjectSpec and PropertySpec
for the operation.

4 Call the PropertyCollector.RetrievePropertiesEx method. This method blocks until the

server returns the requested property data.

5 Cast the returned xsd:anyType value into the array of PerfCounterInfo objects.

6 Cycle through the returned array and load the maps. The counter-name to counter-ID map
uses a fully qualified counter name. The qualified name is a path consisting of counter
group, counter name, and rollup type – group.counter.ROLLUP-TYPE The rollup type must
be coded in uppercase letters. Examples of qualified names are disk.provisioned.LATEST
and mem.granted.AVERAGE.

/*
 * Create an object spec to define the context to retrieve the PerformanceManager property.
 */
ObjectSpec oSpec = new ObjectSpec();
oSpec.setObj(performanceMgrRef);

/*
 * Specify the property for retrieval
 * (PerformanceManager.perfCounter is the list of counters the vCenter Server is aware of.)
 */
PropertySpec pSpec = new PropertySpec();
pSpec.setType("PerformanceManager");
pSpec.getPathSet().add("perfCounter");

/*
 * Create a PropertyFilterSpec and add the object and property specs to it.
 */
PropertyFilterSpec fSpec = new PropertyFilterSpec();
fSpec.getObjectSet().add(oSpec);
fSpec.getPropSet().add(pSpec);

vSphere Web Services SDK Programming Guide

VMware, Inc. 336

/*
 * Create a list for the filter and add the spec to it.
 */
List<PropertyFilterSpec> fSpecList = new ArrayList<PropertyFilterSpec>();
fSpecList.add(fSpec);

/*
 * Get the performance counters from the server.
 */
RetrieveOptions ro = new RetrieveOptions();
RetrieveResult props = apiMethods.retrievePropertiesEx(pCollectorRef,fSpecList,ro);

/*
 * Turn the retrieved results into an array of PerfCounterInfo.
 */
List<PerfCounterInfo> perfCounters = new ArrayList<PerfCounterInfo>();
if (props != null) {
 for (ObjectContent oc : props.getObjects()) {
 List<DynamicProperty> dps = oc.getPropSet();
 if (dps != null) {
 for (DynamicProperty dp : dps) {
 /*

/*
 * Cycle through the PerfCounterInfo objects and load the maps.
 */
 * DynamicProperty.val is an xsd:anyType value to be cast
 * to an ArrayOfPerfCounterInfo and assigned to a List<PerfCounterInfo>.
 */
 perfCounters = ((ArrayOfPerfCounterInfo)dp.getVal()).getPerfCounterInfo();
 }
 }
 }
}
for(PerfCounterInfo perfCounter : perfCounters) {
 Integer counterId = new Integer(perfCounter.getKey());

 /*
 * This map uses the counter ID to index performance counter metadata.
 */
 countersInfoMap.put(counterId, perfCounter);

 /*
 * Obtain the name components and construct the full counter name,
 * for example – power.power.AVERAGE.
 * This map uses the full counter name to index counter IDs.
 */
 String counterGroup = perfCounter.getGroupInfo().getKey();
 String counterName = perfCounter.getNameInfo().getKey();
 String counterRollupType = perfCounter.getRollupType().toString();
 String fullCounterName = counterGroup + "." + counterName + "." + counterRollupType;

 /*
 * Store the counter ID in a map indexed by the full counter name.
 */

vSphere Web Services SDK Programming Guide

VMware, Inc. 337

 countersIdMap.put(fullCounterName, counterId);

}

Retrieving Statistics

The following code fragment calls the QueryPerf method to retrieve statistics. It performs these

tasks:

Procedure

1 Create a list of qualified performance counter names for retrieval. The name is a path
consisting of group-name.counter-name.ROLLUP-TYPE, for example mem.granted.AVERAGE.

The rollup type must be coded in uppercase letters to match the character case of the
rollup type in the performance counter metadata (PerfCounterInfo.rollupType). See the

vSphere API Reference for tables of available counters. The vSphere API Reference page for
the PerformanceManager managed object contains links to the tables.

2 Create a list of PerfMetricId objects, one for each counter to be retrieved. The metric ID is

a combination of the counter ID and the instance. To fill in the PerfMetricId properties, the

example does the following:

n Use the countersIdMap to translate a full counter name into a counter ID.

n Specify an asterisk (*) for the PerfMetricId.instance property. The asterisk is the

system-defined instance specification for combined instance and rollup retrieval.

3 Build a query specification for the method call. This query specifies the following:

n Virtual machine for which performance data is being retrieved (entityMor);

n Interval ID of 300 to collect 5-minute rollup data.

n Comma-separated value (CSV) format for the retrieved data.

4 Call the QueryPerf method.

Example

/*
 * Use <group>.<name>.<ROLLUP-TYPE> path specification to identify counters.
 */
String[] counterNames = new String[] {"disk.provisioned.LATEST",
 "mem.granted.AVERAGE",
 "power.power.AVERAGE"};

/*
 * Create the list of PerfMetricIds, one for each counter.
 */
List<PerfMetricId> perfMetricIds = new ArrayList<PerfMetricId>();
for(int i = 0; i < counterNames.length; i++) {
 /*
 * Create the PerfMetricId object for the counterName.
 * Use an asterisk to select all metrics associated with counterId (instances and rollup).

vSphere Web Services SDK Programming Guide

VMware, Inc. 338

 */
 PerfMetricId metricId = new PerfMetricId();
 /* Get the ID for this counter. */
 metricId.setCounterId(countersIdMap.get(counterNames[i]));
 metricId.setInstance("*");
 perfMetricIds.add(metricId);
}

/*
 * Create the query specification for queryPerf().
 * Specify 5 minute rollup interval and CSV output format.
 */
int intervalId = 300;
PerfQuerySpec querySpecification = new PerfQuerySpec();
querySpecification.setEntity(
querySpecification.setIntervalId(intervalId);
querySpecification.setFormat("csv");
querySpecification.getMetricId().addAll(perfMetricIds);

List<PerfQuerySpec> pqsList = new ArrayList<PerfQuerySpec>();
pqsList.add(querySpecification);

/*
 * Call queryPerf()
 *
 * QueryPerf() returns the statistics specified by the provided
 * PerfQuerySpec objects. When specified statistics are unavailable -
 * for example, when the counter doesn't exist on the target
 * ManagedEntity - QueryPerf() returns null for that counter.
 */
List<PerfEntityMetricBase> retrievedStats = apiMethods.queryPerf(performanceMgrRef, pqsList);

Performance Data Returned by a vSphere Server

The query methods return sampling information and performance data. The sampling information
indicates the collection interval in seconds and the time that the data was collected. When you
call performance query methods, you pass in query specifications (PerfQuerySpec) to identify

the performance data to be retrieved. To indicate the format of the output data, specify either
"normal" or "csv" for the PerfQuerySpec.format property.

The query methods return PerfEntityMetricBase objects which you must cast into the

appropriate type that corresponds to the PerfQuerySpec.format value specified in the call to

the method.

n The QueryPerf method returns a list of PerfEntityMetricBase objects.

n The QueryPerfComposite method returns a PerfCompositeMetric object, which contains

PerfEntityMetricBase objects.

vSphere Web Services SDK Programming Guide

VMware, Inc. 339

Normal Output Format

When you specify "normal" format, you must cast the returned PerfEntityMetricBase
objects into PerfEntityMetric objects. Each PerfEntityMetric object contains the following

properties:

n entity – Reference to the performance provider.

n sampleInfo – Array of sample information (PerfSampleInfo data objects), encoded as

xsd:int and xsd:dateTime values.

n value – Array of data values (PerfMetricIntSeries data objects). Each object in the array

contains the following properties:

n id – Performance metric ID that identifies the counter instance.

n value – Array of integers that corresponds to the array of sample information

(PerfEntityMetric.sampleInfo).

The following figure shows a representation of the data object hierarchy returned by the query
methods for normal format.

vSphere Web Services SDK Programming Guide

VMware, Inc. 340

Figure 19-3. PerfEntityMetric Object Hierarchy

PerfEntityMetric

sampleInfo : PerfSampleInfo[]

value : PerfMetricIntSeries[]

PerfSampleInfo

interval : xsd:int
timestamp : xsd:dateTime

PerfMetricIntSeries

id : PerfMetricId PerfMetricId

value : xsd:long[]
instance : xsd:string

entity : ManagedObjectReference

counterId : xsd:int

vSphere Web Services SDK Programming Guide

VMware, Inc. 341

CSV Output Format

When you specify "csv" format, you must cast the returned PerfEntityMetricBase objects

into PerfEntityMetricCSV objects. Both the sampling information and the collected data are

encoded as comma-separated values suitable for display in tabular format.

The PerfEntityMetricCSV object contains the following properties:

n entity – Reference to the performance provider.

n sampleInfoCSV – String containing a set of interval and date-time values. The property

contains string representations of PerfSampleInfo xsd:int and xsd:dateTime values. The

string values are encoded in the following CSV format:

interval1, date1, interval2, date2

n value – Array of data values (PerfMetricSeriesCSV data objects). Each object in the array

contains the following properties:

n id – Performance metric ID that identifies the counter instance.

n value – Set of sample values in CSV format, corresponding to the list of sample
information (PerfEntityMetricCSV.sampleInfoCSV).

The following figure shows a representation of the data object hierarchy returned by the query
methods for CSV format.

Figure 19-4. PerfEntityMetricCSV Object Hierarchy

PerfEntityMetricCSV

sampleInfoCSV : xsd:string

value : PerfMetricIntSeriesCSV[] PerfMetricSeriesCSV

id : PerfMetricId PerfMetricId

value : xsd:string
instance : xsd:string

entity : ManagedObjectReference

counterId : xsd:int

Handling Returned Performance Data

The following code fragment prints out the returned performance data. This example uses CSV
formatted data. The code fragment performs these tasks:

n Loop through the list of PerfEntityMetricBase objects returned by the QueryPerf method

(retrievedStats).

n Cast the PerfEntityMetricBase object to a PerfEntityMetricCSV object to handle

the CSV output specified in the PerfQuerySpec.

n Retrieve the sampled values.

n Retrieve the interval information (csvTimeInfoAboutStats). The sampleInfoCSV
string (PerfEntityMetricCSV.sampleInfoCSV) is PerfSampleInfo data formatted as

interval,time pairs separated by commas – interval-1,time-1,interval-2,time-2.

The list of pairs embedded in the string corresponds to the list of sampled values
(PerfEntityMetricCSV.value[]).

vSphere Web Services SDK Programming Guide

VMware, Inc. 342

n Print the time and interval information.

n Loop through the sampled values (metricsValues).

n Use the counter metadata to print out identifying information about the counter along
with the returned sampled value for the counter.

n Use the countersInfoMap to translate the counter ID returned in the

PerfMetricSeriesCSV object into the corresponding PerfCounterInfo object.

