
vSphere Web Services SDK
Programming Guide

vSphere Web Services SDK 6.0

This document supports the version of each product listed and
supports all subsequent versions until the document is replaced
by a new edition. To check for more recent editions of this
document, see http://www.vmware.com/support/pubs.

EN-001411-02

http://www.vmware.com/support/pubs

VMware, Inc.
3401 Hillview Ave.
Palo Alto, CA 94304
www.vmware.com

2 VMware, Inc.

vSphere Web Services SDK Programming Guide

You can find the most up-to-date technical documentation on the VMware Web site at:

http://www.vmware.com/support/

The VMware Web site also provides the latest product updates.

If you have comments about this documentation, submit your feedback to:

docfeedback@vmware.com

Copyright © 2011-2015 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and
intellectual property laws. VMware products are covered by one or more patents listed at
http://www.vmware.com/go/patents.

VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions. All other marks
and names mentioned herein may be trademarks of their respective companies.

http://www.vmware.com/support/
http://www.vmware.com/support
mailto:docfeedback@vmware.com
http://www.vmware.com/go/patents
http://www.vmware.com/go/patents

VMware, Inc. 3

Contents

About This Book 11

1 VMware vSphere and vSphere Management APIs 13
Virtualization and VMware vSphere Components 13
vSphere Development Tools 14

vSphere Web Services SDK 14
CIM APIs 14
vSphere SDK for Perl 14
vSphere PowerCLI 14
VIX API 14

SDK Developer Setup 15
SDK Samples 15
UML Diagrams Used in This Guide 15

2 vSphere API Programming Model 17
vSphere Client-Server Architecture 17
vSphere API as a Web Service 18

WSDL Files and the Client-Side Proxy Interface 18
Network Access to the vSphere Web Service 19
Language-Specific Classes and Methods 19
Mapping XML Data Types to Java and C# Data Types 20

Access to Managed Objects 21
Access to vSphere Server Data 21

Obtaining Information from a Server 22
Working with Data Structures 22
Accessing Property Values 22
Unset Optional Properties 25
Escape Character in Name and Path Properties 25

3 Client Applications 27
vCenter Server Connections 27
Establishing a Single Sign On Session with a vCenter Server 28

LoginByToken (C# Example) 28
LoginByToken (Java Example) 33

Establishing a Session with Username and Password Credentials 38
Overview of a Java Sample Application 38

Web Server Session Token 41
Accessing the HTTP Endpoint with JAX-WS 42
Accessing the vSphere Server 43
Closing the Connection 44
Using the Java Samples as Reference 44

Multiple Versions of the vSphere API 45
Identifying the API Version Supported by the Server 46
Java and C# Sample Applications 46

Java Samples 46
C# Samples 46

vSphere Web Services SDK Programming Guide

4 VMware, Inc.

4 Datacenter Inventory 49
Inventory Overview 49
Inventory Hierarchies and ServiceInstance 50

Folders in the Hierarchy 50
ESXi Inventory Hierarchy 51

Accessing Inventory Objects 51
Creating Inventory Objects 52
Privileges Required for Inventory Management 52

Privileges 53
Permissions 53

Managed and Standalone ESX/ESXi Hosts 54

5 Property Collector 57
Introduction to the PropertyCollector 57

Data Retrieval 58
Inventory Traversal and Object Selection 58

vSphere Data Objects for Property Collection 58
vSphere Methods for Property Collection 58
PropertyCollector Example (RetrievePropertiesEx) 59
Inventory Traversal 66

TraversalSpec Traversal 66
SelectionSpec Traversal 72

Client Data Synchronization (WaitForUpdatesEx) 77
Property Filters 77
WaitForUpdatesEx 77

Server Data Transmission 79
PropertyCollector Performance 79
SearchIndex 79

6 Authentication and Authorization 81
Objects for Authentication and Authorization Management 81
Authentication and Authorization for ESXi and vCenter Server 82

ESXi User Model 82
vCenter Server User Model 83
vSphere Security Model 83
Setting Up Users, Groups, and Permissions 84

Obtaining User and Group Information from UserDirectory 85
Managing ESXi Users with HostLocalAccountManager 86
Managing Roles and Permissions with AuthorizationManager 86

Using Roles to Consolidate Sets of Privileges 88
Modifying Sample Roles to Create New Roles 89
Granting Privileges Through Permissions 89

Authenticating Users Through SessionManager 91
Using VMware Single Sign On for vCenter Server Sessions 91

Using the Credential Store for Automated Login 91
Credential Store Methods 92
Credential Store Backing File 92
Credential Store Samples 93
Specifying Roles and Users with the Credential Store 93

Managing Licenses with LicenseManager 94

7 Hosts 95
Host Management Objects 95
Retrieving Host Information 95

VMware, Inc. 5

Contents

Configuring and Reconfiguring Hosts 96
Managing the Host Lifecycle 97

Reboot and Shutdown 97
Using Standby Mode 97
Disconnecting and Reconnecting Hosts 97

Querying and Changing the Host Time 98
Querying Virtual Machine Memory Overhead 98

8 Storage 99
Storage Management Objects 99
Introduction to Storage 100

How Virtual Machines Access Storage 100
Datastores 101

Choosing the Storage API to Use 102
Configuring Disk Partitions 103
Multipath Management 104
Configuring iSCSI Storage 104
Creating and Managing Datastores 106

Accessing Datastores 107
Creating and Modifying a VMFS Datastore 107
Removing and Updating Datastores 109
Managing VMFS Datastores with HostStorageSystem 109

Managing VMFS Volume Copies (Resignaturing) 109
Managing Diagnostic Partitions 110

Retrieving Diagnostic Partition Information 111
Creating a Diagnostic Partition 111

Sample Code Reference 111

9 vSphere Networks 113
Virtual Switches 113
Using a Distributed Virtual Switch 114

Distributed Virtual Switch Configuration 115
Backup, Rollback, and Query Operations 116

VMware Standard Virtual Switch 116
vNetwork Standard Switch Environment 117
Setting Up Networking with vSS 118
Defining the Host Network Policies 120
NIC Teaming 120
Setting Up IPv6 Networking 121
Adding Networking Services 122

Sample Code Reference 122

10 Virtual Machine Configuration 125
VirtualMachine Management Objects and Methods 125
Creating Virtual Machines and Virtual Machine Templates 126

Creating a Virtual Machine Using VirtualMachineConfigSpec 126
Creating Virtual Machine Templates 127
Cloning a Virtual Machine 127
Converting a Template to a Virtual Machine 128
Accessing Information About a Virtual Machine 128

Configuring a Virtual Machine 129
Name and Location 130
Hardware Version 130
Boot Options 131

vSphere Web Services SDK Programming Guide

6 VMware, Inc.

Operating System 131
CPU and Memory Information 132
Networks 133
Fibre Channel NPIV Settings 133
File Locations 134

Adding Devices to Virtual Machines 134
Performing Virtual Machine Power Operations 135
Registering and Unregistering Virtual Machines 136
Customizing the Guest Operating System 137
Installing VMware Tools 137
Upgrading a Virtual Machine 138

11 Virtual Machine Management 139
Virtual Machine Migration 139

Cold Migration 140
Migration with VMotion 140
Using Storage VMotion 140

Snapshots 140
Creating a Snapshot 141
Reverting to a Snapshot 141
Deleting a Snapshot 142

Linked Virtual Machines 142
Linked Virtual Machines and Disk Backings 142
Creating a Linked Virtual Machine 143
Removing Snapshots and Deleting Linked Virtual Machines 144
Relocating a Virtual Machine in a Linked Virtual Machine Group 144
Promoting a Virtual Machine's Disk 145
Performing Advanced Manipulation of Delta Disks 145

12 Virtual Applications 147
About Virtual Applications 147

Management Overview 147
Direct and Linked Children 148
OVF Packages 148

Creating a VirtualApp 149
Managing VirtualApp Children 149
Exporting a Virtual Application 150

VirtualApp and OvfManager Methods 150
VirtualApp Data Structures 151
OvfManager Data Structures 152
Example of Generating an OVF Package 152

Importing an OVF Package 154
Virtual Application Life Cycle 154

Powering a Virtual Application On or Off 154
Unregistering a Virtual Application 155
Suspending a Virtual Application 155
Destroying a Virtual Application 155

13 Resource Management 157
Resource Management Objects 157
Introduction to Resource Management 158
Resource Allocation 158

Resource Pool Hierarchies 158
Resource Pool Management Guidelines 159

VMware, Inc. 7

Contents

Cluster Overview 159
Creating and Configuring Resource Pools 160

Understanding Expandable Reservation 160
Deleting Child Resource Pools 161
Moving Resource Pools or Virtual Machines Into a Resource Pool 162

Introduction to VMware DRS and VMware HA Clusters 162
VMware DRS 162
VMware HA 162

Creating and Configuring Clusters 163
Creating a Cluster 163
Adding a Host to a Cluster 164
Reconfiguring a Cluster 164

Managing DRS Clusters 164
Managing HA Clusters 165

Using VMware HA and DRS Together 166

14 Tasks and Scheduled Tasks 167
Creating Tasks 167

Session Persistence 167
Cancelling a Task 168
Using TaskInfo to Determine Task Status 168
Monitoring TaskInfo Properties 169

Accessing and Manipulating Multiple Tasks 170
Gathering Data with a ViewManager Object 170
Gathering Data with a TaskManager Interface 177

Understanding the ScheduledTaskManager Interface 179
Scheduling Tasks 180
Cancelling a Scheduled Task 182

Using a TaskHistoryCollector 183
Creating a TaskHistoryCollector Filter 183
Managing the HistoryCollector 183

Sample Code Reference 184

15 Events and Alarms 185
Event and Alarm Management Objects 185
Understanding Events 185

Managing Events with EventManager 186
Event Data Objects 187
Formatting Event Message Content 187
Creating Custom Events 188

Using an EventHistoryCollector 188
Creating an EventHistoryCollector Filter 188
Managing the HistoryCollector 189

Using Alarms 189
Obtaining a List of Alarms 189
Creating an Alarm 190

Defining Alarms Using the AlarmSpec Data Object 190
Specifying Alarm Trigger Conditions with AlarmExpression 191
Specifying Alarm Actions 192
Deleting or Disabling an Alarm 193

Sample Code Reference 193

16 vSphere Performance 195
vSphere Performance Data Collection 195

vSphere Web Services SDK Programming Guide

8 VMware, Inc.

PerformanceManager Objects and Methods 197
Retrieving vSphere Performance Data 198

Performance Counter Example (QueryPerf) 199
Large-Scale Performance Data Retrieval 206
Using the QueryPerf Method as a Raw Data Feed 206
Comparison of Query Methods 207
Retrieving Summary Performance Data 207

Performance Counter Metadata 208
Performance Intervals 208
vSphere Performance and Data Storage 210

Modifying Historical Intervals 210
Modifying Performance Counter Collection Levels 210

Sample Code Reference 211

A Diagnostics and Troubleshooting 213
Troubleshooting Best Practices 213
Overview of Configuration Files and Log Files 214

ESX/ESXi Log File 214
Virtual Machine Log Files 215
vCenter Server Log Files 216

Modifying the Log Level to Obtain Detailed Information 216
Setting the Log Level on ESX/ESXi Systems 216
Generating Logs 217
Setting the Log Level on vCenter Server Systems 217

Using DiagnosticManager 217
Using the MOB to Explore the DiagnosticManager 219
Generating Diagnostic Bundles 220

B Managed Object Browser 221
Using the MOB to Explore the Object Model 221

Accessing the MOB 221
Using the MOB to Navigate the VMware Infrastructure Object Model 222

Using the MOB to Invoke Methods 222
Passing Primitive Datatypes to Method 222
Passing Arrays of Primitives to Methods 223
Passing Complex Structures to Methods 223

C HTTP Access to vSphere Server Files 227
Introduction to HTTP Access 227
URL Syntax for HTTP Access 228

Datastore Access (/folder) 228
Host File Access (/host) 229
Update Package Access (/tmp) 230
Privilege Requirements for HTTP Access 230

D Privileges Reference 231
Privileges Required to Invoke Operations 231
Privileges Required to Read Properties 239
Privileges Defined for the Administrator Role 240

E Sample Program Overview 245
Java Sample Programs (JAXWS Bindings) 245
C# Sample Programs 249

Axis 4.1 252

VMware, Inc. 9

Contents

Index 255

vSphere Web Services SDK Programming Guide

10 VMware, Inc.

VMware, Inc. 11

The vSphere Web Services SDK Programming Guide provides information about developing applications using
theVMware® vSphere Web Services SDK 6.0.

VMware provides different APIs and SDKs for various applications and goals. The vSphere Web Services SDK
targets developers who create client applications for managing VMware® vSphere components available on
VMware ESX/ESXi and VMware vCenter Server systems.

To view the current version of this book as well as all VMware API and SDK documentation, go to
http://www.vmware.com/support/pubs/sdk_pubs.html.

Revision History
This book is revised with each release of the product or when necessary. A revised version can contain minor
or major changes. Table 1 summarizes the significant changes in each version of this book.

Intended Audience
This book is intended for anyone who needs to develop applications using the vSphere Web Services SDK.
Developers typically create client applications using Java or C# (in the Microsoft .NET environment) targeting
VMware vSphere. An understanding of Web Services technology and some programming background in one
of the stub languages (C# or Java) is required.

VMware Technical Publications Glossary
VMware Technical Publications provides a glossary of terms that might be unfamiliar to you. For definitions
of terms as they are used in VMware technical documentation go to http://www.vmware.com/support/pubs.

About This Book

Table 1. Revision History

Revision Date Description

04Sep2015 Updated information about migrating VMs with VMotion across data centers.

12Mar2015 vSphere 6.0 - Rewrote “Exporting a Virtual Application” section in Virtual Applications chapter.

19Sep2013 vSphere 5.5 – Added a C# example of using LoginByToken; clarified limitation for HA clusters.

10Sep2012 vSphere 5.1 – Added information about using the SessionManager.LoginByToken method; added
information about distributed virtual switches.

24AUG2011 vSphere 5.0 - Revised performance manager chapter. Added information about: unset properties, using
vCenter to access host data, and using the QueryConfigOption to add devices; emphasized ListView
instead of TaskManager; clarified limits and limitations of Linked Virtual Machines; updated samples
in chapters 3,5,14, and 16; replaced information about Axis bindings with JAX-WS; and updated paths
to samples supplied with SDK.

13JUL2010 Restructured manual and added chapters about host, storage, and networking. Revised property
collector chapter and added appendix about HTTP access.

07MAY2009 vSphere Web Services SDK 4.0 Programming Guide.

http://www.vmware.com/support/pubs/sdk_pubs.html
http://www.vmware.com/support/pubs

vSphere Web Services SDK Programming Guide

12 VMware, Inc.

Document Feedback
VMware welcomes your suggestions for improving our documentation. Send your feedback to
docfeedback@vmware.com.

mailto:docfeedback@vmware.com
mailto:docfeedback@vmware.com

VMware, Inc. 13

1

VMware vSphere supports robust, fault-tolerant virtualized applications, networking, and storage. vSphere
offers many optional components and modules such as VMware High Availabiltiy and VMware VMotion. The
VMware vSphere Web Services SDK gives Web services developers programmatic access to vSphere
components.

The chapter includes the following topics:

 “Virtualization and VMware vSphere Components” on page 13

 “vSphere Development Tools” on page 14

 “SDK Developer Setup” on page 15

 “SDK Samples” on page 15

 “UML Diagrams Used in This Guide” on page 15

Virtualization and VMware vSphere Components
VMware software products virtualize computing resources, including CPU, memory, storage, and networks.
Virtualization provides an abstraction layer between computing resources, physical storage, and networking
hardware, and the applications that use the resources.

VMware vSphere includes ESXi, vCenter Server, and several additional server products. The base products
support running and managing virtual machines. With additional licenses, you can take advantage of the
vSphere distributed resource management (DRS), disaster recovery, and high availability (HA) features.

 The ESXi hypervisor is capable of supporting multiple virtual machines and other virtual components,
such as storage and networks.

 vCenter Server provides central management for all of the components of a virtualized environment,
including multiple ESX/ESXi host systems, clusters, storage, and distributed virtual switches. It is
distributed in two package formats:

 Windows-based software services.

 Linux-based VMware vCenter Server Appliance.

 vSphere Web Client is a GUI to manage vSphere. It provides the UI platform that you use to integrate your
solution with vSphere. The vSphere Web Client also includes a server-side Java platform. You can develop
Java plugins that use the vSphere Web Services SDK to communicate with vSphere servers. See the
vSphere Web Client SDK for more information about building UI and service plugins for the vSphere Web
Client.

For more information about ESXi and vCenter Server, see the VMware vSphere documentation page on the
VMware Web site. If you are new to VMware vSphere or new to the vSphere Web Services SDK, see one of
these vSphere administrator documents for background information about vSphere:

 vSphere Virtual Machine Administration Guide

VMware vSphere and vSphere
Management APIs 1

vSphere Web Services SDK Programming Guide

14 VMware, Inc.

 vCenter Server and Host Management Guide

 vSphere Resource Management Guide

vSphere Development Tools
VMware supports SDKs and scripting tools for managing vSphere.

vSphere Web Services SDK

The vSphere Web Services SDK is the most comprehensive of the available management APIs. The SDK works
against both ESX/ESXi and vCenter Server systems. As a Web Services SDK, the SDK is language neutral. The
SDK includes stubs and examples for Java and C# and a comprehensive documentation set including an API
Reference generated from the source.

CIM APIs

The VMware CIM APIs provide a CIM (Common Information Model) interface for developers building
management applications. With the VMware CIM APIs, developers can use standards-based CIM-compliant
applications to manage ESX/ESXi hosts.

The CIM APIs include:

 CIM SMASH/Server Management API – profiles compatible with the DMTF System Management
Architecture for Server Hardware (SMASH) initiative. SMASH profiles allow CIM clients to monitor
system health of a managed server.

 CIM Storage Management API – profiles compatible with the Storage Management Initiative
Specification (SMI-S) of the Storage Network Industry Association. SMI-S profiles allow CIM clients to
explore the virtual machines on an ESX/ESXi host, and associated storage resources.

vSphere SDK for Perl

The vSphere SDK for Perl is an easy-to-use Perl scripting interface to the vSphere API. Administrators and
developers can work with vSphere API objects using vSphere SDK for Perl subroutines. Administrators can
use the utility applications included with vSphere SDK for Perl.

The vSphere SDK for Perl also includes the Web Services for Management component for writing scripts that
retrieve CIM data from the ESX/ESXi host using CIMOM, a service that provides standard CIM management
functions. The vSphere SDK for Perl also includes subroutines for managing the VMware Credential Store and
an example application that illustrates credential store use.

vSphere SDK for Perl is bundled with the vSphere Command-Line Interface (vSphere CLI). The vSphere CLI
command set allows you to run common system administration commands against ESX/ESXi systems from
an administration server of your choice.

vSphere PowerCLI

VMware vSphere PowerCLI provides a Windows PowerShell interface to the vSphere API. vSphere PowerCLI
includes PowerShell Cmdlets for administering vSphere components. In addition, the vSphere PowerCLI
package includes the vSphere SDK for .NET for developers who want to create their own applications.

VIX API

The VIX API is a library for writing scripts and programs to manipulate virtual machines. It is high-level, easy
to use, and practical for both script developers and application programmers. This API is well suited for
dedicated IT personnel in an organization building their own in-house tools. It might also be used by software
vendors using VIX to integrate VMware products with their own products or to build management products
for virtual machines.

VMware, Inc. 15

Chapter 1 VMware vSphere and vSphere Management APIs

Figure 1-1 gives an overview of the different vSphere APIs and CLIs and illustrates how they fit into the virtual
infrastructure.

Figure 1-1. vSphere APIs and CLIs

SDK Developer Setup
Before you can start developing applications with the vSphere Web Services SDK, you must download the
software and set up your system. The Developers Setup Guide has complete instructions for Java and C#
development and discusses a simplified secure setup for development environments.

SDK Samples
The SDK includes a set of samples that illustrate much of the SDK features. Two sample sets are available:

 Java samples use the generated Java stubs that are shipped with the SDK.

 C# samples use the generated C# stubs that are shipped with the SDK.

Both sample sets include a set of utility applications that are used by the sample code.

The code fragments in this guide are in part based on the Java sample applications, but present code that does
not require utility applications to run.

See Appendix E, “Sample Program Overview,” on page 245 for lists of samples for the two languages and a
brief explanation of what each sample does.

UML Diagrams Used in This Guide
This guide uses UML (unified modeling language) diagrams to illustrate the API objects and their
relationships. The guide includes class diagrams and instance diagrams. Figure 1-2 shows the UML notation
used for managed objects and data objects. The diagrams use a tilde (~) if an object has no properties or
methods. Ellipses (...) means some properties or methods are omitted.

Figure 1-2. Legend for UML Class Diagrams

vSphere Web Services SDK Programming Guide

16 VMware, Inc.

VMware, Inc. 17

2

The vSphere API is implemented as a language-neutral Web service. The API is based on a remote
procedure call mechanism that client applications use to access services and components on ESX, ESXi, and
vCenter Server systems.

This chapter includes the following topics:

 “vSphere Client-Server Architecture” on page 17

 “vSphere API as a Web Service” on page 18

 “Access to Managed Objects” on page 21

 “Access to vSphere Server Data” on page 21

vSphere Client-Server Architecture
VMware vSphere client applications participate in a distributed architecture that uses an asynchronous
communications model. This architecture is based on server-side managed objects, client-side managed object
references, and data objects.

 Managed objects exist on a vSphere server (ESX/ESXi or vCenter Server system). They represent vSphere
services and components. Services include PropertyCollector, SearchIndex, PerformanceManager,
and ViewManager. Components include inventory objects such as VirtualMachine, Datastore, and
Folder.

 Managed object references are client application references to server-side managed objects. Your client
application uses ManagedObjectReference objects when it invokes operations on a server. A
ManagedObjectReference is guaranteed to be unique and persistent during an object's lifetime. The
reference persists after an object has moved within the inventory, across sessions, and across server
restarts. If you remove an object, for example, a virtual machine, from the inventory, and then put it back,
the reference changes.

 Data objects contain information about managed objects. Your client application sends data objects to and
receives data objects from a vSphere server. Examples are the different specification and capability objects
such as VirtualMachineConfigSpec and HostCapability.

Figure 2-1 shows a vSphere server and client application. The client has a managed object reference to a virtual
machine on the server, and a copy of the GuestInfo data object for the virtual machine. A client must maintain
its copy of a data object because, depending on the type of client request, a vSphere server might send property
data for a data object as a set of name-value pairs associated with a managed object reference. See the
description of the ObjectContent data object in the vSphere API Reference.

vSphere API Programming Model 2

vSphere Web Services SDK Programming Guide

18 VMware, Inc.

Figure 2-1. vSphere Server and Client

The VMware vSphere application model uses an asynchronous client-server communication model in most
cases. Methods are nonblocking and return a reference to a Task managed object. See Chapter 14, “Tasks and
Scheduled Tasks,” on page 167.

vSphere API as a Web Service
The vSphere API is a language-neutral Web service that runs on ESX/ESXi and vCenter Server systems. The
vSphere API complies with the Web Services Interoperability Organization (WS-I) Basic Profile 1.0. The WS-I
Basic Profile 1.0 includes support for:

 XML Schema 1.0
 SOAP 1.1
 WSDL 1.1

For information about the WS-I Basic Profile 1.0, go to the Web Services Interoperability Organization (WS-I)
Web site at http://www.ws-i.org.

Web services support operations, which are the same as methods in other programming languages. The
vSphere API Web service provides access to all operations necessary for monitoring and managing vSphere
components, such as compute resources, virtual machines, networks, storage, and so on.

WSDL Files and the Client-Side Proxy Interface

The vSphere Web Services SDK provides a set of WSDL (Web Services Description Language) files that define
the vSphere Web Services API. Web-services development tools such as JAX-WS wsimport, or Microsoft .NET
wsdl.exe use these WSDL files to generate client-side proxy code (stubs).

The client proxy provides a language-specific vSphere API, for example, using Java or C#. The proxy facilitates
remote method invocation, organization of object data, and other aspects of distributed, object-oriented,
applications programming. Your client application calls proxy interface methods. The client proxy uses SOAP
(Simple Object Access Protocol) to exchange WSDL messages with a vSphere server.

Figure 2-2 is a representation of a client application that uses the client proxy interface to call a method. The
client proxy interface is based on the WSDL definitions.

vSphere server

VirtualMachine
managed object

vSphere client application

GuestInfo
data object

GuestInfo
data object

managed object
reference to a

VirtualMachine
data objects

network
connection

http://www.ws-i.org

VMware, Inc. 19

Chapter 2 vSphere API Programming Model

Figure 2-2. Client-Server Communication Through a Client Proxy Interface

To use the VMware client proxy interface, you must import the vSphere API client libraries in to your client
application using the following Java and C# statements.

Network Access to the vSphere Web Service

Your client application can use the vSphere API to communicate with vSphere servers over HTTPS (HTTP over
an encrypted Secure Sockets Layer connection) at port 443. HTTPS is the default protocol. You can configure
the server to support HTTP. Use HTTP access only for test or development environments, not for production.
See the Developer’s Setup Guide for details.

Language-Specific Classes and Methods

The SOAP tools generate language-specific classes and methods that match the WSDL definitions. The tools
also produce objects and methods that are not in the WSDL files.

 Generated objects. The additional objects provide access to the vSphere Web Service to establish the
client-server connection (VimServiceLocator, AppUtil) and declare the methods defined for the
vSphere API (VimPortType, VimService).

 Generated methods. The additional methods are accessor (getter) and mutator (setter) methods for
properties. For Java, the method names are constructed by adding get and set prefixes to a property
name, and changing the first character of the property name to upper case.

C# using VimApi;
Java import com.vmware.vim25.*;

IMPORTANT The vSphere Web Services SDK includes Java client-side proxy code that was generated using
the JAX-WS toolkit. If the versions of Java and JAX-WS on your development platform are the same as those
used to generate the proxy interface shipped in the SDK, you do not have to generate client-side proxy code
from the WSDL. See the Developer’s Setup Guide for information about configuring a development environment
for the vSphere Web Services SDK.

client application

vSphere Server

method
execution

method
invocation

SOAP-encoded WSDL

network
connection

WSDL2Java,
wsdl.exe, or

other tool

WSDL
files

client
proxy

interface

(Java, C#,
or other)

vSphere Web Services SDK Programming Guide

20 VMware, Inc.

Table 2-1 identifies client proxy definitions for the vSphere Web Services SDK WSDL.

The following code fragments show getter and setter method declarations for the
AfterStartupTaskScheduler.minute property.

Java

public int getMinute() {
return minute; }

public void setMinute(int minute) {
this.minute = minute; }

C#

public int minute {
set; get; }

You can extrapolate the getter and setter methods that are available in the client proxy interface from the
vSphere API Reference. For example, the ScsiLun data object has a displayName property. For the Java API,
you can use a setDisplayName method to assign a string value to the property, and obtain the string value by
using the getDisplayName method. The vSphere Web Services SDK includes Java and C# sample code that
illustrates using the proxy interfaces. See Chapter 3, “Client Applications,” on page 27.

Mapping XML Data Types to Java and C# Data Types

In this guide, the UML class and object diagrams use the primitive data type names such as string and integer,
without the XML Schema definition namespace prefix (xsd:). The vSphere API Reference contains the complete
data type name, such as xsd:string. The data types map to the primitive data types of the programming
language used for the client application.

Table 2-2 lists some of the more common XML primitive data type mappings.

Table 2-1. Client Proxy Definitions

Element Access Java C#

Access to vSphere
Web service
(HTTPS/HTTP)

VimServiceLocator class AppUtil class

Access to vSphere
API methods

VimPortType class VimService class

Access to vSphere
API properties

getPropertyName and setPropertyName
methods defined for data objects

get and set methods defined for properties

vSphere API data
objects

Data objects in the vSphere API (see the vSphere API Reference) defined as objects in the proxy
interface

Table 2-2. Standard XML Schema Primitives to Java and .NET Data Type Mappings

XML Schema Java .NET Data Type

xsd:base64binary byte[] Byte[]

xsd:boolean boolean Boolean

xsd:byte byte SByte

xsd:dateTime java.util.Calendar DateTime

xsd:decimal java.math.BigDecimal Decimal

xsd:double double Double

xsd:float float Single

xsd:int int Int32

xsd:string java.lang.String String

VMware, Inc. 21

Chapter 2 vSphere API Programming Model

Access to Managed Objects
Your client application obtains access to managed objects through the ServiceInstance managed object and
its associated ServiceContent data object. The ServiceContent data object contains managed object
references to services and manager entities, and to the root folder of the inventory.

The ServiceInstance managed object is the root object of the inventory on both ESX/ESXi and vCenter
Server systems. The server creates the ServiceInstance, and creates the manager entities that provide
services in the virtual environment. Examples of manager entities are LicenseManager,
PerformanceManager, and ViewManager.

The ServiceInstance is the primary point of access to the server inventory. Your client application starts by
connecting to a server and creating a reference to the ServiceInstance. After you have connected to the
server, you can call the ServiceInstance.RetrieveServiceContent method to a ServiceContent data
object. ServiceContent provides access to the vSphere managed object services. See “Overview of a Java
Sample Application” on page 38 for an example of connecting to a server and using the ServiceInstance
reference to retrieve the ServiceContent object.

Figure 2-3 shows the object model for the ServiceInstance and ServiceContent objects. The figure shows
some of the ServiceContent managed object references and the target objects of the references. Each
managed object reference identifies a specific managed object on the server with its type and a value. (The
value property is an opaque string.)

Figure 2-3. ManagedObjectReference Data Object

Access to vSphere Server Data
To obtain information about the virtual infrastructure, you retrieve managed object properties. Managed
object properties can be simple data types, such as integer or string data, or they can be complex types such as
data objects that contain sets of properties.

vSphere Web Services SDK Programming Guide

22 VMware, Inc.

Obtaining Information from a Server

With a reference to a managed object, you can obtain information about the state of the server-side inventory
objects and populate client-side data objects based on the values. You can use one of the following approaches:

 Use an accessor (getter) method. The client proxy interface provides accessor methods for each data object
property. You can use these accessor methods to obtain the values of the object. See “Language-Specific
Classes and Methods” on page 19 for information about client proxy interface accessor methods.

 Use a PropertyCollector to navigate to a selected point on the server and obtain values from specific
properties. See Chapter 5 for more information about PropertyCollector.

 Use the SearchIndex managed object to obtain a managed object reference to the managed entity of
interest. The SearchIndex can return managed object references to specific managed
entities—ComputeResource, Datacenter, Folder, HostSystem, ResourcePool,
VirtualMachine—given an inventory path, IP address, or DNS name.

Working with Data Structures

Properties contain information about the server-side objects at a given point in time. The value of a property
can be of one of the following types:

 Simple data types, such as a string, boolean, or integer (or other numeric) audiotape. For example, the
ManagedEntity managed object has a name property that takes a string value.

 Arrays of simple data types or data objects. For example, a HostSystem managed object contains an array
of managed object references (a type of data object) to virtual machines hosted by that physical machine.
As another example, the SessionManager managed object has a sessionList property that is an array
of UserSession data objects.

 Enumerated types (enumeration, enum) of predefined values. The values can be a collection of simple
data types or data objects. For example, a virtual machine's power state can be one of three possible string
values—poweredOn, poweredOff, or suspended.

The type of a property is often a string, but the property actually expects one of the values an enumeration
encapsulates. For example, when you set VirtualMachineConfigSpec.guestid you can specify one of
the elements of the VirtualMachineGuestOSIdentifier as a string.

 Complex (or composite) data types. For example, the HostProfileConfigInfo object contains data
objects, an array of data objects, and an array of strings.

Accessing Property Values

To use the composite data structures and arrays that contain Server data:

 Use dot notation to access nested properties in composite data structures.

 Cast unconstrained property values (xsd:anyType) to array types.

 Use keys or index values as appropriate to access array values.

Nested Properties and Property Paths in Composite Data Structures

vSphere Data objects can include properties that are defined as composite data types, such as data objects. The
embedded data objects can also contain properties that are data objects. Properties can nest to several levels.

IMPORTANT You can use API methods to operate on managed objects in the vSphere inventory. A method
that updates properties in one managed object may also update properties in other managed objects. The
Server performs asynchronous updates to the inventory. There is no guarantee that the inventory will be
completely updated when the method returns to the caller. Use the PropertyCollector method
WaitForUpdatesEx to obtain property changes.

VMware, Inc. 23

Chapter 2 vSphere API Programming Model

For example, the following figure shows a UML class diagram of the VirtualMachine managed object, which
has a runtime property that is defined as an xsd:dateTime data type. VirtualMachine also has a summary
property that is a VirtualMachineSummary data object. The VirtualMachineSummary data object contains a
config property that is a VirtualMachineConfigSummary data object.

Figure 2-4. VirtualMachine Managed Object and Nested Properties

To refer to a nested property, use dot notation to separate the object names in the sequence that defines the
path to the property. Your code must handle the type referenced at the end of the sequence.

For example, you can compare the property referenced by the path summary.config.guestId (a string value)
to the property referenced in the path summary.config (the complete VirtualMachineSummary data object).

Table 2-3 shows examples of property references and the corresponding data types for some of the properties
of the VirtualMachine managed object shown in Figure 2-4.

xsd:anyType Arrays

The vSphere API uses xsd:anyType unconstrained type declarations. A vSphere client must map values of
xsd:anyType to explicit data types. An xsd:anyType value can represent a single data value or it can
represent an array. The WSDL for the vSphere API defines array types for all of the data values that a vSphere
client can send or receive as arrays. The array types use the prefix "ArrayOf". An example of an array type is
ArrayOfString for string values.

When a client sends data to a vSphere Server, the client must use explicit datatypes. For example, a client can
define a MethodAction for a ScheduledTask. The vSphere API defines arguments to the action (the
MethodActionArgument.value property) as type xsd:anyType. If the action takes an array argument, the
client must set the corresponding MethodAction.argument[].value to the appropriate ArrayOf... type.

When a client receives xsd:anyType data from a vSphere Server, it must cast the data to an explicit type. For
example, the PropertyCollector method RetrievePropertiesEx returns a set of ObjectContent data
objects. The ObjectContent.propSet property is a list of DynamicProperty objects that contains the
requested property values. Each DynamicProperty object contains a name-value pair. The value property
(DynamicProperty.val) is of type xsd:anyType. It can represent a single object or an array of objects.

When the returned value is a single object such as an Event, ManagedObjectReference, or String, you can
cast it directly to a variable of the appropriate type. However, when the value is an array of objects you cannot
cast the anyType value directly to an array variable.

Table 2-3. Nested Properties and Data Types

Reference Data Type

summary VirtualMachineSummary data object

summary.config VirtualMachineConfigSummary data object

summary.config.guestID string

vSphere Web Services SDK Programming Guide

24 VMware, Inc.

When the PropertyCollector returns array data, it sends it as an xsd:anyType value. The language-specific
bindings contain definitions for array objects such as ArrayOfEvent, ArrayOfManagedObjectReference,
and ArrayOfString, and corresponding "get" methods. To extract the actual array from a property of type
xsd:anyType, cast DynamicProperty.val to the appropriate array type and use the matching get method –
for example, getEvent(), getManagedObjectReference(), or getString().The following sections provide
examples of how to cast returned values for a few of the array types. The code uses the JAX-WS-generated Java
bindings for the VMware vSphere Web Services SDK WSDL. Each of the code fragments uses this logic:

 Use the DynamicProperty.getVal() method to retrieve the anyType property value.

 Specify the appropriate array type to cast the anyType value.

 Use the corresponding get method to assign the result of the cast operation to a list variable.

Event Array Example

/*
* Handling arrays of Event objects.
* Cast the return value to ArrayOfEvent and use getEvent().
*/
List[] eventList = ((ArrayOfEvent) dynamicProp.getVal()).getEvent();

ManagedObjectReference Array Example

/*
* Handling arrays of ManagedObjectReference objects.
* Cast the return value to ArrayOfManagedObjectReference and use getManagedObjectReference().
*/
List[] morList =

((ArrayOfManagedObjectReference)dynamicProp.getVal()).getManagedObjectReference();

String Array Example

/*
* Handling arrays of strings.
* Cast the return value to ArrayOfString and use getString().
*/
List[] stringList = ((ArrayOfString) dynamicProp.getVal()).getString();

Indexed Array and Key-Based Array Properties

The VMware vSphere data structures include array properties, which can be indexed arrays or key-based
arrays.

 Indexed arrays are accessed by using an index integer. Indexed arrays are used for arrays of data types
whose positions in the array do not change. For example, the roleList property of the
AuthorizationManager managed object is an array of authorization roles. Adding a new role to the
array does not change the position of existing elements in the array.