/*
 * Cycle through the PerfEntityMetricBase objects. Each object contains
 * a set of statistics for a single ManagedEntity.
 */
for(PerfEntityMetricBase singleEntityPerfStats : retrievedStats) {

 /*
 * Cast the base type (PerfEntityMetricBase) to the csv-specific sub-class.
 */
 PerfEntityMetricCSV entityStatsCsv = (PerfEntityMetricCSV)singleEntityPerfStats;

 /* Retrieve the list of sampled values. */
 List<PerfMetricSeriesCSV> metricsValues = entityStatsCsv.getValue();

 if(metricsValues.isEmpty()) {
 System.out.println("No stats retrieved. " +
 "Check whether the virtual machine is powered on.");
 throw new Exception();
 }

 /*
 * Retrieve time interval information (PerfEntityMetricCSV.sampleInfoCSV).
 */
 String csvTimeInfoAboutStats = entityStatsCsv.getSampleInfoCSV();

 /* Print the time and interval information. */
 System.out.println("Collection: interval (seconds),time (yyyy-mm-ddThh:mm:ssZ)");
 System.out.println(csvTimeInfoAboutStats);

 /*
 * Cycle through the PerfMetricSeriesCSV objects. Each object contains
 * statistics for a single counter on the ManagedEntity.
 */
 for(PerfMetricSeriesCSV csv : metricsValues) {
 /*
 * Use the counterId to obtain the associated PerfCounterInfo object
 */
 PerfCounterInfo pci = countersInfoMap.get(csv.getId().getCounterId());

 /* Print out the metadata for the counter. */
 System.out.println("--");
 System.out.println(pci.getGroupInfo().getKey() + "."
 + pci.getNameInfo().getKey() + "."
 + pci.getRollupType() + " - "
 + pci.getUnitInfo().getKey());

vSphere Web Services SDK Programming Guide

VMware, Inc. 343

 System.out.println("Instance: "+csv.getId().getInstance());
 System.out.println("Values: " + csv.getValue());
 }
}

Large-Scale Performance Data Retrieval

The example described in the previous sections shows how to retrieve performance data for a
single entity. When you design your application to retrieve performance data on a large scale,
take the following information into consideration for more efficient processing.

n Use CSV formatted output. CSV format provides a more compact representation of the
output data which can save on meta-data overhead.

n Create query specifications to reference a set of vSphere entities.

n Using one QueryPerf method call per entity is not efficient.

n Using a single call to QueryPerf to retrieve all of the performance data is not efficient.

n As a general rule, specify between 10 and 50 entities in a single call to the QueryPerf
method. This is a general recommendation because your system configuration may
impose different constraints.

n Do not retrieve statistics more frequently than they are refreshed. For example, when you
retrieve 20-second interval data, the data will not change until the next 20-second data
collection event.

n Use QueryAvailablePerfMetric only when you intend to send a query for a specific

counter using a specific performance interval. The method will return PerfMetricId objects

that you can use for the query.

In all other cases, create the PerfMetricId objects for the query.

n For the counterId property, use the counter IDs from the PerformanceManager counter

list (PerformanceManager.perfCounter[].key).

n For the instance property, specify an asterisk (“*”) to retrieve instance and aggregate
data or a zero-length string (““) to retrieve aggregate data only.

Using the QueryPerf Method as a Raw Data Feed

The QueryPerf method can operate as a raw data feed that bypasses the vCenter database

and instead retrieves performance data from an ESXi host. You can use a raw data feed to
obtain real-time instance data associated with 20-second interval collection and aggregate data
associated with the 5-minute intervals.

You can use a raw data feed on vCenter Server 2.5 and later.

vSphere Web Services SDK Programming Guide

VMware, Inc. 344

Performance
Interval Description

20-second ESXi servers collect data for each performance counter every 20 seconds and
maintain that data for an hour. When you specify a 20-second interval in the query
specification for the QueryPerf method (PerfQuerySpec.intervalId), the method

operates as a raw data feed. The Server ignores the historical interval collection levels
and retrieves data for all of the requested counters from the ESXi servers. When
you send a query for 20-second instance data, the server returns the most recent
data collected for the 20-second interval. The server does not perform additional,
unscheduled data collection to satisfy the query.

5-minute ESXi servers aggregate performance data according to the system-defined
performance interval which specifies data collection every 300 seconds. To use a
raw data feed for this data, specify the following PerfQuerySpec properties in the

call to the QueryPerf method.

n intervalId – Specify 300 seconds to match the system-defined performance

interval.

n startTime/endTime – Specify time values within the last 30 minutes of the

current time. The QueryPerf method checks the performance interval collection

level on the vCenter Server. The method returns aggregated statistics for
performance counters that specify a collection level (PerfCounterInfo.level)

at or below the vCenter Server performance interval for the 300 second
sampling period (PerfInterval.level). For example, if the vCenter Server

performance interval is set to level one, and your query specification requests
only performance counters that specify level four, the QueryPerf method will not

return any data.

Comparison of Query Methods

The following table presents a comparison of performance query methods.

vSphere Web Services SDK Programming Guide

VMware, Inc. 345

Method Notes

QueryPerf n Specify an array of PerfQuerySpec objects.

n An unset PerfQuerySpec.metricId property produces results for all counters

defined for PerfQuerySpec.entity.

n PerfQuerySpec.maxSample is ignored for historical statistics.

You can use this method to retrieve historical statistics; you can also use it as a raw
data feed. For information about retrieving the raw data collected on ESXi servers,
see Using the QueryPerf Method as a Raw Data Feed.

QueryPerfComposit
e

n Method works only at the host level. You can use a single call to the
QueryPerfComposite method to retrieve performance data for a host and its

virtual machines.

n Specify a single PerfQuerySpec object.

n You must specify a list of performance metrics to identify the data to be retrieved
(PerfQuerySpec.metricId).

n You cannot specify PerfQuerySpec.maxSample.

This method is designed for efficient client-server communications.
QueryPerfComposite usually generates less network traffic than QueryPerf
because it returns a large-grained object, a PerfCompositeMetric data object, that

contains all the data.

Retrieving Summary Performance Data

You can obtain near real-time summary information about performance or utilization without
using the PerformanceManager methods. vSphere servers maintain "quick stats" data objects

for hosts (HostListSummaryQuickStats), virtual machines (VirtualMachineQuickStats), and

resource pools (ResourcePoolQuickStats). For more information about these objects, see the

vSphere API Reference.

Performance Counter Metadata

Performance counters are organized by groups of system resources. Examples of performance
counter groups are memory, CPU, and disk. The counter groups and specific counters used on
any vSphere server depend on the server configuration. The vSphere API Reference contains
a table for each counter group. The table includes the counter name, type of statistics being
collected, unit of measurement, level, and so on. The vSphere API Reference page for the
PerformanceManager managed object contains links to the tables.

PerfCounterInfo

The PerformanceManager.perfCounter property is an array of PerfCounterInfo data

objects. Each object provides metadata for the collected data. A PerfCounterInfo object has

a unique key, the counter ID. The actual performance data collected at runtime are identified by
this counter ID. The following table lists the PerfCounterInfo properties.

vSphere Web Services SDK Programming Guide

VMware, Inc. 346

Property Description

groupInfo Name of the resource group to which this counter belongs, such as disk, cpu, or
memory.

key Unique integer that identifies the counter. Also called the counter ID. The value
is unique and it is not static—it might, for example, change between system
reboots. The counter key on an ESXi system might not be the same as the
counter key for the same counter on the vCenter Server system managing the ESXi
system. However, the system maps the keys from ESXi to vCenter Server systems
automatically.

level Number from 1 to 4 that identifies the level at which data values for this counter are
aggregated.

nameInfo Descriptive name for the counter. The name component of a fully qualified
counter name, for example "granted" is the nameInfo property for the

mem.granted.AVERAGE counter.

rollupType Indicates how multiple samples of a counter are transformed into a single statistical
value. Examples of rollup types are average, summation, and minimum. No
conversion of values occurs for counters that specify absolute values, such as
the total number of seconds that the system has been running continuously since
startup. The PerfSummaryType is an enumeration containing valid constants for this

property.

statsType Type of statistical data that the value represents over the course of the interval,
such as an average, a rate, the minimum value, and so on. The PerfStatsType is an

enumeration containing valid constants for this property.

unitInfo Unit of measure, such as megahertz, kilobytes, kilobytes per second, and so on.
The ElementDescription’s key property is populated using one of the constants

available in the PerformanceManagerUnit enumeration.

Performance Intervals

The PerformanceManager defines performance intervals which specify the period of time

between collection events, how much data will be collected, and how long the collected data
will be saved.

n An ESXi server has a built-in performance interval that produces discrete data values from
counter instances sampled every 20 seconds. The server will maintain this instance data for
one hour.

n Additional data collection is specified by historical performance intervals which produce data
aggregated from counter instances according to the individual intervals.

The PerformanceManager.historicalInterval property is an array of PerfInterval
objects. The following table lists the PerfInterval properties.

vSphere Web Services SDK Programming Guide

VMware, Inc. 347

Property Description

samplingPeriod Number of seconds for the interval. You can modify this property on a vCenter Server
only.

length Period of time for which the server will save the data that it collects. You can modify this
property on a vCenter Server only.

level Level at which the Server collects data. The interval level corresponds to the
performance counter level (PerfCounterInfo.level). The Server will collect data for

all counters with levels that match PerfInterval.level, and for all counters with levels

lower than PerfInterval.level. You can modify this property on a vCenter Server

only.

enable Enable/disable performance data collection. You can modify this property on a vCenter
Server only.

key Unique identifier for the interval. You cannot modify this property.

name Label for the historical interval; one of the following strings:

n "Past Day"
n "Past Week"
n "Past Month"
n "Past Year"
The PerformanceManager uses the samplingPeriod, level, and length properties

to determine its collection behavior. It does not interpret the name string. You cannot
modify this property.

ESXi Server Performance Intervals

An ESXi server collects performance data for each performance counter every 20 seconds.
The PerformanceManager.historicalInterval array for an ESXi Server contains a single,

readonly PerfInterval object that specifies rollup data collection every 5 minutes. You cannot

retrieve 5-minute rollup data from an ESXi Server directly. You can use a vCenter Server
connection to obtain 5-minute rollup data for an ESXi Server. The following table shows the
historical interval property values on an ESXi server. You cannot modify this performance
interval.

Property Value Description

key 1 Numeric identifier for the PerfInterval.

name PastDay Name of the PerfInterval.

samplingPeriod 300 Time interval between data sampling events.

length 129600 Number of seconds that statistics associated with the interval
are kept by the vCenter Server.

enabled true This PerfInterval is enabled on the system.

level null Statistics collection level. For an ESXi system, this property is
null. The PerfInterval object on an ESXi system defines the

baseline interval.

vSphere Web Services SDK Programming Guide

VMware, Inc. 348

vCenter Server Performance Intervals

A vCenter Server system aggregates performance data from all ESXi systems that it manages.
The amount of data aggregated depends on the level setting configured for the vCenter Server.
The level settings are reflected in the PerformanceManager.historicalInterval property for

the vCenter Server system. historicalInterval is an array of PerfInterval data objects that

define four different level settings, 1 through 4.

The following table lists the default values for the performance intervals on a vCenter Server
system.