 Key-based arrays are used for information whose position is subject to change. A key-based array (same
basic concept as a Perl hash or a Python dictionary) uses a unique, unchanging value as a key to access an
element’s value. Typically, the key is a string, but integers can also be used. For example, Event arrays use
integers as keys. Nested properties can also refer to entries in a key-based array. For example,
a.b.c["xyz"] refers to the property c that has the key value of xyz.

The vSphere management object model uses key-based arrays to track managed object references. The
contents of a key-based array property are accessed by the value of either the key property or, in the case
of a managed object reference, its value property. The value of these fields is unique across all of the
components of an array.

VMware, Inc. 25

Chapter 2 vSphere API Programming Model

Unset Optional Properties

Many of the Data Objects in the vSphere Web Services SDK have optional properties that may be set by your
client application or by a Server process or event. If you retrieve a data object that has a optional property that
is unset, the Server will not return a value for the optional property. If you call an accessor function to retrieve
the property value, the value returned by the function depends on the programming language that you are
using.

For example, if you are programming in Java or C#, the value you will receive for an unset property is “null”.

Figure 2-5 shows part of the Properties table for the HostFirewallInfo Data Object in the vSphere Web Services
SDK API Reference. When you look at properties in the vSphere Web Services SDK API Reference, you can see that
optional properties are marked with a red asterisk.

In this example, that the defaultPolicy property is always returned, but the ruleset property will be returned as
a null value if it has not been set.

Figure 2-5. Data Object - HostFirewallInfo Properties

Since Data Objects are part of many different constructs, there is no standard scenario for when an optional
property should be set, what will happen if an optional property is left unset, or what you should do if a null
value is returned.

Escape Character in Name and Path Properties

The percent sign (%) is used as an escape character to embed special characters in strings. For example, %2f
(or %2F) is interpreted as the slash (/) character. To include a percent sign as a literal in a string, use %%.The
path to the inventory starts from the root folder (ServiceContent.rootFolder property), denoted by the
slash character.

Table 2-4. Special Characters

Character Description Representation in URL

% Percent sign %25

/ Slash %2F, %2f

\ Backslash %5C, %5c

- Dash %2D, %2d

. Dot %2E, %2e

“ Double quotation mark %2B, %2b

vSphere Web Services SDK Programming Guide

26 VMware, Inc.

VMware, Inc. 27

3

This chapter includes the following topics:

 “vCenter Server Connections” on page 27

 “Establishing a Single Sign On Session with a vCenter Server” on page 28

 “Establishing a Session with Username and Password Credentials” on page 38

 “Web Server Session Token” on page 41

 “Multiple Versions of the vSphere API” on page 45

 “Identifying the API Version Supported by the Server” on page 46

 “Helper Classes for C# Sample Applications” on page 46

vCenter Server Connections
Every vCenter Server client application must connect to the Server and pass user account credentials to
authenticate to the Server. After the connection has been established, the client application can use vSphere
services to access the virtual environment.

vSphere uses SSL certificates, HTTP tokens, and vCenter Single Sign On tokens to authenticate a client and
support a persistent connection between the client and vCenter Server. The following table provides an
overview of these elements.

Client Applications 3

Table 3-1. Security Elements for Client-Server Connections

Security Element Description

SSL certificates vSphere Servers use standard X.509 version 3 (X.509v3) certificates to encrypt session
information sent over Secure Socket Layer (SSL) protocol connections. In a production
environment, client applications verify the vSphere Server certificate during the connection
sequence. The examples in this chapter and the examples in the vSphere Web Services SDK
accept all certificates.

HTTP tokens A vSphere Server uses an HTTP token to identify a client session. The Server provides the
HTTP token in its response to a client connection request. Subsequent messages between the
client and the Server include the HTTP token in the HTTP header.

Client authentication
vCenter
Single Sign On token

vSphere supports vCenter Single Sign On. A vCenter client can obtain a vCenter Single Sign
On token from a vCenter Single Sign On Server and use that token to login to a vCenter
Server.

Client authentication
username/password

Username/password authentication for client-server connections has been deprecated as of
vSphere 5.1.

vSphere Web Services SDK Programming Guide

28 VMware, Inc.

Establishing a Single Sign On Session with a vCenter Server
vSphere uses single sign on to provide a single point of authentication for clients. vSphere includes the
vCenter Single Sign On Server. To use vCenter Single Sign On, your client obtains a SAML token (Security
Assertion Markup Language) from the vCenter Single Sign On Server and passes the token to the vCenter
Server in the login request. The token represents the client and contains claims that support client
authentication. Components in the vSphere environment perform operations based on the original
authentication. For information about obtaining a vCenter Single Sign On token from the vCenter Single Sign
On Server, see vCenter Single Sign On Programming Guide.

To use single sign on, your client calls the LoginByToken method. Your client must send a SAML token to the
vCenter Server by embedding the token in the SOAP header for the LoginByToken request. During the login
sequence, your client must save and restore the HTTP session cookie. The vCenter Single Sign On SDK
contains sample code that demonstrates how to use the LoginByToken method.

The following sections describe examples of using the LoginByToken method to establish a vCenter Single
Sign On session with a vCenter Server.

 “LoginByToken (C# Example)” on page 28

 “LoginByToken (Java Example)” on page 33

LoginByToken (C# Example)

The following sections describe a C# example of using the LoginByToken method.

vCenter Server Single Sign On Session

After you obtain a SAML token from the vCenter Single Sign On Server, you can use the vSphere API method
LoginByToken to establish a single sign on session with a vCenter Server. To establish a vCenter Server
session that is based on SAML token authentication, the client must embed the SAML token in the SOAP
header of the LoginByToken request. The C# LoginByToken example uses the following .NET services to
support a single sign on session.

Persistent vCenter Sessions

A persistent vCenter session relies on a session cookie. When the vCenter Server receives a connection request
(SessionManager.RetrieveServiceContent), the Server creates a session cookie and returns it in the HTTP
header of the response. The client-side .NET framework embeds the cookie in HTTP messages that the client
sends to the Server.

Table 3-2. Microsoft .NET Elements for vCenter Single Sign On Sessions

.NET Element /
 Namespace vCenter Single Sign On Usage

SecurityPolicyAssertion

Microsoft.Web.Services3.Security

The sample creates a custom policy assertion derived from the
SecurityPolicyAssertion class. The custom assertion contains the
SAML token and X509 certificate.

SendSecurityFilter

Microsoft.Web.Services3.Security

The sample defines a custom output filter derived from the
SendSecurityFilter class. The custom filter adds the token and
certificate to the outgoing SOAP message.

ServicePointManager

System.net

The sample uses the ServicePointManager to specify SSL3 and HTTP
100-Continue behavior.

ConfigurationManager

System.Configuration

The sample uses the ConfigurationManager to specify certificate
metadata (password and certificate type).

CookieContainer

System.Net

The sample uses the CookieContainer class to manage vCenter session
cookies.

VMware, Inc. 29

Chapter 3 Client Applications

The LoginByToken request includes the SAML token and client certificate security assertions for client
authentication. After successful login, the authentication overhead is no longer needed. The client resets the
VimService context to eliminate the security overhead. Subsequent client requests will contain the session
cookie, which is enough to support the persistent, authenticated session.

Sample Code

The code examples in the following sections show how to use the LoginByToken method with a holder-of-key
security token. The code examples are based on the LoginByTokenSample project contained in the vCenter
Single Sign On SDK. The project is located in the dotnet samples directory
(SDK/ssoclient/dotnet/cs/samples/LoginByToken).

 Project file – LoginByToken.csproj

 Sample code – LoginByTokenSample.cs

 SOAP header manipulation code – CustomSecurityAssertionHok.cs

Using LoginByToken

The example program uses the following elements and general steps:

 LoginByTokenSample Constructor

 Token Acquisition

 Security Policies

 Connection and Login

LoginByTokenSample Constructor

The LoginByTokenSample class constructor creates the following elements to set up access to the vCenter
Server.

 VimService object – Provides access to vSphere API methods and support for security policies and
session cookie managment. It also stores the vCenter Server URL.

 CookieContainer – Provides local storage for the vCenter session cookie.

 ManagedObjectReference – Manually created ManagedObjectReference to retrieve a
ServiceInstance at the beginning of the session.

The following code fragment shows the LoginByTokenSample constructor.

Example 3-1. LoginByTokenSample Constructor

// Global variables
private VimService _service;
private ManagedObjectReference _svcRef;
private ServiceContent _sic;
private string _serverUrl;

public LoginByTokenSample(string serverUrl)
{
 _service = new VimService();
 _service.Url = serverUrl;
 _serverUrl = serverUrl;
 _service.CookieContainer = new System.Net.CookieContainer();
 _svcRef = new ManagedObjectReference();
 _svcRef.type = "ServiceInstance";
 _svcRef.Value = "ServiceInstance";
}

vSphere Web Services SDK Programming Guide

30 VMware, Inc.

Token Acquisition

The client must obtain a SAML token from a vCenter Single Sign On Server. See the vCenter Single Sign On
Programming Guide.

Security Policies

The LoginByToken sample creates a custom policy assertion that is derived from the .NET class
SecurityPolicyAssertion. The assertion class gives the .NET framework access to the SAML token and the
X509 certificate.

The sample performs the following operations to set up the security policy and message handling.

 Sets the ServicePointManager properties to specify SSL3 and HTTP 100-Continue response handling.
100-Continue response handling supports more efficient communication between the client and vCenter
Server. When the client-side .NET framework sends a request to the Server, it sends the request header
and waits for a 100-Continue response from the Server. After it receives that response, it sends the request
body to the Server.

 Creates an X509Certificate2 object, specifies the certificate file, and imports the certificate. The
certificate file specification indicates a PKCS #12 format file (Public-Key Cryptography Standards) –
PfxCertificateFile. The file contains the client’s private key and public certificate. The
PfxCertificateFile setting is defined in the app.config file in the LoginByToken project. The
definition specifies the location of the file.

 Creates a custom security assertion to store the SAML token and the certificate. The token and certificate
will be included in the policy data for the LoginByToken request.

 Defines a custom output filter that is derived from the .NET class SendSecurityFilter.

Custom Security Assertion The following code fragment shows the LoginByTokenSample class method
GetSecurityPolicyAssertionForHokToken. The method returns a CustomSecurityAssertionHok
instance which overrides the .NET class SecurityPolicyAssertion. The security assertion contains the
SAML token and the X509 certificate token. This code is taken from the LoginByToken project file
samples/LoginByToken/CustomSecurityAssertionHok.cs.

Example 3-2. Setting Up Security Policies

private SecurityPolicyAssertion GetSecurityPolicyAssertionForHokToken(XmlElement xmlToken)
{

 //When this property is set to true, client requests that use the POST method
 //expect to receive a 100-Continue response from the server to indicate that
 //the client should send the data to be posted. This mechanism allows clients
 //to avoid sending large amounts of data over the network when the server,
 //based on the request headers, intends to reject the request
 ServicePointManager.Expect100Continue = true;
 ServicePointManager.SecurityProtocol = SecurityProtocolType.Ssl3;

 X509Certificate2 certificateToBeAdded = new X509Certificate2();
 string certificateFile = ConfigurationManager.AppSettings["PfxCertificateFile"];
 string password = ConfigurationManager.AppSettings["PfxCertificateFilePassword"];
 certificateToBeAdded.Import(certificateFile, password ?? string.Empty,

X509KeyStorageFlags.MachineKeySet);

 var customSecurityAssertion = new CustomSecurityAssertionHok();
 customSecurityAssertion.BinaryToken = xmlToken;
 customSecurityAssertion.TokenType = strSamlV2TokenType;
 customSecurityAssertion.SecurityToken = new X509SecurityToken(certificateToBeAdded);

 return customSecurityAssertion;
}

Custom Output Filter The following code fragment shows the custom output filter for the custom security
assertion. The custom filter provides three methods:

VMware, Inc. 31

Chapter 3 Client Applications

 CustomSecurityClientOutputFilterHok class constructor – Creates token and message signature objects
for the SOAP message.

 SecureMessage – An override method for the .NET method SendSecurityFilter.SecureMessage. The
override method adds the SAML token and message signature to the .NET Security element.

 CreateKeyInfoSignatureElement – Creates an XML document that specifies the SAML token type and ID.

Example 3-3. Output Filter for the Custom SecurityPolicyAssertion

internal class CustomSecurityClientOutputFilterHok : SendSecurityFilter
 {
 IssuedToken issuedToken = null;
 string samlAssertionId = null;
 MessageSignature messageSignature = null;

 /// Create a custom SOAP request filter.
 /// (Save the token and certificate.)
 public CustomSecurityClientOutputFilterHok(CustomSecurityAssertionHok parentAssertion)
 : base(parentAssertion.ServiceActor, true)
 {
 issuedToken = new IssuedToken(parentAssertion.BinaryToken,

parentAssertion.TokenType);
 samlAssertionId = parentAssertion.BinaryToken.Attributes.GetNamedItem("ID").Value;
 messageSignature = new MessageSignature(parentAssertion.SecurityToken);
 }

 /// Secure the SOAP message before its sent to the server.
 public override void SecureMessage(SoapEnvelope envelope, Security security)
 {
 //create KeyInfo XML element
 messageSignature.KeyInfo = new KeyInfo();
 messageSignature.KeyInfo.LoadXml(CreateKeyInfoSignatureElement());

 security.Tokens.Add(issuedToken);
 security.Elements.Add(messageSignature);
 }

 /// Helper method to create a custom key info signature element.
 /// Returns Key info XML element.
 private XmlElement CreateKeyInfoSignatureElement()
 {
 var xmlDocument = new XmlDocument();
 xmlDocument.LoadXml(@"<root><SecurityTokenReference

xmlns=""http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-
1.0.xsd""

 xmlns:wsse=""http://docs.oasis-open.org/wss/oasis-wss-wssecurity-secext-1.1.xsd""

wsse:TokenType=""http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.1#S
AMLV2.0"">

 <KeyIdentifier
xmlns=""http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-
1.0.xsd""

ValueType=""http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.1#SAMLID
"">" + samlAssertionId +

 @"</KeyIdentifier></SecurityTokenReference></root>");
 return xmlDocument.DocumentElement;
 }
 }

Connection and Login

The following code fragment performs the following actions:

 Calls the LoginByTokenSample class method GetSecurityPolicyAssertionForHokToken (see
“Security Policies” on page 30) and adds the security policy to the VimService object.

vSphere Web Services SDK Programming Guide

32 VMware, Inc.

The VimService object contains the following data:

 vCenter Server URL.

 SAML token (stored in the security policy assertion).

 X509 certificate (stored in the security policy assertion).

 Calls the RetrieveServiceContent method. The method establishes the connection with the vCenter
Server and it returns a session cookie. The session cookie is stored in the cookie container in the
VimService object.

 Calls the LoginByToken method. The .NET framework uses the security policy assertion and the session
cookie to construct the login request.

 Calls the LoginByTokenSample class method resetService to create a new VimService object.

Example 3-4. Connection and Login

// Construct the security policy assertion
SecurityPolicyAssertion securityPolicyAssertion = null;
securityPolicyAssertion = GetSecurityPolicyAssertionForHokToken(xmlToken);

// Setting up the security policy for the request
Policy policySAML = new Policy();
policySAML.Assertions.Add(securityPolicyAssertion);

// Setting policy of the service
_service.SetPolicy(policySAML);

_sic = _service.RetrieveServiceContent(_svcRef);
if (_sic.sessionManager != null)
{
 _service.LoginByToken(_sic.sessionManager, null);
}
resetService();

The following code fragment shows the resetService method. The method creates a new VimService object
and a new cookie container. The method also obtains a new instance of the session cookie.

Example 3-5. The resetService method

/// Resetting the VimService without the security policies
/// as we need the policy only for the LoginByToken method
/// and not the other method calls. resetService also maintains the
/// authenticated session cookie post LoginByToken.
///
/// This method needs to be called only after successful
/// login
private void resetService()
{
 var _cookie = getCookie();
 _service = new VimService();
 _service.Url = _serverUrl;
 _service.CookieContainer = new CookieContainer();
 if (_cookie != null)
 {
 _service.CookieContainer.Add(_cookie);
 }
}

/// Method to save the session cookie
private Cookie getCookie()
{
 if (_service != null)

VMware, Inc. 33

Chapter 3 Client Applications

 {
 var container = _service.CookieContainer;
 if (container != null)
 {
 var _cookies = container.GetCookies(new Uri(_service.Url));
 if (_cookies.Count > 0)
 {
 return _cookies[0];
 }
 }
 }
 return null;
}

LoginByToken (Java Example)

The following example is based on the LoginByTokenSample.java file contained in the vCenter Single Sign
On SDK. The SDK contains Java code that supports HTTP and SOAP header manipulation.

 “Client Support for a vCenter Single Sign On Session with a vCenter Server” on page 33
 “Saving the vCenter Server Session Cookie” on page 34
 “Using LoginByToken” on page 36
 “Restoring the vCenter Server Session Cookie” on page 37

Client Support for a vCenter Single Sign On Session with a vCenter Server

After you obtain a SAML token from the vCenter Single Sign On Server, you can use the vSphere API method
LoginByToken to establish a vCenter Single Sign On session with a vCenter Server. At the beginning of the
session, your client is responsible for the following tasks:

 Maintain the vCenter session cookie. During the initial connection, the Server produces an HTTP session
cookie to support the persistent connection. Operations during the login sequence will reset the request
context so your client must save this cookie and re-introduce it at the appropriate times.

 Insert the vCenter Single Sign On token and a timestamp into the SOAP header of the LoginByToken
message.

The example program uses these general steps:

1 Call the RetrieveServiceContent method to establish an HTTP connection with the vCenter Server and
save the HTTP session cookie. The client uses an HTTP header handler method to extract the cookie from
the vCenter Server response.

2 Call the LoginByToken method to authenticate the vCenter session. To send the token to the vCenter
Server, the client uses a handler to embed the token and a time stamp in the SOAP header for the message.
To identify the session started with the RetrieveServiceContent method, the client uses a handler to
embed the session cookie in the HTTP header.

3 Restore the session cookie.

HTTP and SOAP Header Handlers

To use a vCenter Single Sign On token to login to a vCenter Server, the example uses header handlers to
manipulates the HTTP and SOAP header elements of the login request. After establishing a handler,
subsequent requests automatically invoke the handler.

 An extraction handler obtains the HTTP session cookie provided by the vCenter Server. After setting up
the handler, a call to the RetrieveServiceContent method will invoke the handler to extract the cookie
from the Server response.

 Insertion handlers put the vCenter Single Sign On token and a timestamp into the SOAP header and the
session cookie into the HTTP header of the login request.

The following figure shows the use of handlers to manipulate header elements when establishing a vCenter
Single Sign On session with a vCenter Server.

vSphere Web Services SDK Programming Guide

34 VMware, Inc.

Figure 3-1. Starting a vCenter Session

Sample Code

The code examples in the following sections show how to use the LoginByToken method with a holder-of-key
security token. The code examples are based on the sample code contained in the vCenter Single Sign On SDK.
The files are located in the Java samples directory (SDK/ssoclient/java/JAXWS/samples):

 LoginByToken sample:

samples/com/vmware/vsphere/samples/LoginByTokenSample.java

 Header cookie handlers:

samples/com/vmware/vsphere/soaphandlers/HeaderCookieHandler.java
samples/com/vmware/vsphere/soaphandlers/HeaderCookieExtractionHandler.java

 SOAP header handlers. These are the same handlers that are used in the vCenter Single Sign On example
in vCenter Single Sign On Programming Guide. The SOAP handler files are contained in the vCenter Single
Sign On SDK and are located in the sso client soaphandlers directory:

SDK/ssoclient/java/JAXWS/samples/com/vmware/sso/client/soaphandlers

Saving the vCenter Server Session Cookie

The code fragment in this section establishes an HTTP session with the vCenter Server and saves the HTTP
session cookie.

IMPORTANT Every call to the vCenter Server will invoke any message handlers that have been established.
The overhead involved in using the SOAP and HTTP message handlers is not necessary after the session has
been established. The example saves the default message handler before setting up the SOAP and HTTP
handlers. After establishing the session, the example will reset the handler chain and restore the default
handler.

The example code also uses multiple calls to the VimPortType.getVimPort method to manage the request
context. The getVimPort method clears the HTTP request context. After each call to the getVimPort method,
the client resets the request context endpoint address to the vCenter Server URL. After the client has obtained
the session cookie, it will restore the cookie in subsequent requests.

timestamp

vCenter Single
Sign On token

vCenter
client

RetrieveServiceContent()

session cookie

session cookieHTTP header:

session cookie

HTTP header:

LoginByToken()

SOAP header:
timestamp

vCenter Single
Sign On token

extraction handler

insertion handler

insertion handler

insertion handler

vCenter
Server

VMware, Inc. 35

Chapter 3 Client Applications

The following sequence describes these steps and shows the corresponding objects and methods.

The following example shows Java code that saves the session cookie.

Example 3-6. Saving the vCenter Server Session Cookie

/*
 * The example uses a SAML token (obtained from a vCenter Single Sign On Server)
 * and the vCenter Server URL.
 * The following declarations indicate the datatypes; the token datatype (Element) corresponds
 * to the token datatype returned by the vCenter Single Sign On Server.
 *
 * Element token; -- from vCenter Single Sign On Server
 * String vcServerUrl; -- identifies vCenter Server
 *
 * First, save the default message handler.
 */

HandlerResolver defaultHandler = vimService.getHandlerResolver();

/*
 * Create a VIM service object.
 */
vimService = new VimService();

/*
 * Construct a managed object reference for the ServiceInstance.
 */
ManagedObjectReference SVC_INST_REF = new ManagedObjectReference();
SVC_INST_REF.setType("ServiceInstance");
SVC_INST_REF.setValue("ServiceInstance");

1 Use the getHandlerResolver method to
save the default message handler. To use the
HTTP and SOAP message handlers, you
must first save the default message handler
so that you can restore it after login. The
HTTP and SOAP message handlers impose
overhead that is unneccessary after login.

2 Set the cookie handler. The
HeaderCookieExtractionHandler
method retrieves the HTTP cookie.

3 Get the VIM port. The VIM port provides
access to the vSphere API methods,
including the LoginByToken method.

4 Set the request context endpoint address to
the vCenter Server URL.

5 Retrieve the ServiceContent. This method
establishes the HTTP connection and sets the
session cookie.

6 Extract the cookie and save it for later use.

VimService.getHandlerResolver()

HeaderHandler Resolver

VimService

HeaderCookieExtractionHandler

VimPortTypeVimService

Request ContextVimService

VimPortType ServiceContent

HeaderCookieExtractionHandler.getCookie ()

vSphere Web Services SDK Programming Guide

36 VMware, Inc.

/*
 * Create a handler resolver.
 * Create a cookie extraction handler and add it to the handler resolver.
 * Set the VIM service handler resolver.
 */
HeaderCookieExtractionHandler cookieExtractor = new HeaderCookieExtractionHandler();
HeaderHandlerResolver handlerResolver = new HeaderHandlerResolver();
handlerResolver.addHandler(cookieExtractor);
vimService.setHandlerResolver(handlerResolver);

/*
 * Get the VIM port for access to vSphere API methods. This call clears the request context.
 */
vimPort = vimService.getVimPort();

/*
 * Get the request context and set the connection endpoint.
 */
Map<String, Object> ctxt = ((BindingProvider) vimPort).getRequestContext();
ctxt.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY, vcServerUrl);
ctxt.put(BindingProvider.SESSION_MAINTAIN_PROPERTY, true);

/*
 * Retrieve the ServiceContent. This call establishes the HTTP connection.
 */
serviceContent = vimPort.retrieveServiceContent(SVC_INST_REF);

/*
 * Save the HTTP cookie.
 */
String cookie = cookieExtractor.getCookie();

Using LoginByToken

The code fragment in this section sets up the message handlers and calls the LoginByToken method. The
following sequence describes the steps and shows the corresponding objects and methods.

1 Create a new HeaderHandlerResolver.
Then set the message security handlers for
cookie insertion and for inserting the
SAML token and credentials in the SOAP
header.

2 Get the VIM port.

3 Set the connection endpoint in the HTTP
request context.

4 Call the LoginByToken method. The
method invocation executes the handlers
to insert the elements into the message
headers. The method authenticates the
session referenced by the session cookie.

HeaderHandler Resolver

WsSecurityUserCertificateSignatureHandler (key, certificate, ID)

TimestampHandler

SamlTokenHandler (SAML token)

HeaderCookieHandler (session cookie)

VimPortTypeVimService

Request ContextVimService

VimPortType.LoginByToken ()

VMware, Inc. 37

Chapter 3 Client Applications

The following examples shows Java code that calls the LoginByToken method.

Example 3-7. Using LoginByToken

/*
 * Create a handler resolver and add the handlers.
 */
HeaderHandlerResolver handlerResolver = new HeaderHandlerResolver();
handlerResolver.addHandler(new TimeStampHandler());
handlerResolver.addHandler(new SamlTokenHandler(token));
handlerResolver.addHandler(new HeaderCookieHandler(cookie));
handlerResolver.addHandler(new WsSecuritySignatureAssertionHandler(

 userCert.getPrivateKey(),
 userCert.getUserCert(),
 Utils.getNodeProperty(token, "ID")));

vimService.setHandlerResolver(handlerResolver);

/*
 * Get the Vim port; this call clears the request context.
 */
vimPort = vimService.getVimPort();

/*
 * Retrieve the request context and set the server URL.
 */
Map<String, Object> ctxt = ((BindingProvider) vimPort).getRequestContext();
ctxt.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY, vcServerUrl);
ctxt.put(BindingProvider.SESSION_MAINTAIN_PROPERTY, true);

/*
 * Call LoginByToken.
 */
UserSession us = vimPort.loginByToken(serviceContent.getSessionManager(), null);

Restoring the vCenter Server Session Cookie

After you log in, you must restore the standard vCenter session context. The code fragment in this section
restores the default message handler and the session cookie. As the cookie handler has been replaced by the
default handler, the client resets the session cookie by calling request context methods to access the context
fields directly. The following sequence describes these steps and shows the corresponding objects and
methods.

The following example shows Java code that restores the vCenter session. This code requires the vCenter URL
and the cookie and default handler that were retrieved before login. See “Sample Code” on page 34.

1 Restore the default message handler. The
handlers used for LoginByToken are not
used in subsequent calls to the vSphere
API.

2 Get the VIM port.

3 Set the connection endpoint in the HTTP
request context.

4 Set the HTTP request header (vCenter
session cookie).

VimService.setHandlerResolver ()

VimPortTypeVimService

Request ContextVimService

RequestContext.get ()
RequestContext.put ()

vSphere Web Services SDK Programming Guide

38 VMware, Inc.

Example 3-8. Restoring the vCenter Server Session

/*
 * Reset the default handler. This overwrites the existing handlers, effectively removing them.
 */
vimService.setHandlerResolver(defaultHandler);
vimPort = vimService.getVimPort();

/*
 * Restore the connection endpoint in the request context.
 */
// Set the validated session cookie and set it in the header for once,
// JAXWS will maintain that cookie for all the subsequent requests

Map<String, Object> ctxt = ((BindingProvider) vimPort).getRequestContext();
ctxt.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY, vcServerUrl);
ctxt.put(BindingProvider.SESSION_MAINTAIN_PROPERTY, true);

/*
 * Reset the cookie in the request context.
 */
Map<String, List<String>> headers = (Map<String, List<String>>)

ctxt.get(MessageContext.HTTP_REQUEST_HEADERS);
if (headers == null) {
 headers = new HashMap<String, List<String>>();
}
headers.put("Cookie", Arrays.asList(cookie));
ctxt.put(MessageContext.HTTP_REQUEST_HEADERS, headers);

Establishing a Session with Username and Password Credentials
You can specify username and password credentials to establish a session with a vCenter Server. This method
of establishing a session has been deprecated as of vSphere 5.1. The following steps describe how a client
application specifies username and password credentials for access to a vCenter Server.

1 Create a connection to the vSphere server Web service.

2 Instantiate a local proxy object for reference to ServiceInstance. Use this local proxy object to retrieve
the ServiceContent object from the server. ServiceContent contains a reference to the root folder for
the inventory and references to the managed objects that provide the vSphere services.

3 Instantiate a local proxy object for access to vSphere API methods.

4 Log in to the server using appropriate credentials (user account, password, and optionally the locale).

5 Access server-side objects to retrieve data and perform management operations.

6 Close the connection.

Overview of a Java Sample Application

This section includes an example of a complete client application that demonstrates the basic client capability.
The sample client application prints out the product name, server type, and product version to demonstrate
that it is connected and able to retrieve information from the server.

While Example 3-9, “Java Test Client Application,” on page 39 is a complete client application that
demonstrates the basic client capability, it uses a slightly different format than the Java sample files in the SDK\
directory. This example, and the Java samples that are included with your vSphere Web Service SDK, have
been compiled using JAX-WS bindings.

Most of the vSphere Web Services SDK samples do not handle exceptions, and they accept all security
certificates. Use the samples as examples for extracting the types of data you want to view, but do not use these
security or exception techniques in your production applications.

VMware, Inc. 39

Chapter 3 Client Applications

Example 3-9 is a stand-alone application that accepts command-line arguments for the vSphere server name
(DNS name or IP address), user name, and password.

To build a simple vSphere client application

1 Import the vSphere Web Services API libraries:

import com.vmware.vim25.*;

2 Import the necessary Java (and JAX-WS connection, bindings, and SOAP) libraries:

import java.util.*;
import javax.net.ssl.HostnameVerifier;
import javax.net.ssl.HttpsURLConnection;
import javax.net.ssl.SSLSession;
import javax.xml.ws.BindingProvider;
import javax.xml.ws.soap.SOAPFaultException;

3 Create the TestClient class:

public class TestClient {

4 Include the class variable declarations/definitions. Use a TrustManager class to accept all certificates, as
shown in “Accessing the HTTP Endpoint with JAX-WS” on page 42. This is not appropriate for a
production environment. Production code should implement certificate support.

5 Use the vSphere Web Services APIs to create the connection, as shown in “Accessing the vSphere Server”
on page 43.

6 Retrieve data from the vSphere or vCenter server. In this example, we are just going to print out the
product name, server type, and product version to prove that the client is connected and working
correctly.

System.out.println(serviceContent.getAbout().getFullName());
System.out.println("Server type is " + serviceContent.getAbout().getApiType());
System.out.println("API version is " + serviceContent.getAbout().getVersion());

7 Use the VimPort object to close the connection, as shown in “Closing the Connection” on page 44. Always
close your server connections to maintain security.

Java Client Example

Example 3-9 shows the complete sample client application code, without the explanation steps.

Example 3-9. Java Test Client Application

import com.vmware.vim25.*;
import java.util.*;
import javax.net.ssl.HostnameVerifier;
import javax.net.ssl.HttpsURLConnection;
import javax.net.ssl.SSLSession;
import javax.xml.ws.BindingProvider;
import javax.xml.ws.soap.SOAPFaultException;

public class TestClient {

// Authentication is handled by using a TrustManager and supplying
// a host name verifier method. (The host name verifier is declared
// in the main function.)
// See Example 3-10 for more details.

private static class TrustAllTrustManager implements javax.net.ssl.TrustManager,
javax.net.ssl.X509TrustManager {

 public java.security.cert.X509Certificate[] getAcceptedIssuers() {
 return null;
 }

 public boolean isServerTrusted(
 java.security.cert.X509Certificate[] certs) {
 return true;

vSphere Web Services SDK Programming Guide

40 VMware, Inc.

 }

 public boolean isClientTrusted(
 java.security.cert.X509Certificate[] certs) {
 return true;
 }

 public void checkServerTrusted(java.security.cert.X509Certificate[] certs,
 String authType)
 throws java.security.cert.CertificateException {
 return;
 }

 public void checkClientTrusted(java.security.cert.X509Certificate[] certs,
 String authType)
 throws java.security.cert.CertificateException {
 return;
 }
 }

public static void main(String[] args) {
 try {

// Server URL and credentials.

String serverName = args[0];
String userName = args[1];
String password = args[2];
String url = "https://"+serverName+"/sdk/vimService";

// Variables of the following types for access to the API methods
// and to the vSphere inventory.
// -- ManagedObjectReference for the ServiceInstance on the Server
// -- VimService for access to the vSphere Web service
// -- VimPortType for access to methods
// -- ServiceContent for access to managed object services

ManagedObjectReference SVC_INST_REF = new ManagedObjectReference();
VimService vimService;
VimPortType vimPort;
ServiceContent serviceContent;

// Declare a host name verifier that will automatically enable
// the connection. The host name verifier is invoked during
// the SSL handshake.

HostnameVerifier hv = new HostnameVerifier() {
public boolean verify(String urlHostName, SSLSession session) {

return true;
}
};
// Create the trust manager.

javax.net.ssl.TrustManager[] trustAllCerts = new javax.net.ssl.TrustManager[1];
javax.net.ssl.TrustManager tm = new TrustAllTrustManager();
trustAllCerts[0] = tm;

// Create the SSL context
javax.net.ssl.SSLContext sc = javax.net.ssl.SSLContext.getInstance("SSL");

// Create the session context
javax.net.ssl.SSLSessionContext sslsc = sc.getServerSessionContext();

// Initialize the contexts; the session context takes the trust manager.
sslsc.setSessionTimeout(0);
sc.init(null, trustAllCerts, null);

// Use the default socket factory to create the socket for the secure connection
javax.net.ssl.HttpsURLConnection.setDefaultSSLSocketFactory(sc.getSocketFactory());

// Set the default host name verifier to enable the connection.
HttpsURLConnection.setDefaultHostnameVerifier(hv);

VMware, Inc. 41

Chapter 3 Client Applications

// Set up the manufactured managed object reference for the ServiceInstance
SVC_INST_REF.setType("ServiceInstance");
SVC_INST_REF.setValue("ServiceInstance");

// Create a VimService object to obtain a VimPort binding provider.
// The BindingProvider provides access to the protocol fields
// in request/response messages. Retrieve the request context
// which will be used for processing message requests.

vimService = new VimService();
vimPort = vimService.getVimPort();
Map<String, Object> ctxt = ((BindingProvider) vimPort).getRequestContext();

// Store the Server URL in the request context and specify true
// to maintain the connection between the client and server.
// The client API will include the Server's HTTP cookie in its
// requests to maintain the session. If you do not set this to true,
// the Server will start a new session with each request.

ctxt.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY, url);
ctxt.put(BindingProvider.SESSION_MAINTAIN_PROPERTY, true);

// Retrieve the ServiceContent object and login
serviceContent = vimPort.retrieveServiceContent(SVC_INST_REF);
vimPort.login(serviceContent.getSessionManager(),

userName,
password,
null);

// print out the product name, server type, and product version
System.out.println(serviceContent.getAbout().getFullName());
System.out.println("Server type is " + serviceContent.getAbout().getApiType());
System.out.println("API version is " + serviceContent.getAbout().getVersion());

// close the connection
vimPort.logout(serviceContent.getSessionManager());

} catch (Exception e) {
System.out.println(" Connect Failed ");
e.printStackTrace();

 }
 }//end main()
}// end class TestClient

Use the following command to compile the code for Example 3-9, “Java Test Client Application,” on page 39,
after you have saved it as a .java file:

c:>javac -classpath path-to-vim25.jar TestClient.java

Use the following command to execute the compiled class (binary) file:

c:>java -classpath path-to-vim25.jar TestClient web-service-url user-name user-password

Web Server Session Token
As with other Web services, the vSphere Web service maintains session state for each client connection by
using a token in the HTTP header to identify the session. The vSphere server returns a session token to the
client in its response to the client connection request. Subsequent messages between client and server
automatically include the token.

Each of the stand-alone samples in the SDK\vsphere-ws\java\JAX-WS\samples\com\vmware\ uses the
JAX-WS TrustAllTrustCertificates class, as discussed in Example 3-10 to ignore certificates, obtain a session
token, and then connect to the server.

CAUTION We do not recommend that you trust all certificates in a production environment. Instead, you can
look at the sample code to see how the JAX-WS libraries are used when making the connection, but set up an
SSL policy that allows connection only with trusted certificates.

vSphere Web Services SDK Programming Guide

42 VMware, Inc.

The logic for getting a cookie and putting it in the header looks like this:

//cookie logic
List cookies = (List) headers.get("Set-cookie");
cookieValue = (String) cookies.get(0);
StringTokenizer tokenizer = new StringTokenizer(cookieValue, ";");
cookieValue = tokenizer.nextToken();
String path = "$" + tokenizer.nextToken();
String cookie = "$Version=\"1\"; " + cookieValue + "; " + path;

// set the cookie in the new request header
Map map = new HashMap();
map.put("Cookie", Collections.singletonList(cookie));

((BindingProvider) vimPort).getRequestContext().put(
MessageContext.HTTP_REQUEST_HEADERS, map);

Accessing the HTTP Endpoint with JAX-WS

The steps for accessing any HTTP endpoint with JAX-WS bindings are listed at the beginning of Example 3-10,
“Obtaining a Session Token - Code Fragments from VMPromoteDisks.java,” on page 44. These steps include
the vSphere Web Services SDK Server URL, vSphere server object, and variables.