Key Name Sampling Period Length Enabled Level

1 Past Day 300 86400 TRUE 1

2 Past Week 1800 604800 TRUE 1

3 Past Month 7200 2592000 TRUE 1

4 Past Year 86400 31536000 TRUE 1

By default, the collection level is set to 1 for each of the four intervals. Using the default level, a
vCenter Server will collect data for all performance counters that specify collection level 1. Using
the default length value, a vCenter Server will save collection data for the following time periods:

n 5-minute samples for the past day

n 30-minute samples for the past week

n 2-hour samples for the past month

n 1-day samples for the past year

Data older than a year is purged from the vCenter Server database.

vSphere Performance and Data Storage

The following sections provide information about modifying the operation of the
PerformanceManager and vSphere Server performance data collection and storage.

n Modifying Historical Intervals

n Modifying Performance Counter Collection Levels

Modifying Historical Intervals

Changes to a vCenter performance interval are global and apply to all entities in the system.
VMware recommends that you do not modify the historical intervals. The PerfInterval data

objects in the PerformanceManager.historicalInterval array are related. Modifications to a

performance interval affects the entire system and may cause problems.

vSphere Web Services SDK Programming Guide

VMware, Inc. 349

If you must modify a performance interval, use the PerformanceManager.UpdatePerfInterval
method and follow these guidelines.

n Performance data retention time (PerfInterval.length) must be a multiple of the collection

interval (PerfInterval.samplingPeriod).

n Performance data retention length must increase in each interval compared to its
predecessor. The PerfInterval.length value for each successive performance interval must

be greater than the length property for the previous interval in the historical interval array.

n You cannot modify the value of the PerfInterval.samplingPeriod property on ESXi systems.

Modifying Performance Counter Collection Levels

The PerformanceManager provides the UpdateCounterLevelMapping method to change

the collection level for individual performance counters (PerfCounterInfo.level).

Consider carefully the performance and storage consequences of using the
UpdateCounterLevelMapping method. If you use this method, you may cause a significant

increase in data collection and storage, along with a corresponding decrease in performance.
vCenter Server performance and database storage requirements depend on the collection levels
defined for the performance intervals (PerformanceManager.historicalInterval) and the

collection levels specified for individual performance counters (PerfCounterInfo.level).

Performance Counter Data Collection

vSphere defines four levels of data collection for performance counters. Each
performance counter specifies a level for collection. The historical performance intervals
(PerformanceManger.historicalInterval) define the sampling period and length for a

particular collection level.

The amount of data collected for a performance counter depends on the performance interval
and on the type of entity for which the counter is defined. For example, a datastore counter such
as datastoreIops (the aggregate number of IO operations on the datastore) will generate a data

set that corresponds to the number of datastores on a host. If a vCenter Server manages a large
number of hosts with a large number of datastores, the Server will collect a large amount of data.

There are other counters for which the vCenter Server collects a relatively smaller amount of
data. For example, memory counters are collected as a single counter per virtual machine and a
single counter per host.

Performance Counter Data Storage

The performance interval collection level (PerfInterval.level) defines the set of counters for

which the vCenter Server stores performance data. The Server will store data for counters at the
specified level and for counters at all lower levels.

vSphere Web Services SDK Programming Guide

VMware, Inc. 350

By default, all the performance intervals specify collection level one. Using these defaults, the
vCenter Server stores performance counter data in the vCenter database for all counters that
specify collection level one. It does not store data for counters that specify collection levels two
through four.

Performance Manager Method Interaction

You can use the UpdateCounterLevelMapping method to change the collection level for

individual counters. You can also use the UpdatePerfLevel method to change the collection

level for the system-defined performance intervals. These methods can cause a significant
increase in the amount of data collected and stored in the vCenter database.

n By default the system-defined performance intervals use collection level one, storing data for
all counters that specify collection level one. If you use the UpdateCounterLevelMapping
method to change the collection level of performance counters to level one, you will increase
the amount of stored performance data.

n If you use the UpdatePerfLevel method to increase the collection level for the system-

defined performance intervals, you will increase the amount of stored performance data.

To restore counter levels to default settings use the ResetCounterLevelMapping method.

vSphere Client Management of Performance Statistics

The vSphere Client displays the Performance Manager historical interval collection levels in the
vCenter management statistics display. The vSphere Client also displays an estimate of the
amount of storage that is required for data collection at the displayed levels. If individual counter
levels are modified through the vSphere API (the UpdateCounterLevelMapping method), the

vSphere Client will show a modified estimate. However, the vSphere Client cannot detect that the
method has been called and it cannot display the current levels for individual counters. If you
see a significantly increased estimate for storage, be aware that someone may have used the
vSphere API to modify data collection.

Sample Code Reference

The following table lists the sample applications included with the vSphere Web Services SDK
that demonstrate some of the topics discussed in this chapter.

Java

(SDK\vsphere-ws\java\JAX-
WS\samples\com\vmware\performance)

Basics.java

History.java

PrintCounters.java

RealTime.java

vSphere Web Services SDK Programming Guide

VMware, Inc. 351

Java

(SDK\vsphere-ws\java\JAX-
WS\samples\com\vmware\performance)

VITop.java

VIUsage.java

vSphere Web Services SDK Programming Guide

VMware, Inc. 352

Diagnostics and Troubleshooting 20
vSphere includes several logs, which you can access and customize. You can also use the
DiagnosticManager service interface for troubleshooting.

Read the following topics next:

n Troubleshooting Best Practices

n Overview of Configuration Files and Log Files

n Modifying the Log Level to Obtain Detailed Information

n Using DiagnosticManager

n Using the MOB to Explore the DiagnosticManager

n Generating Diagnostic Bundles

Troubleshooting Best Practices

Approach troubleshooting and problem-solving systematically, and take notes so you can trace
your steps. Follow these guidelines to resolve issues with your client application.

n Do not change more than one thing at a time, and document each change and its result. Try
to isolate the problem: Does it seem to be local, to the client? An error message generated
from the server? A network problem between client and server?

n Use the logging facilities for your programming language to capture runtime information for
the client application.

n Use the following VMware tools for analysis and to facilitate debugging.

n vSphere Web Services API. The DiagnosticManager service interface allows you to

obtain information from the server log files, and to create a diagnostic bundle that
contains all system log files and all server configuration information. The vSphere Client
and the MOB provide graphical and Web based access to the DiagnosticManager.

PerformanceManager supports exploration of bottlenecks. See Chapter 19 vSphere

Performance.

n Managed Object Browser (MOB). The MOB provides direct access to live runtime server-
side objects. You can use the MOB to explore the object hierarchy, obtain property
values, and invoke methods. See Chapter 21 Managed Object Browser.

VMware, Inc. 353

n VMware vSphere Client GUI. The vSphere Client allows you to examine log files for ESXi,
vCenter Server, and virtual machines, and to change log level settings. Use vSphere
Client menu commands to create reports that summarize configuration information,
performance, and other details, and to export diagnostic bundles. The vSphere Client
maintains its own local log files.

Overview of Configuration Files and Log Files

ESXi and vCenter Server configuration files control the behavior of the system. Most
configuration file settings are set during installation, but can be modified after installation. Log
files capture messages generated by the kernel and different subsystems and services. ESXi and
vCenter Server services maintain separate log files. The following table lists log files or reports,
their locations and associated configuration files.

Description Log Location Filename or Names Configuration File

ESXi service log /var/log/vmware/ hostd.log
[hostd-0.log, ...host
d-9.log]

See ConfigStore

vCenter Server agent
log

/var/log/
vmware/vpx/

vpxa.log See ConfigStore

Virtual machine kernel
core file

/root/ vmkernel-core.<date>
vmkernel-log.<date>

See ConfigStore

syslogd log /var/log/ messages
[messages.1,...
messages.4]

See ConfigStore

Service console
availability report

/var/log/ vmkernel
[vmkernel.1, ...
vmkernel.8]

See ConfigStore

VMkernel messages,
alerts, and availability
reports

/var/log/vmkernel See ConfigStore

VMkernel warning /var/log/ vmkwarning
[vmkwarning.1 ... 4
for history]

See ConfigStore

Virtual machine log
file

vmfs/volume/
<vm_name>

vmware.log <vm_name>/
<vm_name>.vmx

For developers, the following files are most relevant:

n hostd.log – Host daemon log, see ESXi Log File. Can be used as a SOAP monitor when set

to trivia log level as in Generating Logs.

n vpxa.log – Agent log file found on each managed ESXi system.

vSphere Web Services SDK Programming Guide

VMware, Inc. 354

n vmware.log – Virtual machine log. See Virtual Machine Log Files.

Note Many configuration settings can no longer be edited directly with a web browser. To
modify configuration settings in ConfigStore, use /bin/configstorecli or esxcli.

In addition to viewing log files in real time you can also generate reports and complete diagnostic
bundles. See Generating Diagnostic Bundles.

ESXi Log File

The ESXi log (hostd.log) captures information of varying specificity and detail, depending on

the log level. Each request to the server is logged.

You can view the file using the vSphere Client. The raw text form of an ESXi (hostd) log file is

shown in Sample ESXi Log (hostd.log) Data.

Example: Sample ESXi Log (hostd.log) Data

...
[2008-05-07 09:50:04.857 'SOAP' 2260 trivia] Received soap response from
[TCP:myservername.vmware.com:443]: GetInterfaceVersion
[2008-05-07 09:50:04.857 'ClientConnection' 2260 info] UFAD interface version is vmware-
converter-4.0.0
[2008-05-07 09:50:04.857 'SOAP' 2260 trivia] Sending soap request to
[TCP:myservername.eng.vmware.com:443]: logout
[2008-05-07 09:50:04.857 'ProxySvc Req00588' 3136 trivia] Client HTTP stream read error
[2008-05-07 09:50:04.872 'ProxySvc Req00612' 3136 trivia] Request header:
POST /vmc/sdk HTTP/1.1
User-Agent: VMware-client
Content-Length: 435
Content-Type: text/xml; charset=utf-8
Cookie: vmware_soap_session="F127B435-56C7-4580-BAC4-3034DA1E67B6"; $Path=/
Host: myservername.vmware.com

[2008-05-07 09:50:04.872 'ProxySvc Req00588' 3816 trivia] Closed
[2008-05-07 09:50:08.450 'App' 3560 verbose] [VpxdHeartbeat] Invalid heartbeat from
10.17.218.46
[2008-05-07 09:50:10.013 'App' 3560 verbose] [VpxdHeartbeat] Queuing 10.17.218.45:829
(host-55)
[2008-05-07 09:50:10.013 'App' 1928 verbose] [HeartbeatHandler] 50208862-2752-d94c-2a73-
fa2ec9e38ecc:829 (host-55)

Virtual Machine Log Files

Each running virtual machine has its own log file, vmware.log, stored on the VMFS volume. By

default, the log file is rotated whenever the virtual machine is powered on, but file rotation is
configurable.

n ESXi maintains six log files that rotate at each power-cycle (the default) or at a configured file
size.

vSphere Web Services SDK Programming Guide

VMware, Inc. 355

n ESXi can be configured to maintain a specific number of log files. When the limit is reached,
the oldest file is deleted.

n VMware recommends a log file size of 500 KB.

n Messages that are generated by VMware Tools are logged separately.