1 In this example we use a TrustManager class to accept all certificates. This is not appropriate for a
production environment. Production code should implement certificate support.

private static class TrustAllTrustManager implements javax.net.ssl.TrustManager,
 javax.net.ssl.X509TrustManager {

 public java.security.cert.X509Certificate[] getAcceptedIssuers() {
 return null;
 }

 public boolean isServerTrusted(
 java.security.cert.X509Certificate[] certs) {
 return true;
 }

 public boolean isClientTrusted(
 java.security.cert.X509Certificate[] certs) {
 return true;
 }

 public void checkServerTrusted(java.security.cert.X509Certificate[] certs,
 String authType)
 throws java.security.cert.CertificateException {
 return;
 }
 public void checkClientTrusted(java.security.cert.X509Certificate[] certs,
 String authType)
 throws java.security.cert.CertificateException {
 return;
 }
 }

2 Include the Server URL and credentials as arguments in the main method:

public static void main(String[] args) {
 try {

String serverName = args[0];
String userName = args[1];
String password = args[2];
String url = "https://"+serverName+"/sdk/vimService";

3 Declare variables of the following types for access to vSphere server objects:

 ManagedObjectReference for the ServiceInstance.

VMware, Inc. 43

Chapter 3 Client Applications

 VimService object for access to the Web service.

 VimPortType object for access to all of the methods defined in the vSphere API.

 ServiceContent for access to the managed object services on the server.

The following Java code fragment shows these variable declarations:

ManagedObjectReference SVC_INST_REF
VimService vimService;
VimPortType vimPort;
ServiceContent serviceContent;

4 Declare a host name verifier that will automatically enable the connection. The host name verifier is
invoked during the SSL handshake.

HostnameVerifier hv = new HostnameVerifier() {
public boolean verify(String urlHostName, SSLSession session) {

return true;
}

};

5 Instantiate the trust manager object.

// Create the trust manager.
javax.net.ssl.TrustManager[] trustAllCerts = new javax.net.ssl.TrustManager[1];
javax.net.ssl.TrustManager tm = new TrustAllTrustManager();
trustAllCerts[0] = tm;

6 Create the SSL context

javax.net.ssl.SSLContext sc = javax.net.ssl.SSLContext.getInstance("SSL");

7 Create the session context

javax.net.ssl.SSLSessionContext sslsc = sc.getServerSessionContext();

8 Initialize the contexts; the session context takes the trust manager.

sslsc.setSessionTimeout(0);
sc.init(null, trustAllCerts, null);

9 Use the default socket factory to create the socket for the secure connection

javax.net.ssl.HttpsURLConnection.setDefaultSSLSocketFactory(sc.getSocketFactory());

10 Set the default host name verifier to enable the connection.

HttpsURLConnection.setDefaultHostnameVerifier(hv);

Accessing the vSphere Server

The steps that use the vSphere Web Services APIs to create the connection are:

1 Create a managed object reference for the ServiceInstance object on the server.

ManagedObjectReference SVC_INST_REF = new ManagedObjectReference();
SVC_INST_REF.setType("ServiceInstance");
SVC_INST_REF.setValue("ServiceInstance");

2 Create a VimService object to obtain a VimPort binding provider. The BindingProvider object provides
access to the protocol fields in request/response messages. Retrieve the request context which will be used
for processing message requests.

The VimServiceLocator and VimPortType objects provide access to vSphere servers. The getVimPort
method returns a VimPortType object that provides access to the vSphere API methods.

vimService = new VimService();
vimPort = vimService.getVimPort();
Map<String, Object> ctxt = ((BindingProvider) vimPort).getRequestContext();

vSphere Web Services SDK Programming Guide

44 VMware, Inc.

3 Store the Server URL in the request context and specify true to maintain the connection between the client
and server. The client API will include the Server's HTTP cookie in its requests to maintain the session. If
you do not set this to true, the Server will start a new session with each request.

ctxt.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY, url);
ctxt.put(BindingProvider.SESSION_MAINTAIN_PROPERTY, true);

4 Retrieve the ServiceInstance content (the ServiceContent data object) and log in to the server.

serviceContent = vimPort.retrieveServiceContent(SVC_INST_REF);
vimPort.login(serviceContent.getSessionManager(),

userName,
password,
null);

isConnected = true;

Closing the Connection

Use the VimPort object again to close the connection. Always close your server connections to maintain
security.

vimPort.logout(serviceContent.getSessionManager());
} catch (Exception e) {
 System.out.println(" Connect Failed ");
 e.printStackTrace();
 }
 }//end main()
}// end class TestClient

Using the Java Samples as Reference

The following code fragment from the SDK\vsphere-ws\java\JAX-WS\samples\com\vmware\vm\
VMPromoteDisks.java sample shows another implementation of the server connection. Review the
stand-alone Java samples that are shipped with your vSphere Web Services SDK, and use similar code to get a
session token for your client application.

Example 3-10. Obtaining a Session Token - Code Fragments from VMPromoteDisks.java

.

.

.
private static String cookieValue = "";
 private static Map headers = new HashMap();
.
.
.
private static void trustAllHttpsCertificates()
 throws Exception {

 javax.net.ssl.TrustManager[] trustAllCerts = new javax.net.ssl.TrustManager[1];
 javax.net.ssl.TrustManager tm = new TrustAllTrustManager();
 trustAllCerts[0] = tm;
 javax.net.ssl.SSLContext sc = javax.net.ssl.SSLContext.getInstance("SSL");
 javax.net.ssl.SSLSessionContext sslsc = sc.getServerSessionContext();
 sslsc.setSessionTimeout(0);
 sc.init(null, trustAllCerts, null);
 javax.net.ssl.HttpsURLConnection.setDefaultSSLSocketFactory(sc.getSocketFactory());
 }
...
private static void connect()
 throws Exception {

 HostnameVerifier hv = new HostnameVerifier() {
 public boolean verify(String urlHostName, SSLSession session) {
 return true;
 }
 };
 trustAllHttpsCertificates();
 HttpsURLConnection.setDefaultHostnameVerifier(hv);

VMware, Inc. 45

Chapter 3 Client Applications

 SVC_INST_REF.setType(SVC_INST_NAME);
 SVC_INST_REF.setValue(SVC_INST_NAME);

 vimService = new VimService();
 vimPort = vimService.getVimPort();
 Map<String, Object> ctxt =
 ((BindingProvider) vimPort).getRequestContext();

 ctxt.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY, url);
 ctxt.put(BindingProvider.SESSION_MAINTAIN_PROPERTY, true);

 serviceContent = vimPort.retrieveServiceContent(SVC_INST_REF);
 headers =
 (Map) ((BindingProvider) vimPort).getResponseContext().get(
 MessageContext.HTTP_RESPONSE_HEADERS);
 vimPort.login(serviceContent.getSessionManager(),
 userName,
 password, null);
 isConnected = true;

 propCollectorRef = serviceContent.getPropertyCollector();
 rootRef = serviceContent.getRootFolder();
 }
...

Multiple Versions of the vSphere API
When a client application connects to a Web service running on an vSphere server (ESX/ESXi or vCenter Server
system), the server detects the version of the API that was used to develop the client and makes available only
those operations supported by the client.

Client applications convey information about the API version used in the SOAP messages that they send to a
vSphere server. These SOAP messages include a versionID in the soapAction attribute. The details are
handled transparently by the SOAP toolkit and the client proxy code. The server adjusts its behavior based on
the client’s version information, exposing the API version that the client supports to the client.

Starting with vSphere 4.0, information about the supported API versions is contained in an XML file,
vimServiceVersions.xml, located on the server (Example 3-11).

Example 3-11. Service-Versions File (vimServiceVersions.xml)

<?xml version="1.0" encoding="UTF-8" ?>
- <!-- Copyright 2008-2010 VMware, Inc. All rights reserved. -->
- <namespaces version="1.0">

- <namespace>
 <name>urn:vim25</name>
 <version>5.0</version>

- <priorVersions>
<version>2.5u2</version>
<version>2.5</version>

 </priorVersions>
</namespace>
- <namespace>

<name>urn:vim2</name>
<version>2.0</version>

 </namespace>
 </namespaces>

If you are developing a client application that must support multiple server versions at the same time
(ESX/ESXi 5.0 and ESX/ESXi 3.x, for example), you must obtain information about the API versions that are
supported on the server and provide logic in your code to use or not use features, based upon the version
information.

vSphere Web Services SDK Programming Guide

46 VMware, Inc.

Identifying the API Version Supported by the Server
One approach to targeting multiple versions of the API from the same client application code is to check for
the existence of the server versions file on the server. If you do not find a vimServiceVersions.xml file on
the server, the server is older than ESX/ESXi 4.x, vCenter Server 4.x.

Java and C# Sample Applications
The vSphere Web Services SDK includes sample applications, written in Java and C#, that demonstrate
features of the vSphere API and object model (see Appendix E, “Sample Program Overview,” on page 245).
Most of the samples do not handle exceptions, and they accept all security certificates. So use the applications
as examples for extracting the types of data you want to view, but do not use the helper classes, trust store
methods or exception handling techniques in your production environment.

Java Samples

The Java samples in your vSphere Web Services SDK include .java files that you can compile and then run
using any Java editor or IDE. The samples accept command-line arguments for the vSphere server name (DNS
name or IP address), user name, and password.

C# Samples

The C# samples in your vSphere Web Services SDK include a .cs file and three project files in each directory
(.proj, 2008.proj, and 2010.proj) so you can run them using Microsoft’s Visual Studio.

Like the Java samples, the C# samples also accept command-line arguments for the vSphere server name (DNS
name or IP address), user name, and password, and they accept all certificates to establish the SSL handshake.

Unlike the Java samples, the C# samples use the helper classes discussed in “Helper Classes for C# Sample
Applications” on page 46.

Helper Classes for C# Sample Applications

The C# sample applications included with the vSphere Web Services SDK include C# helper classes that
handle the details of creating sessions, obtaining session tokens, saving the session token as a string to a file,
and reusing the session. The Microsoft .NET Web services implementation uses the Cookie class to handle the
session information from the server.

VMware, Inc. 47

Chapter 3 Client Applications

The helper classes (listed in Table 3-3) handle command-line input such as common parameters, server name,
and other details. These helper classes are located in the unpacked C# version of the SDK download, in this
location:

C# Helper Classes %SDKHOME%\vsphere-ws\dotnet\cs\samples\AppUtil

Table 3-3 lists the helper classes available for C#.

Table 3-3. Helper Classes for C# Sample Applications

AppUtils Functional Description

AppUtil.cs Convenient methods you can use to handle user input from command line.
Catches errors (faults). Logs output to console.

AppUtil.csproj Convenient methods you can use to handle user input from command line.,
built to run on versions of Microsoft Visual Studio that were released before
2008.

ArgumentHandlingException.cs Convenient methods you can use to handle exceptions.

CertPolicy.cs Convenient methods you can use to customize certificate error messages.

ClientUtil.cs Convenient methods you can use to handle user input from command line.
Catches errors (faults). Logs output to console.

CustomSecurity.cs Convenient methods you can use to override the SOAP security filter.

CustomSecurityAssertionBearer.cs Convenient methods you can use to create a custom policy assertion that
applies security to a SOAP message exchange.

Log.cs Convenient methods you can use to create a log file or send log output to the
console.

OptionSpec.cs Helper class for handling default and custom command-line arguments.

PropertyManager.cs Convenient methods you can use to listen for Property Manager updates.

ServiceUtil.cs Wrapper methods for the vimService methods (the local proxy code
methods) for API 2.0 and prior releases.

SvcConnection.cs Convenient methods you can use to create a web service connection handler.

TrustAllCertificatePolicy.cs Creates an instance of local proxy for connecting to the server, and obtains
managed object references to several needed managed objects—
ServiceInstance, ServiceContent, rootFolder.

VersionUtil.cs Convenient methods you can use to retrieve the namespace and API version.

VMUtils.cs Convenient methods you can use to create a virtual machine configuration
spec.

vSphere Web Services SDK Programming Guide

48 VMware, Inc.

VMware, Inc. 49

4

The vSphere inventory is a representation of the vSphere datacenter and the objects in the datacenter. Knowing
how the objects in the datacenter relate to each other helps you traverse the inventory hierarchy and access the
objects you want to manipulate.

The chapter includes the following topics:

 “Inventory Overview” on page 49

 “Inventory Hierarchies and ServiceInstance” on page 50

 “Accessing Inventory Objects” on page 51

 “Creating Inventory Objects” on page 52

 “Privileges Required for Inventory Management” on page 52

 “Managed and Standalone ESX/ESXi Hosts” on page 54

Inventory Overview
The vSphere inventory contains the following types of objects:

 Systems in the datacenter: Host, VirtualMachine, and VirtualApp.

 Support components: ComputeResource, Datastore, Network, and virtual devices.

 Organizational components: Folder and Datacenter

When you manage the virtual infrastructure, you access objects and their properties and methods based on
their location in the inventory. Understanding the inventory structure is therefore critical for any
programming task. You always start with the ServiceInstance associated with a session, which is the root
object of the inventory, and traverse the inventory hierarchy from there. See Chapter 5, “Property Collector,”
on page 57. How you access objects depends on whether your client application is connected to a vCenter
Server or an ESX/ESXi system.

Datacenter Inventory 4

vSphere Web Services SDK Programming Guide

50 VMware, Inc.

Inventory Hierarchies and ServiceInstance
When you start a session, vSphere creates a ServiceInstance with one root folder, one Datacenter, and four
folders that hold the different types of inventory objects.

When you access a vCenter Server System, the hierarchy shown in Figure 4-1 allows you to traverse the
inventory.

Figure 4-1. vCenter Server Inventory Hierarchy

Folders in the Hierarchy

If your installation includes a vCenter Server system, you can create additional datacenters under the root
folder. For everyDatacenter object, the server automatically creates the following Folder objects:

 A folder for VirtualMachine, template, and VirtualApp objects.

 A folder for a ComputeResource hierarchy.

 A folder for Network, DistributedVirtualSwitch, and DistributedVirtualPortgroup objects.

 A folder for Datastore objects.

In a large deployment, the nested structure allows you to organize the objects in the datacenter into an easily
manageable structure by using multiple folders and datacenters.

For a standalone ESX/ESXi system, only a single datacenter is supported, and the Folder managed entity does
not support creating additional Folder objects or Datacenter objects.

CAUTION If your ESX/ESXi hosts are managed by a vCenter Server, you must always access your hosts
through the vCenter server. The vCenter server keeps track of all synchronous and asynchronous operations,
and will have the latest status and inventory information about each ESX/ESXi host. Therefore, connecting
directly to a host that is managed by a vCenter Server may give you incorrect or incomplete data.

When you have ESX/ESXi hosts that are not managed by a vCenter Server, your application can connect to each
host directly.

VMware, Inc. 51

Chapter 4 Datacenter Inventory

ESXi Inventory Hierarchy

When you access an ESXi host directly, rather than accessing the host through a vCenter Server system, the
hierarchy shown in Figure 4-2 allows you to traverse the inventory.

Figure 4-2. ESXi Inventory Hierarchy

Accessing Inventory Objects
To retrieve information from an inventory object, you start with ServiceInstance, the root object of the
inventory. You access an object using a TraversalSpec in conjunction with a property collector, using the
properties that identify an object’s position in the hierarchy.

 Every managed entity has a parent property that identifies its relative position in the inventory hierarchy.

 The Folder managed object has a childEntity property that identifies objects in a folder instance.

Figure 4-3 shows the childEntity and folder properties that define the default objects in the inventory of a
standalone ESX/ESXi system. The inventory begins with the ServiceContent.rootFolder property. The
rootFolder has a childEntity that consists of a managed object reference to a Datacenter managed object.

vSphere Web Services SDK Programming Guide

52 VMware, Inc.

Figure 4-3. Instance Diagram of Root Folders in an Inventory

Creating Inventory Objects
The Folder managed entity provides methods for creating instances of the following managed entities.

 Datacenter
 DistributedVirtualSwitch
 VirtualMachine
 Cluster
 Folder

When you create these objects, they are automatically created in the folder you invoked the creation method
from.

While some managed entities are created through a method on the Folder managed entity, other managed
entities are instantiated directly. For example, the HostDatastoreSystem has methods for creating datastores
such as CreateNasDatastore and CreateVmfsDatastore.

Privileges Required for Inventory Management
Navigating the inventory requires a user account that can connect to the server and obtain a valid session. The
user identity associated with the session is called a principal. When a client application attempts to access an
object in the inventory, the server checks the permission object or objects and compares the permissions with
the principal’s privileges.

IMPORTANT When you create an inventory object, you must stay within the bounds of the host’s capabilities,
accessible through the HostSystem.capability property, which is a HostCapability data object. For
example, a HostCapability object might have the maxSupportedVMs property specified.

VMware, Inc. 53

Chapter 4 Datacenter Inventory

For example, creating a virtual machine requires that the principal associated with the session have the
following privileges:

 The VirtualMachine.Inventory.Create privilege on the folder in which to create the virtual machine.

 The Resource.AssignVMToPool privilege on the resource pool from which the virtual machine obtains
its allocation of CPU and memory resources.

Reading the perfCounter property of the PerformanceManager managed object requires the System.View
privilege on the root folder.

See Chapter 6, “Authentication and Authorization,” on page 81 for more information on authentication,
authorization, roles, and user identity.

Privileges

A privilege is a system-defined requirement associated with a VMware vSphere managed object. Privileges
are static and do not change for a version of a product. Privileges for vSphere components are defined as
follows:

<group>[.<group>].privilege

For example:

Datacenter.Create
Host.Config.Connection
Host.Config.Snmp

Permissions

Permissions are the associations of roles with privileges on a specified managed entity. You use permissions
to specify which users can access which managed entity.

A child entity inherits the permissions of its parent if the parent’s propagate property is set to true. A
permission that is set directly on a child overrides the permission in the parent. To grant permission to all child
entities of a Datacenter object, assign permissions to the Datacenter object and set the Permission object’s
propagate property to true.

Figure 4-4 shows that users root and vpxuser both have permissions on the rootFolder of the inventory.
The vpxuser is the account created on a host by the vCenter Server system when that host is added to the
vCenter Server system. The vCenter Server needs access to the inventory objects of the host systems that it
manages, so the vpxuser account is granted privileges to the rootFolder of each host.

IMPORTANT Some privileges are specific to objects on vCenter Server or specific to ESX/ESXi. For example,
the Alarm.Create privilege associated with AlarmManager is available only through vCenter Server systems.

IMPORTANT See Chapter 6, “Authentication and Authorization,” on page 81 for a detailed discussion of
privileges, permissions, and user management.

vSphere Web Services SDK Programming Guide

54 VMware, Inc.

Figure 4-4. Inventory and Permissions

Managed and Standalone ESX/ESXi Hosts
You can run ESX/ESXi as a managed or standalone ESX/ESXi host.

 Standalone ESX/ESXi hosts are standalone hosts with limited capabilities. The inventory of a standalone
host can support multiple virtual machines and multiple resource pools, but it contains a single default
datacenter and a single root folder. The default datacenter and root folder are not visible in the vSphere
Client, but they exist in the inventory of a standalone host and they are visible in the MOB.

 Managed ESX/ESXi hosts have been added to the vCenter Server inventory. Available features depend on
the licenses available for that host. For example, you can configure two or more hosts for VMware DRS
resource management or VMware HA failover protection.

VMware, Inc. 55

Chapter 4 Datacenter Inventory

Table 4-1 summarizes the differences between the number of objects that an inventory can contain. See also
Figure 4-2, “ESXi Inventory Hierarchy,” on page 51 and Figure 4-1, “vCenter Server Inventory Hierarchy,” on
page 50.

Table 4-1. Standalone ESX/ESXi and vCenter Server Inventories

ManagedEntity Subtype ESX/ESXi Inventory vCenter Server Inventory

ClusterComputeResource None. Multiple instances supported.

ComputeResource Exactly one only. Multiple instances supported.

Datacenter Exactly one only. Cannot be destroyed.
Transparent.

Multiple instances supported.

Datastore Multiple instances supported. Multiple instances supported.

DistributedVirtualSwitch Multiple instances supported. Multiple instances supported.

Folder Exactly one only. Cannot be destroyed.
Transparent.

Multiple instances supported.

HostSystem Exactly one only. Multiple instances supported.

Network Multiple instances supported. Multiple instances supported.

ResourcePool Multiple instances supported. Multiple instances supported.

VirtualApp None. Multiple instances supported.

VirtualMachine Multiple instances supported. Multiple instances supported.

vSphere Web Services SDK Programming Guide

56 VMware, Inc.

VMware, Inc. 57

5

vSphere servers provide the PropertyCollector service for accessing data and monitoring changes. Use the
PropertyCollector to obtain references to managed objects, to obtain values of managed object properties,
and to monitor and retrieve modified property values.

This chapter includes the following topics:

 “Introduction to the PropertyCollector” on page 57

 “vSphere Data Objects for Property Collection” on page 58

 “vSphere Methods for Property Collection” on page 58

 “PropertyCollector Example (RetrievePropertiesEx)” on page 59

 “Inventory Traversal” on page 66

 “Client Data Synchronization (WaitForUpdatesEx)” on page 77

 “Server Data Transmission” on page 79

 “PropertyCollector Performance” on page 79

 “SearchIndex” on page 79

Introduction to the PropertyCollector
The PropertyCollector service interface provides a way to monitor and retrieve information about
managed objects, such as whether a virtual machine is powered on or whether a host in a cluster is offline.

The PropertyCollector uses one or more filters to determine the scope of collection and it has methods to
retrieve data. A filter uses a set of data objects that specify the following information:

 Starting point for inventory traversal during the collection operation.

 Inventory traversal path.

 Objects and properties from which data will be collected.

A vSphere server creates a default PropertyCollector for every session, and allows you to create multiple,
additional PropertyCollector objects. Create additional PropertyCollector objects, using one per thread,
to perform mutually independent collection operations.

Property Collector 5

vSphere Web Services SDK Programming Guide

58 VMware, Inc.

Data Retrieval

There are two ways to retrieve data:

 Property retrieval as a single operation uses the RetrievePropertiesEx and
ContinueRetrievePropertiesEx methods. These methods perform a single collection operation.

 Incremental property retrieval, also referred to as property monitoring, uses the WaitForUpdatesEx
method. The initial call to this method retrieves a baseline set of managed object property values.
Subsequent calls retrieve changes in property values since the last retrieval. Use WaitForUpdatesEx to
monitor changes to the inventory or any managed object properties.

NOTE The PropertyCollector does not guarantee the order of data that it returns in response to a request
for data.

Inventory Traversal and Object Selection

PropertyCollector filter properties identify object properties and paths that define inventory traversal. For
example, you can retrieve the properties for a VirtualMachine object and specify a traversal path using the
VirtualMachine.network property to obtain the properties for the associated Network objects.

You can use vSphere view objects (for example, ContainerView) in filters to simplify traversal specification.
A view maintains a subset of inventory objects, so if there is a change in the inventory hierarchy, you do not
have to recreate the view. Use a view to specify a set of objects that the PropertyCollector can use for data
collection.

For information about the vSphere inventory, see Chapter 4, “Datacenter Inventory,” on page 49.

vSphere Data Objects for Property Collection
Table 5-1 provides an overview of the PropertyCollector data objects. For more detailed descriptions, see
the vSphere API Reference.

vSphere Methods for Property Collection
The PropertyCollector supports the following approaches to obtaining objects and properties from the
server:

 If your client application does not keep a synchronized representation of server state, use the
RetrievePropertiesEx method. RetrievePropertiesEx instantiates a filter, collects the specified
objects and properties, and returns the data to your client application as an ObjectContent data object.
The server does not add the filter to the PropertyCollector.filter array. The server destroys the filter
after returning the results to your client.

 If your application maintains a synchronized representation of server state, use the CreateFilter and
WaitForUpdatesEx methods. WaitForUpdatesEx returns descriptions of property changes, organized
by the filter that identified the properties.

Table 5-1. PropertyCollector Data Objects

Data Object Description

PropertyFilterSpec Provides access to object and property selection data. A PropertyFilterSpec must
have at least one ObjectSpec and one PropertySpec.

ObjectSpec Identifies the starting object for property collection. An ObjectSpec also identifies
additional objects for collection.

TraversalSpec Identifies the type of object for property collection. It also provides one or more paths
for inventory traversal.

SelectionSpec Acts as a placeholder reference to a TraversalSpec.

PropertySpec Identifies properties for collection.

View objects Identify a subset of the vSphere inventory objects.

VMware, Inc. 59

Chapter 5 Property Collector

In either case, you create a PropertyFilterSpec data object to specify the objects and properties you want to
retrieve from the server.

Table 5-2 shows the PropertyCollector methods organized by the context in which you use them. For more
information about these methods, see the vSphere API Reference.

PropertyCollector Example (RetrievePropertiesEx)
Example 5-1 is a simple PropertyCollector example written in Java. The example uses a ContainerView
for efficient access to the inventory and a PropertyFilterSpec that contains one ObjectSpec, one
TraversalSpec, and one PropertySpec. The program performs the following tasks:

 Accepts command line arguments for the vSphere server name (DNS name or IP address), user name, and
password.

 Connects to a vSphere server.

 Uses a ContainerView to create a subset of the inventory; the subset contains only virtual machines.

 Uses the RetrievePropertiesEx method for a single retrieval operation.

 Collects the names of all of the virtual machines in the inventory and prints the names using the standard
output stream.

The following procedure uses code fragments from Example 5-1. The complete example includes server
connection code; this procedure only describes the task of using the PropertyCollector. For a description of
server connection, see “To build a simple vSphere client application” on page 39.

Table 5-2. PropertyCollector Methods

Method Context Method Description

Monitor properties
using different
filters

CreatePropertyCollector Creates a new PropertyCollector object to monitor
properties using different filters. The vSphere server
handles requests for a PropertyCollector instance
independently of any other instances of the
PropertyCollector on the server.

DestroyPropertyCollector Destroys an instance of a PropertyCollector that was
created by a call to CreatePropertyCollector from
your client application.

Single collection
operation

RetrievePropertiesEx Retrieves property data for the specified managed objects.

ContinueRetrievePropertiesEx Retrieves additional property data for an operation
started by RetrievePropertiesEx.

CancelRetrievePropertiesEx Cancels a RetrievePropertiesEx or
ContinueRetrievePropertiesEx operation.

Incremental
collection or
monitoring
operation

WaitForUpdatesEx Retrieves changes to property data since the last
WaitForUpdatesEx cycle. WaitForUpdatesEx blocks
until it can satisfy the request or until the request times
out. WaitForUpdatesEx supports chunked data
transmission (see “Server Data Transmission” on
page 79).

CancelWaitForUpdatesEx Cancels a WaitForUpdatesEx operation.

General CreateFilter Creates a new instance of a PropertyFilter managed
object.

vSphere Web Services SDK Programming Guide

60 VMware, Inc.

To use the PropertyCollector for a single retrieval operation

1 Get references to the ViewManager and the PropertyCollector.

In the example, sContent is the variable for the ServiceContent data object. sContent provides the
methods to retrieve the managed object references to the vSphere services.

ManagedObjectReference viewMgrRef = sContent.getViewManager();
ManagedObjectReference propColl = sContent.getPropertyCollector();

2 Create a container view for virtual machines.

methods is the variable for the VimPortType object. VimPortType defines the Java methods that
correspond to the vSphere API methods. The createContainerView parameters container (the
inventory root folder, returned by the method sContent.getRootFolder) and type (“Virtual Machine”)
direct the ViewManager to select virtual machines, starting at the root folder. The value true for the
recursive parameter extends the selection beyond the root folder so that the ViewManager will follow
child folder paths to add virtual machines to the view. The container view provides references to all
virtual machines in the inventory.

List<String> vmList = new ArrayList<String>();
vmList.add("VirtualMachine");

ManagedObjectReference cViewRef = methods.createContainerView(viewMgrRef,
sContent.getRootFolder(),
vmList,
true);

3 Create an object specification to define the starting point for inventory navigation.

The ObjectSpec.obj property identifies the starting object (the container view). This example collects
only virtual machine data, so the skip property is set to true to ignore the container view itself during
collection.

ObjectSpec oSpec = new ObjectSpec();
oSpec.setObj(cViewRef);
oSpec.setSkip(true);

4 Create a traversal specification to identify the path for collection.

The TraversalSpec properties type and path determine path traversal. TraversalSpec.type
identifies an object type. TraversalSpec.path identifies a property in the type object. The
PropertyCollector uses the path object to select additional objects.

This example uses a single TraversalSpec to walk the list of virtual machines that are available through
the container view. The following code fragment specifies the ContainerView object for the
TraversalSpec.type property and the view property in the ContainerView for the
TraversalSpec.path property. The skip property is set to false, so the PropertyCollector will
collect data from the path objects (the virtual machines in the container view).

TraversalSpec tSpec = new TraversalSpec();
tSpec.setName("traverseEntities");
tSpec.setPath("view");
tSpec.setSkip(false);
tSpec.setType("ContainerView");

5 Add the TraversalSpec to the ObjectSpec.selectSet array.

oSpec.getSelectSet().add(tSpec);

6 Identify the properties to be retrieved.

The example program creates a PropertySpec data object to specify the properties to be collected. The
type property is set to VirtualMachine to match the object selections in the container view. The pathSet
property identifies one or more properties in the type object.

VMware, Inc. 61

Chapter 5 Property Collector

This example specifies the VirtualMachine.name property.

PropertySpec pSpec = new PropertySpec();
pSpec.setType("VirtualMachine");
pSpec.getPathSet().add("name");

7 Add the object and property specifications to the property filter specification.

A PropertyFilterSpec must have at least one ObjectSpec and one PropertySpec.

PropertyFilterSpec fSpec = new PropertyFilterSpec();
fSpec.getObjectSet().add(oSpec);
fSpec.getPropSet().add(pSpec);

8 Create a list for the filters and add the spec to it.

List<PropertyFilterSpec> fSpecList = new ArrayList<PropertyFilterSpec>();
fSpecList.add(fSpec);

9 Retrieve the data.

To invoke a single property collection operation, call the RetrievePropertiesEx method. The example
application passes the populated PropertyFilterSpec and an empty options structure to the method.
The default for the RetrieveOptions.maxObjects specifies that no maximum for the number of objects
that can be returned is set. The PropertyCollector can impose a maximum. If the number of collected
objects is greater than the maximum, the PropertyCollector returns a token value in the
RetrieveResult data object and this token is used to retrieve the remaining properties using the
ContinueRetrievePropertiesEx API method. For more information, see “Server Data Transmission”
on page 79.

RetrieveOptions ro = new RetrieveOptions();
RetrieveResult props = methods.retrievePropertiesEx(propColl,fSpecList,ro);

10 Print the virtual machine names.

The following code fragment walks the list of ObjectContent objects returned in the RetrieveResult
object. For each object (ObjectContent), the inner loop prints the name-value pairs.

if (props != null) {
for (ObjectContent oc : props.getObjects()) {
String vmName = null;
String path = null;
List<DynamicProperty> dps = oc.getPropSet();

if (dps != null) {
for (DynamicProperty dp : dps) {
vmName = (String) dp.getVal();
path = dp.getName();

System.out.println(path + " = " + vmName);
 }
}
 }
}
}//end collectProperties()

vSphere Web Services SDK Programming Guide

62 VMware, Inc.

Figure 5-1 shows the objects used in Example 5-1. The figure represents properties that identify inventory elements
directly or indirectly. It does not show all the properties for the different objects.

Figure 5-1. Property Filter Specification

Example 5-1. Simple PropertyCollector Example (Java)

import com.vmware.vim25.*;

import java.util.*;
import javax.net.ssl.HostnameVerifier;
import javax.net.ssl.HttpsURLConnection;
import javax.net.ssl.SSLSession;
import javax.xml.ws.BindingProvider;
import javax.xml.ws.soap.SOAPFaultException;

// PropertyCollector example
// command line input: server name, user name, password

public class PCollector {

 private static void collectProperties(VimPortType methods,
ServiceContent sContent) throws Exception {

// Get references to the ViewManager and PropertyCollector
ManagedObjectReference viewMgrRef = sContent.getViewManager();
ManagedObjectReference propColl = sContent.getPropertyCollector();

// use a container view for virtual machines to define the traversal
// - invoke the VimPortType method createContainerView (corresponds
// to the ViewManager method) - pass the ViewManager MOR and
// the other parameters required for the method invocation
// - createContainerView takes a string[] for the type parameter;
// declare an arraylist and add the type string to it
List<String> vmList = new ArrayList<String>();
vmList.add("VirtualMachine");

PropertyFilterSpec

objectSet

propSet

ObjectSpec

obj

selectSet

[...]

[...] type=”VirtualMachine”

pathSet=”name”

PropertySpec

[...]

TraversalSpec

path=”view”

 type=“ContainerView”

[...]

ContainerView

container

type =“VirtualMachine”

view []

[...]

Root
Folder

Server Inventory

Virtual
Machine
Folder

Virtual
Machine
Folder

Virtual
Machine

name

Virtual
Machine

name

VMware, Inc. 63

Chapter 5 Property Collector

ManagedObjectReference cViewRef = methods.createContainerView(viewMgrRef,
sContent.getRootFolder(),
vmList,
true);

// create an object spec to define the beginning of the traversal;
// container view is the root object for this traversal
ObjectSpec oSpec = new ObjectSpec();
oSpec.setObj(cViewRef);
oSpec.setSkip(true);

// create a traversal spec to select all objects in the view
TraversalSpec tSpec = new TraversalSpec();
tSpec.setName("traverseEntities");
tSpec.setPath("view");
tSpec.setSkip(false);
tSpec.setType("ContainerView");

// add the traversal spec to the object spec;
// the accessor method (getSelectSet) returns a reference
// to the mapped XML representation of the list; using this
// reference to add the spec will update the list
oSpec.getSelectSet().add(tSpec);

// specify the property for retrieval (virtual machine name)
PropertySpec pSpec = new PropertySpec();
pSpec.setType("VirtualMachine");
pSpec.getPathSet().add("name");

// create a PropertyFilterSpec and add the object and
// property specs to it; use the getter method to reference
// the mapped XML representation of the lists and add the specs
// directly to the list
PropertyFilterSpec fSpec = new PropertyFilterSpec();
fSpec.getObjectSet().add(oSpec);
fSpec.getPropSet().add(pSpec);

// Create a list for the filters and add the spec to it
List<PropertyFilterSpec> fSpecList = new ArrayList<PropertyFilterSpec>();
fSpecList.add(fSpec);

// get the data from the server
RetrieveOptions ro = new RetrieveOptions();
RetrieveResult props = methods.retrievePropertiesEx(propColl,fSpecList,ro);

// go through the returned list and print out the data
if (props != null) {

for (ObjectContent oc : props.getObjects()) {
String vmName = null;
String path = null;
List<DynamicProperty> dps = oc.getPropSet();

if (dps != null) {
for (DynamicProperty dp : dps) {
vmName = (String) dp.getVal();
path = dp.getName();

System.out.println(path + " = " + vmName);
}

}
}

}
}//end collectProperties()

vSphere Web Services SDK Programming Guide

64 VMware, Inc.

// Authentication is handled by using a TrustManager and supplying
// a host name verifier method. (The host name verifier is declared
// in the main function.)
//
// For the purposes of this example, this TrustManager implementation
// will accept all certificates. This is only appropriate for
// a development environment. Production code should implement certificate support.

private static class TrustAllTrustManager implements javax.net.ssl.TrustManager,
javax.net.ssl.X509TrustManager {

public java.security.cert.X509Certificate[] getAcceptedIssuers() {
return null;

}

public boolean isServerTrusted(java.security.cert.X509Certificate[] certs) {
return true;

}

public boolean isClientTrusted(java.security.cert.X509Certificate[] certs) {
return true;

}

public void checkServerTrusted(java.security.cert.X509Certificate[] certs,
String authType)
throws java.security.cert.CertificateException {
return;

}

public void checkClientTrusted(java.security.cert.X509Certificate[] certs,
String authType)
throws java.security.cert.CertificateException {
return;

}
}

public static void main(String [] args) throws Exception {

// arglist variables
String serverName = args[0];
String userName = args[1];
String password = args[2];
String url = "https://"+serverName+"/sdk/vimService";

// Variables of the following types for access to the API methods
// and to the vSphere inventory.
// -- ManagedObjectReference for the ServiceInstance on the Server
// -- VimService for access to the vSphere Web service
// -- VimPortType for access to methods
// -- ServiceContent for access to managed object services
ManagedObjectReference SVC_INST_REF = new ManagedObjectReference();
VimService vimService;
VimPortType vimPort;
ServiceContent serviceContent;

// Declare a host name verifier that will automatically enable
// the connection. The host name verifier is invoked during
// the SSL handshake.
HostnameVerifier hv = new HostnameVerifier() {
public boolean verify(String urlHostName, SSLSession session) {

return true;
}
};

// Create the trust manager.
javax.net.ssl.TrustManager[] trustAllCerts = new javax.net.ssl.TrustManager[1];
javax.net.ssl.TrustManager tm = new TrustAllTrustManager();
trustAllCerts[0] = tm;

VMware, Inc. 65

Chapter 5 Property Collector

// Create the SSL context
javax.net.ssl.SSLContext sc = javax.net.ssl.SSLContext.getInstance("SSL");

// Create the session context
javax.net.ssl.SSLSessionContext sslsc = sc.getServerSessionContext();

// Initialize the contexts; the session context takes the trust manager.
sslsc.setSessionTimeout(0);
sc.init(null, trustAllCerts, null);

// Use the default socket factory to create the socket for the secure connection
javax.net.ssl.HttpsURLConnection.setDefaultSSLSocketFactory(sc.getSocketFactory());

// Set the default host name verifier to enable the connection.
HttpsURLConnection.setDefaultHostnameVerifier(hv);

// Set up the manufactured managed object reference for the ServiceInstance
SVC_INST_REF.setType("ServiceInstance");
SVC_INST_REF.setValue("ServiceInstance");

// Create a VimService object to obtain a VimPort binding provider.
// The BindingProvider provides access to the protocol fields
// in request/response messages. Retrieve the request context
// which will be used for processing message requests.
vimService = new VimService();
vimPort = vimService.getVimPort();
Map<String, Object> ctxt = ((BindingProvider) vimPort).getRequestContext();

// Store the Server URL in the request context and specify true
// to maintain the connection between the client and server.
// The client API will include the Server's HTTP cookie in its
// requests to maintain the session. If you do not set this to true,
// the Server will start a new session with each request.
ctxt.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY, url);
ctxt.put(BindingProvider.SESSION_MAINTAIN_PROPERTY, true);

// Retrieve the ServiceContent object and login
serviceContent = vimPort.retrieveServiceContent(SVC_INST_REF);

vimPort.login(serviceContent.getSessionManager(),
userName,
password,
null);

// retrieve data
collectProperties(vimPort, serviceContent);

// close the connection
vimPort.logout(serviceContent.getSessionManager());

 }
}

vSphere Web Services SDK Programming Guide

66 VMware, Inc.

Inventory Traversal
Example 5-1 uses a ContainerView to specify the objects that start the collection process. This is the simplest
way to set up a filter, using a single reference to a view to provide the PropertyCollector with access to a
set of objects. To select objects from the inventory, a filter includes TraversalSpec and possibly
SelectionSpec objects. Use these objects to make object selections based on the references in a view, and to
extend inventory traversal beyond those objects (or beyond the object specified in ObjectSpec.obj).

TraversalSpec Traversal

Use a TraversalSpec object to identify a managed object type and a traversal property in that type.
TraversalSpec contains the following properties:

 type – identifies an inventory object type.

 path – specifies a managed object reference property in the type object. This property provides the
traversal path extending from this object.

 selectSet – specifies an optional list of selection objects for additonal object traversal paths. The
PropertyCollector applies the TraversalSpec objects in the selectSet array to the result of the
traversal (the target of TraversalSpec.path). The selectSet array can also contain SelectionSpec
objects; a SelectionSpec is a reference to a TraversalSpec. See “SelectionSpec Traversal” on page 72.

 skip – indicates whether to collect properties for the path object.

During inventory traversal, the PropertyCollector applies the PropertySpec object or objects
(PropertyFilterSpec.propSet) to objects. Inventory traversal begins with the object identified by
ObjectSpec.obj and continues by following TraversalSpec paths. If PropertySpec.type matches the
current object type, and the skip property is false, the PropertyCollector sends the
PropertySpec.pathSet properties to your client.

Figure 5-2 is a representation of a PropertyFilterSpec that defines traversal of VirtualMachine objects.
The filter uses a ContainerView as a starting point. The TraversalSpec for the ContainerView specifies the
view property for access to the view’s virtual machines. The figure shows TraversalSpec objects that extend
navigation from a VirtualMachine object to the associated Network and ResourcePool objects. The
PropertyCollector applies these TraversalSpec objects to each of the VirtualMachine objects in the view
list. The figure also shows the PropertySpec objects for collecting data from VirtualMachine, Network, and
ResourcePool objects.

VMware, Inc. 67

Chapter 5 Property Collector

Figure 5-2. Inventory Navigation

Example 5-2 shows a Java code fragment, based on Example 5-1, “Simple PropertyCollector Example (Java),”
on page 62, that implements the inventory traversal shown in Figure 5-2.

To define inventory traversal

1 Create a ContainerView for virtual machines.

2 Create an ObjectSpec that uses the container view as the collection starting point.

3 Create a TraversalSpec be applied to the ContainerView to select VirtualMachine objects.

PropertyFilterSpec

objectSet[]

propSet[]

ObjectSpec

selectSet[]

[...][...]

obj=”VirtualMachine”

pathSet[]=”name”

PropertySpec

obj=”Network”

pathSet[]=”summary.accessible”

PropertySpec

[...]

obj=”ResourcePool”

pathSet[]=“runtime.cpu.maxUsage”
 “runtime.memory.maxUsage”

PropertySpec

[...]

[VirtualMachine folder]

[Network folder]

network

name

resourcePool

[...]

summary

Network

[...]

runtime

[ComputeResource folder]

ResourcePool

[...]

TraversalSpec

path=”view”

selectSet[]
[...]

Server Inventory

VirtualMachine

 type=“ContainerView”

TraversalSpec

path=”resourcePool”

[...]

type=”VirtualMachine”

TraversalSpec

path=”network”

[...]

type=”VirtualMachine”

[...]

vSphere Web Services SDK Programming Guide

68 VMware, Inc.

4 Create additional TraversalSpec objects to select additional objects.

The SelectSet list for the container view TraversalSpec has two TraversalSpec objects. Both specify
a VirtualMachine object context. One object uses the network property to extend traversal to the
Network managed object. The other uses the resourcePool property to extend traversal to the
ResourcePool managed object.

5 Create PropertySpec objects to retrieve VirtualMachine, Network, and ResourcePool properties.

To retrieve properties that are embedded in data objects, the PropertySpec.PathSet property uses dot
notation to specify the property paths.

Example 5-2. Inventory Traversal

import com.vmware.vim25.*;

import java.util.*;
import javax.net.ssl.HostnameVerifier;
import javax.net.ssl.HttpsURLConnection;
import javax.net.ssl.SSLSession;
import javax.xml.ws.BindingProvider;
import javax.xml.ws.soap.SOAPFaultException;

// PropertyCollector example
// command line input: server name, user name, password

public class PCollector_traversal {

private static void collectProperties(VimPortType methods,
ServiceContent sContent) throws Exception {

// Get references to the ViewManager and PropertyCollector
ManagedObjectReference viewMgrRef = sContent.getViewManager();
ManagedObjectReference propColl = sContent.getPropertyCollector();

// use a container view for virtual machines to define the traversal
// - invoke the VimPortType method createContainerView (corresponds
// to the ViewManager method) - pass the ViewManager MOR and
// the other parameters required for the method invocation
// (use a List<String> for the type parameter's string[])
List<String> vmList = new ArrayList<String>();
vmList.add("VirtualMachine");

ManagedObjectReference cViewRef =
methods.createContainerView(viewMgrRef,
sContent.getRootFolder(),
vmList,
true);

// create an object spec to define the beginning of the traversal;
// container view is the root object for this traversal
ObjectSpec oSpec = new ObjectSpec();
oSpec.setObj(cViewRef);
oSpec.setSkip(true);

// create a traversal spec to select all objects in the view
TraversalSpec tSpec = new TraversalSpec();
tSpec.setName("traverseEntities");
tSpec.setPath("view");
tSpec.setSkip(false);
tSpec.setType("ContainerView");

// add the traversal spec to the object spec;
// the accessor method (getSelectSet) returns a reference
// to the mapped XML representation of the list; using this
// reference to add the spec will update the selectSet list
oSpec.getSelectSet().add(tSpec);

VMware, Inc. 69

Chapter 5 Property Collector

// extend from virtual machine to network
TraversalSpec tSpecVmN = new TraversalSpec();
tSpecVmN.setType("VirtualMachine");
tSpecVmN.setPath("network");
tSpecVmN.setSkip(false);

// extend from virtual machine to resourcepool
TraversalSpec tSpecVmRp = new TraversalSpec();
tSpecVmRp.setType("VirtualMachine");
tSpecVmRp.setPath("resourcePool");
tSpecVmRp.setSkip(false);

// add the network and resource pool traversal specs
// to the virtual machine traversal;
// the accessor method (getSelectSet) returns a reference
// to the mapped XML representation of the list; using this
// reference to add the spec will update the selectSet list
tSpec.getSelectSet().add(tSpecVmN);
tSpec.getSelectSet().add(tSpecVmRp);

// specify the properties for retrieval
// (virtual machine name, network summary accessible, rp runtime props);
// the accessor method (getPathSet) returns a reference to the mapped
// XML representation of the list; using this reference to add the
// property names will update the pathSet list
PropertySpec pSpec = new PropertySpec();
pSpec.setType("VirtualMachine");
pSpec.getPathSet().add("name");

PropertySpec pSpecNs = new PropertySpec();
pSpecNs.setType("Network");
pSpecNs.getPathSet().add("summary.accessible");

PropertySpec pSpecRPr = new PropertySpec();
pSpecRPr.setType("ResourcePool");
pSpecRPr.getPathSet().add("runtime.cpu.maxUsage");
pSpecRPr.getPathSet().add("runtime.memory.maxUsage");
pSpecRPr.getPathSet().add("runtime.overallStatus");

// create a PropertyFilterSpec and add the object and
// property specs to it; use the getter methods to reference
// the mapped XML representation of the lists and add the specs
// directly to the objectSet and propSet lists
PropertyFilterSpec fSpec = new PropertyFilterSpec();
fSpec.getObjectSet().add(oSpec);
fSpec.getPropSet().add(pSpec);
fSpec.getPropSet().add(pSpecNs);
fSpec.getPropSet().add(pSpecRPr);

// Create a list for the filters and add the spec to it
List<PropertyFilterSpec> fSpecList = new ArrayList<PropertyFilterSpec>();
fSpecList.add(fSpec);

// get the data from the server
RetrieveOptions ro = new RetrieveOptions();
RetrieveResult props = methods.retrievePropertiesEx(propColl,fSpecList,ro);

// go through the returned list and print out the data
if (props != null) {

for (ObjectContent oc : props.getObjects()) {
String value = null;
String path = null;
List<DynamicProperty> dps = oc.getPropSet();

if (dps != null) {
for (DynamicProperty dp : dps) {
path = dp.getName();

if (path.equals("name")) {

vSphere Web Services SDK Programming Guide

70 VMware, Inc.

value = (String) dp.getVal();
}

else if (path.equals("summary.accessible")) {
// summary.accessible is a boolean
value = String.valueOf(dp.getVal());
}

else if (path.equals("runtime.cpu.maxUsage")) {
// runtime.cpu.maxUsage is an xsd:long
value = String.valueOf(dp.getVal());
}

else if (path.equals("runtime.memory.maxUsage")) {
// runtime.memory.maxUsage is an xsd:long
value = String.valueOf(dp.getVal());
}

else if (path.equals("runtime.overallStatus")) {
// runtime.overallStatus is a ManagedEntityStatus enum
value = String.valueOf(dp.getVal());
}

System.out.println(path + " = " + value);
}

}
}

}
}//end collectProperties()

// Authentication is handled by using a TrustManager and supplying
// a host name verifier method. (The host name verifier is declared
// in the main function.)
//
// For the purposes of this example, this TrustManager implementation
// will accept all certificates. This is only appropriate for
// a development environment. Production code should implement certificate support.
 private static class TrustAllTrustManager implements javax.net.ssl.TrustManager,

javax.net.ssl.X509TrustManager {

public java.security.cert.X509Certificate[] getAcceptedIssuers() {
return null;

 }

public boolean isServerTrusted(
java.security.cert.X509Certificate[] certs) {
return true;

 }

public boolean isClientTrusted(
java.security.cert.X509Certificate[] certs) {
return true;

 }

public void checkServerTrusted(java.security.cert.X509Certificate[] certs,
String authType)
throws java.security.cert.CertificateException {
return;

 }

public void checkClientTrusted(java.security.cert.X509Certificate[] certs,
String authType)
throws java.security.cert.CertificateException {
return;

 }
 }

VMware, Inc. 71

Chapter 5 Property Collector

public static void main(String [] args) throws Exception {

// arglist variables
String serverName = args[0];
String userName = args[1];
String password = args[2];
String url = "https://"+serverName+"/sdk/vimService";

// Variables of the following types for access to the API methods
// and to the vSphere inventory.
// -- ManagedObjectReference for the ServiceInstance on the Server
// -- VimService for access to the vSphere Web service
// -- VimPortType for access to methods
// -- ServiceContent for access to managed object services
ManagedObjectReference SVC_INST_REF = new ManagedObjectReference();
VimService vimService;
VimPortType vimPort;
ServiceContent serviceContent;

// Declare a host name verifier that will automatically enable
// the connection. The host name verifier is invoked during
// the SSL handshake.
HostnameVerifier hv = new HostnameVerifier() {

public boolean verify(String urlHostName, SSLSession session) {
return true;

}
};

// Create the trust manager.
javax.net.ssl.TrustManager[] trustAllCerts = new javax.net.ssl.TrustManager[1];
javax.net.ssl.TrustManager tm = new TrustAllTrustManager();
trustAllCerts[0] = tm;

// Create the SSL context
javax.net.ssl.SSLContext sc = javax.net.ssl.SSLContext.getInstance("SSL");

// Create the session context
javax.net.ssl.SSLSessionContext sslsc = sc.getServerSessionContext();

// Initialize the contexts; the session context takes the trust manager.
sslsc.setSessionTimeout(0);
sc.init(null, trustAllCerts, null);

// Use the default socket factory to create the socket for the secure connection
javax.net.ssl.HttpsURLConnection.setDefaultSSLSocketFactory(sc.getSocketFactory());

// Set the default host name verifier to enable the connection.
HttpsURLConnection.setDefaultHostnameVerifier(hv);

// Set up the manufactured managed object reference for the ServiceInstance
SVC_INST_REF.setType("ServiceInstance");
SVC_INST_REF.setValue("ServiceInstance");

// Create a VimService object to obtain a VimPort binding provider.
// The BindingProvider provides access to the protocol fields
// in request/response messages. Retrieve the request context
// which will be used for processing message requests.
vimService = new VimService();
vimPort = vimService.getVimPort();
Map<String, Object> ctxt = ((BindingProvider) vimPort).getRequestContext();

// Store the Server URL in the request context and specify true
// to maintain the connection between the client and server.
// The client API will include the Server's HTTP cookie in its
// requests to maintain the session. If you do not set this to true,
// the Server will start a new session with each request.
ctxt.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY, url);
ctxt.put(BindingProvider.SESSION_MAINTAIN_PROPERTY, true);

vSphere Web Services SDK Programming Guide

72 VMware, Inc.

// Retrieve the ServiceContent object and login
serviceContent = vimPort.retrieveServiceContent(SVC_INST_REF);

vimPort.login(serviceContent.getSessionManager(),
userName,
password,
null);

// retrieve data
collectProperties(vimPort, serviceContent);

// close the connection
vimPort.logout(serviceContent.getSessionManager());

}
}

SelectionSpec Traversal

The selectSet array in ObjectSpec and TraversalSpec objects can include TraversalSpec objects and
SelectionSpec objects. SelectionSpec is the base class for TraversalSpec objects. SelectionSpec defines
the name property. You can use a SelectionSpec object in a selectSet array as a reference to a named
TraversalSpec object. By using SelectionSpec references, you can reuse a TraversalSpec and you can
define recursive traversal.

Simple Reference SelectionSpec

Use SelectionSpec references to avoid writing duplicate TraversalSpec declarations. The TraversalSpec
identified in a SelectionSpec reference must be within the same PropertyFilterSpec. Figure 5-3 shows
the use of SelectionSpec references to a virtual machine TraversalSpec. The SelectionSpec references
are associated with Network and Datastore traversals.

Figure 5-3. SelectionSpec Reference

PropertyFilterSpec

objectSet[] ObjectSpec

selectSet[]

[...]

[...]
TraversalSpec

path=”vm”

selectSet[]

ObjectSpec

selectSet[]

[...]

TraversalSpec

path=”vm”

selectSet[]

 type=“DataStore”

ObjectSpec

selectSet[]

[...]

TraversalSpec

path=”resourcePool”

name=”vmTraversal”

 type=“VirtualMachine”

name=”vmTraversal”

SelectionSpec

name=”vmTraversal”

SelectionSpec

 type=“Network”

VMware, Inc. 73

Chapter 5 Property Collector

If the ObjectSpec.selectSet array contains a SelectionSpec, the referenced TraversalSpec must
identify the same object type. TraversalSpec.type must match the type of the object specified in
ObjectSpec.obj. The PropertyCollector applies the TraversalSpec to the object and use the
TraversalSpec.path property to extend its traversal.

Recursive Traversal

Use a SelectionSpec to apply a TraversalSpec to the results of its own traversal. To use a recursive filter
construction, create a SelectionSpec that specifies the name of a TraversalSpec and add it to the named
TraversalSpec selection set. The recursive construction extends inventory traversal beyond the paths
directly represented by TraversalSpec objects.

You can use recursive traversal on any inventory objects that can be nested. See “Inventory Hierarchies and
ServiceInstance” on page 50 for a general representation of the structure of an inventory. For example, on a
vCenter Server, folders can nest to arbitrary depths. To describe a traversal path through a succession of
folders, you can add a SelectionSpec to the Folder TraversalSpec. The SelectionSpec must reference
the TraversalSpec. Figure 5-4 shows a representation of a TraversalSpec and its associated
SelectionSpec for nested folder traversal.

Figure 5-4. Recursive TraversalSpec and SelectionSpec

Example 5-3, “Nested Folder Traversal,” on page 74 shows a Java code fragment that creates a recursive filter
for nested folder traversal.

To define recursive inventory traversal

1 Use the SearchIndex managed object to retrieve the managed object reference for the top-level virtual
machine folder.

This folder is used as the beginning of the inventory traversal. For more information see “SearchIndex”
on page 79.

2 Create an ObjectSpec object that references the top-level virtual machine folder.

3 Create a SelectionSpec object that references the Folder TraversalSpec by name.

4 Create a named TraversalSpec for Folder objects.

The TraversalSpec.path property identifies the Folder.childEntity property for traversal to any
child objects.

5 Add the SelectionSpec to the TraversalSpec to create the recursive filter.

6 Add the TraversalSpec to the ObjectSpec.

7 Create a PropertySpec for the Folder name.

8 Add the object and property specifications to the PropertyFilterSpec.

9 Call the RetrievePropertiesEx method.

TraversalSpec

path=”childEntity”

selectSet

name=”folderTraversal”

SelectionSpec

 type=“Folder”

name=”folderTraversal”

vSphere Web Services SDK Programming Guide

74 VMware, Inc.

Example 5-3. Nested Folder Traversal

import com.vmware.vim25.*;

import java.util.*;
import javax.net.ssl.HostnameVerifier;
import javax.net.ssl.HttpsURLConnection;
import javax.net.ssl.SSLSession;
import javax.xml.ws.BindingProvider;
import javax.xml.ws.soap.SOAPFaultException;

// PropertyCollector example
// command line input: server name, user name, password

public class nestedTraversal {

private static void collectProperties(VimPortType methods,
ServiceContent sContent) throws Exception {

// Get reference to the PropertyCollector
ManagedObjectReference propColl = sContent.getPropertyCollector();

// get the top-level vm folder mor
ManagedObjectReference sIndex = sContent.getSearchIndex();

ManagedObjectReference rootVmFolder =
methods.findByInventoryPath(sIndex,"datacenter1/vm");

// create an object spec to define the beginning of the traversal;
// root vm folder is the root object for this traversal
ObjectSpec oSpec = new ObjectSpec();
oSpec.setObj(rootVmFolder);
oSpec.setSkip(true);

// folder traversal reference
SelectionSpec sSpecF = new SelectionSpec();
sSpecF.setName("traverseFolder");

// create a folder traversal spec to select childEntity
TraversalSpec tSpecF = new TraversalSpec();
tSpecF.setType("Folder");
tSpecF.setPath("childEntity");
tSpecF.setSkip(false);
tSpecF.setName("traverseFolder");

// use the SelectionSpec as a reflexive spec for the folder traversal;
// the accessor method (getSelectSet) returns a reference to the
// mapped XML representation of the list; using this reference
// to add the spec will update the list
tSpecF.getSelectSet().add(sSpecF);

// add folder traversal to object spec
oSpec.getSelectSet().add(tSpecF);

// specify the property for retrieval (folder name)
PropertySpec pSpec = new PropertySpec();
pSpec.setType("Folder");
pSpec.getPathSet().add("name");

// create a PropertyFilterSpec and add the object and
// property specs to it; use the getter method to reference
// the mapped XML representation of the lists and add the specs
// directly to the lists
PropertyFilterSpec fSpec = new PropertyFilterSpec();
fSpec.getObjectSet().add(oSpec);
fSpec.getPropSet().add(pSpec);

VMware, Inc. 75

Chapter 5 Property Collector

// Create a list for the filter and add the spec to it
List<PropertyFilterSpec> fSpecList = new ArrayList<PropertyFilterSpec>();
fSpecList.add(fSpec);

// get the data from the server
RetrieveOptions ro = new RetrieveOptions();
RetrieveResult props = methods.retrievePropertiesEx(propColl,fSpecList,ro);

// go through the returned list and print out the data
if (props != null) {

for (ObjectContent oc : props.getObjects()) {
String folderName = null;
String path = null;
List<DynamicProperty> dps = oc.getPropSet();

if (dps != null) {
for (DynamicProperty dp : dps) {
folderName = (String) dp.getVal();
path = dp.getName();
System.out.println(path + " = " + folderName);

}
}

}
}

 }//end collectProperties()

 // Authentication is handled by using a TrustManager and supplying
 // a host name verifier method. (The host name verifier is declared
 // in the main function.)
 //
 // For the purposes of this example, this TrustManager implementation
 // will accept all certificates. This is only appropriate for
 // a development environment. Production code should implement certificate support.
 private static class TrustAllTrustManager implements javax.net.ssl.TrustManager,

javax.net.ssl.X509TrustManager {

 public java.security.cert.X509Certificate[] getAcceptedIssuers() {
 return null;
 }

 public boolean isServerTrusted(java.security.cert.X509Certificate[] certs) {
 return true;
 }

 public boolean isClientTrusted(java.security.cert.X509Certificate[] certs) {
 return true;
 }

 public void checkServerTrusted(java.security.cert.X509Certificate[] certs, String authType)
 throws java.security.cert.CertificateException {
 return;
 }

 public void checkClientTrusted(java.security.cert.X509Certificate[] certs, String authType)
 throws java.security.cert.CertificateException {
 return;
 }

}

public static void main(String [] args) throws Exception {

// arglist variables
String serverName = args[0];
String userName = args[1];
String password = args[2];
String url = "https://"+serverName+"/sdk/vimService";

// Variables of the following types for access to the API methods
// and to the vSphere inventory.

vSphere Web Services SDK Programming Guide

76 VMware, Inc.

// -- ManagedObjectReference for the ServiceInstance on the Server
// -- VimService for access to the vSphere Web service
// -- VimPortType for access to methods
// -- ServiceContent for access to managed object services
ManagedObjectReference SVC_INST_REF = new ManagedObjectReference();
VimService vimService;
VimPortType vimPort;
ServiceContent serviceContent;

// Declare a host name verifier that will automatically enable
// the connection. The host name verifier is invoked during
// the SSL handshake.
HostnameVerifier hv = new HostnameVerifier() {

public boolean verify(String urlHostName, SSLSession session) {
return true;

}
};

// Create the trust manager.
javax.net.ssl.TrustManager[] trustAllCerts = new javax.net.ssl.TrustManager[1];
javax.net.ssl.TrustManager tm = new TrustAllTrustManager();
trustAllCerts[0] = tm;

// Create the SSL context
javax.net.ssl.SSLContext sc = javax.net.ssl.SSLContext.getInstance("SSL");

// Create the session context
javax.net.ssl.SSLSessionContext sslsc = sc.getServerSessionContext();

// Initialize the contexts; the session context takes the trust manager.
sslsc.setSessionTimeout(0);
sc.init(null, trustAllCerts, null);

// Use the default socket factory to create the socket for the secure connection
javax.net.ssl.HttpsURLConnection.setDefaultSSLSocketFactory(sc.getSocketFactory());

// Set the default host name verifier to enable the connection.
HttpsURLConnection.setDefaultHostnameVerifier(hv);

// Set up the manufactured managed object reference for the ServiceInstance
SVC_INST_REF.setType("ServiceInstance");
SVC_INST_REF.setValue("ServiceInstance");

// Create a VimService object to obtain a VimPort binding provider.
// The BindingProvider provides access to the protocol fields
// in request/response messages. Retrieve the request context
// which will be used for processing message requests.
vimService = new VimService();
vimPort = vimService.getVimPort();
Map<String, Object> ctxt = ((BindingProvider) vimPort).getRequestContext();

// Store the Server URL in the request context and specify true
// to maintain the connection between the client and server.
// The client API will include the Server's HTTP cookie in its
// requests to maintain the session. If you do not set this to true,
// the Server will start a new session with each request.
ctxt.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY, url);
ctxt.put(BindingProvider.SESSION_MAINTAIN_PROPERTY, true);

// Retrieve the ServiceContent object and login
serviceContent = vimPort.retrieveServiceContent(SVC_INST_REF);
vimPort.login(serviceContent.getSessionManager(),
userName,
password,
null);

VMware, Inc. 77

Chapter 5 Property Collector

// retrieve data
collectProperties(vimPort, serviceContent);

// close the connection
vimPort.logout(serviceContent.getSessionManager());

 }
}

Client Data Synchronization (WaitForUpdatesEx)
To maintain a client-side representation of server object state (by monitoring the properties for the inventory),
use the CreateFilter and WaitForUpdatesEx methods. The WaitForUpdatesEx method supports an
incremental retrieval model.

Property Filters

A PropertyCollector can have one or more associated PropertyFilter objects. A PropertyFilter has
one or more associated PropertyFilterSpec objects. A PropertyFilterSpec that is used with the
RetrievePropertiesEx method has a limited lifespan; the server destroys the filter after returning results to
your client. For a sequence of incremental property collection operations, the WaitForUpdatesEx method
relies on PropertyFilterSpec objects that are available for multiple calls to the method.

To create persistent property filter specifications, use the CreateFilter method. When you call
CreateFilter, you pass a PropertyFilterSpec object to the method. The method adds the new filter to the
PropertyCollector associated with the method invocation and returns a reference to the new filter. After
you have created the filter, you can add additional PropertyFilterSpec objects. You cannot share a filter
with a PropertyCollector in another session.

WaitForUpdatesEx

The WaitForUpdatesEx method supports a polling mechanism for property collection that is based on a
specified wait time.

Specify the following parameters when you call WaitForUpdatesEx:

 Managed object reference to a PropertyCollector instance.

 version value that identifies a sequence value. The first time you call WaitForUpdatesEx, specify an
empty string (““) to retrieve a complete set of results for the specified properties. Your subsequent calls
should use the version value returned in the previous call. If you don’t include the version value, the
server returns everything. For more information about data versions, see “Server Data Transmission” on
page 79.

 options specifying the amount of data to transmit in a single response (the
WaitOptions.maxObjectUpdates property) and the number of seconds the PropertyCollector
should wait for updates (the WaitOptions.maxWaitSeconds property).

The value of the WaitOptions.maxWaitSeconds property determines whether the PropertyCollector uses
an instant retrieval or a polling model. When you call WaitForUpdatesEx with a wait time of 0, it checks for
updates and returns immediately. When you call WaitForUpdatesEx with a wait time greater than 0, the
method waits until the specified time or until a change. WaitForUpdatesEx blocks your process until updates
occur or until it times out. The time-out is affected by the maxWaitSeconds value, the amount of time it takes
to collect updated property values, and PropertyCollector policy.

IMPORTANT The filters you use for incremental retrieval persist for the duration of the session or until you
destroy them.

vSphere Web Services SDK Programming Guide

78 VMware, Inc.

If the property collection operation times out, and there are no updates to the requested properties, the
PropertyCollector returns null for the WaitForUpdatesEx response.

 maxWaitSeconds is an optional property. If you do not specify a value, the PropertyCollector waits as
long as possible for updates. Therefore, if maxWaitSeconds is unset, the waitForUpdatesEx method will
block the thread after all of the data has been retrieved, waiting for the TCP connection with the vSphere
server to timeout. Your code can handle this in one of the following ways: call waitForUpdatesEx from
a separate thread; look for specific updates and then stop calling the method; or change the TCP
connection timeout [BindingProviderProperties.CONNECT_TIMEOUT].)

 maxWaitSeconds set to zero specifies an immediate call and response. The PropertyCollector checks
for updates for all properties specified by the union of all filters associated with that instance of the
PropertyCollector. The PropertyCollector returns any results or null if there have been no updates.

 maxWaitSeconds greater than zero specifies a wait followed by polling. The PropertyCollector returns
null if no updates are available within maxWaitSeconds.

Table 5-3 lists some of the advantages and disadvantages of these two operations.

The WaitForUpdatesEx method returns an UpdateSet data object, the composite data structure shown in
Figure 5-5.

Figure 5-5. UpdateSet Data Object Returned by WaitForUpdates Operations

Table 5-3. WaitForUpdatesEx Operations Compared

Operation Advantages Disadvantages

MaxWaitSeconds=0 Returns only properties that have changed
since the version specified. Returns changed
data only, providing better network utilization
than RetrieveProperties.

Returns an empty set even when nothing has
changed on the server. Depending on your
client application, this might be inefficient.

MaxWaitSeconds>0 Blocks thread until an update occurs. Efficient
use of network resources. The only operation
that you can cancel.

Blocks processing thread until updates occur.
However, this call can be cancelled so you can
monitor the time the operation is taking and
cancel if necessary.

VMware, Inc. 79

Chapter 5 Property Collector

Server Data Transmission
Property collection can involve the retrieval of large amounts of data, depending on the number of properties
implied in the collection request. The vSphere server supports segmented data transmission, or chunking,
when it sends collected data to a client. If the amount of collected data exceeds the chunk size, the server
returns a chunk of data in a single response, and indicates additional data can be retrieved. For information
about chunk size, see the description of the RetrieveOptions.maxObjects and
WaitOptions.maxObjectUpdates properties in the vSphere API Reference.

 The WaitForUpdatesEx method returns an UpdateSet data object. The UpdateSet.truncated
property indicates whether you must call WaitForUpdatesEx again to retrieve additional data. If
truncated is true, the WaitForUpdatesEx method returns a version string to identify chunked data.
When your client application receives an indication that additional data are available, it must send the
returned UpdateSet.version string in the subsequent call to WaitForUpdatesEx to retrieve the next
chunk of data.

 The RetrievePropertiesEx method returns a RetrieveResult data object. The
RetrieveResult.token property indicates whether you must call the
ContinueRetrievePropertiesEx method to retrieve additional data. If the token property has a value,
it identifies chunked data. When your client application receives an indication that additional data are
available, it must send the returned token in the subsequent call to ContinueRetrievePropertiexEx to
retrieve the next chunk of data.

Version strings and tokens are sequenced. Your client application must keep track of the sequence of values.
If an error interrupts the collection operation, resume the operation by using the version string or token that
was submitted before the interruption.

PropertyCollector Performance
These factors can affect the performance of a PropertyCollector for any given session:

 Number of objects

 Number of properties

 Density of property data (composite, nested data objects)

 Frequency of changes to the objects and properties on the server

 Depth of traversal (number of properties traversed)

In addition, a vSphere server is affected by the number of PropertyCollector instances and the number of
filters each instance is supporting across all sessions on the server.

To minimize PropertyCollector overhead and the amount of network traffic for your client application, use
View objects with the PropertyCollector. Example 5-1 illustrates using views with the
PropertyCollector.

SearchIndex
The SearchIndex managed object provides a set of methods to retrieve references to managed objects in the
vSphere inventory. You can search by managed objects inventory path, IP address, datastore path, DNS name,
and various other identifying attributes. For example, if you know the IP address of a virtual machine, you can
obtain its managed object reference by using the SearchIndex.FindByIp method. You can use SearchIndex
to obtain the reference to a server object, and then use that reference as the starting object for property
collection. See the sample applications SearchIndex.java and SearchIndex.cs for more information about
using SearchIndex. See the vSphere API Reference for more information about SearchIndex methods.

vSphere Web Services SDK Programming Guide

80 VMware, Inc.

VMware, Inc. 81

6

VMware vSphere implements mechanisms to ensure that only valid users can access virtual infrastructure
components.Each property and method in the API has an associated privilege requirement, and only uses with
corresponding privileges can access the entities. This chapter discusses approaches to securing the system and
the related service interfaces. The chapter also discusses the user model, which is different in ESXi systems and
vCenter Server systems.

The chapter includes the following topics:

 “Objects for Authentication and Authorization Management” on page 81

 “Authentication and Authorization for ESXi and vCenter Server” on page 82

 “Setting Up Users, Groups, and Permissions” on page 84

 “Obtaining User and Group Information from UserDirectory” on page 85

 “Managing ESXi Users with HostLocalAccountManager” on page 86

 “Managing Roles and Permissions with AuthorizationManager” on page 86

 “Authenticating Users Through SessionManager” on page 91

 “Using the Credential Store for Automated Login” on page 91

 “Managing Licenses with LicenseManager” on page 94

See the vSphere Datacenter Administration Guide for a list of required privileges for common tasks and best
practices for roles and permissions. See Appendix D, “Privileges Reference,” on page 231 for lists of privileges
required to invoke operations and to read properties, and privileges defined for the administrator role.

Objects for Authentication and Authorization Management
VMware vSphere includes the following interfaces for authenticating users and protecting virtual
infrastructure components from unauthorized access:

 HostLocalAccountManager is used to create and manage user accounts on ESXi systems. Authenticated
users can view objects or invoke operations on the server depending on the permissions associated with
their account. See “Managing ESXi Users with HostLocalAccountManager” on page 86.

 AuthorizationManager protects vSphere components from unauthorized access. Access to components
is role-based: Users are assigned roles that encompass the privileges needed to view and perform
operations on vSphere objects. AuthorizationManager has operations for creating new roles, modifying
roles, setting permissions on entities, and handling the relationship between managed objects and
permissions.

 UserDirectory provides a look-up mechanism that returns user-account information to
AuthorizationManager or to another requestor, such as a client application. See “Obtaining User and
Group Information from UserDirectory” on page 85.

Authentication and Authorization 6

vSphere Web Services SDK Programming Guide

82 VMware, Inc.

 SessionManager provides an interface to the authentication infrastructure on the target server system
(see “Authenticating Users Through SessionManager” on page 91).

 For vCenter Server systems, SessionManager supports single sign-on based on SSO tokens obtained
from a VMware SSO Server. See “Establishing a Single Sign On Session with a vCenter Server” on
page 28.

 For ESXi systems, SessionManager supports authenticating user accounts as defined on the host
system, such as accounts created using vSphere Client or accounts created programmatically through
the HostLocalAccountManager API.

 Even if a user is authorized to perform operations on a vSphere object, the operation fails if the licenses
for the host or the feature have not been assigned. You use LicenseManager and
LicenseAssignmentManager to manage the licenses. See “Managing Licenses with LicenseManager” on
page 94.

Authentication and Authorization for ESXi and vCenter Server
Several server-side mechanisms authenticate a human user when a client application, such as the vSphere
Client or a vSphere Web Services SDK application, connects to the server. Because ESXi uses Linux-based
authentication, and vCenter Server is a Windows service, the two systems use different approaches for
handling user accounts. Figure 6-1 shows the two different user management mechanisms associated with the
VMware vSphere server.

Figure 6-1. Managed Objects for Handling User Accounts

These services work together to ensure that only authenticated users can connect to ESXi or vCenter Server
systems, and that they can access only those objects—folders, virtual machines, datacenters, virtual services,
and so on—for which they have the required privileges and which they are authorized to use or to view.

In addition, the vSphere Web Services SDK supports automated login through a credential store. See “Using
the Credential Store for Automated Login” on page 91.

ESXi User Model

When users enter their user account and credential from a client application, the server consults the
appropriate user account store and validates the authenticity of the user account and the associated credential.
Currently, the credential consists of a password, but vSphere also supports certificates, such as X.509
certificates. Authenticated users can then access objects they are authorized to use. Authentication succeeds if
a user identity exists as a user account on the target system or in a supported directory service.

VMware, Inc. 83

Chapter 6 Authentication and Authorization

ESXi leverages standard Linux infrastructure, including the Linux pluggable authentication module (PAM)
mechanism for user account creation and management. The VMware authentication daemon (vmware-authd)
is implemented as a PAM module. You can create and manage user accounts on an ESXi system by using
HostLocalAccountManager.

vCenter Server User Model

vCenter Server is a Windows-based service that uses native Windows facilities and the Windows user model
for identification and authentication. The vCenter Server Web service is associated with the Windows user
account that was logged in to the machine for the vCenter Server installation process. This vCenter Server
administrator account must be a member of the local Windows Administrator group on the machine. VMware
recommends creating a dedicated Windows user account for installing and managing the vCenter Server
system.