Example: VMkernel Availability Report

Availability Report for <servername>
Feb 27, 2008 - May 7, 2008

Availability: 99.949%
 Total time: 69 days, 15 hours
 Uptime: 69 days, 14 hours
 Downtime: 51 minutes

Note: Downtime is any time the system isn't capable of running
Virtual Machines. This includes reboots, crashes, configuration and running linux

Downtime Analysis:
 0.1% (51 minutes) downtime caused by:
 13.1% (6 minutes) scheduled downtime
 86.9% (44 minutes) unscheduled downtime

Reasons for scheduled downtime:
 84.9% server rebooting (1 instance)
 9.4% VMkernel unloaded (1 instance)
 5.7% server booting (3 instances)

Reasons for unscheduled downtime:
100.0% unknown (powerfail / reset?) (1 instance)

Stats:
 Current uptime: 8 days, 11 hours
 Longest uptime: 61 days, 2 hours
 Shortest uptime: 38 minutes
 Average uptime: 23 days, 4 hours
 Longest downtime: 44 minutes
 Shortest downtime: 7 seconds
 Average downtime: 8 minutes
 Maximum VMs Sampled: 1
 Average VMs Sampled: 0.94

Server Information: Number of CPUs: 4 logical 4 cores
 2 packages, Intel(R) Xeon(R) CPU 5150 @ 2.66GHz
 Installed Memory: 2096416 kB
 Current Build: 78591
Report generated Wed May 7 04:02:04 PDT 2008

vCenter Server Log Files

vCenter Server log files are located by default in the Documents and Settings subdirectory of the
Windows account used to install the software. For example:

vSphere Web Services SDK Programming Guide

VMware, Inc. 356

C:\Documents and Settings\Administrator\Local Settings\Application
Data\VMware\

Important VMware recommends creating a user account especially for vCenter Server
installation.

By default, the log files are hidden files. See the procedure for your Windows operating system
to make the files visible.

Modifying the Log Level to Obtain Detailed Information

The amount of information captured in the log files varies, depending on the level setting.

Log Level
Setting Description

None Disables logging.

Error Logging limited to error messages.

Warning Error messages plus warning messages are logged.

Info Default setting on ESXi and vCenter Server systems. Errors, warnings, plus informational
messages about normal operations are logged. Acceptable for production environments.

Verbose Can facilitate troubleshooting and debugging. Not recommended for production
environments.

Trivia Extended verbose logging. Provides complete detail, including content of all SOAP
messages between client and server. Use for debugging and to facilitate client
application development only. Not recommended for production environments.

For example, the hostd service running on ESXi systems has a default log level setting of info.

The vCenter Server logs are controlled by settings through the vSphere Client.

Setting the Log Level on ESXi Systems

The default log level setting for the ESXi Host Agent is info. If you run into issues during

development, you can set the log level to verbose, or to trivia to obtain SOAP message

content to use in debugging.

To change the log level for hostd on an ESXi system, use the following steps.

Procedure

1 Connect to the ESXi system using the vSphere Client.

2 On the Host > Manage screen, select the System tab.

3 On the System tab screen, select Advanced Settings.

4 Scroll to find the Config.HostAgent.log.level setting.

By default this setting is info.

vSphere Web Services SDK Programming Guide

VMware, Inc. 357

5 Select the Config.HostAgent.log.level setting and click Edit option.

A dialog box opens, where you can enter a new setting.

6 Use the drop-down menu to select a new setting, such as Verbose, and click Save.

The Recent Tasks pane updates to confirm that the change completed.

Results

After the service restarts, the new log level is in effect.

Generating Logs

If you are connected to ESXi by SSH, you can use the tail command to explicitly create a log

file that captures detail about actions that follow. For example, you can use the vSphere Client to
create a new virtual machine and then use the content from the log as a model for how to create
your own code.

To start the logging process and capture content to a file, use the following steps.

Procedure

1 Navigate to the location of the hostd.log file:

cd /var/log/vmware

2 Run the tail command, passing a filename in which to capture output:

tail -f hostd.log > yourfilenamehere

3 Use the vSphere Client to perform whatever action you are having difficulty modeling in your
own code. For example, create a new virtual machine and stop the tail process with Ctrl-C

when the operation completes.

Results

The file contains the SOAP message content and other log messages sent and received by
hostd during the execution.

Setting the Log Level on vCenter Server Systems

To change log-level settings on vCenter Server, you must use the vSphere Client.

To set logging level for vCenter Server using the VMware vSphere Client, use the following steps.

Procedure

1 Log in to the vSphere Client and connect to the vCenter Server instance.

2 Choose Administration and click Server Settings > Logging Options.

3 Choose Trivia from the pop-up menu and click OK.

vSphere Web Services SDK Programming Guide

VMware, Inc. 358

Using DiagnosticManager

The vSphere API provides access to the DiagnosticManager, the service interface for obtaining

information from the log files and for generating diagnostic bundles. The logs are populated
based on configuration settings, such as info, trivia, and so on.

The DiagnosticManager is a managed object that works service-wide, rather than on a per-

session basis. The DiagnosticManager has no properties, but provides operations for these

tasks:

n Obtaining information about the logs and how they have been defined.

n Generating a diagnostic bundle that can be sent to VMware support for analysis.

Figure 20-1. DiagnosticManager Managed Object and Associated Data Objects shows a UML
class diagram for DiagnosticManager, which is available on ESXi and vCenter Server systems.

Figure 20-1. DiagnosticManager Managed Object and Associated Data Objects

As shown in Figure 20-1. DiagnosticManager Managed Object and Associated Data Objects,
DiagnosticManager supports these methods:

n BrowseDiagnosticLog

n GenerateLogBundleTask

n QueryDescriptions

The DiagnosticManagerLogDescriptor.creator property contains the creator of the log,

which is the system or subsystem that controls a specific log.

The creator value is populated from the DiagnosticManagerLogCreator enumeration.

The following table lists all string values currently available from the
DiagnosticManagerLogCreator enumeration that can populate the creator property of the

DiagnosticManagerLogDescriptor data object.

vSphere Web Services SDK Programming Guide

VMware, Inc. 359

Name Description

hostd Host daemon

install Installation

recordLog System record log

serverd Host server agent

vpxa vCenter agent

vpxClient vSphere Client

vpxd vCenter service

Creato
r File Name Format Info.label Info.summary Key

Mime
Type

hostd /var/log/vmware/
hostd.log

plain ESX Log ESX log in
plain format

hostd text/plain

hostd /var/log/messages plain ESX Log ESX log in
plain format

messages text/plain

hostd /var/log/vmkernel plain ESX Log ESX log in
plain format

vmkernel text/plain

hostd /var/log/
vmksummary.txt

plain ESX Log ESX log in
plain format

vmksummar
y

text/plain

hostd /var/log/vmkwarning plain ESX Log ESX log in
plain format

vmkwarnin
g

text/plain

vpxa /var/log/vmware/vpx/
vpxa.log

plain vCenter
Agent
Log

vCenter agent
log in plain
format

vpxa text/plain

Using the MOB to Explore the DiagnosticManager

The Managed Object Browser (MOB) is a graphical interface that allows you to navigate the
objects on a server and to invoke methods. You can access the DiagnosticManager using the

MOB.

The following steps show how to explore DiagnosticManager.

Procedure

1 Start the mob by typing the MOB URL (https://hostname.yourcompany.com/mob) into a Web

browser.

2 In the ServiceContent data object, click the link (ha-diagnosticmanager or DiagMgr)

in the Value column for the diagnosticManager property, to navigate to the

DiagnosticManager for the system.

n For ESXi, ha-diagnosticsmanager is the managed object ID.

vSphere Web Services SDK Programming Guide

VMware, Inc. 360

n For vCenter Server, DiagMgr is typically the managed object ID.

3 Click the link to the reference to display the managed object reference to the
DiagnosticManager in the MOB.

DiagnosticManager provides three operations that allow you to obtain information about

the descriptions currently available in the log file and log file content.

Because DiagnosticManager can track multiple ESXi systems, you can use the

QueryDescriptions operation to return the names of keys used for all hosts. From this

array, select the key for the host from which you want to obtain the log file.

4 On QueryDescriptions, click the Invoke Method link.

The vCenter Server system returns the contents of the log file for the selected host as a
string array for the lineText property of DiagnosticManagerLogHeader.

Results

The string array returned through the MOB in this way is the content of the log file. The
content contained in the log file is the same content that is available through the following other
mechanisms:

n Displayed in the vSphere Client

n Included in a diagnostic bundle created through the
DiagnosticManager.GenerateLogBundles_Task method.

n Available in the hostd.log file

n Returned to a client application that you write

What to do next

For more information about using the DiagnosticManager, see Chapter 21 Managed Object
Browser.

Generating Diagnostic Bundles

Typically, customers create diagnostic bundles at the request of VMware technical support.
Diagnostic bundles also allow developers to quickly obtain all configuration files and log files in a
complete package.

The generated compressed files are packaged in a file having the following pattern:

<fqdn-hostname>-esxsupport-yyyy-mm-dd@hh-mm-ss.tgz

Export Diagnostic Data By Using the vSphere Client

You can use the vSphere Client interface to generate diagnostic bundles.

vSphere Web Services SDK Programming Guide

VMware, Inc. 361

Procedure

1 Connect to the ESXi system using the vSphere Client.

2 On the Host > Monitor screen, select the Logs tab.

The Recent Tasks pane updates to indicate that the system is generating a diagnostic bundle.

Results

When the task completes, the vSphere Client opens a dialog box that allows you to download
the bundle.

vSphere Web Services SDK Programming Guide

VMware, Inc. 362

Managed Object Browser 21
The Managed Object Browser (MOB) is a graphical interface that allows you to navigate the
objects on a server and to invoke methods. Any changes you make through the MOB take effect
on the server.

This appendix explains how to use the MOB. The examples invoke PerformanceManager query

methods to demonstrate how to pass primitive data types, arrays, and complex data types (data
objects, including managed object references) using the MOB.

Read the following topics next:

n Using the MOB to Explore the Object Model

n Using the MOB to Invoke Methods

Using the MOB to Explore the Object Model

The Managed Object Browser, or MOB, is a Web-based server application available for all ESXi
and vCenter Server systems. The MOB lets you examine the objects that exist on the server
and navigate through the hierarchy of live objects by clicking on links. The MOB populates the
browser with actual runtime information, for example, the names of properties.

Caution Despite the word "browser" in its name, the MOB is not a read-only mechanism. The
MOB allows you to make changes on the server by clicking the InvokeMethod link associated
with methods.

Accessing the MOB

The MOB runs in a web browser and is accessed by using the fully-qualified domain name or IP
address for the ESXi or vCenter Server system.

To access the MOB, use the following steps.

Procedure

1 Start a Web browser.

2 Enter the fully-qualified domain name (or the IP address) for the ESXi or vCenter Server
system:

https://hostname.yourcompany.com/mob

VMware, Inc. 363

3 Enter the user account and password for the system.

If warning messages regarding the SSL certificate appear, you can disregard them and
continue to log in to the MOB, if VMware is the certificate authority and you are not in a
production environment.