Other vCenter Server users who connect to the Web service must also have a Windows account on the local
Administrator group.

For details, see the Datacenter Administration Guide in the VMware vSphere documentation set.

Organizations that are using Microsoft Active Directory can use the user identities contained in a Windows
2003 Server domain controller or Active Directory service across their virtual infrastructure. Microsoft Active
Directory identities are supported for all clients that run vSphere Web Services SDK applications from
Windows-based systems.

A vCenter Server client uses a SAML token to establish a single sign on session with the Server. See
“Establishing a Single Sign On Session with a vCenter Server” on page 28.

vSphere Security Model

While the details of authentication and authorization differ between ESXi and vCenter Server, the model itself
is the same for both system. It relies on privileges, roles, and permissions.

Privileges

A privilege is a system-defined requirement associated with a VMware vSphere object. Privileges are defined
by VMware. Privileges are static, and do not change for a single version of a product. Each managed object has
one or more privileges that a principal (user, group member) must have to invoke an operation or to view a
property. For example, managed entities such as Folder and VirtualMachine require the principal to have
the System.Read privilege on the entity to view the values of its properties.

The vSphere API Reference includes information about privileges required to invoke operations and to view
properties on the Required Privileges labels on the documentation page for each managed object. Privileges
for vSphere components are defined as follows:

<group>[.<group>].privilege

For example:

Datacenter.Create
Host.Config.Connection
Host.Config.Snmp

A privilege might be specific to vCenter Server or to ESXi systems. For example, the Alarm.Create privilege
is defined on vCenter Server. Setting alarms is done through the AlarmManager service interface, which
requires a running vCenter Server system.

Privilege requirements apply to system objects regardless of how a given client application attempts to access
server content (vSphere Client, CLI, or SDK). For example, you can use the following URL to access virtual
machine datastore files:

https://<hostname>/folder[/<path>]/?dcPath=<datacenter_path>[&dsName=<datastore_name>]

IMPORTANT Even if a user with the same name exists on an ESXi host and a vCenter Server system, the two
users have different accounts.

vSphere Web Services SDK Programming Guide

84 VMware, Inc.

The URL accesses a Datastore object in the inventory. You must have privileges to access each object in the
hierarchy, corresponding to the elements of the URL.

Roles

A role is a predefined set of privileges. Users are granted privileges to objects through roles (see “Using Roles
to Consolidate Sets of Privileges” on page 88). When you assign a user or group permissions, you pair the user
or group with a role and associate that pairing with an inventory object. A single user might have different
roles for different objects in the inventory.

For example, if you have two resource pools in your inventory, Pool A and Pool B, you might assign a
particular user the role Virtual Machine User on Pool A and the role ReadOnly on Pool B. These assignments
allow that user to turn on virtual machines in Pool A. In Pool B, the user can view the status of virtual
machines, but cannot turn on virtual machines.

Table D-3, “Privileges Granted to the Administrator Role,” on page 240 shows a complete list of privileges
encompassed by the Administrator role as defined on a vCenter Server 4.0 system.

Permissions

In vSphere, a permission consists of a user or group and an assigned role for an inventory object, such as a
virtual machine or ESXi host. Permissions grant users the right to perform the activities specified by the role
on the object to which the role is assigned.

For example, to configure memory for an ESXi host, a user must be granted a role that includes the
Host.Configuration.Memory privilege. By assigning different roles to users or groups for different objects,
you can control the tasks that users can perform in your vSphere environment.

Many tasks require permissions on more than one object.

Setting Up Users, Groups, and Permissions

Setting up users, groups, and permissions consists of these tasks:

1 Get information about privilege requirements and privileges associated with system and sample roles.

 Find out which operations on vSphere objects require which privileges. See the API Reference.

 Find out which operations the system roles and sample roles can perform. See Table 6-2, “System and
Sample Roles,” on page 88.

2 If necessary, create additional roles (sets of privileges). See “Modifying Sample Roles to Create New
Roles” on page 89.

Table 6-1. Privileges Required for Datastore Objects Apply Regardless of Access Mechanism

Object Associated with File URL Element Required Privileges

Root folder /folder System.View

Datacenter ?dcPath Datastore.Browse

Datastore.FileManagement

Datastore &dsName Datastore.Browse

Datastore.FileManagement

Host /host Host.Config.AdvancedConfig

/tmp/ Host.Config.SystemManagement

VMware, Inc. 85

Chapter 6 Authentication and Authorization

3 Retrieve information about existing users and groups (see “Obtaining User and Group Information from
UserDirectory” on page 85) and create additional groups if needed.

4 Associate users or groups with roles using permissions. See “Managing Roles and Permissions with
AuthorizationManager” on page 86.

At runtime, use SessionManager to log in to the server. vCenter Servers support single sign-on sessions. To
establish a single sign-on session, use the SessionManager.LoginByToken method. To establish a session
with a standalone ESXi host, use the SessionManager.Login method.

Obtaining User and Group Information from UserDirectory
The UserDirectory managed object allows a client application to obtain information about users and groups
on a VMware vSphere server. Properties and results vary, depending on whether the server is a vCenter Server
or an ESXi system.

 vCenter Server system. Domain controller, Active Directory, or local Windows account repository.

 ESXi host. Linux password file in /etc/passwd on the host.

For example, vCenter Server user accounts can be managed in a Windows Active Directory server or domain
controller from which the domainList property of UserDirectory is derived. For ESXi systems, the
domainList property is empty.

Figure 6-2. UserDirectory Managed Object

UserDirectory allows you to obtain information about users and groups using the RetrieveUserGroups
method. The method can obtain a list of all user accounts from the host, and can search for specific users or
groups based on specific criteria to filter the results. You can search by user name, by group name, for an exact
match, or for a partial string (substring).

 ESXi does not support local user groups, so this method will not return group information for a host. This
method will return information about Active Directory groups.

 For ESXi systems, search returns all users from the passwd file. If this file contains Network Information
System (NIS) or NIS+ users, RetrieveUserGroups returns these accounts as well.

 For vCenter Server, search is limited to the specified Windows domain. If the domain is omitted, the
search is performed on local users and groups.

IMPORTANT Do not configure an ESXi system to use NIS or NIS+, unless it is acceptable to have NIS (or NIS+)
user information available through the UserDirectory.RetrieveUserGroups API.

vSphere Web Services SDK Programming Guide

86 VMware, Inc.

Managing ESXi Users with HostLocalAccountManager
The HostLocalAccountManager managed object supports user administration tasks.
HostLocalAccountManager is available only on ESXi system.

Figure 6-3. HostLocalAccountManager Managed Object

HostLocalAccountManager provides the following methods for local user account management:

 CreateUser

 RemoveUser

 UpdateUser

These methods accept a HostAccountSpec data object. Specify the object properties according to the
requirements on the target system. Examples of user account requirements are password length requirements
and restricted use of dictionary words.

To create a user account on an ESXi system

1 Obtain a managed object reference to the HostLocalAccountManager of the target system.

2 Create a HostAccountSpec data object that defines the properties of the user account, including
description and password.

Define account names and passwords according to the configuration required by your ESXi system for
user account naming conventions and password requirements, such as minimum length, character set,
and other requirements.

3 Call the HostLocalAccountManager.CreateUserAccount method, passing in the managed object
reference (from step 1) and the HostAccountSpec data object (step 2).

After creating user accounts on the ESXi system, you can grant these users access to virtual components by
using AuthorizationManager methods. See “Managing Roles and Permissions with
AuthorizationManager” on page 86.

Managing Roles and Permissions with AuthorizationManager
AuthorizationManager is the service interface for handling permissions and roles assigned to the users and
groups you define with HostLocalAccountManager. AuthorizationManager methods allow you to create,
modify, and manage roles and permissions, and to obtain information about the roles and permissions defined
in the system. If a predefined role does not meet your needs, define a new one that contains only the minimum
set of required privileges.

The AuthorizationManager also allows access and prevents access to specific server objects based on the
permissions associated with the object.

AuthorizationManager includes methods for managing roles and for managing permissions:

 Roles Management. AddAuthorizationRole, RemoveAuthorizationRole, and
UpdateAuthorizationRole. See “Using Roles to Consolidate Sets of Privileges” on page 88 and
“Modifying Sample Roles to Create New Roles” on page 89.

IMPORTANT vCenter Server systems use the Microsoft Windows user management facilities. See “vCenter
Server User Model” on page 83.

VMware, Inc. 87

Chapter 6 Authentication and Authorization

 Permissions Management. MergePermissions, RemoveEntityPermission,
ResetEntityPermissions, RetrieveAllPermissions, RetrieveEntityPermissions,
RetrieveRolePermissions, and SetEntityPermissions. See “Granting Privileges Through
Permissions” on page 89.

Figure 6-4 shows these methods in a UML diagram for AuthorizationManager and some of its associated
data objects.

Figure 6-4. AuthorizationManager Managed Object

vSphere Web Services SDK Programming Guide

88 VMware, Inc.

AuthorizationManager properties allow access to information. For example:

 The privilegeList property returns a list of all privileges defined on the system, as an array of
AuthorizationPrivilege data objects. Privileges are defined by VMware, on the objects and properties
contained in the system. These privileges are fixed and cannot be changed by client applications. See
Appendix D, “Privileges Reference,” on page 231 for lists of privileges.

 The roleList property returns a list of all currently defined roles, including the system-defined roles, as
an array of AuthorizationRole data objects.

Using Roles to Consolidate Sets of Privileges

A role is a named set of one or more privileges. A role is normally defined for a group of people who have
common responsibilities in the system, for example, administrators. Each role can have zero to multiple
privileges. ESXi defines system roles and user roles.

 System roles. Cannot be modified or deleted.

 User roles. Apply to different user communities or restrict access for add-on tools. Several predefined
user roles are included with vCenter Server and with ESXi systems. You can create new roles using these
predefined user roles as a starting point.

Table 6-2 describes these two types of roles in more detail and lists currently available roles as examples.

Table 6-2. System and Sample Roles

Type Role name Role ID Description

System
Roles

Administrator -1 Superuser access. Encompasses the set of all defined privileges. See
Table D-3, “Privileges Granted to the Administrator Role,” on page 240
for an example list from a vCenter Server system. This role cannot be
deleted. By default, the Administrator role is granted to the user or
group that owns the root node.

Anonymous -4 Cannot be granted. Default access role associated with any user account
that has logged in.

No Access -5 No access. Explicitly denies access to the user or group with this role.
Assigning this role to a user account prevents the user from seeing any
objects. Use the No Access role to mask subobjects under a higher-level
object that has propagated permissions defined.

Read-Only -2 Read-only access. Encompasses the set of all nonmutable privileges.
(System.Anonymous, System.Read, and System.View). Equivalent to
a user role with no permissions. Users with this role can read data or
properties and call query methods, but cannot make changes to the
system.

View -3 Visibility access consisting of System.Anonymous and System.View
privileges. Cannot be granted.

Sample
Roles

Virtual Machine
Administrator

1 Set of privileges necessary to manage virtual machines and hosts within
the system.

Datacenter
Administrator

2 Set of privileges necessary to manage resources, but not interact with
virtual machines.

Virtual Machine
Provider

3 Set of privileges necessary to provision resources.

Virtual Machine
Power User

4 Set of privileges for a virtual machine user that can also make
configuration changes and create new virtual machines.

Virtual Machine User 5 Set of privileges necessary to use virtual machines only. Cannot
reconfigure virtual machines.

ResourcePool
Administrator

6 Available on vCenter Server systems only.

VMware Consolidated
Backup Utility

7 Available on vCenter Server systems only. Set of privileges necessary to
run the Consolidated Backup Utility.

VMware, Inc. 89

Chapter 6 Authentication and Authorization

Modifying Sample Roles to Create New Roles

The system roles listed in Table 6-2 cannot be modified or deleted. However, you can create new roles, or
modify the sample roles.

To create new roles using the API

1 Starting with the ServiceContent object in ServiceInstance.content, obtain a managed object
reference to the AuthorizationManager for the server.

2 Invoke the AddAuthorizationRole method. Parameters are a reference to AuthorizationManager, a
name for the role (as a string), and an array of privileges (array of strings) that should be assigned to the
role.

AddAuthorizationRole returns an integer (xsd:int) value for the roleId that the system assigns to the
newly defined role.

3 In subsequent code, use the roleID to assign the role to specific users or groups.

Granting Privileges Through Permissions

When you use one of the AuthorizationManager objects to assign or modify permissions, you use a
Permission data object. Permission associates a principal with a set of privileges. A permission identifies:

 The user or group (principal) to which the permission applies.

 The role containing the privileges that should be granted to the user or group.

 The managed object reference to the entity to which the permission applies.

Every managed entity has at least one Permission object associated with it. A managed entity can have more
than one Permission assigned to it, effectively granting different privileges to different users or groups.
Permissions are defined for managed entities either explicitly or through inheritance.

Obtaining Information About Permissions

Users with the Administrator role can obtain information about Permission objects at different levels of
detail.

 For an array of Permission objects, call the AuthorizationManager.RetrieveAllPermissions
method.

 For specific inventory objects, such as managed entities, folders, datacenters, or virtual services, call the
AuthorizationManager.RetrieveEntityPermissions method.

 For a role defined in the system, call the AuthorizationManager.RetrieveRolePermissions method.

See the vSphere API Reference.

Setting, Changing, or Deleting Permissions

The Permission data object associates the privileges required to perform an action on an object with the
principals (user, group). Principals have privileges through their role. To set or update permissions on an
object, use the AuthorizationManager.SetEntityPermissions method.

To set permissions on an entity

1 Obtain a reference to the AuthorizationManager for the server from the ServiceContent object
associated with the ServiceInstance. For example:

ManagedObjectReference hostAuthorizationManager = service.getAuthorizationManager();

2 Create a Permission data object that identifies the user (or group) name, the role, the entity to which the
permission should apply, and whether the permission should be applied to the entity’s children.

vSphere Web Services SDK Programming Guide

90 VMware, Inc.

For example, the following code fragment creates a permission on the root folder of the inventory granting a
user Administrator role to the root folder and all its children.

Permission per = new Permission();
per.setGroup(false);
per.setPrincipal(“new_user_name”);
per.setRoleId(-1);
per.setPropagate(true);
per.setEntity(rootFolder);

Permissions cannot be set directly on children in a complex entity. For complex entities, set permissions on the
parent entity and set the propagate flag to true to apply permissions to the child entities.

To replace existing permissions with a new set of permissions, use the
AuthorizationManager.ResetEntityPermissions method.

Impact of Group Membership on Permissions

Users can be members of multiple groups. The system handles multigroup membership as follows:

 Permissions are applied to inventory objects from the containing object to each of its child entities.

 If a user has no explicit user-level permissions, group-level permissions apply as if granted to the user
directly.

 Membership in multiple groups with permissions on the same object results in a union of permissions.

 User-level permissions always take precedence over group-level permissions.

Applying Permission to a Managed Entity

Example 6-1 shows some of the code required to create a user account and apply a permission to an entity that
grants access to the user account based on a role. The role with role ID 4, assigned in this example, is defined
as a “Virtual Machine Power User.” The sample uses AuthorizationManager to grant permissions to the user
and to associate the permission with the managed entity in the inventory—in this example, the rootFolder.
The example uses the apputil helper classes to access the objects.

Example 6-1. Creating a User Account

...
ManagedObjectReference _authManRef = _sic.getAuthorizationManager();
public class CreateUser {
private static AppUtil appUtil= null;
private void createUser() throws Exception {
ManagedObjectReference hostLocalAccountManager =

appUtil.getConnection().getServiceContent().getAccountManager();
ManagedObjectReference hostAuthorizationManager =

appUtil.getConnection().getServiceContent().getAuthorizationManager();

// Create a user
HostAccountSpec hostAccountSpec = new HostAccountSpec();
hostAccountSpec.setId(userName);
hostAccountSpec.setPassword(password);
hostAccountSpec.setDescription("my delegated admin auto-agent software");
appUtil.getConnection().getService().createUser(hostLocalAccountManager, hostAccountSpec);
ManagedObjectReference rootFolder = appUtil.getConnection().getServiceContent().getRootFolder();
Permission permission = new Permission();
permission.setGroup(false);
permission.setPrincipal(userName);

// Assign the Virtual Machine Power User role
permission.setRoleId(4);
permission.setPropagate(true);
permission.setEntity(rootFolder);
appUtil.getConnection().getService().setEntityPermissions(hostAuthorizationManager, rootFolder,

new Permission [] {permission});
...

VMware, Inc. 91

Chapter 6 Authentication and Authorization

Authenticating Users Through SessionManager
The SessionManager managed object controls user access to the server. SessionManager includes methods
for logging in to the server, obtaining a session, and logging out. The SessionManager defines the lifetime and
visibility of many objects. Session-specific objects are not visible outside the session in which they are created.

Upon successful authentication of a user account, SessionManager returns a UserSession data object to the
client application. The session is associated with that user account for the duration of the session. The client
application can save the session locally, to a secure file, and reuse the session later to reconnect to the server.
You can also configure an ESXi or vCenter Server system to support local sessions, which enable users with
credentials on the host to log in based on those privileges.

The SessionManager provides these capabilities:

 Log in and log out. Basic operations to log in to ESXi or vCenter Server system, obtain a session, and log
out. When a session terminates, all session-specific objects are destroyed.

 Impersonation. One user session adopts the authorization level of another user session. Impersonation is
common in Web based scenarios in which a middle-tier application functions as a central account that
interacts with other back-end servers or processes. Windows services impersonate a client when accessing
resources on behalf of the client. SesssionManager supports impersonation through its
ImpersonateUser method.

 Delegation. A client application that is running on behalf of a local user can call the
SessionManager.AcquireLocalTicket method to obtain a one-time user name and password for
logging in. Delegation is useful for host-based utilities that run in the local console.

If the user account associated with the session does not have the permissions required to perform an action,
the AuthorizationManager returns a NoPermission fault to the client application.

Using VMware Single Sign On for vCenter Server Sessions

vSphere supports single sign on for a single point of authentication for vCenter Server clients. To use VMware
Single Sign On, your vSphere Web Services SDK client connects to the VMware SSO Server to obtain an SSO
token. Your client includes the token in the SessionManager.LoginByToken request to start a vSphere
session. See “Establishing a Single Sign On Session with a vCenter Server” on page 28.

Using the Credential Store for Automated Login
To facilitate automated login for unattended applications, the vSphere Web Services SDK includes client-side
credential store libraries and tools for automating the login process in a more secure manner. The libraries
eliminate the need for system administrators to keep passwords in local scripts.

The credential store has the following components:

 A persistence file (credential store backing file) that stores authentication credentials. Currently, only
passwords are supported. The persistence file maps a remote user account from an ESXi host to the
password for that user on the server.

 C#, Java, and Perl libraries for managing the credential store programmatically. See Table 6-4 for available
methods.

 Java and Microsoft PowerShell-based command-line utilities for managing the credential store.

In addition to the libraries listed in Table 6-3, the vSphere Web Services SDK includes the
CredentialStoreAdmin tool for creating, examining, and managing the credential store. You can use the tool
to examine the contents of the credential store, for example, the generated user accounts and passwords.

IMPORTANT Each user session uses system resources and creates locks on the server side. Too many
concurrent sessions can slow down the server. By default, vCenter Server terminates a session after 30 minutes.

IMPORTANT These libraries are built on top of the vSphere Web Services SDK.

vSphere Web Services SDK Programming Guide

92 VMware, Inc.

If you use the credential store client libraries, shown in Table 6-3 in an application, you must set up the
credential store on all client machines that run your application.

Several of the helper classes provided with the sample applications use the credential store mechanism.

Credential Store Methods

Credential Store Backing File

The credential store backing file is an XML file that is saved locally on the client machine for access at runtime.
Unless otherwise specified, the backing file is located in the following location:

 Linux. $HOME/.vmware/credstore/vicredentials.xml

 Windows Vista. C:\Users\[user_name]\AppData\Roaming\VMware\credstore\vicredentials.xml

 Windows XP and Windows 2000.
C:\Documents and Settings\[user_name]\Application Data\VMware\credstore\vicredentials.xml

The credential store persists locally on a per-user basis—each user has his or her own credential store backing
file.

Table 6-3. Credential Store Client Libraries

Package com.vmware.security.credstore (Java) Namespace VMware.Security.CredentialStore(C#)

CredentialStore.java CredentialStoreFactory.cs

CredentialStoreFactory.java CredentialStore.cs

Table 6-4. Credential Store Client Methods

Java C# Description

addPassword(hostname,
username, password)

AddPassword(hostname,
username, password)

Stores the password for the specified host
and user. Overwrites any existing
password for that user in the credential
store. Creates the default credential store
backing file in the default location (if it
does not exist).

removePassword(hostname,
username)

RemovePassword(hostname,
username)

Deletes the password for the specified
user from the credential store.

clearPasswords() ClearPasswords() Deletes all passwords from the credential
store.

getPassword(hostname,
username)

GetPassword(hostname,
username)

Returns the password for the specified
host and user from the credential store.

getHosts() GetHosts() Returns the set of hosts contained in the
credential store.

getUsernames(hostname) GetUsernames(hostname) Returns the collection of all user names
that have passwords stored for the
specified hostname.

close() Close() Closes the credential store, preventing
further method invocations. Releases
associated resources.

CAUTION The credential store backing files use filesystem-level permissions to ensure that passwords remain
confidential. Protect the credential store backing file with appropriate file permissions.

VMware, Inc. 93

Chapter 6 Authentication and Authorization

Example 6-2 shows the XML elements that are read and written to the file.

Example 6-2. Credential Store File Format

<?xml version="1.0" encoding="UTF-8"?>
<viCredentials>

<version>1.0</version>
<passwordEntry>

<host>mi6.vmware.com</host>
<username>agent007</username>
<password>IhWS1saIhtsw2FbIh0w2F2...</password>

</passwordEntry>
<passwordEntry>

...
</passwordEntry>
...

</viCredentials>

Credential Store Samples

The CreateUser and SimpleAgent sample applications demonstrate how to use the credential store client
libraries.

 The CreateUser sample creates a user account and password for the server based on
random-number-generation scheme. The sample populates the local credential store backing file with this
information. If the backing file does not exist, it is created in the default location.

When you run CreateUser, specify the name of an ESXi system, and an administrator user name and
password. A user account name and password are created on the server. Specify --ignorecert unless
your system has a secure connection to the target. Do not use --ignorecert in a production
environment.

java com.vmware.samples.simpleagent.CreateUser --server <servername> --url
https://<servername>/sdk --username <adminuser> --password <pwd> --ignorecert ignorecert

 The SimpleAgent sample application demonstrates how to use credential store libraries to extract the
user account and password at runtime to authenticate a user noninteractively.

java com.vmware.samples.simpleagent.SimpleAgent <servername>

Specifying Roles and Users with the Credential Store

VMware recommends that you apply the principle of least privilege to any agent-like software or automated
application that uses the credential store in a production environment. Give user accounts the minimal
number of privileges on the system that they require to do their jobs.

Specify roles and users as follows:

1 For each SDK-based application, use one specific role, newly created or predefined, that has appropriate
privileges.

For example, if you are developing an agent-like application to automatically start the VMware
Consolidated Backup utility, you might use the “VMware Consolidated Backup Utility” role (roleID 7).

If no predefined user role that meets the needs of your application exists, create a role with only those
privileges needed for the application. See Table 6-2, “System and Sample Roles,” on page 88 for more
information about roles.

2 Create a user account for use with the agent or application.

CAUTION The CreateUser sample application is for demonstration purposes only and should not be
used as a model for production code. The sample breaks the principle of least privilege by granting the
user account the Administrator role (-1). Never do this in a production environment.

vSphere Web Services SDK Programming Guide

94 VMware, Inc.

3 Apply the role created in Step 1 to the user account created in Step 2.

4 Store the user account and password in the credential store, using the
CredentialStoreAdministration tool.

Never grant administrator privileges to a user account associated with an automated script or software agent,
especially one that uses the credential store.

Managing Licenses with LicenseManager
When you want perform tasks in the vSphere environment, you must have licenses to do so. Licensing applies
to ESXi hosts, vCenter Server, and special features such as VMware HA or VMware vMotion.

The vSphere Datacenter Administration Guide explains how to manage ESXi and vCenter Server licenses using
the vSphere Client, and gives background information about license keys, license inventory, and related topics.

You can also manage licenses using the LicenseManager and LicenseAssignmentManager managed objects.
You use LicenseManager to explicitly manage the pool of available licenses on ESXi systems released before
vSphere 4.0. You use LicenseAssignmentManager, available through the
LicenseManager.licenseAssignmentManager property, to manage assignment of licenses to entities in the
vCenter Server inventory. You can retrieve information, add licenses, and remove licenses.

Retrieve Information

 Retrieve the LicenseManager.evaluation and LicenseManager.licenses properties to obtain
information on evaluation licenses and full licenses.

 Call LicenseManager.DecodeLicense to decode license information. The call returns a
LicenseManagerLicenseInfo data object, which encapsulates information about the license.

 Call LicenseAssignmentManager.QueryAssignedLicenses for information about assigned licenses.

Add Licenses

 Call LicenseManager.AddLicense, passing in a license key, to add a license to the inventory of available
licenses.

 Call LicenseAssignmentManager.UpdateAssignedLicense, passing in a license key, to update the
licenses for an entity, for example, a host system.

Remove Licenses

 Call LicenseAssignmentManager.RemoveAssignedLicense to remove all licenses from an entity,
passing in an entity to remove licenses from. You can then assign those licenses to other entities.

 Call LicenseManager.RemoveLicense, passing in a license key, to remove a license from the inventory
of available licenses.

VMware, Inc. 95

7

Many of the operations in your vSphere environment involve setting up the ESX/ESXi hosts on which the
virtualization layer runs. You can set up storage (see Chapter 8, “Storage,” on page 99) and networking (see
Chapter 9, “vSphere Networks,” on page 113), and those settings directly affect the virtual machine. You must
also manage other aspects of the host, as discussed in this chapter.

The chapter includes the following topics:

 “Host Management Objects” on page 95

 “Retrieving Host Information” on page 95

 “Configuring and Reconfiguring Hosts” on page 96

 “Managing the Host Lifecycle” on page 97

 “Querying and Changing the Host Time” on page 98

 “Querying Virtual Machine Memory Overhead” on page 98

Host Management Objects
The vSphere Web Services SDK includes several objects for host management.

The central object is HostSystem. Each property of HostSystem is a data object that encapsulates some
information about the host. For example, the capability property is a HostCapability object, the runtime
property is a HostRuntimeInfo object. See the API Reference for a list of the properties and the corresponding
data objects.

HostSystem methods allow you to perform certain tasks on ESX/ESXi hosts. However, many tasks are not
performed through HostSystem methods, but through methods in managed objects related to HostSystem.
For example, you manage the host time using the HostDateTimeSystem and you manage kernel modules
using HostKernelModuleSystem.

Retrieving Host Information
You retrieve information about the host by accessing data objects defined for the HostSystem.

 HostSystem.capability is a HostCapability object. The HostCapability properties indicate the
features that are supported by the host, for example, maintenanceModeSupported or
recursiveResourcePoolsSupported.

 HostSystem.runtimeInfo is a HostRuntimeInfo object that contains several data objects with detailed
information about the current state of the host. You can, for example, extract the health status as a
HealthSystemRuntime object or the power state as a HostPowerState object.

Hosts 7

IMPORTANT See the ESX Configuration Guide and the ESXi Configuration Guide for important information on
security considerations, not included here.

vSphere Web Services SDK Programming Guide

96 VMware, Inc.

 HostSystem.hardware is a HostHardwareInfo object that allows you to retrieve the host’s hardware
configuration including CPU and NUMA information and memory size.

 HostSystem.config is a HostConfigInfo object. This data object type encapsulates a typical set of host
configuration information that is useful for displaying and configuring a host. You can access the
HostConfigInfo object only on managed hosts, and only if the host is connected.

HostSystem has several additional properties that allow you to directly access the virtual machines,
datastores, and networks associated with that system.

The QueryHostConnectionInfo, QueryMemoryOverhead, and QueryMemoryOverheadEx methods are
available for information retrieval.

Figure 7-1. HostSystem and Information Properties

Configuring and Reconfiguring Hosts
When you configure or reconfigure an ESX/ESXi host, you usually do not use the methods in HostSystem
directly, but work with managed objects available for configuration of that part of the system. For example,
HostNetworkSystem allows you to configure the network, and HostAuthorizationManager is for managing
users, groups, and permissions on a host. The objects and related methods are discussed in the corresponding
chapters of this guide.

Some methods are defined locally in HostSystem. See the vSphere API Reference for details on each method.

 CIM Management – AcquireCimServicesTicket. For additional information on using vSphere with
CIM, see the VMware CIM APIs documentation.

 Host Lifecycle – RebootHost_Task, ShutdownHost_Task, PowerDownHostToStandBy_Task,
PowerUpHostFromStandBy_Task, DisconnectHost_Task, ReconnectHost_Task. See “Managing the
Host Lifecycle” on page 97.

 Maintenance Mode – EnterMaintenanceMode_Task, ExitMaintenanceMode_Task.

 Updates – UpdateFlags, UpdateIpmi, UpdateSystemResources.

VMware, Inc. 97

Chapter 7 Hosts

Managing the Host Lifecycle
A host’s lifecycle depends in part on whether the host is a standalone host or managed by a vCenter Server
system.

Reboot and Shutdown

You can reboot and shut down managed and standalone hosts. The ShutdownHost_Task method is not
supported on all hosts. Check the host capability shutdownSupported.

You can call both methods with a force parameter, which specifies whether to reboot hosts even when virtual
machines are running or other operations are in progress on the host. If you set the parameter to false, hosts
are rebooted only when they are in maintenance mode.

 ShutdownHost_Task – Shuts down a host. If connected directly to the host, the client never receives an
indicator of success in the returned task, but temporarily loses connection to the host. If the method does
not succeed, an error is returned.

 RebootHost_Task – Reboots a host. If the command is successful, then the host has been rebooted. Clients
connected directly to the host do not receive an indication of success in the returned task, but temporarily
lose connection to the host. If the method does not succeed, an error is returned.

Using Standby Mode

Standby is a power state in which the host does not support provisioning or power on of virtual machines.
VMware power management module might evacuate and put a host in standby mode to save power. The host
can be powered up remotely by using PowerUpHostFromStandBy_Task.

The following methods support standby mode. Both methods are cancelable.

 PowerDownHostToStandBy_Task – Puts the host in standby mode, a mode in which the host is in a
standby state from which it can be powered up remotely. The command is only supported on hosts on
which the host capability standbySupported is true.

While this task is running, no virtual machines can be powered on and no provisioning operations can be
performed on the host.

Calling this method does not directly initiate any operations to evacuate or power down powered-on
virtual machines. However, if VMware DRS is enabled, the vCenter Server migrates powered-off virtual
machines or recommends migration to a different host, depending on the automation level. If the host is
part of a cluster and the task is issued with a vCenter Server target with the method’s
evacuatePoweredOffVms parameter set to true, the task does not succeed unless all the powered-off
virtual machines are reregistered to other hosts.

 PowerUpHostFromStandBy_Task – Takes the host out of standby mode. If the command is successful, the
host wakes up and starts sending heartbeats. This method might be called automatically by VMware DRS
to add capacity to a cluster, if the host is not in maintenance mode.

Disconnecting and Reconnecting Hosts

You can make a host a managed host by adding it to the vCenter Server system. You can later disconnect and
reconnect the host, for example, to refresh the agents.

You can use the following methods, which are only supported if you access the host through a vCenter Server
system.

 QueryHostConnectionInfo – Returns a HostConnectInfo object, which is the same object that the
Datacenter.QueryConnectionInfo returns. The information in this object can be used by a connection
wizard, like the wizard used in the vSphere Client.

 DisconnectHost_Task – Disconnects from a host and instructs the vCenter Server system to stop
sending heartbeats to the host.

vSphere Web Services SDK Programming Guide

98 VMware, Inc.

 ReconnectHost_Task – Reconnects a host to the vCenter Server system. This process reinstalls agents
and reconfigures the host, if it has gotten out of sync with the server. The reconnection process checks for
the correct set of licenses and for the number of CPUs on the host, ensures the correct set of agents is
installed, and ensures that networks and datastores are discovered and registered with the vCenter Server
system.

Client applications can change the IP address and port of the host when doing a reconnect operation. This
can be useful if the client wants to preserve existing metadata, such as statistics, alarms, and privileges,
even though the host is changing its IP address.

Querying and Changing the Host Time
The HostDateTimeSystem supports date and time related configuration on a host and supports NTP
configuration. See also “Adding an NTP Service” on page 122.

The HostDateTimeSystem.dateTimeInfo property allows you to retrieve and set date and time information.
The HostDateTimeInfo data object’s properties contain two data object for date time management:

 HostNTPConfig contains a list of NTP servers for use by the host.

 HostDateTimeSystemTimeZone specifies the time zone including the GMT offset, identifier for the time
zone, and name.

You can also query the host’s time information by calling one of the HostDateTimeSystem methods.

 QueryAvailableTimeZones – Retrieves the list of available timezones on the host. The method uses the
public domain tz timezone database. The method returns an array of HostDateTimeSystemTimeZone
objects.

 QueryDateTime – Returns the current date and time on the host.

You can modify the host’s date time information by calling one of the following HostDateTimeSystem
methods:

 RefreshDateTimeSystem – Refreshes the date and time related settings to pick up any changes that
might have occurred.

 UpdateDateTime – Updates the date and time on the host using the date and time passed into the method.
Use with caution. Network delays or execution delays can result in time skews.

 UpdateDateTimeConfig – Updates the date and time configuration of the host. You call this method with
a HostDateTimeConfig parameter, which allows you to specify both the NTP configuration and the time
zone.

Querying Virtual Machine Memory Overhead
Each virtual machine you power on requires a certain amount of memory for its use. In addition, the host must
have some memory overhead available for each virtual machine. To find out about memory overheat, call the
HostSystem.QueryMemoryOverheadEx method. The method takes a virtualMachineConfigInfo data
object as an argument, and determines the amount of overhead necessary to power on a virtual machine with
those characteristics.

The methods returns the amount of memory required, in bytes.

VMware, Inc. 99

8

A virtual machine uses a virtual disk to store its operating system, program files, and other data. A virtual disk
is a large physical file, or a set of files, that can be copied, moved, archived, and backed up like other files. To
store and manipulate virtual disk files, a host requires dedicated storage space. ESX/ESXi supports storage in
multiple ways. Hosts that are managed by a vCenter Server system can share storage.

The chapter includes the following topics:

 “Storage Management Objects” on page 99

 “Introduction to Storage” on page 100

 “Choosing the Storage API to Use” on page 102

 “Configuring Disk Partitions” on page 103

 “Creating and Managing Datastores” on page 106

 “Managing VMFS Volume Copies (Resignaturing)” on page 109

 “Managing Diagnostic Partitions” on page 110

 “Sample Code Reference” on page 111

Any type of network-attached storage requires complete configuration of networking in the VMkernel to
support network-based access to the storage media. The VMkernel requires its own IP address. See Chapter 9,
“vSphere Networks,” on page 113.

Storage Management Objects
You can access the objects that support storage management through the HostSystem managed object.

 HostStorageSystem – The HostSystem.storageSystem property is a managed object reference to the
HostStorageSystem of the ESX/ESXi system. HostStorageSystem is a low-level interface that is used
mainly for configuring the physical storage. See “Configuring Disk Partitions” on page 103.

 HostDatastoreSystem – The HostSystem.datastoreSystem property is a managed object reference to
a HostDatastoreSystem managed object. HostDatastoreSystem methods allow you to create,
configure, extend, and remove datastores. While HostStorageSystem supports access and configuration
of physical storage, HostDatastoreSystem supports access and configuration of logical storage through
the volumes (Datastore managed objects) the host can use for virtual machines. See “Creating and
Managing Datastores” on page 106.

 HostDatastoreBrowser – Provides access to the contents of one or more datastores. The items in a
datastore are files that contain configuration, virtual disk, and other data associated with a virtual
machine.

Storage 8

vSphere Web Services SDK Programming Guide

100 VMware, Inc.

 Datastore – The Datastore managed entity provides methods for mounting datastores, browsing
datastores, and obtaining information about the datastores associated with a virtual machine. See
“Creating and Managing Datastores” on page 106.

 HostDiagnosticPartition – Supports creating and querying diagnostic partitions for your ESX/ESXi
host. See “Managing Diagnostic Partitions” on page 110.

Introduction to Storage
The VMware vSphere storage architecture consists of layers of abstraction that hide and manage the
complexity and differences of physical storage subsystems, shown in Figure 8-1.

Figure 8-1. Storage Architecture

How Virtual Machines Access Storage

Virtual machines use virtual disks for their operating system, application software, and other data files.
A virtual disk is stored as a VMDK file on a datastore. The virtual disk hides the physical storage layer from
the virtual machine’s operating system. Regardless of the type of storage device that your host uses, the virtual
disk always appears to the virtual machine as a local SCSI device. As a result, you can run operating systems
that are not certified for specific storage equipment, such as SAN, in the virtual machine.

When a virtual machine communicates with its virtual disk stored on a datastore, it issues SCSI commands.
Because datastores can exist on different types of physical storage, these commands are encapsulated into
other forms, depending on the protocol that the ESX/ESXi host uses to connect to the physical storage device.

To the applications and guest operating systems running on each virtual machine, the storage subsystem
appears as a virtual SCSI controller connected to one or more virtual SCSI disks as shown in the top half of
Figure 8-1. These controllers are the only types of SCSI controllers that a virtual machine can see and access,
and include the objects that extend VirtualSCSIController:

 ParaVirtualSCSIController

 VirtualBusLogicController

 VirtualLsiLogicController

 VirtualLsiLogicSASController

VMware, Inc. 101

Chapter 8 Storage

How precisely a virtual machine accesses storage depends on the setup of the host. Figure 8-2 gives an
overview of the different possibilities.

Figure 8-2. Storage API Architecture

Datastores

A datastore is a manageable storage entity, usually used as a repository for virtual machine files including log
files, scripts, configuration files, virtual disks, and so on. vSphere supports two types of datastores, VMFS and
NAS.

 If you want to use a NAS volume, mount it using CreateNasDatastore and unmount it using
RemoveDatastore. The two commands are host specific, you must invoke the create and remove methods
on each host on which you want to mount or unmount the datastore.

 To create a VMFS datastore, call CreateVmfsDatastore, passing in any existing disk. As a result of the
call, the disk is formatted with VMFS and the datastore is automounted on all ESX/ESXi hosts on which
the disk is visible the next time you perform a rescan. When you call RemoveDatastore on a VMFS
datastore, the datastore is destroyed. After a rescan, the datastore is no longer available to any ESX/ESXi
systems. In contrast to NAS datastores, you do not have to invoke a methods for creation and removal of
the datastore on each host.

An ESX/ESXi host automatically discovers the VMFS volume on attached Logical Unit Numbers (LUNs) on
startup and after re-scanning the host bus adapter. When you create a VMFS datastore, the datastore label is
based on the VMFS volume label. If there is a conflict with an existing datastore, the label is made unique by
appending a suffix. The VMFS volume label remains unchanged.

Destroying a VMFS datastore removes the partitions that compose the VMFS volume.

NFS
server

iSCSI
LUN

FC
LUN

local
iSCSI

storage

SAN TCP/IP LAN/WAN

iSCSI
HBA

SCSI
HBA

PSA

VMFS

disklib

vSCSI

NFS

disklib

vSCSI

FC
HBA

iSCSI
(HW)

iSCSI
(SW)

SCSI or
SAS

NIC

TCP/IP

virtual
machine

VHBA

virtual
machine

VHBA

virtual
machine

VHBA

virtual
machine

VHBA

virtual
machine

VNIC
NFS

FC

vSphere Web Services SDK Programming Guide

102 VMware, Inc.

Datastores can span multiple physical storage devices. A single VMFS volume can contain one or more LUNs
from a local SCSI disk array on a physical host, a Fibre Channel SAN disk farm, or iSCSI SAN disk farm. The
ESX/ESXi system detects new LUNS that are added to any of the physical storage subsystems. When the user
queries for a list of available devices, the newly discovered devices are included. You can extend storage
capacity on an existing VMFS volume without powering down physical hosts or storage subsystems.

If any of the LUNs within a VMFS volume fails or becomes unavailable, only virtual machines with data on
that LUN are affected. An exception is the LUN that has the first extent of the spanned volume (multi-extent
volume). All other virtual machines with virtual disks residing on other LUNs continue to function normally.

Choosing the Storage API to Use
The HostStorageSystem APIs are low-level enough for performing VMFS provisioning operations. They
require a knowledge of partitioning details and VMFS extent composition. They do not enforce VMFS best
practices like partition alignment and optimum VMFS block sizes, and they allow you to mix extents from
different datastores on the same LUN and to add extents even though expansion is preferable in most cases.

The HostDatastoreSystem APIs are primarily used for managing VMFS volume. They don’t require an
in-depth knowledge of storage systems, and do enforce best practices.

Figure 8-3 gives an overview of the different APIs; Table 8-1 shows which tasks are commonly performed with
which API.

Figure 8-3. Storage APIs

UpdateDiskPartitions()

RetrieveDiskPartitionInfo()

ComputeDiskPartitionInfo

ComputeDiskPartitionInfoForResize()

get/set ActivePartition()

CreateDiagnosticPartition()

SelectActivePartition()

QueryAvailablePartition()

QueryPartitionCreateDescription()

QueryPartitionCreateOptions()

FormatVmfs()

AttachVmfsExtent()

ExpandVmfsExtent()

UpgradeVmfs()

UpgradeVmfsLayout()

QueryUnresolvedVmfsVolume()

ResolveMultipleUnresolvedVmfsVolumes()

UnmountForceMountedVmfsVolumes()

RescanVmfs()

get/set FileSystemVolumeInfo()

QueryVmfsDatastoreCreateOptions()

QueryVmfsDatastoreExtendOptions()

QueryVmfsDatastoreExpandOptions()

QueryAvailableDisksForVmfs()

CreateVmfsDatastore()

ExtendVmfsDatastore()

ExpandVmfsDatastore()

RemoveDatastore()

QueryUnresolvedVmfsVolumes()

ResignatureUnresolvedVmfsVolume()

CreateNaSDatastore()

RemoveDatastore()

get/set Capabilities()

ConfigureDatastorePrincipal()

get/set Datastore()

UpdateLocalSwapDatastore()

Resignaturing

Provisioning

Options

Operations

VMFS

VMFS

NAS

NAS

File System
Management

OperationsOptions

Partition Management

Provisioning Upgrade

Mount Operations

HostDatastoreSystem API

HostDiagnosticSystem API

HostStorageSystem API

VMware, Inc. 103

Chapter 8 Storage

Configuring Disk Partitions
HostStorageSystem manages low-level storage components including HBAs, SCSI LUNs, file system
volumes, and so on. You can use this API to set up the partitions before creating, extending, or expanding a
VMFS file system. See “Setting Up Disk Partitions” on page 108.

 ComputeDiskPartitionInfo – Computes the disk partition information based on the specified disk
layout. The server computes a new HostDiskPartitionInfo object for a specific disk using the layout
that is specified by the HostDiskPartitionLayout object. Inside the HostDiskPartitionLayout
object, you specify the list of block ranges for that partition, and optionally the total number and size of
the blocks. You can then use that information inside the HostDiskPartitionSpec when updating a disk
partition.

 ComputeDiskPartitionInfoForResize – Computes the disk partition information to support resizing
a given partition. Returns the resized disk partition information as a HostDiskPartitionInfo object.
You can then use that information inside the HostDiskPartitionSpec when resizing the disk partition.

 RetrieveDiskPartitionInfo – Allows you to specify an array of device path names that identify disks
and returns an array of HostPartitionInfo objects for each of those disks.

 UpdateDiskPartitions – Changes the partitions on a disk by supplying a partition specification
(HostDiskPartitionSpec) and device name.

After you have updated the disk partitions for the host, you must perform a rescan by using one of the
following methods. Complete rescans might take a long time.

 RefreshStorageSystem – Refreshes the storage information and settings to pick up changes, but does
not explicitly issue commands to discover new devices.

 RescanAllHba – Rescans all host bus adapters for new storage devices. This method might take a long
time.

 RescanHba – Rescans a specific host bus adapter for new devices.

HostStorageSystem methods are also used for setting up iSCSI storage. See “Configuring iSCSI Storage” on
page 104.

Table 8-1. Storage API Overview

Managed Object Task See

HostStorageSystem Low-level operations associated with
individual hosts, such as resizing or
updating disk partitions.

“Configuring Disk Partitions” on page 103

HostStorageSystem Multipath management. “Multipath Management” on page 104

HostStorageSystem iSCSI Storage setup and configuration. “Configuring iSCSI Storage” on page 104

HostDatastoreSystem Creating and managing VMFS datastores
and remote datastores.

“Creating and Managing Datastores” on
page 106

HostDatastoreSystem
HostStorageSystem

Managing VMFS volume copies
(resignature or force mount).

“Managing VMFS Volume Copies
(Resignaturing)” on page 109

HostDiagnosticSystem Creating an managing diagnostic
partitions.

“Managing Diagnostic Partitions” on page 110

vSphere Web Services SDK Programming Guide

104 VMware, Inc.

Multipath Management
The vSphere Storage documentation includes information about using multipathing for failover and load
balancing. You can manage multipathing using the vSphere Client, the esxcli command, or using the
following commands. Use the HostStorageSystem.multipathStateInfo property to access the
HostMultipathStateInfo data object that describes runtime information about the state of a multipathing
on a given host.

 EnableMultipathPath – Enables a disabled path for a device. Use the pathname from
HostMultipathStateInfoPath or HostMultipathInfoPath.

 QueryPathSelectionPolicyOptions – Obtains the set of path-selection-policy options. These options
determine the path that can be used by a device that is managed by native multipathing. A
HostMultipathInfo data object identifies the devices that are managed through native multipathing.

 QueryStorageArrayTypePolicyOptions – Obtains the set of storage-array-type policy options. These
options determine the storage-array-type policies that a device that is managed by native multipathing
might use. A HostMultipathInfo data object identifies the devices that are managed through native
multipathing.

 SetMultipathLunPolicy – Updates the path selection policy for a LUN. Specify the LUN using the LUN
UUID from the HostMultipathInfoLogicalUnit object.

 DisableMultipathPath – Disables an enabled path for a device. Use the pathname from
HostMultipathStateInfoPath or HostMultipathInfoPath.

Configuring iSCSI Storage
vSphere supports software iSCSI, dependent hardware iSCSI, and independent hardware iSCSI. See
Configuring iSCSI Adapters and Storage in the vSphere Storage documentation for a detailed discussion.

The following HostStorageSystem methods are available for iSCSI storage management.

 Add a dynamic or static target.

 AddInternetScsiSendTarget – Adds send target entries to the host bus adapter discovery list if the
DiscoveryProperties.sendTargetsDiscoveryEnabled flag is set to true.

 AddInternetScsiStaticTargets – Adds static target entries to the host bus adapter discovery list.
The DiscoveryProperty.staticTargetDiscoveryEnabled flag must be set to true.

 Configure targets.

 UpdateInternetScsiAdvancedOptions – Updates the advanced options that the iSCSI host bus
adapter or the discovery addresses and targets associated with it.

 UpdateInternetScsiAlias – Updates the alias of an iSCSI host bus adapter.

 UpdateInternetScsiAuthenticationProperties – Updates the authentication properties for one
or more targets or discovery addresses associated with an iSCSI host bus adapter.

 UpdateInternetScsiDigestProperties – Updates the digest properties for the iSCSI host bus
adapter or the discovery addresses and targets associated with it.

 UpdateInternetScsiDiscoveryProperties – Updates the discovery properties for an iSCSI host
bus adapter.

 UpdateInternetScsiIPProperties – Updates the IP properties for an iSCSI host bus adapter.

 UpdateInternetScsiName – Updates the name of an iSCSI host bus adapter.

 UpdateSoftwareInternetScsiEnabled – Enables and disables software iSCSI in the VMkernel.

VMware, Inc. 105

Chapter 8 Storage

 Remove a dynamic or static target.

 RemoveInternetScsiSendTargets – Removes send target entries from the host bus adapter
discovery list. The DiscoveryProperty.sendTargetsDiscoveryEnabled must be set to true. If
any of the targets provided as parameters are not found in the existing list, the other targets are
removed and an exception is thrown.

 RemoveInternetScsiStaticTargets – Remove static target entries from the host bus adapter
discovery list. The DiscoveryProperty.staticTargetDiscoveryEnabled must be set to true. If
any of the targets provided as parameters are not found in the existing list, the other targets are
removed and an exception is thrown.

iSCSI initiators and targets have unique, permanent iSCSI names and addresses. An iSCSI name correctly
identifies a specific iSCSI initiator or target, regardless of physical location. Names must be in EUI or IQN
format, as specified by the storage vendor’s hardware.

Before you can set up iSCSI on a system, you must create a dedicated VMkernel network interface. See
“Adding a VMkernel Network Interface” on page 119. You can then enable the VMkernel to support iSCSI and
configure the initiator.

To enable the VMkernel to support software iSCSI

1 Obtain a managed object reference to the host system’s HostStorageSystem.

2 Invoke the UpdateSoftwareInternetScsiEnabled method, passing the reference to the
HostStorageSystem and the value true.

To configure iSCSI initiators

1 Access the list of available HBAs on the host system.

You can do this by creating a property collector with HostSystem as the starting point. See Chapter 5,
“Property Collector,” on page 57. From the HostSystem.config property, you can obtain the list (array)
of host bus adapters by specifying this property path:

config.storageDevice.hostBusAdapter

The property path returns an array of host bus adapters. For example:

hostBusAdapter["key-vim.host.BlockHba-vmhba32"]
hostBusAdapter["key-vim.host.BlockHba-vmhba33"]
hostBusAdapter["key-vim.host.BlockHba-vmhba34"]
hostBusAdapter["key-vim.host.BlockHba-vmhba35"]
hostBusAdapter["key-vim.host.BlockHba-vmhba1"]
...

2 From the array, select the host bus adapter (instance of HostHostBusAdapter) that you want to configure
and obtain its key property, which is the device name of the host bus adapter as a string.

3 Determine the capabilities of the adapter by retrieving the properties of the HostHostBusAdapter object.

4 Configure the initiator.

 For an independent hardware initiator, configure the IP address.

 For a software initiator, enable the software initiator in the VMkernel.

5 Configure the iSCSI name by calling HostStorageSystem.UpdateInternetScisiName and the alias by
running HostStorageSystem.UpdateInternetScisiAlias.

6 Configure target discovery by calling
HostStorageSystem.UpdateInternetScisiHbaDiscoveryProperties.

The method takes a HostInternetScisiHbaDiscoveryProperties data object that you can configure.

vSphere Web Services SDK Programming Guide

106 VMware, Inc.

7 (Optional) Set the authentication information by calling
HostStorageSystem.UpdateInternetScisiAuthenticationProperties.

The HostInternetScsiHbaAuthenticationProperties object you pass into that method includes
properties for configuring CHAP and Mutual CHAP. See the vSphere Storage documentation for
information about securing your iSCSI storage array.

8 Configure access to the targets.

9 Rescan the HBAs.

Rescan enables the HBAs to discover the new storage devices. You can either rescan a single HBA with
HostStorageSystem.RescanHba, specifying the HBA ID as a parameter, or rescan all HBAs using
HostStorageSystem.RescanAllHba.

Creating and Managing Datastores
Each datastore is a logical container, analogous to a file system on a logical volume, where the host places
virtual disk files and other virtual machine files. Datastores hide specifics of the physical storage device and
provide a uniform model for storing virtual machine files.

The HostDatastoreSystem managed objects provides methods for creating and managing datastores. All
HostDatastoreSystem methods require a managed object reference to HostDatastoreSystem, and return a
reference to the Datastore object after it is created.

HostDatastoreSystem allows you to create and expand, query, and remove or update datastores.
HostDatastoreSystem also allows you to configure a datastore principal for a host by calling
ConfigureDatastorePrincipal. All virtual machine-related file I/O is performed under this user.

VMFS provisioning tasks are often performed as follows:

1 Call QueryAvailableDisksForVmfs to get the subset of disks that are well suited for holding VMFS
datastores.

QueryAvailableDisksForVmfs obtains a list of disks that can be used to contain VMFS datastore
extents. You can provide a datastore name to obtain the list of disks that can contain extents for the
specified VMFS datastore. The operation does not return disks currently used by the VMFS datastore, nor
does it return management LUNs and disks that are referenced by RDMs. RDM disks are not usable for
VMFS datastores.

2 Get information about provisioning options by calling one of the following methods, passing in the
selected disk:

 QueryVmfsDatastoreCreateOptions – Obtains information about options for creating a new
VMFS datastore on a disk. The method returns an array of VmfsDatastoreOption data objects.

 QueryVmfsDatastoreExpandOptions – Obtains information about options for expanding the
extents of an existing VMFS datastore.

 QueryVmfsDatastoreExtendOptions – Obtains information about options for extending an
existing VMFS datastore for a disk.

3 If required, change the layout by calling HostStorageSystem.ComputeDiskPartitionInfo and then
HostStorageSystem.UpdateDiskPartition to resize the partition.

4 Call CreateVmfsDatastore, ExtendVmfsDatastore, or ExpandVmfsDatastore to complete the VMFS
provisioning operation.

VMware, Inc. 107

Chapter 8 Storage

Accessing Datastores

Figure 8-4 illustrates how you can access or specify datastores. See Chapter 4, “Datacenter Inventory,” on
page 49 for more information about the hierarchy of managed objects.

 Each Datacenter managed object has datastore property that contains an array of datastores.

 Each Datacenter managed object has a datastoreFolder property that is a reference to the folder (or
folder hierarchy) that contains the datastores for this datacenter.

 Each Datacenter managed object has a hostFolder property that is a reference to the folder (or folder
hierarchy) that contains the compute resources, including hosts and clusters, for this datacenter. Each
HostSystem or ComputeResource has a datastore property that is an array of Datastore managed
objects.

Figure 8-4. Datastore Managed Object

Creating and Modifying a VMFS Datastore

A datastore is a manageable storage entity, usually used as a repository for virtual machine files including log
files, scripts, configuration files, virtual disks, and so on. See Table 10-1, “Virtual Machine Files,” on page 128.

VMFS is a proprietary file system VMware designed for virtual machines. VMFS is well suited for storing a
small number of large data files like virtual disks. These files are mostly used by a single host. VMFS differs
from other filesystem formats like FAT16/FAT32 and so on in that it can be accessed by multiple hosts
connected to the same SAN LUN.

You can set up a VMFS datastore on any SCSI-based storage device that the host can access. VMFS volume
creation, extension, and expansion requires first partitioning operations and the VMFS volume operations.

vSphere Web Services SDK Programming Guide

108 VMware, Inc.

Setting Up Disk Partitions

Setting up the disk partitions consists of these tasks:

1 Call HostStorageSystem.RetrieveDiskPartitionInfo to retrieve information about existing
partitions.

2 Call HostStorageSystem.ComputeDiskPartition, passing in the desired disk layout. The server
computes a new partition information object for a specific disk representing the desired layout and
returns a HostDiskPartitionInfo object that you can use in the HostDiskPartitionSpec you pass
into UpdateDiskPartitions.

3 Call HostStorageSystem.UpdateDiskPartitions to update partitions by passing in a
HostDiskPartitionSpec.

Creating the VMFS Datastore

Creating the VMFS datastore consists of these tasks:

1 Configure and install any third-party adapter your storage requires and rescan the adapters by calling
HostStorageSystem.RescanAllHba.

2 Call HostDatastoreSystem.QueryAvailableDisksForVmfs for information about disks that can be
used to contain VMFS datastore.

This method filters out disks that are currently in use by an existing VMFS unless the VMFS using the disk
is one being extended. It will also filter out management LUNs and disks that are referenced by RDMs.
These disk LUNs are also unsuited for use by a VMFS. The method returns an array of HostScisiDisk
objects.

3 Call HostDatastoreSystem.QueryVmfsDatastoreCreateOptions for information about options for
for creating a new VMFS datastore. The call returns an array of VmfsDatastoreCreateOption data
objects that allow you to access the UUIDs of suitable data stores.

4 (Optional) If no suitable partitions for your VMFS volume exist, you might have to create them. Use the
ComputeDiskPartitionInfo and UpdateDiskPartitions methods in HostStorageSystem.

5 Create the datastore.

 Call HostDatastoreSystem.CreateVmfsDatastore to create a VMFS datastore. The method takes
a VmfsDatastoreCreateSpec data object that consists of a a partition, a HostVmfsSpec, and an
optional extent. The HostVmfsSpec allows you to specify the block size, extent, major version, and
volume name for the VMFS.

 Call HostDatastoreSystem.CreateNasDatastore to create a network-attached storage based
datastore.

You can later expand and extend the VMFS datastore by calling one of the following methods.

 Call first QueryVmfsDatastoreExpandOptions and then ExpandVmfsDatastore to expand an existing
VMFS datastore using the specification provided in the VmfsDatastoreExpandSpec data object (which
contains the name of the extent and partition information). ExpandVmfsDatastore increases the size of
the datastore up to the full size provisioned for the datastore, if necessary.

 Call first QueryVmfsDatastoreExtendOptions and then ExtendVmfsDatastore to extend an existing
VMFS datastore using the specification provided in the VmfsDatastoreExtendSpec data object.

VMware, Inc. 109

Chapter 8 Storage

Removing and Updating Datastores

 RemoveDatastore – Removes a datastore from a host.

 UpdateLocalSwapDatastore – Choose the localSwapDatastore for this host. Any change to this
setting affects virtual machines that subsequently power on or resume from a suspended state at this host,
or that migrate to this host while powered on. Virtual machines that are currently powered on at this host
are not affected.

See the vSphere API Reference for more information about the HostDatastoreSystem operations, including
constraints and limitations.

Managing VMFS Datastores with HostStorageSystem

In most cases, the Datastore methods are appropriate for creating and managing VMFS datastores. However,
in some cases the following HostStorageSystem commands are used instead:

 AttachVmfsExtent – Extends a VMFS by attaching a disk partition as an extent.

 ExpandVmfsExtent – Expands a VMFS extent as specified by the disk partition specification.

 FormatVmfs – Formats a new VMFS on a disk partition based on the HostVmfsSpec that you pass in.
Returns a HostVmfsVolume that represents the new VMFS file system. The HostVmfsVolume includes the
block size, list of partition names of the disk’s VMFS extents, and other information including the UUID.

This command is a low-level API you can use to partition disks explicitly. In most cases, the Datastore
VMFS commands are more suitable.

 RescanVmfs – Rescans for new VMFS instances.

 UpgradeVmfs – Upgrades the VMFS to the current VMFS version.

Update and Upgrade

 HostStorageSystem.UpdateScsiLunDisplayName – Update the mutable display name associated with
a SCSI LUN. The SCSI LUN to be updated is identified using the LUN UUID.

 HostStorageSystem.UpgradeVmLayout – Iterates over all registered virtual machines. For each virtual
machine, upgrades the layout and logs an event. After the method has been called, the information in the
VirtualMachineFileLayout data object data object is correct.

Managing VMFS Volume Copies (Resignaturing)
By default, ESX/ESXi hosts mount all VMFS datastores. Each VMFS datastore that is created in a partition on
a LUN has a unique UUID that is stored in the file system superblock. In addition, the LUN ID of the source
LUN is unique and is stored in the VMFS metadata.

When a LUN is replicated or a copy is made, the resulting LUN copy is identical, byte-for-byte, with the
original LUN. As a result, if the original LUN contains a VMFS datastore with UUID X, the LUN copy appears
to contain an identical VMFS datastore, or a VMFS datastore copy, with exactly the same UUID X. ESX/ESXi
can determine whether a LUN contains the VMFS datastore copy, and considers the copy unresolved and does
not mount it automatically.

To make the data on the LUN copy available, you can either force mount the copy if you are sure the original
is not in use, or you can resignature the copy. When you perform datastore resignaturing, consider the
following points:

 Datastore resignaturing is irreversible because it overwrites the original VMFS UUID.

 The LUN copy that contains the VMFS datastore that you resignature is no longer treated as a LUN copy,
but instead appears as an independent datastore with no relation to the source of the copy.

 A spanned datastore can be resignatured only if all its extents are online.

vSphere Web Services SDK Programming Guide

110 VMware, Inc.

 The resignaturing process is crash and fault tolerant. If the process is interrupted, you can resume it later.

 You can mount the new VMFS datastore without a risk of its UUID colliding with UUIDs of any other
datastore, such as an ancestor or child in a hierarchy of LUN snapshots.

See the vSphere Storage documentation for additional information.

The easiest way to resignature unresolved volumes is by using the
HostDatastoreSystem.ResignatureUnresolvedVmfsVolume_Task method. The method assigns a new
DiskUuid to a VMFS volume, but keep its contents intact. The method supports safe volume sharing across
hosts and is appropriate in most cases.

You can instead use the low-level HostStorageSystem methods to find, force mount, or unmount unresolved
volumes:

 HostStorageSystem.QueryUnresolvedVmfsVolume – Obtains the list of unbound VMFS volumes. For
sharing a volume across hosts, a VMFS volume is bound to its underlying block device storage. When a
low-level block copy is performed to copy or move the VMFS volume, the copied volume is unbound.

 HostStorageSystem.ResolveMultipleUnresolvedVmfsVolumes – Resignatures or force mounts
unbound VMFS volumes. This method takes a HostUnresolvedVmfsResolutionSpec data object as
input. The HostUnresolvedVmfsResolutionSpec.resolutionSpec property is an array of
HostUnresolvedVmfsResolutionSpec data objects that contain a
HostUnresolvedVmfsResolutionSpecVmfsUuidResolution enumeration. The enumeration is either
forceMount or resignature.

 UnmountForceMountedVmfsVolume – Unmounts a force mounted VMFS volume. When a low-level
block copy is performed to copy or move the VMFS volume, the copied volume is unresolved. For the
VMFS volume to be usable, a resolution operation is applied. As part of resolution operation, you might
decide to keep the original VMFS UUID. Once the resolution is applied, the VMFS volume is mounted on
the host for its use. This method allows you to unmount the VMFS volume if it is not used by any
registered virtual machines.

Managing Diagnostic Partitions
Your host must have a diagnostic partition (dump partition) to store core dumps for debugging and for use by
VMware technical support. See “Generating Diagnostic Bundles” on page 220. The VMware knowledge base
article at http://kb.vmware.com/kb/1004128 explains how to collect diagnostic partitions for a purple screen
fault in ESXi.

A 100MB diagnostic partition for each host is recommended. If more than one ESX/ESXi host uses the same
LUN as the diagnostic partition, that LUN must be zoned so that all the ESX/ESXi host can access it. Each host
needs 100MB of space, so the size of the LUN determines how many servers can share it. Each ESX/ESXi host
is mapped to a diagnostic slot. VMware recommends at least 16 slots (1600MB) of disk space if servers share a
diagnostic partition. You can set up a SAN LUN with FibreChannel or hardware iSCSI. SAN LUNs accessed
through a software iSCSI initiator are not supported.

CAUTION If two hosts that share a diagnostic partition fail and save core dumps to the same slot, the core
dumps might be lost. To collect core dump data, reboot a host and extract log files immediately after the host
fails. If another host fails before you collect the diagnostic data of the first host, the second host does not save
the core dump.

VMware, Inc. 111

Chapter 8 Storage

Retrieving Diagnostic Partition Information

The HostDiagnosticSystem managed object allows you to retrieve information in several ways.

 Retrieve the HostDiagnosticPartition object from the HostDiagnosticSystem.activePartition
property to examine the properties of the active partition.

 Call the HostDiagnosticPartition.QueryAvailablePartition method to retrieve a list of available
diagnostic partitions, in order of suitability.

 Call the HostDiagnosticPartition.QueryPartitionCreateOptions method to retrieve a list of disks
with sufficient space to contain a diagnostic partition of the specified type. The choices are returned in
order of suitability.

Creating a Diagnostic Partition

Creating a diagnostic partition requires that you find a suitable partition using one of the query methods. You
can then retrieve a creation specification, and perform the actual creation.

To create a diagnostic partition

1 Find a suitable partition by calling HostDiagnosticPartition.QueryAvailablePartition or
HostDiagnosticPartition.QueryPartitionCreateOptions.

2 Call HostDiagnosticPartition.CreateDiagnosticPartition, passing in a
HostDiagnosticPartitionCreateSpec, which includes information about the diagnostic type, id,
storage type, and so on.

On success, this method creates the partition and makes the partition the active partition if specified in the
active parameter. On failure, the diagnostic partition might exist, but will not be active even if the partition
was supposed to be made active.

Sample Code Reference
Table 8-2 lists the sample applications included with the vSphere Web Services SDK that demonstrate some of
the topics discussed in this chapter.

Table 8-2. Sample Applications that Demonstrate Storage and Datastore Operations

Java
(SDK\vsphere-ws\java\JAXWS\samples\com\vmware\)

C#
(SDK\vsphere-ws\dotnet\cs\samples\)

scsilun\SCSILunName.java SCSILunName\SCSILunName.cs

-- SCSILunName\SCSILunName.csproj

-- SCSILunName\SCSILunName2008.csproj

-- SCSILunName\SCSILunName2010.csproj

httpfileaccess\GetVMFiles.java GetVirtualDiskFiles\GetVirtualDiskFiles.cs

vSphere Web Services SDK Programming Guide

112 VMware, Inc.

VMware, Inc. 113

9

Before you add storage and virtual machines to an ESXi system, you should have completed networking setup.
This chapter describes how to set up virtual switches in the vSphere environment.

The chapter includes the following topics:

 “Virtual Switches” on page 113

 “Using a Distributed Virtual Switch” on page 114

 “VMware Standard Virtual Switch” on page 116

 “Sample Code Reference” on page 122

Virtual Switches
vSphere supports the use of virtual switches to manage network traffic to and from virtual machines.

 vCenter Server supports a distributed network model in which a distributed virtual switch manages ESXi
host proxy switch configuration. In the distributed network model, a host proxy switch reflects the
distributed virtual switch port settings, describes how physical network adapters are bridged to the
switch, and performs network I/O.

 On a standalone ESXi host, you can use a VMware standard virtual switch to support network traffic to
and from virtual machines on the host.

To configure a vSphere network you perform the following operations:

 Set up virtual switches

 Define portgroups

 Configure physical network adapters

Port Group

Port groups aggregate multiple ports under a common configuration. Each port can connect to a network
adapter of a virtual machine, or an uplink adapter on the physical machine.

Each port group is identified by a network label, which is unique to the current host. Network labels make
virtual machine configuration portable across hosts. All port groups in a datacenter that are physically
connected to the same network (in the sense that each can receive broadcasts from the others) are given the
same label. Conversely, if two port groups cannot receive broadcasts from each other, they have distinct labels.

You can use a VLAN ID to restrict port group traffic to a logical Ethernet segment within the physical network.
For a port group to reach port groups located on other VLANs, the VLAN ID must be set to 4095. If you use
VLAN IDs, you must change the port group labels and VLAN IDs together so that the labels properly
represent connectivity.

vSphere Networks 9

vSphere Web Services SDK Programming Guide

114 VMware, Inc.

Virtual Machine Network Interface

When you create a virtual machine, you include a VirtualMachineConfigSpec, which, in turn, includes a
VirtualDeviceConfigSpec. The device property of VirtualDeviceConfigSpec is a VirtualDevice data
object. One of the available virtual devices is VirtualEthernetCard. You can use one of the subtypes of
VirtualEthernetCard to specify the virtual card to use and to specify the MAC address and whether
wake-on-LAN is enabled for this virtual card. See “Adding Devices to Virtual Machines” on page 134. A
limited number of adapters is supported. KB article 1001805 (http://kb.vmware.com/kb/1001805) discusses
available network adapters and which adapter is appropriate in which situation.

VMkernel Network Interfaces

The network services that the VMkernel provides (iSCSI, NFS, and VMotion) use a TCP/IP stack in the
VMkernel. This stack accesses various networks by attaching to one or more port groups on one or more
virtual switches.

The VMware VMkernel TCP/IP networking stack handles iSCSI, NFS, and VMotion in the following ways.

 iSCSI as a virtual machine datastore

 iSCSI for the direct mounting of .ISO files, which are presented as CD-ROMs to virtual machines

 NFS as a virtual machine datastore

 NFS for the direct mounting of .ISO files, which are presented as CD-ROMs to virtual machines

 Migration with VMotion

If you have two or more physical NICs for iSCSI, you can create multiple paths for the software iSCSI by using
port binding. For more information on port binding, see the iSCSI SAN Configuration Guide.

A freshly installed ESX/ESXi system does not include VMkernel network interfaces. When you wish to migrate
a virtual machine with VMotion, your VMkernel networking stack must be set up properly. When you want
to use storage types that use TCP/IP network communications, such as iSCSI, you must provide a separate
VMkernel network interface for that storage device. You must create any VMkernel ports you might need (see
“Adding a VMkernel Network Interface” on page 119).

Physical Network Adapter (pnic)

The term pnic refers to the physical network adapters as seen by the primary operating system. When using
the vSphere Web Services SDK, you can manipulate the adapter directly. When using the vSphere Client GUI,
you manipulate instead the uplink adapter. On an ESXi host, each pnic has one associated uplink adapter.

In a vDS environment, you use a DVS uplink instead of an uplink adapter.

Using a Distributed Virtual Switch
A DistributedVirtualSwitch managed object is a virtual network switch that is located on a vCenter
Server. A distributed virtual switch manages configuration for proxy switches (HostProxySwitch). A proxy
switch is located on an ESXi host that is managed by the vCenter Server and is a member of the switch. A
distributed switch also provides virtual port state management so that port state is maintained when vCenter
Server operations move a virtual machine from one host to another.

A proxy switch performs network I/O to support the following network traffic and operations:

 Network traffic between virtual machines on any hosts that are members of the distributed virtual switch.

 Network traffic between a virtual machine that uses a distributed virtual switch and a virtual machine
that uses a VMware standard virtual switch.

 Network traffic between a virtual machine and a remote system on a physical network connected to the
ESXi host.

 vSphere system operations to support capabilities such as VMotion or High Availability.

VMware, Inc. 115

Chapter 9 vSphere Networks

A DistributedVirtualSwitch is the base distributed switch implementation. It supports a VMware
distributed virtual switch implementation and it supports third party distributed switch implementations.
The base implementation provides the following capabilities (defined in the DVSFeatureCapability object):

 NIC teaming

 Network I/O control

 Network resource allocation

 Quality of service tag support

 User-defined resource pools

 I/O passthrough (VMDirectPath Gen2)

A VmwareDistributedVirtualSwitch supports the following additional capabilities (defined in the
DVSFeatureCapability and VMwareDVSFeatureCapability objects):

 Backup, restore, and rollback for a VMware distributed virtual switch and its associated portgroups.

 Maximum Transmission Unit (MTU) configuration.

 Health check operations for NIC teaming and VLAN/MTU support.

 Monitoring switch traffic using Internet Protocol Flow Information Export (IPFIX).

 Link Layer Discovery Protocol (LLDP).

 Virtual network segmentation using a Private VLAN (PVLAN).

 VLAN-based SPAN (VSPAN) for virtual distributed port mirroring.

 Link Aggregation Control Protocol (LACP) defined for uplink portgroups.

Distributed Virtual Switch Configuration

To use a distributed virtual switch, you create a switch and portgroups on a vCenter Server, and add hosts as
members of the switch.

1 Use the Folder.CreateDVS_Task method to create a distributed virtual switch. Use a DVSConfigSpec
to create a switch for a third-party implementation. Use a VMwareDVSConfigSpec to create a VMware
distributed virtual switch.

2 Use the CreateDVPortgroup_Task method to create portgroups for host and virtual machine network
connections and for the connection between proxy switches and physical NICs. A
DistributedVirtualPortgroup specifies how virtual ports (DistributedVirtualPort) will be used.
When you create a distributed virtual switch, the vCenter Server automatically creates one uplink
portgroup (config.uplinkPortgroup). Uplink portgroups are distributed virtual portgroups that
support the connection between proxy switches and physical NICs.

Port creation on a distributed switch is determined by the portgroup type
(DVPortgroupConfigSpec.type):

 If a portgroup is early binding (static), then DVPortgroupConfigSpec.numPorts determines the
number of ports that get created when the portgroup is created. This number can be increased if
DVPortgroupConfigSpec.autoExpand is true.

 If a portgroup is ephemeral (dynamic), then numPorts is ignored and ports are created as needed.

You can also specify standalone ports that are not associated with a port group and uplink ports that are
created on ESXi hosts (DVSConfigSpec.numStandalonePorts).

The DVPortgroupConfigInfo.numPorts property is the total number of ports for a distributed virtual
switch. This total includes the ports generated by the static and dynamic portgroups and the standalone
ports.

vSphere Web Services SDK Programming Guide

116 VMware, Inc.

3 If you have created additional uplink portgroups, use the ReconfigureDvs_Task method to add the
portgroup(s) to the DVSConfigSpec.uplinkPortgroup array.

4 Retrieve physical NIC device names from the host (HostSystem.config.network.pnic[].device).

5 Add host member(s) to the distributed virtual switch. To configure host members:

 Specify hosts (DVSConfigSpec.host[]).

 For each host, specify one or more physical NIC device names to identify the pNIC(s) for the host
proxy connection to the network
(DistributedVirtualSwitchHostMemberConfigSpec.backing.pnicSpec[].pnicDevice)

 Use the DistributedVirtualSwitch.ReconfigureDvs_Task method to update the switch configuration.