Results

The MOB reveals the underlying structures of the object model. Seeing the structure in
conjunction with the API Reference Guide, can help with understanding the model.

Using the MOB to Navigate the vSphere Object Model

Upon successful connection to the MOB, the browser displays the managed object reference
for ServiceInstance. Client applications do not use managed objects directly, but interact with

server-side managed objects by reference, using instances of the ManagedObjectReference
data created for this purpose.

The page lists the properties and methods available through a ServiceInstance object. The

ServiceInstance methods and properties provide access to the entire set of services and

inventory objects available on the server. See Chapter 5 Datacenter Inventory.

Figure 21-1. Managed Object Browser Connected to a vCenter Server

vSphere Web Services SDK Programming Guide

VMware, Inc. 364

The MOB lets you examine the relationships among objects by looking at the properties and their
values, and then drilling down into the objects. To explore the objects on the server, click the
links in the Value column to navigate to the page that displays the object.

For example, to find out more about ServiceContent, click the content link to display the

ServiceContent data object instance.

Using the MOB to Invoke Methods

You can use the MOB to invoke methods as follows:

Procedure

1 In the display of the object in which the method lives, click the name of the method.

A browser window displays information about the parameter name and type and allows you
to specify parameter values.

2 Specify parameter values, using the method appropriate for the type, and click Invoke
Method.

The rest of this section discusses how to pass different types of parameters to the MOB.

Passing Primitive Datatypes to Method

vSphere Web Services SDK data types are defined in the WSDL using XML Schema markup. The
primitive data types are specified using the xsd namespace. For example, a string value for a

property is defined as data type xsd:string. Enter a primitive value in the MOB as plain text,

without quotation marks or other markup. For example, to enter an integer value of 10, type 10 in

the field.

To obtain information about the available performance counters at level 4 on the server, enter
a 4 in the level field of the PerformanceManager.QueryPerfCounterByLevel method. (This

method is available only on the vCenter Server PerformanceManager API, not from an ESXi

system.)

In response to the query, the array of PerfCounterInfo data objects and nested objects, with

populated values from the server, displays in the Web browser.

Passing Arrays of Primitives to Methods

For an array, use the name of the parameter as the name of the property. For example,
the PerformanceManager.QueryPerfCounter method requires an array of integers for the

counterId parameter, as follows:

<counterId>58</counterId><counterId>65603</counterId><counterId>65604</counterId>

Even if you want to submit a single value for a single array element, you must wrap the
parameter name around the value in this way.

vSphere Web Services SDK Programming Guide

VMware, Inc. 365

Passing Complex Structures to Methods

For complex datatypes, enter the value as defined by the XML Schema in the WSDL. You
can obtain the WSDL definition from the vSphere API Reference using the Show WSDL type
definition links. Each data object type has an associated link.

Simple Content

The data object type ManagedObjectReference is one of the most commonly

required parameters to be passed to the server. For example, the MOB for the
PerformanceManager.QueryPerfProviderSummary method shows that the method requires

a single parameter, the managed object reference (an instance of ManagedObjectReference) of

the entity for which you want to obtain the PerfProviderSummary object.

Using the vSphere API Reference for ManagedObjectReference type, you can obtain

the schema information from the Show WSDL type definition link at the bottom of the
documentation page for ManagedObjectReference.

Example: XML Schema Definition of ManagedObjectReference Data Object

<complexType xmlns="http://www.w3.org/2001/XMLSchema" xmlns:vim25="urn:vim25"
name="ManagedObjectReference">
 <simpleContent>
 <extension base="xsd:string">
 <attribute name="type" type="xsd:string"/>
 </extension>
 </simpleContent>
</complexType>

XML Schema Definition of ManagedObjectReference Data Object shows that a managed object
reference is defined as a <SimpleContent> element that consists of a string that specifies the

attribute type with its associated value, also as string. Use this information to construct the

appropriate structure by replacing type with the parameter name from the MOB, setting the

value as needed, and submitting in the entry field of the MOB. (The value for the Datacenter is

displayed in the MOB.)

<entity type=”Datacenter”>datacenter-21</entity>

Figure 21-2. Using the MOB to Pass Complex Types to a Method shows the result
of using the definition listed in XML Schema Definition of ManagedObjectReference
Data Object to specify the managed object reference for a target datacenter to the
PerformanceManager.QueryPerfProviderSummary method.

vSphere Web Services SDK Programming Guide

VMware, Inc. 366

Figure 21-2. Using the MOB to Pass Complex Types to a Method

As another example, one of the parameters required by the VirtualMachine.CloneVM_Task
method is a folder. In this case, the parameter is defined as a managed object reference

to a specific Folder object. Using the same definition shown in XML Schema Definition of

ManagedObjectReference Data Object, the result is as follows:

<folder type=”Folder”>folder-87</folder>

Although both examples submit a ManagedObjectReference to the MOB, each

is specific to the parameter name required by the method (entity type

for PerformanceManager.QueryPerfProviderSummary method, folder type for the

VirtualMachine.CloneVM_Task method).

Complex Content

Many of the data objects required for method invocation consist of XML Schema elements
defined as <complexContent> that can encompass many other elements.

For example, the PropertyCollector.CreateFilter method has a spec parameter that must

be defined before method invocation. The spec parameter is defined as an instance of a

PropertyFilterSpec.

Figure 21-3. PropertyFilterSpec and Associated Data Objects shows the relationships among
several data objects that PropertyFilterSpec consists of.

Figure 21-3. PropertyFilterSpec and Associated Data Objects

vSphere Web Services SDK Programming Guide

VMware, Inc. 367

To submit complex data structures such as this to the MOB, start by navigating the vSphere API
Reference. Find the PropertyFilterSpec data object. Find the Show WSDL type definition

link, and click it to display the XML Schema definition (see XML Schema Definition of
PropertyFilterSpec Data Object Type).

XML Schema Definition of PropertyFilterSpec Data Object Type shows that the
PropertyFilterSpec data object is a <complexContent> element that extends the

DynamicData class with a sequence of two additional properties propSet (of type

PropertySpec) and objectSet (of type ObjectSpec).

Example: XML Schema Definition of PropertyFilterSpec Data Object Type

<complexType xmlns="http://www.w3.org/2001/XMLSchema" xmlns:vim25="urn:vim25"
name="PropertyFilterSpec">
 <complexContent>
 <extension base="vim25:DynamicData">
 <sequence>
 <element name="propSet" type="vim25:PropertySpec" maxOccurs="unbounded"/>
 <element name="objectSet" type="vim25:ObjectSpec" maxOccurs="unbounded"/>
 </sequence>
 </extension>
 </complexContent>
</complexType>

Because both elements are defined as a sequence, they must exist in the order listed. To obtain
the definitions of propSet and objectSet, you must navigate further into the vSphere API
Reference. XML Schema Extract for PropertySpec shows only the relevant parts of the XML
Schema definition for PropertySpec. The minOccurs=”0” attribute means that the element

does not have to exist. The maxOccurs=”unbounded” attribute means that the element can be

populated as an array of any size. (When minOccurs is not set, but maxOccurs is set, the default

for minOccurs defaults to 1, meaning one instance is required.)

Example: XML Schema Extract for PropertySpec

<sequence>
 <element name="type" type="xsd:string"/>
 <element name="all" type="xsd:boolean" minOccurs="0"/>
 <element name="pathSet" type="xsd:string" minOccurs="0" maxOccurs="unbounded"/>
</sequence>

Navigate through the vSphere API Reference to the ObjectSpec definition. ObjectSpec Definition

as XML Schema shows the excerpt.

Example: ObjectSpec Definition as XML Schema

...
<sequence>
 <element name="obj" type="vim25:ManagedObjectReference"/>
 <element name="skip" type="xsd:boolean" minOccurs="0"/>
 <element name="selectSet" type="vim25:SelectionSpec" minOccurs="0"
maxOccurs="unbounded"/>

vSphere Web Services SDK Programming Guide

VMware, Inc. 368

</sequence>
...

Extrapolating from the WSDL definitions shown in XML Schema Definition of PropertyFilterSpec
Data Object Type, XML Schema Extract for PropertySpec, and ObjectSpec Definition as XML
Schema might produce results similar to those shown in CreateFilter Spec Property Entry.

Example: CreateFilter Spec Property Entry

<spec>
 <propSet>
 <type>VirtualMachine</type>
 <all>false</all>
 <pathSet>config.guestFullName</pathSet>
 </propSet>
 <objectSet>
 <obj type=”Folder”>group-v4</obj>
 <skip>true</skip>
 </objectSet>
</spec>

In this example, the <spec> element identifies the spec parameter of the CreateFilter
method. The order of the element tags is as defined in the XML Schema for the property
(XML Schema Definition of PropertyFilterSpec Data Object Type). The pathSet property defines

the full path to the nested data object of interest. In CreateFilter Spec Property Entry, the
pathSet property defines the path to the guestFullName property of the target virtual machine.

ObjectSpec Definition as XML Schema shows the UML of these nested data objects.

Figure 21-4. Nested Data Objects

All of these details are available in the vSphere API Reference. By examining the WSDL definition,
you can construct the strings needed to submit parameters through the MOB.

vSphere Web Services SDK Programming Guide

VMware, Inc. 369

Using the MOB Along With the API Reference

The following table provides a brief summary of the steps involved when you use the MOB and
the vSphere API Reference together.

Datatype How to Input Values for Methods

Primitive Enter the value as plain text regardless of its data type (int, string, boolean). Do not use

quotes or other markup.

Array Use the name of the parameter as the name of the element, wrap the values in a series of
opening and closing tags for each array element.

Complex Obtain XML Schema format information from the vSphere API Reference for the type (from
the Show WSDL type definition link).

Use the schema definition to construct the sequence of tags around the value (or values) you
want to pass to the MOB.

vSphere Web Services SDK Programming Guide

VMware, Inc. 370

HTTP Access to vSphere Server
Files 22
In most cases, client applications interact with vSphere servers by using the vSphere Web
Services SDK. In some cases, direct access to configuration files, log files, and other data on
an ESXi or vCenter Server systems is more efficient.

Read the following topics next:

n Introduction to HTTP Access

n URL Syntax for HTTP Access

Introduction to HTTP Access

ESXi and vCenter Server systems support file access using HTTP and secure HTTP. You can use
HTTP/HTTPS for the following kinds of access.

n Datastore access on ESXi and vCenter Server systems.

n ESXi configuration and log file access on ESXi systems.

n Update bundle access on ESXi systems.

You can use the HTTP methods GET, HEAD, PUT, and DELETE to access files. The URL of the

HTTP/HTTPS request must contain an embedded keyword that specifies the type of access. The
following table shows the server access types with the corresponding URL keyword and HTTP
methods.

Server Access URL Keyword HTTP Method or Methods

Datastore folder GET, HEAD, PUT, DELETE

ESXi configuration file host GET, HEAD, PUT
(See Host File Access to vSphere Server Files (/host) for the
specific methods supported for each file type.)

Update bundle tmp PUT

Use the PUT method to create new files or overwrite existing files. You can create a subdirectory

by using a URL that is consistent with the supported top-level directories. You cannot create
datastores or datacenters because the URL must refer to a valid datacenter or datastore.

VMware, Inc. 371

You can use a Web browser to browse and download files. You cannot use a Web browser to
post or delete files.

URL Syntax for HTTP Access

The URL specification in an HTTP request to a vSphere server includes one of the following
keywords, which determines the type of access.

n Datastore Access (/folder)

n Host File Access to vSphere Server Files (/host)

n Update Package Access (/tmp)

Datastore Access (/folder)

An HTTP request for datastore access uses the following syntax:

http-method http[s]://server/folder[[/path]?dcPath=path[&dsName=name]]

http-method One of the methods GET, HEAD, PUT, or DELETE.

http:// or https:// Access protocol (standard access or secure access).

server ESXi or vCenter Server target system. The server value can be an IP address or a
DNS name.

/folder Specifies datastore access on an ESXi or vCenter Server system. The datastore
URL can include the following optional elements:

n path – Path to a file or directory in the datastore, relative to the root of the
datastore.

n dcPath – Inventory path to a datacenter. Specify the datacenter path as a

name-value pair in the request. For a datacenter named Datacenter located

in the root folder, the dcPath value is MyDatacenter. For a datacenter named

YourDatacenter located in the folder NorthAmerica which is located in the

root folder, the cdPath value is NorthAmerica/YourDatacenter.

n dsName – Datastore associated with the datacenter. Specify the datastore

name as a name-value pair in the request.

The following examples illustrate the syntax. If the target server is an ESXi system,
dcPath=DCPATH& is optional and defaults to dcPath=ha-datacenter.

Example Description

/folder Directory listing of known datacenters on this
server.

/folder?dcPath=path Directory listing of all datastores available at the
specified datacenter.

/folder?dcPath=path&dsName=name Top-level directory listing of the datastore.

vSphere Web Services SDK Programming Guide

VMware, Inc. 372

Example Description

/folder/path?dcPath=path&dsName=name Directory listing of all files in a datastore directory.

/folder/path/disk-flat.vmdk?
dcPath=path&dsName=name

Access individual files.

Host File Access to vSphere Server Files (/host)

An HTTP request for access to ESXi configuration files uses the following syntax:

GET http[s]://my_system/host
http-method http[s]://my_system/host/file

Syntax Element Description

http-method One of GET, HEAD, or PUT, depending on the type of configuration file (see the

following table).

http:// or https:// Access protocol (standard access or secure access).

esx-server IP address or a DNS name.

/host List of configuration files that you can access. (Use /host to retrieve the list.)

/host/file A specific ESXi configuration file.

The following table shows ESXi host configuration files and the corresponding HTTP/HTTPS
methods for access. The set of files might change from version to version.

Configuration File
HTTP Access
Method(s) Configuration File HTTP Access Method(s)

esx.conf GET, HEAD, PUT ipmi0_sel.raw GET, HEAD

openwsman.conf GET, HEAD, PUT ipmi0_sel GET, HEAD

proxy.xml GET, HEAD, PUT ipmi0_sdr_content.raw GET, HEAD

ssl_cert GET, HEAD, PUT ipmi0_sdr_header.raw GET, HEAD

ssl_key PUT ipmi0_sensor_readings.ra
w

GET, HEAD

vmware_config GET, HEAD, PUT ipmi1_sel GET, HEAD

vmware_configrule
s

GET, HEAD, PUT ipmi1_sdr_content.raw GET, HEAD

ipmi1_sdr_header.raw GET, HEAD

ipmi1_sensor_readings.ra
w

GET, HEAD

ipmi2_sel.raw GET, HEAD

vSphere Web Services SDK Programming Guide

VMware, Inc. 373

Configuration File
HTTP Access
Method(s) Configuration File HTTP Access Method(s)

ipmi2_sel GET, HEAD

ipmi2_sdr_content.raw GET, HEAD

ipmi2_sdr_header.raw GET, HEAD

ipmi2_sensor_readings.ra
w

GET, HEAD

ipmi3_sel.raw GET, HEAD

ipmi3_sel GET, HEAD

ipmi3_sdr_content.raw GET, HEAD

ipmi3_sdr_header.raw GET, HEAD

ipmi3_sensor_readings.ra
w

GET, HEAD

Update Package Access (/tmp)

An HTTP request for update package access uses the following syntax:

PUT http[s]://esx-server/tmp/file-path

http:// or https:// Access protocol.

esx-server IP address or a DNS name.

/tmp/file-path Target file on an ESX/ESXi system.

Privilege Requirements for HTTP Access

HTTP access to a vSphere file is access to a datastore object that is associated with the folder
structure in the vSphere inventory. HTTP access requires the same privileges needed to obtain
these files using any other mechanism, such as the vSphere Client.

The following table shows the required privileges.

Object Associated with File Portion of URL Required Privileges

Root folder /folder System.View

Datacenter ?dcPath Datastore.Browse

Datastore.FileManagement

Datastore &dsName Datastore.Browse

Datastore.FileManagement

vSphere Web Services SDK Programming Guide

VMware, Inc. 374

Object Associated with File Portion of URL Required Privileges

Host /host Host.Config.AdvancedConfig

/tmp/ Host.Config.SystemManagement

vSphere Web Services SDK Programming Guide

VMware, Inc. 375

Sample Program Overview 23
The VMware vSphere Web Services SDK includes samples for the Java platforms. This chapter
lists the available sample programs and provides some information about each program. The
samples have been re-compiled with JAX-WS bindings, and they use JAX-WS credential store
classes that allow you to ignore certificates when you connect to a server with the samples.

Read the following topics next:

n Java Sample Programs (JAXWS Bindings)

Java Sample Programs (JAXWS Bindings)

When you download the SDK, you can find the Java sample programs and related files in the
following directories.

n SDK\vsphere-ws\java\JAXWS\samples\com\vmware – Top-level directory for Java

samples. Details listed in the following table.

n SDK\vsphere-ws\java\JAXWS\samples\com\vmware\security – Credential store utilities

n SDK\vsphere-ws\java\JAXWS\samples\com\vmware\vim25 – Stub directory. The vim25
directory contains stubs for release 2.5 and later.

n SDK\vsphere-ws\java\JAXWS\samples\com\vmware\vm – samples written for a single VM

Directory Example Description

alarms VMPowerStateAlarm Create an alarm to monitor a virtual machine's
power state.

cim CIMReader Walks the Common Information Model (CIM) data
associated with an ESXi host.

connection BasicConnection (among others) Shows how to set up a vSphere connection with
user name and password.

events EventFormat Retrieve and format the last event from the host
daemon or vpxd. Includes a function that formats

the event message.

EventHistoryCollectorMonitor Demonstrates how to create and monitor an
EventHistoryCollector. Uses the latestPage
property of EventHistoryCollector to filter the

events.

VMware, Inc. 376

Directory Example Description

VMEventHistoryCollectorMonitor Standalone client that demonstrates how to perform
the following tasks:

(1) Logging into the web service. (2)Creating
EventHistoryCollector filtered for a single

virtual machine. (3) Monitoring events
using the latestPage property of the

EventHistoryCollector.

fcd FcdCreate, FcdDelete Create and delete a first class disk (FCD) virtual
storage object.

FcdAttachToVM, FcdDetachFromVM Attach or detach FCD to or from VM.

FcdRegisterLegacyDisk Register legacy disk as a first class disk.

general Browser Print all managed entities and for each entity its
type, reference value, property name, property
value, inner object type, inner reference value and
inner property value.

Connect Connect to an ESXi host or a vCenter Server system.

Create Create a managed entity such as a folder,
datacenter, or cluster.

Delete Delete a managed entity from the inventory tree.
The managed entity can be a virtual machine, a
ClusterComputeResource, or a folder.

GetCurrentTime Retrieve the current time from the vSphere Server.

GetHostName Retrieve the hostname of the ESXi Server.

GetUpdates Demonstrates how to use the PropertyCollector
to monitor one or more properties of one or more
managed objects. In particular this sample monitors
one or all virtual machines and all hosts or one host
for changes to some basic properties.

LicenseManager Demonstrates uses of the licensing API using
License managed object reference.

Move Move a managed entity from its current location in
the inventory to a new location in a specified folder

PropertyCollector Illustrates the use of the PropertyCollector API.

RemoveManagedObject Destroy or unregister a managed inventory object
like a Host, VirtualMachine, or Folder.

Rename Rename a managed entity object.

SearchIndex Illustrates the use of the SearchIndex API.

SimpleClient Connect to the server, log in, list the inventory
contents (managed entities) at the console, and log
out.

vSphere Web Services SDK Programming Guide

VMware, Inc. 377

Directory Example Description

TaskList Display a list of tasks performed on a specified
managed object.

guest CreateTemporaryFile Create a temporary file inside a virtual machine.

DownloadGuestFile Download a file from the guest to a specified path
on the host where the client is running.

RunProgram Run a specified program inside a virtual machine.
RunProgram re-directs output to a temporary file
inside the guest and downloads the output file.

UploadGuestFile Upload a file from the client machine to a specified
location inside the guest operating system.

hcl HCIBatchAddHostAndExtendCluster Call batch-add-host to add four or more new hosts
to an HCI cluster.

HCIComputeOnlyCluster Call HCI configure to create a simple cluster
configuration.

host AcquireSessionInfo Acquire session with a vCenter Server or ESXi host
and print a CIM service ticket and related session
information to a file.

AddVirtualNic
RemoveVirtualNic

Add a virtual NIC to a port group on a virtual switch.
Remove a virtual NIC from a port group.

AddVirtualSwitch
RemoveVirtualSwitch

Add a virtual switch to a host. Remove a virtual
switch from the host.

AddVirtualSwitchPortGroup
RemoveVirtualSwitchPortGroup

Add a port group to a virtual switch. Remove a port
group from a virtual switch.

DVSCreate Create a distributed virtual switch.

HostProfileManager Demonstrates the use of HostProfileManager and

ProfileComplainceManager.

NIOCForDVS Add a network resource pool to a distributed virtual
switch.

httpfileacces
s

GetVMFiles Retrieve configuration files, snapshot files, log files,
and virtual disk files of a virtual machine; place them
on the system on which the program is run.

PutVMFiles Put virtual machine files into a specified datacenter
and datastore; register and reconfigure the
corresponding virtual machine.

performance Basics Display available performance counters or other
metadata for an ESXi host.

History Read performance measurements from the current
time, or from a specified start time, for a specified
duration.

vSphere Web Services SDK Programming Guide

VMware, Inc. 378

Directory Example Description

PrintCounters Write the available counters of a managed entity
into the specified file at the specified location. The
managed entity can be a host system, a virtual
machine, or a resource pool.

RealTime Display performance measurements from the
current time at the console.

VItop An ESXtop-like sample application that lets

administrators specify the CPU and memory
counters by name to obtain metrics for a specified
host.

VIUsage Create a GUI for graphical representation of the
counters.

scheduling DeleteOneTimeScheduledTask Demonstrates deleting a ScheduledTask.