When you add a host to a distributed virtual switch (DistributedVirtualSwitch.config.host), the host
automatically creates a proxy switch. The proxy switch is removed automatically when the host is
removed from the distributed virtual switch.

6 Connect hosts and virtual machines to the distributed virtual switch.

Backup, Rollback, and Query Operations

If you are using a VmwareDistributedVirtualSwitch, you can perform backup and rollback operations on
the switch and its associated distributed virtual portgroups.

 When you reconfigure a VMware distributed virtual switch (ReconfigureDvs_Task), the Server saves the
current switch configuration before applying the configuration updates. The saved switch configuration
includes portgroup configuration data. The Server uses the saved switch configuration as a checkpoint for
rollback operations. You can rollback the switch or portgroup configuration to the saved configuration, or you
can rollback to a backup configuration (EntityBackupConfig).

 To backup the switch and portgroup configuration, use the
DistributedVirtualSwitchManager.DVSManagerExportEntity_Task method. The export method
produces a EntityBackupConfig object. The backup configuration contains the switch and/or
portgroups specified in the SelectionSet parameter. To backup the complete configuration you must select
the distributed virtual switch and all of its portgroups.

 To rollback the switch configuration, use the DVSRollback_Task method to determine if the switch
configuration has changed. If it has changed, use the ReconfigureDvs_Task method to complete the
rollback operation.

 To rollback the portgroup configuration, use the
DistributedVirtualPortgroup.DVPortgroupRollback_Task method to determine if the portgroup
configuration has changed. If it has changed, use the ReconfigureDVPortgroup_Task method to
complete the rollback operation.

To perform query operations on a distributed virtual switch, use the DistributedVirtualSwitchManager
methods.

VMware Standard Virtual Switch
Network setup for ESXi hosts can consist of several parts:

Host
connection

Specify port or portgroup connections in the host virtual NIC spec
(HostVirtualNicSpec.distributedVirtualPort or
HostVirtualNicSpec.portgroup).

Virtual
machine
connection

Specify port or portgroup connections in the distributed virtual port backing
(VirtualEthernetCardDistributedVirtualPortBackingInfo) for the
virtual Ethernet cards on the virtual machine
(VirtualEthernetCard.backing).

VMware, Inc. 117

Chapter 9 vSphere Networks

 Setting up one or more virtual switches. Virtual switches provide the connectivity between virtual
machines on the same host or on different hosts. Virtual switches also support VMkernel network access
for VMotion, iSCSI, and NFS. You set up virtual switches independently on each host. See “Adding a
Standard Virtual Switch” on page 118.

 Adding virtual machine port groups. A virtual machine always accesses the network through a port
group. See “Adding a Virtual Port Group” on page 119.

 Specifying the adapter for the virtual machine. This adapter is specified as a virtual device, configured as
part of virtual machine setup, and discussed in “Configuring a Virtual Machine” on page 129.

 Adding VMkernel network interfaces, for example, to support iSCSI storage or VMotion. See “Adding a
VMkernel Network Interface” on page 119.

 Configuring a physical adapter (pnic), the actual connection from the host to the network. You can
configure the pnic through the HostNetworkSystem.pnic property, which is a PhysicalNic data object.
You can specify the set of pnics associated with a virtual switch through the VirtualSwitch.pnic
property, which takes an array of physical network adapters.

 Network configuration for the host (IP routing, DNS, SNMP). See “Adding Networking Services” on
page 122.

To use a VMware standard virtual switch, you use the following elements to configure the switch on an ESXi
host.

 HostNetworkSystem – Managed object that represents the host’s networking configuration. This object’s
properties point to the networking data objects you can use for network management, including
HostDnsConfig and HostIpRouteConfig.

HostNetworkSystem properties allow you to acess HostNetCapabilities and HostNetworkInfo data
objects, and access and modify the HostNetworkConfig data object.

HostNetworkSystem includes methods for retrieving and changing the network configuration. See the
API Reference for a complete list of methods and the permissions required to run them.

 HostNetworkConfig – Allows you to specify the network configuration for the host. You can apply the
configuration by running the HostNetworkSystem.UpdateNetworkConfig method.

 Network – Represents a network accessible by either hosts or virtual machines. This can be a physical
network or a logical network, such as a VLAN.

When you add a host to a vCenter Server system, or when you add a virtual machine to an ESX/ESXi host,
a Network is added automatically.

 HostSystem.QueryHostConnectionInfo and Datacenter.QueryConnectionInfo both return a
HostConnectInfo data object, which describes the current network configuration.

HostSNMPSystem – Supports SNMP setup. See “Setting Up SNMP” on page 122.

vNetwork Standard Switch Environment

A vNetwork Standard Switch (vSS) can route traffic internally between virtual machines and can link virtual
machines to external networks. Figure 9-1 shows the elements of a vSS environment.

vSphere Web Services SDK Programming Guide

118 VMware, Inc.

Figure 9-1. vSS Environment

Virtual Switches

At the center of networking with vSS is the virtual switch itself. The vSS can send network traffic between
virtual machines on the same host (private network) or network traffic to an external network (public
network). The public network uses the Ethernet adapter associated with the physical host (uplink adapter).

When two or more virtual machines are connected to the same vSS, network traffic between them is routed
locally. If an uplink adapter is attached to the vSS, each virtual machine can access the external network that
the adapter is connected to.

Setting Up Networking with vSS

You can use the HostNetworkSystem managed object to access and manipulate the elements of an ESX/ESXi
system’s network.

Retrieving Information About the Network Configuration

You can retrieve information about the network configuration as follows:

 The properties of the HostNetworkConfig object, which you access through
HostNetworkSystem.networkConfig, allow you to retrieve configuration information. This
information is comprehensive and includes the physical adapters, virtual switches, virtual network
interfaces, and so on.

You can also use HostNetworkConfig to make changes to the configuration.

 The properties of the HostNetworkInfo object, which you access through
HostNetworkSystem.networkInfo, allow you to retrieve runtime information.

Adding a Standard Virtual Switch

You call the HostNetworkSystem.AddVirtualSwitch method to add one or more virtual switches. Pass in
the name of the virtual switch and a HostVirtualSwitchSpec data object as parameters.

Inside HostVirtualSwitchSpec you can specify the MTU, number of ports, network policy, and bridge
specification. The bridge specifies how the virtual switch connects to the physical adapter. The currently
supported bond bridge provides network adapter (NIC) teaming capabilities through the use of a list of
physical devices and, optionally, a beacon probe to test connectivity with physical adapters.

After you have created the virtual switch, you can connect it to a pnic for connection to the outside, and to a
VMkernel port or a port group.

virtual switch (vss)

virtual machine
port group

virtual
machine

VMkernel portVMkernel port

VNIC

virtual
machine

VNIC

virtual
machine

VNIC

uplink
(PNIC)

uplink
(PNIC)

VMware, Inc. 119

Chapter 9 vSphere Networks

To add a virtual switch

1 Obtain information about the current networking configuration.

You can use a property collector to retrieve the HostNetworkSystem managed object and several of its
properties, such as networkInfo.

2 Define a HostVirtualSwitchSpec that specifies the attributes of the virtual switch. You can specify the
number of ports (56 to 4088 on ESXi systems) and the HostNetworkPolicy. See “Defining the Host
Network Policies” on page 120.

3 Call HostNetworkSystem.AddVirtualSwitch to add a virtual switch. Specify a unique name and a
HostVirtualSwitchSpec that defines the switch attributes.

The following fragment from AddVirtualSwitch.java illustrates this.

Example 9-1. Adding a Virtual Switch

vswitchId = vSwitch42;
...
ManagedObjectReference nwSystem = configMgr.getNetworkSystem();
HostVirtualSwitchSpec spec = new HostVirtualSwitchSpec();
spec.setNumPorts(8);
service.addVirtualSwitch(nwSystem, vswitchId, spec);
System.out.println(" : Successful creating : "

+ vswitchId);

Adding a Virtual Port Group

Port groups allow you to differentiate between different kinds of traffic passing through a virtual switch. You
can also use port groups as a boundary for communication or for security policy configuration. For ESXi
systems, the default port groups are Management Network and VM Network. For ESX systems, the default port
groups are Service console and VM Network.

When you create a port group, you can specify a VLAN ID for it. VLANs are an important part of ESX/ESXi
networking because they allow you to group traffic. For example, you could create separate network segments
for VMotion, for management and for development. Using VLANS, you only need to have a separate uplink
adapter for each network segment and a single virtual switch connecting to that adapter. That setup can
greatly reduce the number of switches you need.

To add a virtual port group

1 Define a HostPortgroupSpec. For each port group, you can specify the network policy, the VLAN ID,
and the virtual switch to which the port group belongs.

2 Call HostNetworkSystem.AddPortGroup, passing in the PortGroupSpec.

Adding a VMkernel Network Interface

VMkernel network interfaces provide the network access for the VMkernel TCP/IP stack. You must create new
VMkernel ports for your ESX/ESXi system if you plan on using VMotion, VMware FT, or iSCSI and NAS
storage. A VMkernel port consists of a port on the virtual switch and a VMkernel interface.

To add a VMkernel Network Interface

1 Create a HostVirtualNicSpec data object. Inside the object, you can specify the IP configuration in a
HostIpConfig data object. For vSS, specify the portgroup property. For vDS, specify the
distributedVirtualPort property.

2 Call HostNetworkSystem.AddVirtualNic, passing in the HostVirtualNicSpec.

3 You can then use the VMkernel network interface for software iSCSI or NAS, or call the
HostVmotionSystem.SelectVnic method to use this VMkernel NIC for VMotion.

vSphere Web Services SDK Programming Guide

120 VMware, Inc.

Example 9-2, a code fragment from the AddVirtualNic example, illustrates this. The sample retrieves the IP
address from the command line using the cb.get_option call.

Example 9-2. Adding a VMkernel Network Interface

private HostVirtualNicSpec createVNicSpecification() {
HostVirtualNicSpec vNicSpec = new HostVirtualNicSpec();
HostIpConfig ipConfig = new HostIpConfig();
ipConfig.setDhcp(false);
ipAddr = cb.get_option("ipaddress");
ipConfig.setIpAddress(ipAddr);
ipConfig.setSubnetMask("255.255.255.0");
vNicSpec.setIp(ipConfig);
return vNicSpec;

....

HostVirtualNicSpec vNicSpec = createVNicSpecification();
service.addVirtualNic(nwSystem, portGroup, vNicSpec);

Defining the Host Network Policies

When you configure host networks, you can define specific policies for the network. The HostNetworkPolicy
data object type describes network policies for both virtual switches and port groups. If the settings are not
specified for the port group explicitly, the port group inherits policy settings from the virtual switch with
which it is associated.

The policies are defined by the following data objects available as properties of HostNetworkPolicy.

 HostNicTeamingPolicy – Defines the connection to the physical network. This includes failure criteria,
active and standby NICs, and failover and load balancing information. See “NIC Teaming” on page 120.

 HostNetworkSecurityPolicy – Defines the security policies for the network. See the ESXi Configuration
Guide.

 HostNetworkTrafficShapingPolicy – Establishes parameters for three traffic characteristics: average
bandwidth, peak bandwidth, and maximum burst size.

You can also specify the VLAN policy by assigning an integer to the HostPortgroupSpec.vlanid property.
The VMkernel takes care of tagging and untagging the packets as they pass through the virtual switch. See the
HostPortgroupSpec and HostNetworkPolicy data objects in the API Reference.

NIC Teaming

Virtual machines connect to the public network through a virtual switch, which, in turn, connects to the
physical network interface (pnic). When the physical adapter or the adapter’s network connection fails,
connectivity for the associated virtual switch and all port groups and virtual machines is lost.

To resolve this issue, you can set up your environment so each virtual switch connects to two uplink adapters.
Each uplink adapter connects to two different physical switches. The teams can then either share the load of
traffic between physical and virtual networks among some or all of its members, or provide passive failover
in the event of a hardware failure or a network outage.

You set up NIC teaming by setting the HostNetworkPolicy. The path to the HostNicTeamingPolicy is:

HostConfigSpec.network.vswitch[].spec.policy.nicTeaming

If you specify NIC teaming for a virtual switch, the HostVirtualSwitchSpec.bridge property must be set
to HostVirtualSwitchBondBridge.

VMware, Inc. 121

Chapter 9 vSphere Networks

Figure 9-2. NIC Teaming

Setting Up IPv6 Networking

vSphere supports both Internet Protocol version 4 (IPv4) and Internet Protocol version 6 (IPv6) environments.
With IPv6, you can use vSphere features such as NFS in an IPv6 environment.

An IPv6-specific configuration in vSphere involves providing IPv6 addresses, either by entering static
addresses or by using DHCP for all relevant vSphere networking interfaces. IPv6 addresses can also be
configured using stateless autoconfiguration sent by router advertisement.

You can set up IPv6 networking for a host by changing the HostIpConfig.ipV6Config property, which is a
HostIpConfigIpV6AddressConfiguration data object. HostIpConfigIpV6AddressConfiguration
allows you to specify whether auto-configuration is enabled, whether DHCP for ipV6 addresses is enabled,
and an array of IPv6 addresses (HostIpConfigIpV6Address data objects).

HostIpConfigIpV6Address allows you to specify all aspects of the IPv6 address including the state of the
address, the address (unless DHCP is enabled), life time, operation, origin, and prefix length. See the API
Reference. The following code fragment illustrates setting the VMkernel NIC to get an automatic IPv6 address
from router advertisements and through DHCP. The user provides the IP address on the command line when
calling the program from which the fragment is taken. The sample retrieves the address using the
cb.get_option utility applications call.

Example 9-3. IPv6 Setup

private HostVirtualNicSpec createVNicSpecification() {
HostVirtualNicSpec vNicSpec = new HostVirtualNicSpec();
HostIpConfig ipConfig = new HostIpConfig();

//setting the vnic to get an automatic ipv6 address from router advertisements
// and through dhcp

ipV6Config = new HostIpConfigIpV6AddressConfiguration();
ipV6Config.setAutoConfigurationEnabled(true);
ipV6Config.setDhcpV6Enabled(true);
ipConfig.setIpV6Config(ipV6Config);
vNicSpec.setIp(ipConfig);
return vNicSpec;

....

virtual switch (vss)

virtual machine
port group

virtual
machine

VMkernel portVMkernel port

VNIC

virtual
machine

VNIC

virtual
machine

VNIC

physical
switch

physical
switch

uplink
(PNIC)

uplink
(PNIC)

vSphere Web Services SDK Programming Guide

122 VMware, Inc.

Adding Networking Services

You can set up network services for your ESXi system by using HostConfigManager properties and methods.

Adding an NTP Service

The HostConfigManager.dateTimeSystem property contains a HostDateTimeSystem data object. This
object allows you to perform NTP and date and time related configuration.

 Query and update the date and time information by using one of the methods defined in
HostDateTimeSystem.

 Modify the HostDateTimeSystem.dateTimeInfo property, which contains a HostDateTimeInfo object,
to set up NTP. The NTP information is stored in the HostDateTimeInfo.ntpConfig property, which is a
HostNtpConfig object. The HostNtpConfig objects’s server property contains a list of time servers,
specified by IP address or fully qualified domain name.

Setting Up the IP Route Configuration

You can use the HostNetworkSystem.UpdateIPRouteConfig method to specify the IP route configuration
for an ESX/ESXi system. The method takes a HostIPRouteConfig data object as an argument. In this object,
you can specify the default gateway address and the IPv6 gateway address. The data object also allows you to
specify the service console gateway device on ESX.

Setting Up SNMP

Simple Network Management Protocol (SNMP) allows management programs to monitor and control
networked devices. vCenter Server and ESX/ESXi systems include different SNMP agents:

 The SNMP agent included with vCenter Server can send traps when the vCenter Server system is started
or when an alarm is triggered on vCenter Server. The vCenter Server SNMP agent functions only as a trap
emitter and does not support other SNMP operations such as GET.

 ESX/ESXi 4.0 and later includes an SNMP agent embedded in the ESX/ESXi host daemon (hostd) that can
send traps and receive polling requests such as GET requests.

Versions of ESX released before ESX/ESXi 4.0 included a Net-SNMP-based agent. You can continue to use this
Net-SNMP-based agent in ESX 4.x with MIBs supplied by your hardware vendor and other third-party
management applications. However, to use the VMware MIB files, you must use the embedded SNMP agent.
To use the NET-SNMP based agent and embedded SNMP agent at the same time, make one of the agents listen
on a nondefault port. By default, both agents use the same port.

The SDK supports SNMP agent configuration through the HostSnmpSystem managed object. This object
includes two methods, ReconfigureSnmpAgent and SendTestNotification.

 HostSnmpSystem.ReconfigureSnmpAgent allows you to specify agent properties through a
HostSnmpConfigSpec. That data object allows you to specify the SNMP port, read only communities, and
the trap targets in an HostSnmpDestination object. The HostSnmpDestination object allows you to
specify the community, and a host and port listening for notification.

 HostSnmpSystem.SendTestNotification allows you to test your configuration.

A HostSnmpSystemAgentLimits data object in the HostSnmpSystem.limits property specifies limits of the
agent.

Sample Code Reference
Table 9-1 lists the sample applications included with the vSphere SDK that demonstrate how to use some of
the managed objects discussed in this chapter.

IMPORTANT You can start and stop the NTP daemon and retrieve information about it by using the
HostServiceSystem object.

VMware, Inc. 123

Chapter 9 vSphere Networks

(

Table 9-1. Networking Sample Applications

Java
(SDK\vsphere-ws\java\JAXWS\samples\com\
vmware\host)

C#
(SDK\vsphere-ws\dotnet\cs\samples\)

AddVirtualNic.java AddVirtualNic\AddVirtualNic.cs

AddVirtualNic\AddVirtualNic.csproj

AddVirtualNic\AddVirtualNic2008.csproj

AddVirtualNic\AddVirtualNic2010.csproj

AddVirtualSwitch.java AddVirtualSwitch\AddVirtualSwitch.cs

AddVirtualSwitch\AddVirtualSwitch.csproj

AddVirtualSwitch\AddVirtualSwitch2008.csproj

AddVirtualSwitch\AddVirtualSwitch2010.csproj

AddVirtualSwitchPortGroup.java AddVirtualSwitchPortGroup\AddVirtualSwitchPortGroup.cs

AddVirtualSwitchPortGroup\AddVirtualSwitchPortGroup.csproj

AddVirtualSwitchPortGroup\AddVirtualSwitchPortGroup2008.csproj

AddVirtualSwitchPortGroup\AddVirtualSwitchPortGroup2010.csproj

RemoveVirtualNic.java RemoveVirtualNic\RemoveVirtualNic.cs

RemoveVirtualNic\RemoveVirtualNic.csproj

RemoveVirtualNic\RemoveVirtualNic2008.csproj

RemoveVirtualNic\RemoveVirtualNic2010.csproj

RemoveVirtualSwitch.java RemoveVirtualSwitch\RemoveVirtualSwitch.cs

RemoveVirtualSwitch\RemoveVirtualSwitch.csproj

RemoveVirtualSwitch\RemoveVirtualSwitch2008.csproj

RemoveVirtualSwitch\RemoveVirtualSwitch2010.csproj

RemoveVirtualSwitchPortGroup.java RemoveVirtualSwitchPortGroup\RemoveVirtualSwitchPortGroup.cs

RemoveVirtualSwitchPortGroup\RemoveVirtualSwitchPortGroup.cspr
oj

RemoveVirtualSwitchPortGroup\RemoveVirtualSwitchPortGroup2008.
csproj

RemoveVirtualSwitchPortGroup\RemoveVirtualSwitchPortGroup2010.
csproj

vSphere Web Services SDK Programming Guide

124 VMware, Inc.

VMware, Inc. 125

10

A virtual machine is a software computer that, like a physical computer, runs an operating system and
applications. Virtual machines are compatible with all standard x86 computers. Each virtual machine
encapsulates a complete computing environment and runs independently of underlying hardware.

The chapter includes the following topics:

 “VirtualMachine Management Objects and Methods” on page 125

 “Creating Virtual Machines and Virtual Machine Templates” on page 126

 “Configuring a Virtual Machine” on page 129

 “Adding Devices to Virtual Machines” on page 134

 “Performing Virtual Machine Power Operations” on page 135

 “Registering and Unregistering Virtual Machines” on page 136

 “Customizing the Guest Operating System” on page 137

 “Installing VMware Tools” on page 137

 “Upgrading a Virtual Machine” on page 138

VirtualMachine Management Objects and Methods
Virtual machines are the central elements of your vSphere environment. You create a virtual machine by
calling Folder.CreateVM_Task, and configure the virtual machine by using properties and methods of the
VirtualMachine managed object. Most of the properties point to data objects that the methods use as input.
Figure 10-1 shows some of the properties and methods.

Client applications commonly access and manipulate the following virtual machine related objects:

 VirtualMachine – Managed object used for most virtual machine manipulation. Includes methods that
create templates, clones, or snapshots of a virtual machine, perform power operations and guest OS
management, and install VMware Tools.

 VirtualMachineConfigInfo – Data object which allows you to retrieve configuration-specific
information from a virtual machine.

 VirtualMachineCloneSpec – Data object which allows you to specify virtual machine properties for a
clone operation. Argument to VirtualMachine.CloneVM_Task.

Virtual Machine Configuration 10

vSphere Web Services SDK Programming Guide

126 VMware, Inc.

Figure 10-1. VirtualMachine Managed Object with Some Properties and Methods

Creating Virtual Machines and Virtual Machine Templates
To create a virtual machine, you use the Folder.CreateVM_Task method. The method takes a
VirtualMachineConfigSpec data object as input argument. VirtualMachineConfigSpec allows you to
specify the attributes of the virtual machine you are creating.

If you need several identical virtual machines, you can convert an existing virtual machine to a template and
create multiple copies (clones) from the template. You can also create multiple virtual machines by cloning an
existing virtual machine directly.

Creating a Virtual Machine Using VirtualMachineConfigSpec

Use the Folder.CreateVM_Task method to create a virtual machine by specifying its attributes. You must
specify either a host or a resource pool (or both). The virtual machine uses the CPU and memory resources
from the host or resource pool.

Calling the CreateVM_Task Method

Create a virtual machine by calling the Folder.CreateVM_Task method with the following arguments:

 _this —Folder where you want to place the virtual machine.

 config— VirtualMachineConfigSpec data object that specifies CPU, memory, networking, and so on.
See “Specifying Virtual Machine Attributes with VirtualMachineConfigSpec” on page 127)

 pool— Resource pool for the virtual machine to draw resources from.

 host— HostSystem managed object that represents the target host on which to run the virtual machine.
If you invoke this method on a standalone host, omit this parameter. If the target host is part of a VMware
DRS cluster, this parameter is optional; if no host is specified, the system selects one.

IMPORTANT All objects must be located in the same datacenter.

VMware, Inc. 127

Chapter 10 Virtual Machine Configuration

Specifying Virtual Machine Attributes with VirtualMachineConfigSpec

The actual customization of the virtual machine happens through the properties of the
VirtualMachineConfigSpec that is passed in as an argument to Folder.CreateVM_Task. For example, you
can specify the name, boot options, number of CPUs, and memory for the virtual machine. All properties of
VirtualMachineConfigSpec are optional to support incremental changes. See the API Reference.

The following example fragment from the VMCreate sample program illustrates how to define a
VirtualMachineConfigSpec.

Example 10-1. Defining a VirtualMachineConfigSpec Data Object

VirtualMachineConfigSpec vmConfigSpec = new VirtualMachineConfigSpec();
...
vmConfigSpec.setName(“MyVM”);
vmConfigSpec.setMemoryMB(new Long(Integer.parseInt 500));
vmConfigSpec.setNumCPUs(Integer.parseInt 4);
vmConfigSpec.setGuestId(cb.get_option("guestosid"));
...

The VMware SDK SDK/samples/Axis/java/com/vmware/apputils/vim/VMUtils.java sample defines a
more comprehensive virtual machine that also includes a Floppy, CD-ROM, disk, and virtual NIC. See
“Configuring a Virtual Machine” on page 129 for a discussion of commonly set properties.

When you create a virtual machine, the virtual machine files are added at the virtual machine’s storage
location. See Table 10-1, “Virtual Machine Files,” on page 128.

Additional Configuration Information

The VirtualMachineConfigInfo and VirtualMachineConfigSpec objects provide the extraConfig
property for additional configuration information. The extraConfig property is an array of key/value pairs
that identify configuration options. The Server stores the extraConfig options in the .vmx file for the virtual
machine. As the vSphere API evolves from version to version, an extraConfig option may become a standard
configuration property that is part of the defined inventory data model. In this case, you must use the standard
data model property for access; you cannot use the extraConfig property.

Creating Virtual Machine Templates

Templates allow you to create multiple virtual machines with the same characteristics, such as resources
allocated to CPU and memory, or type of virtual hardware. A virtual machine template is a virtual machine
that cannot be powered on and that is not associated with a resource pool.

You can convert any powered off virtual machine to a template by calling VirtualMachine.MarkAsTemplate.
After the conversion, the original virtual machine no longer exists. You can use the template to create multiple
clones of the same configuration.

Cloning a Virtual Machine

A clone is a copy of a virtual machine. The main difference between a virtual machine and a clone is that the
VirtualMachine.config.template property is set to true.

You can create a clone in one of the following ways:

 If you no longer need a specific instance of a virtual machine, but you want to use the virtual machine’s
configuration as a template, use the VirtualMachine.MarkAsTemplate method. This method sets the
config.template property to true, and disables the virtual machine.

 If you want to use an existing virtual machine as a template, but keep the virtual machine, call the
VirtualMachine.CloneVM_Task method to create a duplicate of the virtual machine.

If you use the VirtualMachine.CloneVM_Task method, you can customize certain attributes of the clone by
specifying them in the VirtualMachineCloneSpec data object you pass in when you call the method.

vSphere Web Services SDK Programming Guide

128 VMware, Inc.

The following code fragment from VMClone.java illustrates how you can customize a clone and specify a new
location for it.

Example 10-2. Cloning a Virtual Machine

VirtualMachineCloneSpec cloneSpec = new VirtualMachineCloneSpec();
VirtualMachineRelocateSpec relocSpec = new VirtualMachineRelocateSpec();
cloneSpec.setLocation(relocSpec);
cloneSpec.setPowerOn(false);
cloneSpec.setTemplate(false);

String clonedName = cloneName;

ManagedObjectReference cloneTask
 = service.cloneVM_Task(vmRef, vmFolderRef, clonedName, cloneSpec);

The VirtualMachine.CloneVM_Task method takes the source virtual machine, target folder, name, and
VirtualMachineCloneSpec as arguments.

The VirtualMachineCloneSpec data object includes the location, power state, and whether the clone should
be a template. The location, in turn, is a VirtualMachineRelocateSpec data object that specifies the target
location (datastore, disk, and host or resource pool) and any transformation to be performed on the disk.

Converting a Template to a Virtual Machine

You can change a template back to an operational virtual machine.

 To convert the template to a virtual machine, call the MarkAsVirtualMachine method on the template.
You must specify a resource pool and, optionally, a host for the virtual machine. Host and resource pool
must be under the same ComputeResource. When the operation completes, the template no longer exists.

 To keep the template, clone the template by calling the CloneVM_Task method on the template. In the
VirtualMachineCloneSpec (the spec parameter), set the template property to false.

Accessing Information About a Virtual Machine

After you have created a virtual machine, you can retrieve information about the virtual machine through the
VirtualMachineConfigInfo properties. See the API Reference for a complete list.

Checking Default Files

After you have created a virtual machine, several files are generated and placed in the directory specified in
the VirtualMachineConfigSpec.files property.

Table 10-1. Virtual Machine Files

File Usage File Description File Format

.vmx .vmname.vmx Virtual machine configuration file. ASCII

.vmxf vmname.vmxf Additional virtual machine configuration files, available, for
example, with teamed virtual machines.

ASCII

.vmdk vmname.vmdk Virtual disk file. ASCII

.flat.vmdk vmname.flat.vmdk Preallocated virtual disk in binary format. Binary

.vswp vmname.vswp Swap file.

.nvram vmname.nvram or
nvram

Non-volatile RAM. Stores virtual machine BIOS information.

.vmss vmname.vmss Virtual machine suspend file.

.log vmware.log Virtual machine log file. ASCII

#.log vmware-#.log Old virtual machine log files. # is a number starting with 1. ASCII

.vmtx vmname.vmtx Virtual machine template file. ASCII

VMware, Inc. 129

Chapter 10 Virtual Machine Configuration

If you are using snapshots, the following additional files might be available. See “Snapshots” on page 140.

Checking Default Devices

When you create a virtual machine, you are also creating a set of default devices, based on the hardware
version associated with your SDK. You can see these devices using the
EnvironmentBrowser.QueryConfigOption method. For example, the IDE controllers are created by default.
Many of these default devices contain properties that you cannot change.

However, you can add the following optional devices to the default set: VirtualSerialPort,
VirtualParallelPort, VirtualFloppy, VirtualCdrom, VirtualUSB, VirtualEthernetCard,
VirtualDisk, and VirtualSCSIPassthrough. See the VirtualDevice Data Object in the API Reference for
more information about each of these optional devices.

Configuring a Virtual Machine
You can configure a virtual machine during creation (Folder.CreateVM_Task) or cloning
(VirtualMachine.CloneVM_Task). You can also reconfigure a virtual machine using
VirtualMachine.ReconfigVM_Task. However, do not use the VirtualMachine.ReconfigVM_Task call to
create or add a disk.

In vSphere 5.5 and later, the ReconfigVM_Task method will throw an error when it attempts to change certain
virtual machine properties while the virtual machine is powered on. In previous releases, the Server would
modify the properties in the configuration specification and the changes would take effect after the virtual
machine resets, reboots, or performs a fast suspend and resume.

Since vSphere 5.5, a reconfigure operation modifies the virtual machine in real time, so that the virtual
machine properties have been changed by the time the method returns control to the client.

You cannot reconfigure a virtual machine successfully if you specify any of the following properties in the
VirtualMachineConfigSpec when you call the ReconfigVM_Task method.

Table 10-2. Virtual Machine Snapshot Files

File Extension Usage File Description

.vmsd vmname.vmsd Virtual machine snapshot file.

.vmsn vmname.vmsn Virtual machine snapshot data file.

**.delta.vmdk Snapshot difference file. A number preceding the extension increases with more
snapshots.

**.vmdk Metadata about a snapshot.

-Snapshot#.vmsn Snapshot of virtual machine memory. Snapshot size is equal to the size of you
virtual machine’s maximum memory.

CAUTION Do not try to change default device properties using the
VirtualMachineConfigSpec.deviceChange method discussed in “Adding Devices to Virtual Machines” on
page 134, because the deviceChange method is not applicable to default device properties.

Property VirtualMachineConfigSpec Path

VirtualDevice.unitNumber deviceChange.device.unitNumber

VirtualDevicePciBuslSlotInfo.pciSlotNumber deviceChange.device.slotInfo.pciSlotNumber

VirtualDiskFlatVer1BackingInfo.diskMode
VirtualDiskFlatVer2BackingInfo.diskMode
VirtualDiskRawDiskMappingVer1BackingInfo.diskMode
VirtualDiskSeSparseBackingInfo.diskMode
VirtualDiskSparseVer1BackingInfo.diskMode
VirtualDiskSparseVer2BackingInfo.diskMode

deviceChange.device.backing.diskMode

vSphere Web Services SDK Programming Guide

130 VMware, Inc.

The API reference lists all properties and includes information about required permissions for these
configuration methods. The following sections describe some commonly specified attributes.

Name and Location

You can specify the display name for the virtual machine by setting the VirtualMachineConfigSpec.name
property. Any % (percent) character used in this name parameter must be escaped, unless it is used to start an
escape sequence. Clients can also escape any other characters in this name parameter.

Use the annotation field to provide a description of the virtual machine. To remove an existing description,
specify the empty string as the value of annotation.

The location of the virtual machine is determined implicitly during creation because you call a
Folder.CreateVM_Task method and specify resource pool and optional target host the virtual machine
should belong to. See Chapter 13, “Resource Management Objects,” on page 157 for a discussion of resource
pools and virtual machine location.

Hardware Version

The hardware version of a virtual machine indicates the lower-level virtual hardware features a virtual
machine supports, such as BIOS, number of virtual slots, maximum number of CPUs, maximum memory
configuration, and other hardware characteristics.

For a newly created virtual machine, the default hardware version is the most recent version available on the
host where the virtual machine is created. To increase compatibility, you might want to create a virtual
machine with a hardware version older than the highest supported version. You can do so by specifying the
VirtualMachineConfigSpec.version property during virtual machine creation. For existing virtual
machines, call the VirtualMachine.UpgradeVM_Task method.

The hardware version of a virtual machine can be lower than the highest version supported by the ESX/ESXi
host it is running on under the following conditions:

 You migrate a virtual machine created on an ESX/ESXi 3.x or earlier host to an ESX/ESXi 4.x host.

 You create a virtual machine on an ESX 4.x host using an existing virtual disk that was created on an
ESX/ESXi 3.x or earlier host.

 You add a virtual disk created on an ESX/ESXi 3.x or earlier host to a virtual machine created on an
ESX/ESXi 4.x host.

VirtualDiskFlatVer2BackingInfo.digestEnabled
VirtualDiskSeSparseBackingInfo.digestEnabled

deviceChange.device.backing.digestEnabled

VirtualMachineConfigSpec.changeTrackingEnabled changeTrackingEnabled

VirtualEthernetCard.addressType deviceChange.device.addressType

VirtualEthernetCard.macAddress deviceChange.device.macAddress

VirtualEthernetCard.wakeOnLanEnabled deviceChange.device.wakeOnLanEnabled

VirtualSCSIController.sharedBus deviceChange.device.sharedBus

VirtualSerialPort.yieldOnPoll deviceChange.device.yieldOnPoll

VirtualUSBController.autoConnectDevices
VirtualUSBXHCIController.autoConnectDevices

deviceChange.device.autoConnectDevices

VirtualUSBController.ehciEnabled deviceChange.device.ehciEnabled

VirtualMachineVideoCard.useAutoDetect deviceChange.device.useAutoDetect

VirtualMachineVideoCard.videoRamSizeInKB deviceChange.device.videoRamSizeInKB

VirtualMachineVideoCard.numDisplays deviceChange.device.numDisplays

VirtualMachineVideoCard.use3dRendererSupported deviceChange.device.use3dRendererSupported

Property VirtualMachineConfigSpec Path

VMware, Inc. 131

Chapter 10 Virtual Machine Configuration

Virtual machines with hardware versions lower than 4 can run on ESX/ESXi 4.x hosts but have reduced
performance and capabilities. In particular, you cannot add or remove virtual devices on virtual machines
with hardware versions lower than 4 when they reside on an ESX/ESXi 4.x host. To make full use of these
virtual machines, upgrade the virtual hardware.

Boot Options

You can control a virtual machine’s boot behavior by setting the VirtualMachineConfigSpec.bootOptions
property. The VirtualMachineBootOptions data object in that property allows you to specify the following
properties:

 bootDelay – Delay before starting the boot sequence, in milliseconds.

 bootRetryDelay – Delay before a boot retry, in milliseconds. This property is only considered if the
bootRetryEnabled property is set to true.

 bootRetryEnabled – If set to true, a virtual machine that fails to boot tries again after the
bootRetryDelay time period has elapsed.

 enterBIOSSetup – If set to true, the virtual machine enters BIOS setup the next time it boots. The virtual
machine resets this flag to false so subsequent boots proceed normally.

Operating System

The guest operating system that you specify affects the supported devices and available number of virtual
CPUs. You specify the guest operating system in the following two properties:

 guestosid – Specify one of the constants in the VirtualMachineGuestOsIdentifier as a string.

 alternateGuestName – Full name for the guest operating system. Use this property if guestosid is one
of the values of VirtualMachineGuestOsIdentifier starting with other*.

vSphere Web Services SDK Programming Guide

132 VMware, Inc.

CPU and Memory Information

The VirtualMachineConfigSpec data object allows you to specify CPU and memory configuration.

CPU and Memory Resource Allocation

To allocate resources, use the cpuAllocation and memoryAllocation properties of
VirtualMachineConfigSpec. Both properties contain ResourceAllocationInfo objects with the following
properties:

 reservation – Amount of resources that is guaranteed to be available to the virtual machine. If resource
utilization is less than the reservation, other running virtual machines can use the resources.

 limit – Upper limit for CPU or memory resources assigned to this virtual machine. The virtual machine
does not exceed this limit, even if resources are available. This property is typically used to ensure
consistent performance. If end users are used to work on a virtual machine that uses extra resources, and
additional virtual machines are added to the host or resource pool, the virtual machine might slow down
noticably. If set to -1, no fixed upper limit on resource usage has been set.

 shares – Metric for allocating memory or processing capacity among multiple virtual machines. The
SharesInfo data object has two properties, level and shares.

 level – Choose high, low, or normal to map to a predetermined set of numeric values for shares. See
the API Reference Guide for the numbers for CPU, memory, and disk shares. Set this property to
custom to specify an explicit number of shares instead.

 shares – Allows you to specify the number of shares you want to allocate to the resource pool. The
allocation is divided evenly between resource pools with the same level.