OneTimeScheduledTask Demonstrates creating a ScheduledTask using the

ScheduledTaskManager.

WeeklyRecurrenceScheduledTask Demonstrates creating a weekly recurrent
scheduled task.

scsilun SCSILunName Display the CanonicalName,Vendor, Model, Data,

Namespace and NamespaceId of the host’s SCSI

LUN.

security credstore Base64 A fast, memory efficient class that encodes and
decodes to and from BASE64 in full accordance
with RFC 2045.

CredentialStore Create an example credential store.

CredentialStoreAdmin A command-line tool that provides complete access
to the credential store backing file on the local
machine.

CredentialStoreCipher This class uses the JVM provided classes in
javax.crypto to encrypt and decrypt text.

CredentialStoreFactory Factory class providing instances of a credential
store.

CredentialStoreImpl Implementation class for CredentialStoreAdmin.

CredentialStoreStorage This class provides the same functionality as
FileInputStream, except that the close() method

is overridden so that FileInputStream class’

close() method does not get called.

simpleagent CreateUser Create a user account and password and store them
in the local credential store.

SimpleAgent Access the local credential store to obtain a single
user account for login to a server.

storage CreateStorageDRS Creates storage DRS.

vSphere Web Services SDK Programming Guide

VMware, Inc. 379

Directory Example Description

SDRSRecommendation Runs storage DRS on an SDRS cluster to obtain
SDRS recommendations.

SDRSRules Configures rules for an SDRS cluster.

vApp OVFManagerExportVapp Demonstrates the OvfManager by exporting VMDKs

and OVF Descriptors of all VMs in the vApps.

OVFManagerExportVMDK Demonstrates how the OvfManager exports VMDKs

from a VM to the localSystem.

OVFManagerImportLocalVapp Use this class to import or deploy an OVF Appliance
from a local drive.

OVFManagerImportVAppFromUrl Use this class to import or deploy an OVF Appliance
from a specified URL.

vim25 This directory contains the many Java classes that define JAX-WS bindings to the vSphere API.

vm VMApplyEvc Apply a per-VM extended vMotion compatibility
(EVC) setting to an existing virtual machine.

VMClone Locate an existing virtual machine on the vCenter
Server system, make a template from this virtual
machine, and deploy instances of the template onto
a datacenter.

VMCreate Create a virtual machine. Different command-line
input creates the virtual machine in different ways.

VMDeltaDisk Create a delta disk on top of an existing virtual disk
in a virtual machine, and simultaneously removes the
original disk using the reconfigure API.

Use delta disks in conjunction with linked virtual
machines.

VMDiskCreate Create a virtual disk.

VMLinkedClone Create a linked virtual machine from an existing
snapshot.

VMManageCD Configure a CDROM for a virtual machine. Also list
information about the CDROMs associated with a
virtual machine.

VMManageFloppy Configure a floppy drive for a virtual machine. Also
list information about the floppy drives associated
with a virtual machine.

VMotion Check whether migration with VMotion is feasible

between two hosts. Perform a migration if the hosts
are compatible.

VMpowerOps Perform power operations on a virtual machine.

VMPromoteDisks Consolidate a linked virtual machine by using the
VirtualMachine.PromoteDisks method.

VMReconfig Reconfigure a virtual machine. Includes
reconfiguring the disk size and disk mode.

vSphere Web Services SDK Programming Guide

VMware, Inc. 380

Directory Example Description

VMRelocate Relocate a linked virtual machine using disk move
type.

VMSnapshot Perform virtual machine snapshot operations

XVCvMotion Relocate virtual machine across from one vCenter
Server to another.

XVMotion Relocate virtual machine to the computing resource
recommended by the DRS.

vSphere Web Services SDK Programming Guide

VMware, Inc. 381

	vSphere Web Services SDK Programming Guide
	Contents
	About This Book
	About the vSphere Web Services SDK
	vSphere Web Services SDK
	SDK Developer Setup for the Web Services SDK
	SDK Samples for the Web Services SDK
	UML Diagrams Used in the Web Services SDK Programming Guide

	vSphere Web Services API Programming Model
	vSphere Client-Server Architecture
	Web Services API as a Web Service
	WSDL Files and the Client-Side Proxy Interface
	Network Access to the vSphere Web Service
	Language-Specific Classes and Methods
	Mapping XML Data Types to Java or JSON Data Types

	Access to Managed Objects
	Access to vSphere Server Data
	Obtaining Information from a Server
	Working with Data Structures
	Accessing Property Values
	Nested Properties and Property Paths in Composite Data Structures
	xsd:anyType Arrays
	Cast an xsd:anyType Array to an Event Array
	Cast an xsd:anyType Array to an Array of Managed Object References
	Cast an xsd:anyType Array to an Array of String

	Indexed Array and Key-Based Array Properties
	Unset Optional Properties
	Escape Character in Name and Path Properties

	Client Applications for the Web Services API
	vCenter Server Connections
	Establishing a Single Sign-On Session with a vCenter Server
	LoginByToken to vCenter Server By Using Java
	vCenter Server Single Sign-On Session Using Java
	HTTP and SOAP Header Handlers in Java
	Sample Code for a Java Client to the Web Services SDK

	Creating the HTTP Connection in Java
	Using LoginByToken in Java
	Restoring the vCenter Server Session Cookie in a Java Client

	Establishing a Session with Username and Password Credentials
	Overview of a Java Sample Application for the Web Services SDK
	Build a Simple vSphere Client Application for the Web Services SDK
	Java Client Example for the Web Services SDK
	Compiling the Java Test Client in the Web Services SDK

	Web Server Session Token
	Accessing the vSphere Web Services HTTP Endpoint with JAX-WS

	Accessing the vSphere Server from a Web Services Client
	Closing the Connection from a Web Services Client
	Using the Java Samples as Reference
	Multiple Versions of the vSphere API
	Java Sample Applications in the Web Services SDK
	Java Samples in the Web Services SDK

	Client Applications Using the JSON Protocol
	Client Requirements for the JSON Protocol
	Outlining a Client for the JSON Protocol
	Building JSON Request URLs
	Building JSON Request Bodies
	Retrieving the Service Instance with the JSON Protocol
	Authenticating a JSON Client with the Session Manager
	Basic Authentication for the JSON Protocol
	SAML Token Authentication for a JSON Client

	Mapping Methods for the JSON Protocol
	Accessing Managed Object Properties with the JSON Protocol
	Using Polymorphic Types with the JSON Protocol
	Python Client Example for the JSON Protocol

	Datacenter Inventory
	Inventory Overview for the Web Services SDK
	Inventory Hierarchies and ServiceInstance
	Folders in the Hierarchy
	ESXi Inventory Hierarchy

	Accessing Inventory Objects
	Creating Inventory Objects
	Privileges Required for Inventory Management
	Privileges
	Permissions

	Managed and Standalone ESXi Hosts

	Property Collector
	Introduction to the PropertyCollector
	Data Retrieval
	Inventory Traversal and Property Selection
	Gathering Data with a ViewManager Object

	vSphere Data Objects for Property Collection
	vSphere Methods for Property Collection
	Using the PropertyCollector with RetrievePropertiesEx
	Retrieve a Property from a Specified Managed Object
	Retrieve Properties from a Set of Managed Objects with a View
	Property Collector Program in Java for Web Services SDK
	Inventory Traversal
	TraversalSpec Traversal
	Traverse the Inventory By Using the Property Collector
	Inventory Traversal Example in Java
	SelectionSpec Traversal
	Simple Reference SelectionSpec
	Recursive Traversal
	Use Recursive TraversalSpec to Traverse Nested Inventory Folders
	Nested Folder Traversal in Java

	Client Data Synchronization with WaitForUpdatesEx
	Property Filtering
	WaitForUpdatesEx
	Comparing Usage of MaxWaitSeconds
	UpdateSet Data Object from the Property Collector

	Server Data Transmission
	PropertyCollector Performance
	SearchIndex

	Authentication and Authorization
	Objects for Authentication and Authorization Management
	Authentication and Authorization for ESXi and vCenter Server
	ESXi User Model
	vCenter Server User Model
	vSphere Security Model
	Privileges
	Privileges for Datastore Objects in the Web Services API
	Roles
	Permissions

	Setting Up Users, Groups, and Permissions

	Obtaining User and Group Information from UserDirectory
	RetrieveUserGroups Method

	Managing ESXi Users with HostLocalAccountManager
	Methods Available for Local Account Management
	Create a Local User Account on an ESXi System

	Managing Roles and Permissions with AuthorizationManager
	Using Roles to Consolidate Sets of Privileges
	Description of Roles on vSphere Servers

	Modifying Sample Roles to Create New Roles
	Granting Privileges Through Permissions
	Obtaining Information About Permissions
	Setting, Changing, or Deleting Permissions
	Impact of Group Membership on Permissions
	Applying Permission to a Managed Entity

	Authenticating Users Through SessionManager
	Using VMware Single Sign On for vCenter Server Sessions

	Using the Credential Store for Automated Login
	Credential Store Libraries
	Credential Store Methods
	Credential Store Backing File
	Credential Store Samples
	Specifying Roles and Users with the Credential Store

	Managing Licenses with LicenseManager

	Hosts
	Host Management Objects
	Retrieving Host Information
	Configuring and Reconfiguring Hosts
	Managing the Host Lifecycle
	Reboot and Shutdown
	Using Standby Mode
	Disconnecting and Reconnecting Hosts

	Querying and Changing the Host Time
	Querying Virtual Machine Memory Overhead

	Storage
	Storage Management Objects
	Introduction to Storage
	How Virtual Machines Access Storage
	Datastores

	Choosing the Storage API to Use
	Managed Objects for Working with Storage

	Configuring Disk Partitions
	Multipath Management
	Configuring iSCSI Storage
	Configure the VMkernel To Support Software iSCSI
	Configure iSCSI Initiators

	Creating and Managing Datastores
	Accessing Datastores
	Creating and Modifying a VMFS Datastore
	Set Up Disk Partitions
	Create the VMFS Datastore

	Removing and Updating Datastores
	Managing VMFS Datastores with HostStorageSystem
	Update and Upgrade with HostStorageSystem

	Managing VMFS Volume Copies (Resignaturing)
	Resignaturing Volumes with ResignatureUnresolvedVmfsVolume_Task

	Managing Diagnostic Partitions
	Retrieving Diagnostic Partition Information
	Create a Diagnostic Partition

	Sample Code Reference

	vSphere Networks
	Virtual Switches
	Port Groups
	Virtual Machine Network Interfaces
	VMkernel Network Interfaces
	Physical Network Adapter (pnic)

	Using a Distributed Virtual Switch
	Distributed Virtual Switch Configuration
	Backup, Rollback, and Query Operations

	VMware Standard Virtual Switch
	Configuring a Standard Virtual Switch
	vNetwork Standard Switch Environment
	Virtual Switches

	Setting Up Networking with vSS
	Retrieving Information About the Network Configuration
	Adding a Standard Virtual Switch
	Adding a Virtual Port Group
	Adding a VMkernel Network Interface

	Defining the Host Network Policies
	NIC Teaming
	Setting Up IPv6 Networking
	Adding Networking Services
	Adding an NTP Service
	Setting Up the IP Route Configuration
	Setting Up SNMP

	Sample Code Reference

	Virtual Machine Configuration
	VirtualMachine Management Objects and Methods
	Creating Virtual Machines and Virtual Machine Templates
	Creating a Virtual Machine Using VirtualMachineConfigSpec
	Calling the CreateVM_Task Method
	Specifying Virtual Machine Attributes with VirtualMachineConfigSpec

	Creating Virtual Machine Templates
	Cloning a Virtual Machine
	Converting a Template to a Virtual Machine
	Accessing Information About a Virtual Machine
	Checking Default Files
	Checking Default Devices

	Configuring a Virtual Machine
	Name and Location
	Hardware Version
	Boot Options
	Operating System
	CPU and Memory Information
	Configuring Virtual CPUs and Memory
	CPU Processors and Memory Affinity
	CPU Features
	CPU and Memory Modification for Running Virtual Machines

	Configuring Resource Allocation Constraints for Virtual Machines

	Networks
	Virtual Network Interfaces
	Virtual Machine MAC Address

	Fibre Channel NPIV Settings
	File Locations

	Adding Devices to Virtual Machines
	Performing Virtual Machine Power Operations
	Registering and Unregistering Virtual Machines
	Customizing the Guest Operating System
	Installing VMware Tools
	Upgrading a Virtual Machine

	Virtual Machine Management
	Virtual Machine Migration
	Cold Migration
	Migration with vMotion
	Using Storage vMotion

	Snapshots
	Creating a Snapshot
	Reverting to a Snapshot
	Deleting a Snapshot

	Linked Virtual Machines
	Linked Virtual Machines and Disk Backings
	Limitation for HA Clusters

	Creating a Linked Virtual Machine
	Creating a Linked Virtual Machine From a Snapshot
	Creating a Linked Virtual Machine From the Current Running Point

	Instant Clone Virtual Machines
	Instant Clone Terminology
	Run State of the Instant Clone Source
	Advantages of Cloning from the Current Running Point
	Advantages of Cloning from a Frozen Virtual Machine

	The Instant Clone Process from a Frozen Source
	Freezing the Source Virtual Machine for an Instant Clone Operation

	Instant Clone API Methods
	How the Instant Clone Operation Works
	Limitations of Instant Clones
	Guest Customization of Instant Clone Virtual Machines
	Avoiding Network Identity Collisions after Instant Clone Operations

	Removing Snapshots and Deleting Linked Virtual Machines
	Relocating a Virtual Machine in a Linked Virtual Machine Group
	Promoting a Virtual Machine's Disk
	Performing Advanced Manipulation of Delta Disks

	Virtual Machine Guest Operations
	Authenticating with the Guest Operating System
	Running Guest OS Operations
	Guest Operating System Customization
	Guest Customization for Stopped Virtual Machines
	Guest Customization Using cloud-init
	Prepare a Virtual Machine Template for Raw Data cloud-init Customization
	Prepare a cloud-init Metadata File
	Prepare a cloud-init Userdata File
	Initiate Raw Data cloud-init Customization with the vSphere Web Services API

	Guest Network Customization for Instant Clone Virtual Machines
	Installing the Guest Customization Engine
	Disconnecting Virtual NICs
	Customizing Guest Network Settings for Running Virtual Machines
	Reconnecting Virtual NICs in a Running Virtual Machine
	Restarting the Guest Network After Customization
	Recovering from Guest Network Customization Errors
	Application-Dependent Customization

	Resetting the Network Stack in a Running Virtual Machine
	Resetting the Network Stack in a Linux Virtual Machine
	Resetting the Network Stack in a Windows Virtual Machine
	Reset the Network Stack in a Windows Virtual Machine Using the Control Panel
	Reset the Network Stack in a Windows Virtual Machine Using PowerShell
	Reset the Network Stack in a Windows Virtual Machine Using netsh

	Virtual Machine Security
	How Virtual Machine Encryption Protects a Datacenter
	What Keys are Used
	What Is Encrypted
	Virtual Machine Files
	Virtual Disk Files
	Core Dump Files

	What Is Not Encrypted
	Log Files
	Virtual Machine Configuration Files
	Virtual Disk Descriptor File

	Who Can Perform Cryptographic Operations
	How Can I Perform Cryptographic Operations

	vSphere Virtual Machine Encryption Components
	Key Management Server
	vCenter Server
	ESXi Hosts
	Encryption Process Flow

	Prerequisites and Required Privileges for Encryption Tasks
	Cryptography Privileges and Roles
	Host Encryption Mode
	Encrypted vSphere vMotion

	API Methods for vSphere Virtual Machine Encryption
	vSphere API Methods for KMS Management
	API Methods to Prepare an ESXi Host
	vSphere API Methods for Cryptographic Operations
	SPBM API Methods for Encryption

	Workflows for vSphere Virtual Machine Encryption
	Set Up the Key Management Server Cluster
	Add Key Management Server(s) to Your Datacenter
	Establish a Trusted Connection by Exchanging Certificates

	Create an Encryption Storage Policy
	Create an Encrypted Virtual Machine
	Clone an Encrypted Virtual Machine
	Encrypt an Existing Virtual Machine or Disk
	Decrypt an Encrypted Virtual Machine or Disk
	Encrypt with Different Keys for VM and Disk
	Recrypt (Rekey) Encrypted Virtual Machines
	Recrypt Only Key Encryption Keys
	Recrypt Both Key and Disk Encryption Keys

	Query Crypto Key In-Use Status
	Encrypted vSphere vMotion
	Enable Encrypted vMotion

	Virtual Disk Manager

	Best Practices for Virtual Machine Encryption
	Configuring Advanced Options
	Physical Platform Resources

	Virtual Applications: the vApp
	About Virtual Applications
	Management Overview
	Direct and Linked Children
	OVF Packages

	Creating a VirtualApp
	Managing VirtualApp Children
	Exporting a Virtual Application
	VirtualApp and OvfManager Methods
	VirtualApp Data Structures
	OvfManager Data Structures
	Example of Generating an OVF Package

	Importing an OVF Package
	Virtual Application Life Cycle
	Powering a Virtual Application On or Off
	Unregistering a Virtual Application
	Suspending a Virtual Application
	Destroying a Virtual Application

	Resource Management
	Resource Management Objects
	Introduction to Resource Management
	Resource Allocation
	Resource Pool Hierarchies
	Cluster Overview

	Creating and Configuring Resource Pools
	Configuring Reservation and Limit for Resource Pools
	Understanding Fixed Reservations
	Understanding Expandable Reservations
	Expandable Reservation Example 1
	Expandable Reservation Example 2
	Expandable Reservation Example 3

	Configuring Priority Shares for Resource Pools
	Understanding Fixed Shares
	Understanding Scalable Shares

	Deleting Child Resource Pools
	Moving Resource Pools or Virtual Machines Into a Resource Pool

	Introduction to vSphere Clusters
	VMware DRS
	VMware HA
	VMware HCI

	Creating and Configuring Clusters
	Creating a Cluster
	Adding a Host to a Cluster
	Reconfiguring a Cluster

	Managing DRS Clusters
	Managing HA Clusters
	Primary and Secondary Hosts
	Failure Detection and Host Network Isolation
	Using VMware HA and DRS Together

	Tasks and Scheduled Tasks
	Creating Tasks
	Session Persistence
	Cancelling a Task
	Using TaskInfo to Determine Task Status
	TaskInfo Values

	Monitoring TaskInfo Properties

	Accessing and Manipulating Multiple Tasks
	Task Monitoring Example Using the Listview Object
	Create an Authenticated Session with the Server
	Find Virtual Machine MOref
	Get_Parent_Property
	Create Clones of the Virtual Machine
	Monitor Tasks with WaitForUpdatesEx

	Gathering Data with a TaskManager Interface
	Examining Recent Tasks with TaskManager

	Understanding the ScheduledTaskManager Interface
	Scheduling Tasks
	Defining the Schedule and Action
	Scheduling Recurring Operations

	Cancelling a Scheduled Task

	Using a TaskHistoryCollector
	Managing the HistoryCollector
	Sample Code Reference

	Events and Alarms
	Event and Alarm Management Objects
	Understanding Events
	Managing Events with EventManager
	Event Data Objects
	Formatting Event Message Content
	Creating Custom Events
	Creating User Log Events
	Creating Extended Events

	Using an EventHistoryCollector
	Creating an EventHistoryCollector Filter
	Managing the HistoryCollector

	Using Alarms
	Obtaining a List of Alarms
	Creating an Alarm

	Defining Alarms Using the AlarmSpec Data Object
	Specifying Alarm Trigger Conditions with AlarmExpression
	AlarmExpression Types
	Using MetricAlarmExpression

	Specifying Alarm Actions
	Deleting or Disabling an Alarm

	Sample Code Reference

	vSphere Performance
	vSphere Performance Data Collection
	PerformanceManager Objects and Methods
	Retrieving vSphere Performance Data
	Performance Counter Example (QueryPerf)
	Mapping Performance Counters (Counter Ids and Metadata)
	Retrieving Statistics
	Performance Data Returned by a vSphere Server
	Handling Returned Performance Data

	Large-Scale Performance Data Retrieval
	Using the QueryPerf Method as a Raw Data Feed
	Comparison of Query Methods
	Retrieving Summary Performance Data

	Performance Counter Metadata
	PerfCounterInfo

	Performance Intervals
	ESXi Server Performance Intervals
	vCenter Server Performance Intervals

	vSphere Performance and Data Storage
	Modifying Historical Intervals
	Modifying Performance Counter Collection Levels
	Performance Counter Data Collection
	Performance Counter Data Storage
	Performance Manager Method Interaction
	vSphere Client Management of Performance Statistics

	Sample Code Reference

	Diagnostics and Troubleshooting
	Troubleshooting Best Practices
	Overview of Configuration Files and Log Files
	ESXi Log File
	Virtual Machine Log Files
	vCenter Server Log Files

	Modifying the Log Level to Obtain Detailed Information
	Setting the Log Level on ESXi Systems
	Generating Logs
	Setting the Log Level on vCenter Server Systems

	Using DiagnosticManager
	Using the MOB to Explore the DiagnosticManager
	Generating Diagnostic Bundles
	Export Diagnostic Data By Using the vSphere Client

	Managed Object Browser
	Using the MOB to Explore the Object Model
	Accessing the MOB
	Using the MOB to Navigate the vSphere Object Model

	Using the MOB to Invoke Methods
	Passing Primitive Datatypes to Method
	Passing Arrays of Primitives to Methods
	Passing Complex Structures to Methods
	Simple Content
	Complex Content

	Using the MOB Along With the API Reference

	HTTP Access to vSphere Server Files
	Introduction to HTTP Access
	URL Syntax for HTTP Access
	Datastore Access (/folder)
	Host File Access to vSphere Server Files (/host)
	Update Package Access (/tmp)
	Privilege Requirements for HTTP Access

	Sample Program Overview
	Java Sample Programs (JAXWS Bindings)