“Resource Allocation” on page 158 discusses resource allocation in the context of resource pool hierarchies.
The Resource Management Guide includes a detailed discussion of resource allocation in the vSphere
environment.

CPU and Memory Modification for Running Virtual Machines

Set CpuHotAddEnabled and CpuHotRemoveEnabled to specify whether virtual processors can be added to or
removed from a virtual machine while the virtual machine is running. Set MemoryHotAddEnabled to specify
whether memory can be added while the virtual machine is running.

Number of CPUs

You can set the number of virtual processors for the virtual machine with the
VirtualMachineConfigSpec.numCPUs property. Legal values for this property change depending on the
guestosid value you specify.

CPU Processors and Memory Affinity

If your virtual machine is on an ESX/ESXi system, and if you have a license that supports Symmetric
Multiprocessors (SMP), you can configure the virtual machine to have multiple virtual CPUs by setting
cpuAffinity and memoryAffinity. You define a set of integers that represents the processors (for CPU) and
NUMA nodes (for memory). If you are reconfiguring the affinity setting and leave the array empty, any
existing affinity is removed. See the Resource Management Guide for a discussion of NUMA nodes and affinity.

CPU Features

You can use the VirtualMachineConfigSpec.cpuFeatureMask[].info property to represent the CPU
features requirements for a virtual machine or guest operating system. See the HostCpuIdInfo data object
discussion in the API Reference for a detailed discussion.

VMware, Inc. 133

Chapter 10 Virtual Machine Configuration

Networks

You configure network settings so that a virtual machine can communicate with the host and with other virtual
machines.

Virtual Network Interfaces

You can add a virtual network interface to a virtual machine using a subclass of VirtualEthernetCard, you
can set the addressType to Manual, Generated, or Assigned. If you choose Assigned, you can specify a
MAC address explicitly. See “Adding Devices to Virtual Machines” on page 134.

The number of virtual network interfaces depends on the hardware version you specify for a virtual machine.
Hardware version 7 virtual machines support up to ten virtual NICs. Hardware version 4 virtual machines
support up to four virtual NICs.

Virtual Machine MAC Address

Upon virtual machine creation, ESX/ESXi or vCenter Server systems assign each virtual network interface its
own unique MAC address. The first three bytes of the MAC address that is generated for each virtual network
adapter consists of a manufacturer-specific Organizationally Unique Identifier (OUI). The MAC
address-generation algorithm produces the other three bytes. vSphere generates MAC addresses that are
checked for conflicts. After the MAC address has been generated, it does not change unless the virtual machine
is moved to a different location.

All MAC addresses that have been assigned to virtual network interfaces of running and suspended virtual
machines on a given physical machine are tracked. The MAC address of a powered off virtual machine is not
checked against those of running or suspended virtual machines. It is possible that a virtual machine acquires
a different MAC address after a move.

The ESXi Configuration Guide discusses virtual machine MAC addresses in detail.

Fibre Channel NPIV Settings

N-port ID virtualization (NPIV) supports sharing a single physical FC HBA port among multiple virtual ports,
each with unique identifiers. This capability lets you control virtual machine access to LUNs on a per-virtual
machine basis.

Each virtual port is identified by a pair of world wide names (WWNs): a world wide port name (WWPN) and
a world wide node name (WWNN). These WWNs are assigned by vCenter Server. For detailed information
on how to configure NPIV for a virtual machine, see the Fibre Channel SAN Configuration Guide.

NPIV support is subject to the following limitations:

 NPIV must be enabled on the SAN switch. Contact switch vendors for information about enabling NPIV
on their devices.

 NPIV is supported only for virtual machines with RDM disks. Virtual machines with regular virtual disks
continue to use the WWNs of the host’s physical HBAs.

 Virtual machines on a host have access to a LUN using their NPIV WWNs if the physical HBAs on the
ESX/ESXi host have access to a LUN using its WWNs. Ensure that access is provided to both the host and
the virtual machines

You can set up NPIV with the VirtualMachineConfigSpec properties that start with npiv.

vSphere Web Services SDK Programming Guide

134 VMware, Inc.

File Locations

File locations for a virtual machine are specified in the following properties:

 VirtualMachineConfigSpec.files is a VirtualMachineFileInfo data object that allows you to
specify the log directory, snapshot directory, suspend directory, and configuration file location. Most
locations have a default that you can change as needed.

 VirtualMachineConfigSpec.locationID is a 128-bit hash based on the virtual machine’s configuration
file location and the UUID of the host the virtual machine is assigned to. This property is not usually set
by developers; however, clearing this property by setting it to an empty string is recommended if you
move the virtual machine.

If a virtual machine’s VirtualMachineCapability.swapPlacementSupported property is true for a virtual
machine, you can specify a value for the VirtualMachineConfigSpec.swapPlacement property. The value
must be one of the values of the VirtualMachineConfigInfoSwapPlacementType enumeration, as a string.

Adding Devices to Virtual Machines
You can add devices to a virtual machine during creation using the
VirtualMachineConfigSpec.deviceChange property, which is a VirtualDeviceSpec. You specify the host
device that the virtual device should map to by using a backing object. A backing object represents the host
device associated with a virtual device.

 Backing option objects – You can find out which devices the host supports by extracting the relevant
backing option object.

 Backing information object – The backing information object allows you to supply data for virtual device
configuration. You access a VirtualDeviceBackinInfo object as follows:

VirtualMachineConfigSpec.deviceChange[].device.backing

To add a device to a virtual machine, you must first find out which devices are supported on the corresponding
ESX/ESXi host, and then specify a VirtualDevice object. Perform these tasks to add a device to a virtual
machine:

1 Find out which devices your ESX/ESXi system supports by calling the QueryConfigOption method,
which you can access through the VirtualMachine.environmentBrowser property. The method
returns a VirtualMachineConfigOption data object that specifies what the ESX/ESXi supports. For
example, VirtualMachineConfigOption.hardwareOptions includes information about supported
CPU and memory and an array of VirtualDeviceOption data objects.

2 Specify the backing information object for the device. The actual process for defining the object differs for
different objects. For example, for a CD-ROM passthrough device, you use a
VirtualCdromPassthroughBackingInfo device. The VirtualDevice.backing property is a
VirtualDeviceBackingInfo object which is extended by devices.

The following code fragment adds a CD-ROM passthrough device:

VirtualCdromPassthroughBackingInfo vcpbi = new VirtualCdromPassthroughBackingInfo();
// Does the virtual device have exclusive access to the CD-ROM device?
vcpbi.setExclusive(false);
// Specifies the device name.
vcpbi.setDeviceName('cdrom0');

3 Specify connection information for the device.

The VirtualDevice.connectable property is a VirtualDeviceConnectInfo data object. This object
provides information about restrictions on removing the device while a virtual machine is running. This
property is null if the device is not removable.

VirtualDeviceConnectInfo vdci = new VirtualDeviceConnectInfo();

NOTE You cannot use the QueryConfigOption method to create another instance of a default device. If
you attempt to add a default device, such as an IDE controller, the server ignores the operation.

VMware, Inc. 135

Chapter 10 Virtual Machine Configuration

// Allow the guest to control whether the virtual device is connected?
vdci.setAllowGuestControl(false);
// Is the device currently connected?
vdci.setConnected(true);
// Connect the device when the virtual machine starts?
vdci.setStartConnected(true);

4 Define the controller key, the virtual device key, and the unit number.

You define these items with the integer properties: controllerKey, key, and unitNumber. See the
VirtualDevice data object in the API Reference.

5 Specify device Information.

The deviceInfo property is a Description data object that has a name property and a summary property.
You can supply a string value for each, describing the device.

Description vddesc = new Description();
vddesc.setLabel('CD-ROM Device cdrom0');
vddesc.setSummary('The CD-ROM device for this virtual machine.');

6 Specify the virtual device as the device property of a VirtualDeviceConfigSpec.

7 Specify the VirtualDeviceConfigSpec as the deviceChange property to the
VirtualMachineConfigSpec that you pass in to a Folder.CreateVM_Task or
VirtualMachine.ReconfigVM_Task method.

Here’s the complete code fragment for a CD-ROM passthrough device:

VirtualDevice vd = new VirtualDevice();
vd.setBacking(vcpbi);
vd.setConnectable(vdci);
vd.setControllerKey(257);
vd.setDeviceInfo(vddesc);
vd.setKey(2);
vd.setUnitNumber(25);

Performing Virtual Machine Power Operations
Just like physical machines, virtual machines have power states.

 Powered on – The virtual machine is running. If no OS has been installed, you can perform OS installation
as you would for a physical machine.

 Powered off – The virtual machine is not running. You can still update the software on the virtual
machine’s physical disk, which is impossible for physical machines.

 Suspended – The virtual machine is paused and can be resumed; like a physical machine in standby or
hibernate state.

VirtualMachine power operations allow you to change the power state. Each operation is sensitive to the
current power state, for example, powering on a powered off virtual machine has the desired result while
powering on a powered on virtual machine results in an error. You must check the current state before you run
one of these tasks.

 PowerOnVM_Task – Powers on a virtual machine. If the virtual machine is suspended, this method
resumes execution from the suspend point.

 PowerOffVM_Task – Powers off a virtual machine.

IMPORTANT Before you power on a virtual machine, you must make sure that the host has sufficient
resources. You must have enough memory for the virtual machine, and some memory overhead. See
“Querying Virtual Machine Memory Overhead” on page 98.

vSphere Web Services SDK Programming Guide

136 VMware, Inc.

 ResetVM_Task – Resets power on this virtual machine. If the current state is poweredOn, ResetVM_Task
first performs a hard powerOff operation. After the power state is poweredOff, ResetVM_Task performs
a powerOn operation.

Although this method functions as a powerOff followed by a powerOn, the two operations are atomic
with respect to other clients, meaning that other power operations cannot be performed until the reset
method completes.

 SuspendVM_Task – Suspends the virtual machine. You can later power on the suspended virtual machine
to the same state.

Virtual machines are often configured to start up the guest operating system when they are started, and try to
shut down the guest operating system when being shut down. However, starting and stopping a virtual
machine differs from starting and stopping the guest operating system (see “Customizing the Guest Operating
System” on page 137).

You can use the Datacenter.PowerOnMultiVM_Task to power on multiple virtual machines in a datacenter.
Pass an array of VirtualMachine managed object references and an array of option values to the method. If
any of the virtual machines in the list is manually managed by VMware DRS, the system generates a DRS
recommendation that the user needs to apply manually. Standalone or DRS disabled virtual machines are
powered on for the current host. Virtual machines managed by DRS, to be placed by DRS, are powered on for
the recommended host.

Registering and Unregistering Virtual Machines
When you create a virtual machine, it becomes part of the inventory (inside the folder from which you called
the creation method by default), and it is registered. If you copy virtual machine files to relocate the virtual
machine, or if you remove the files from the inventory using the vSphere Client, it becomes unregistered and
unusable. You cannot power on a virtual machine that is not part of the inventory.

To restore the virtual machine to the inventory, and make it usable again, you can use the RegisterVM_Task
method, defined in the Folder managed object. You can register the virtual machine to a host or to a resource
pool. You can register the virtual machine as a template if you want to use it to clone other virtual machines
from.

The ColdMigration.java sample illustrates both registering and reconfiguring a virtual machine. At the
heart of the sample is the following call, which registers the virtual machine. Arguments include the virtual
machine’s current folder, datastore path, and name, whether to register as a template, and the resource pool
or host to register the machine in.

ManagedObjectReference taskmor = cb.getConnection().getService().registerVM_Task(
 vmFolderMor,vmxPath,getVmName(),false,resourcePool,host);

After registration, the virtual machine takes its resources (CPU, memory, and so on) from the resource pool or
host to which it is registered.

The RemoveManagedObject.java sample illustrates unregistering a virtual machine.

IMPORTANT Power operations might affect other virtual machines that are participating in a DRS cluster or
VMware HA. See Chapter 13, “Resource Management Objects,” on page 157 for information about DRS
clusters and VMware HA.

VMware, Inc. 137

Chapter 10 Virtual Machine Configuration

Customizing the Guest Operating System
You install the guest operating system on the virtual machine just as you would install it on a physical
machine. Afterwards, you can use the vSphere API to retrieve information and perform some customization
if VMware Tools is installed on top of the guest operating system.

VirtualMachine includes the following methods for managing the guest operating system:

 ShutdownGuest and RebootGuest shut down and reboot the guest OS, and StandbyGuest puts the
guest in hybernate mode. In each case, you perform the action on the guest OS. For example, you might
shut down Windows but leave the virtual machine running.

 ResetGuestInformation clears cached guest information. Guest information can be cleared only if the
virtual machine is powered off. Use this method if stale information is cached, preventing reuse of an IP
address or MAC address.

 SetScreenResolution sets the console screen size of the guest operating system. When you call this
method, the change is reflected immediately the virtual machine console you can access in the vSphere
Client.

You can customize the identity and network settings of the guest OS with the CustomizationSpec data object
that is a parameter to VirtualMachine.CustomizeVM_Task. The CustomizationSpec is also a property of
the VirtualMachineCloneSpec you pass in when cloning a virtual machine.

The settings you customize with this method are primarily virtual machine settings, but because the virtual
machine and the guest OS share the information, you are also customizing the guest OS with this method.

The CustomizationSpec allows you to set the following properties:

 encryptionKey – Array of bytes that can be used as the public key for encrypting passwords of
administrators.

 globalIPSettings – Contains a CustomizationGlobalIPSettings data object which specifies a list of
DNS servers and a list of name resolution suffixes for the virtual network adapter.

 identity – Allows you to specify the network identity and settings, similar to the Microsoft Sysprep tool.

 nicSettingMap – Custom IP settings that are specific to a particular virtual network adapter.

 options – Optional operations (either LinuxOptions or WinOptions).

Installing VMware Tools
VMware Tools is a suite of utilities that enhances the performance of a virtual machine's guest operating
system and improves virtual machine management. For each guest OS, VMware provides a specific
binary-compatible version of VMware Tools. The SDK requires that you install VMware Tools, or some
operations related to the guest operating system fail. See “Installing VMware Tools” on page 137.

With VMware Tools installed on the guest OS, the virtual machine obtains its DNS (domain name server) name
and an IP address and is therefore reachable over the network.

VirtualMachine includes three methods for automating installation and upgrade of VMware Tools.

 MountToolsInstaller – Mounts the VMware Tools CD installer as a CD-ROM for the guest operating
system. To monitor the status of the tools installallation, check GuestInfo.toolsStatus. Check
GuestInfo.toolsVersionStatus and GuestInfo.toolsRunningStatus for related information.

 UnmountToolsInstaller – Unmounts the VMware Tools installer CD.

 UpgradeToolsTask – Performs an upgrade of VMware Tools. This method assumes VMware Tools has
been installed and is running. The method takes one argument, InstallerOptions, which allows you to
specify command-line options passed to the installer to modify the installation procedure for tools.

IMPORTANT You must install the guest operating system before you install VMware Tools.

vSphere Web Services SDK Programming Guide

138 VMware, Inc.

Use theToolsConfigInfo data object in VirtualMachineConfigSpec.toolsInfo property to specify the
settings for the VMware Tools software running on the guest operating system.

Upgrading a Virtual Machine
You can upgrade virtual machine hardware by running the VirtualMachine.UpgradeVM_Task method. The
method upgrades this virtual machine's virtual hardware to the latest revision that is supported by the virtual
machine's current host. You can specify the version number as an argument. This method is useful if you want
to run your virtual machine on a newer hypervisor that supports newer versions of the hardware.

VMware, Inc. 139

11

Virtual machines can perform like physical computers and can be configured like physical computers, as
discussed in Chapter 10, “Configuring a Virtual Machine,” on page 129. Virtual machines also support special
features that physical computers do not support. This chapter discusses some of these features: migrating
virtual machines, using snapshots, and using linked virtual machines.

The chapter includes the following topics:

 “Virtual Machine Migration” on page 139

 “Snapshots” on page 140

 “Linked Virtual Machines” on page 142

Virtual Machine Migration
Migration is the process of moving a virtual machine from one host or storage location to another. Copying a
virtual machine creates a new virtual machine. It is not a form of migration. vSphere supports the following
migration types:

Migration of a suspended virtual machine and migration with VMotion are both sometimes called hot
migration, because they allow migration of a virtual machine without powering it off.

You can move virtual machines manually or set up a scheduled task to perform the cold migration.

Virtual Machine Management 11

Table 11-1. vSphere Migration Types

Migration Type Description

Cold migration Moves a powered-off virtual machine to a new host. Optionally, you can relocate configuration
and disk files to new storage locations.

Migration of a
suspended virtual
machine

Moves a suspended virtual machine to a new host. Optionally, you can relocate configuration
and disk files to new storage location.

Migration with
VMotion

Moves a powered-on virtual machine to a new host. Migration with VMotion allows you to
move a virtual machine to a new host without interruption in the availability of the virtual
machine.

Migration with
Storage VMotion

Moves the virtual disks or configuration file of a powered-on virtual machine to a new
datastore. Migration with Storage VMotion allows you to move a virtual machine’s storage
without interruption in the availability of the virtual machine.

vSphere Web Services SDK Programming Guide

140 VMware, Inc.

Cold Migration

If a virtual machine is shut down, you can move it to a different cluster, resource pool, or host by copying all
virtual machine files to a different directory. The ColdMigration example illustrates this.

Migration with VMotion

VMware VMotion support the live migration of running virtual machines from one physical server to another
with no downtime. The source and destination physical servers can be in the same datacenter or in different
datacenters.

When you call the VirtualMachine object’s MigrateVM_Task method, you can specify either a host or
resource pool to migrate to. You can optionally specify the task priority and the power state of the virtual
machine. The VMotion example performs the following tasks:

 Uses QueryVMotionCompatibility_Task to check two hosts are compatible.

 Uses CheckMigrate_Task to check whether migration is feasible. For example, if two hosts are not
compatible, virtual machines cannot be migrated from one to the other.

 Uses CheckRelocation_Task to check whether relocation is possible.

The sample performs the migration if the hosts are compatible.

Using Storage VMotion

Storage VMotion allows you to move a running virtual machine from one VMFS volume to another. Taking
the virtual machine or its associated storage offline is not required. All datastore types are supported,
including local storage, VMFS, and NAS (network attached storage).

You can place the virtual machine and all its disks in a single location, or select separate locations for the virtual
machine configuration file and each virtual disk. The virtual machine remains on the same host during Storage
VMotion.

To perform storage VMotion, you use the VirtualMachine.RelocateVM_Task method. The
RelocateVMSpec passed in to the method allows you to specify the target datastore and target host or resource
pool.

Snapshots
A snapshot is reproduction of the virtual machine just as it was when you took the snapshot. The snapshot
includes the state of the data on all virtual machine disks and the virtual machine power state (on, off, or
suspended). You can take a snapshot when a virtual machine is powered on, powered off, or suspended.

When you create a snapshot, the system creates a delta disk file for that snapshot in the datastore and writes
any changes to that delta disk. You can later revert to the previous state of the virtual machine.

The VirtualMachine object has methods for creating snapshots, reverting to any snapshot in the tree, and
removing snapshots.

VMware, Inc. 141

Chapter 11 Virtual Machine Management

Figure 11-1. Virtual Machine Snapshots

Snapshot hierarchies can become fairly complex. For example, assume that, in the example in Figure 11-1, you
revert to snapshot_a. You might then work with and make changes to the snapshot_a virtual machine, and
create a new snapshot, creating, in effect, a branching tree.

Creating a Snapshot

The VirtualMachine.CreateSnapshot_Task method creates a new snapshot of a virtual machine. As a side
effect, the current snapshot becomes the parent of the new snapshot.

The method allows you to specify a name for the snapshot and also requires you set the memory and quiesce
properties:

 memory – If true, a dump of the internal state of the virtual machine (basically a memory dump) is
included in the snapshot. Memory snapshots consume time and resources, and take a while to create.
When set to false, the power state of the snapshot is set to powered off.

 quiesce – If true and the virtual machine is powered on when the snapshot is taken, VMware Tools is
used to quiesce the file system in the virtual machine. This ensures that a disk snapshot represents a
consistent state of the guest file systems. If the virtual machine is powered off or VMware Tools is not
available, the quiesce flag is ignored.

The VMSnapshot.java example calls this method as follows:

ManagedObjectReference taskMor = service.createSnapshot_Task(
 vmMor, snapshotName, desc, false, false);

The method returns MOR to a Task object with which to monitor the operation. The info.result property
in the Task contains the newly created VirtualMachineSnapshot upon success.

Reverting to a Snapshot

When you revert to a snapshot, you restore a virtual machine to the state it was in when the snapshot was
taken. The VirtualMachine.RevertToSnapshot_Task allows you to specify a target host and whether the
virtual machine should be powered on.

If the virtual machine was running when the snapshot was taken, and you restore it, you must either specify
the host to restore the snapshot to, or set the SupressPowerOn flag to true.

Virtual machine

with no snapshots

take a

snapshot

The new snapshot (snapshot_a)

is now the parent snapshot of the

You are here state. The parent

snapshot of the You are here state

is the parent snapshot of the

virtual machine.

When you take a snapshot from

the snapshot_a state, snapshot_a

becomes the parent of the new

snapshot (snapshot_b) and

snapshot_b is the parent snapshot

of the You are here state.

If you take a snapshot now, the

new snapshot will be based on

the snapshot_b state, whose

parent snapshot is the

snapshot_b state.

When you go to snapshot_a,

snapshot_a becomes the parent

of the You are here state.

If you take a snapshot now, the

new snapshot will be based on

the snapshot_a state.

When you revert a virtual machine, the virtual machine returns to the parent snapshot
of the virtual machine (that is, the parent of the current You are here state).

take a

snapshot

go to

snapshot_a

VM

 You are here

VM

 snapshot_a

 snapshot_b

 You are here

VM

 snapshot_a

 snapshot_b

 You are here

VM

 snapshot_a

 You are here

vSphere Web Services SDK Programming Guide

142 VMware, Inc.

Deleting a Snapshot

You can delete all snapshots by calling VirtualMachine.RemoveAllSnapshots or by calling the
VirtualMachineSnapshot.RemoveSnapshot_Task method. The VirtualMachineSnapshot object was
previously returned in the task returned by the CreateSnapshot_Task method.

Linked Virtual Machines
Linked virtual machines are two or more virtual machines that share storage and support efficient sharing of
duplicated data.

Linked Virtual Machines and Disk Backings

In its simplest form, shared storage is achieved through the use of delta disk backings. A delta disk backing is
a virtual disk file that sits on top of a standard virtual disk backing file. Each time the guest operating system
on a virtual machine writes to disk, the data is written to the delta disk. Each time the guest operating system
on a virtual machine reads from disk, the virtual machine first targets the disk block in the delta disk. If the
data is not on the delta disk, the virtual machine looks for them on the base disk.

Linked virtual machines can be created from a snapshot or from the current running point. After you create a
set of linked virtual machines, they share the base disk backing and each virtual machine has its own delta disk
backing, as shown in Figure 11-2.

Figure 11-2. Linked Virtual Machines with Shared Base Disk Backing and Separate Delta Disk Backing

Limitation for HA Clusters

Virtual machines in a linked clone group can be part of a VMware HA (high availability) cluster. The number
of hosts in a cluster might affect HA’s ability to restart a failed virtual machine.

 Clusters that contain ESX 5.0 or earlier hosts – If a cluster has eight or fewer hosts, then linked virtual
machines restart properly. However, if the cluster has more than eight hosts and any of the hosts are ESX
5.0 or earlier, HA might not be able to restart a virtual machine after it fails. HA is not aware that virtual
machines in the linked clone group are subject to the eight host limit. In this case, when HA responds to
a failure, it might try to restart the virtual machine on a host that cannot participate in the group due to
the maximum host limit. HA will attempt failover five times to different hosts. Thus, in clusters with 13
or more hosts, it is possible that HA will nevdf -ker try a host that is associated with the linked clone
group.

 Clusters that contain only ESX 5.1 or later hosts – The maximum host limit for a linked clone group is
the maximum number of hosts allowed in a cluster. In this case, the number of hosts in the cluster does
not affect the ability to restart failed virtual machines.

delta
disk

VMVM

base disk

OS

delta
disk

CAUTION We recommend a limit of up to eight host virtual machines accessing the same base disk in a linked
virtual machine group. However, you can have an unlimited number of linked virtual machines within each
host virtual machine in the group.

VMware, Inc. 143

Chapter 11 Virtual Machine Management

Creating a Linked Virtual Machine

You can create linked virtual machines in one of two ways:

 Clone the virtual machine from a snapshot.

 Clone the virtual machine from the current virtual machine state. This state might differ from the
snapshot point.

Creating a Linked Virtual Machine From a Snapshot

You first create a snapshot, and then create the linked virtual machine from the snapshot.

1 To create the snapshot, call the CreateSnapshot_Task method for the virtual machine. The virtual
machine can be in any power state. The following pseudo code creates a snapshot named snap1. The code
does not include a memory dump. VMware Tools is used to quiesce the file system in the virtual machine
if the virtual machine is powered on.

myVm.CreateSnapshot("snap1", "snapshot for creating linked virtual machines", False, True)

2 To create the linked virtual machine, specify the snapshot you created and use a
VirtualMachineRelocateDiskMoveOptions.diskMoveType of createNewDeltaDiskBacking, as
illustrated in Example 11-1. Creating linked virtual machines from a snapshot works with virtual
machines in any power state.

Example 11-1. Creating a Linked Virtual Machine from a Snapshot

relSpec = new VirtualMachineRelocateSpec()
relSpec.diskMoveType = VirtualMachineRelocateDiskMoveOptions.createNewChildDiskBacking

cloneSpec = new VirtualMachineCloneSpec()
cloneSpec.powerOn = False
cloneSpec.template = False
cloneSpec.location = relSpec
cloneSpec.snapshot = myVm.snapshot.currentSnapshot

myVm.Clone(myVm.parent, myVm.name + "-clone", cloneSpec)

The result is a virtual machine with the same base disk as the original, but a new delta disk backing.

Figure 11-3. Creating a Linked Virtual Machine from a Snapshot

new blank
delta disk

snapshotVM

x = disk content x

base disk

OS

vSphere Web Services SDK Programming Guide

144 VMware, Inc.

Creating a Linked Virtual Machine From the Current Running Point

To create a virtual machine from the current running point, clone the virtual machine, as in Example 11-1, but
use a diskMoveType of moveChildMostDiskBacking. The virtual machine can be in any power state.

Example 11-2. Creating a Linked Virtual Machine from the Current Running Point

relSpec = new VirtualMachineRelocateSpec()
relSpec.diskMoveType = VirtualMachineRelocateDiskMoveOptions.moveChildMostDiskBacking

cloneSpec = new VirtualMachineCloneSpec()
cloneSpec.powerOn = False
cloneSpec.template = False
cloneSpec.location = relSpec

myVm.Clone(myVm.parent, myVm.name + "-clone", cloneSpec)

Figure 11-4. Creating a Linked Virtual Machine from the Current Running Point

Removing Snapshots and Deleting Linked Virtual Machines

After you have created a group of linked virtual machines, you can remove a snapshot that was the basis for
a linked virtual machine, or delete a virtual machine. Those actions affect disks in the linked virtual machine
group. Perform the actions when connected to a vCenter Server system for disk consolidation or deletion.

 Snapshot removal – During snapshot removal, the snapshot metadata is also removed, and the virtual
machine from which the snapshot was taken is no longer shown as having snapshots. If you remove a
snapshot while connected to the ESX/ESXi host directly, shared disks are not consolidated and
unnecessary levels of delta disks might result. If you remove a snapshot while connected to a vCenter
Server system, shared disks are not consolidated, but unshared disks are consolidated.

 Virtual machine deletion – When you delete a virtual machine by directly connecting to the ESX/ESXi
host, shared disks are not deleted. When you delete a virtual machine by connecting to a vCenter Server
system, shared disks are not deleted, but unshared disks are deleted.

Relocating a Virtual Machine in a Linked Virtual Machine Group

You can move the virtual machines in a linked virtual machine group between datastores and save storage, as
shown in Figure 11-3. The contents of the delta disk might not be as important as the contents of the base, and
you can save storage by removing the delta disk.

Example 11-3. Relocating a Linked Virtual Machine

relSpec = new VirtualMachineRelocateSpec()
relSpec.diskMoveType = VirtualMachineRelocateDiskMoveOptions.moveChildMostDiskBacking
relSpec.datastore = localDatastore
myVm.Relocate(relSpec)

x = disk content

current
running

point
VM

x

base disk

OS

x

CAUTION Delete all linked virtual machines before deleting the master from which they were created, so
that you don’t have orphaned or corrupt disk files on your file system.

VMware, Inc. 145

Chapter 11 Virtual Machine Management

You can relocate multiple linked virtual machines to a new datastore, but keep all shared storage during the
relocation. To achieve the relocation, relocate the desired virtual machines one by one, giving the option to
allow reattaching to an existing disk, as shown in Example 11-4.

Example 11-4. Relocating Multiple Linked Virtual Machines

relSpec = new VirtualMachineRelocateSpec()
relSpec.diskMoveType = VirtualMachineRelocateDiskMoveOptions.moveAllDiskBackingsAndAllowSharing
relSpec.datastore = targetDatastore
myVm.Relocate(relSpec)

Promoting a Virtual Machine's Disk

Promoting a virtual machine’s disk improves performance.

You can use PromoteDisks to copy disk backings or to consolidate disk backings.

 Copy – If the unlink parameter is true, any disk backing that is shared by multiple virtual machines is
copied so that this virtual machine has its own unshared version. Files are copied into the home directory
of the virtual machine. This setting results in improved read performance, but higher space requirements.
The following call copies and shares disks, and then collapses all unnecessary disks.

myVm.PromoteDisks(True, [])

 Consolidate – If the unlink parameter is false, any disk backing that is not shared between multiple
virtual machines and not associated with a snapshot is consolidated with its child backing. The net effect
is improved read performance at the cost of inhibiting future sharing. The following call eliminates any
unnecessary disks:

myVm.PromoteDisks(False, [])

Promoting a virtual machine’s disk might also be useful if you end up with disk backings that are not needed
for snapshots or for sharing with other virtual machines.

Both uses of PromoteDisks take an optional second argument, which allows you to apply the method to only
a subset of disks. For example, you can unshare and consolidate only the virtual disk with key 2001 as follows:

for any of my VMs in dev
 if (dev.key == 2001)
 disk2001 = dev

myVm.PromoteDisks(True, [disk2001])

Performing Advanced Manipulation of Delta Disks

For advanced manipulation of delta disks, you can use VirtualDeviceConfigSpec methods such as
VirtualDeviceConfigSpec.create and VirtualDeviceConfigSpec.add.

Both add and create allow you to create a blank delta disk on top of an existing disk. You can specify add
or create in the VirtualDeviceSpec and pass in a virtual disk whose parent property is an existing disk.
The methods create a new delta disk whose parent is the existing disk.

IMPORTANT You can use the PromoteDisks API only when connected to a vCenter Server system.

CAUTION Do not use the VirtualMachine.ReconfigVM_Task call to create or add a delta disk.

vSphere Web Services SDK Programming Guide

146 VMware, Inc.

One use case is adding a delta disk on top of an existing virtual disk in a virtual machine without creating a
snapshot. Example 11-5 illustrates how to add the delta disk for the first virtual disk in the virtual machine.

Example 11-5. Creating a Virtual Machine

disk = None
for any of my VMs in dev
 if (VirtualDisk.isinstance == dev):
 disk = dev

Remove the disk
removeDev = new VirtualDeviceConfigSpec()
removeDev.operation = "remove"
removeDev.device = disk

Create a new delta disk which has the
original disk as its parent disk
addDev = new VirtualDeviceConfigSpec()
addDev.operation = "add"
addDev.fileOperation = "create"
addDev.device = copy.copy(disk)
addDev.device.backing = copy.copy(disk.backing)
addDev.device.backing.fileName = "[" + disk.backing.datastore.name + "]"
addDev.device.backing.parent = disk.backing

spec = new VirtualMachineConfigSpec()
spec.deviceChange = [removeDev, addDev]
vm.Reconfigure(spec)

VMware, Inc. 147

12

A virtual application consists of one or more virtual machines, which are deployed, managed, and maintained
as a single unit. This chapter explains how to use the vSphere Web Services SDK for building and managing a
virtual application.

This chapter includes the following topics:

 “About Virtual Applications” on page 147

 “Creating a VirtualApp” on page 149

 “Managing VirtualApp Children” on page 149

 “Exporting a Virtual Application” on page 150

 “Importing an OVF Package” on page 154

 “Virtual Application Life Cycle” on page 154

About Virtual Applications
A virtual application specifies and encapsulates the components of virtual machines and applications, and the
operational policies and service levels associated with those components. A virtual application can be as
simple as an individual virtual machine with a specific operating system (virtual appliance), or as complex as
a complete corporate Web site. Each virtual machine in a virtual application contains a preinstalled,
preconfigured operating system and might contain an application stack optimized to provide a specific set of
services.

In the vSphere Web Services SDK, the VirtualApp managed object represents a virtual application. A
VirtualApp object extends ResourcePool with the following capabilities:

 Store product information such as product name, vendor, properties, and licenses in vAppConfigInfo.

 Specify power-on and power-off sequence specification.

 Import and export of VirtualApp objects as OVF packages.

 Perform application-level customization using the OVF environment.

Management Overview

You can use the Web Services SDK to create and manage virtual applications by following these steps:

1 Call the CreateVApp method to create a virtual application without children. See “Creating a VirtualApp”
on page 149.

2 Add child objects. See “Managing VirtualApp Children” on page 149.

3 Export the VirtualApp to OVF (ExportVApp method) See “Exporting a Virtual Application” on page 150.

You can then import the OVF to create and customize the virtual application.

Virtual Applications 12

vSphere Web Services SDK Programming Guide

148 VMware, Inc.

Direct and Linked Children

A virtual application consists of one or more child virtual machines or virtual applications. VirtualApp
children have the following characteristics:

 Each child has exactly one parent VirtualApp.

 Each child can participate in power-on and power-off sequences.

 The lifetime of each child is determined by the parent VirtualApp object.

VirtualApp children are either direct or linked, based on where a child derives its resources.

 Direct Children. A direct child of a virtual application is a virtual machine or virtual application object
that you add explicitly. See “Managing VirtualApp Children” on page 149 for a list of methods. Direct
children share resources with the parent VirtualApp object. Both virtual machines and virtual
application can be direct children.

 Linked Children. A linked child of a virtual application is a virtual machine or virtual application that
you add by calling the UpdateLinkedChildren method. Linked children increase the flexibility of the
VirtualApp by allowing child entities to use different resources from the parent VirtualApp object.
Linked children can be part of a different clusters, but a virtual application and its children must be in the
same Datacenter. Both virtual machines and virtual applications can be linked children.

Linked children gives better flexibility. In particular, you can create virtual applications that span clusters. The
vSphere Client does not support adding or removing links, though it does show links.

When you add a linked child to a virtual application, the following rules apply:

 An InvalidArgument fault is thrown if the UpdateLinkedChildren method is called on a link target that
is a direct child of another virtual application.

 When you add a virtual machine or virtual application that is already a linked child of another virtual
application, the existing link is removed and replaced with the new link.

 The life-time of a linked child is determined by the destroyWithParent property on the
VAppEntityConfigInfo data object. If set to true, the child is destroyed when the parent VirtualApp
is destroyed. Otherwise, the link is removed when the VirtualApp is destroyed.

If you add a virtual application that consists of multiple entities, for example multiple virtual machines, the
entities are moved sequentially and committed one at a time, as specified in the list. If a failure is detected, the
method terminates with an exception.

OVF Packages

Open Virtualization Format (OVF) is a distribution format for virtual applications. vSphere uses the OVF
package as a unit of distribution and storage for virtual applications. Because these entities are uploaded,
downloaded, and stored in OVF package format, vSphere supports access to and deployment of a wide variety
of virtual applications.

A virtual application typically consists of one or more virtual disk files and a configuration file.

 The virtual disk files contain the operating systems and applications that run on the virtual machines in
the virtual application.

 The configuration file contains metadata that describes how the virtual application is configured and
deployed.

An OVF package might also include certificate and manifest files.

The OVF package contains metadata that describes the capabilities and infrastructure requirements of the
virtual application, and contains references to the virtual disks and other files that store the virtual machine
state. Most of this information is stored in an XML document called the OVF envelope. When an OVF package
is instantiated into either a VirtualApp or a VirtualMachine object (which depends on metadata in the
envelope), then the configuration stored in the OVF envelope is applied to the VirtualVApp and the
VirtualMachine objects.

VMware, Inc. 149

Chapter 12 Virtual Applications

Some of the information in the OVF file is used unaltered, with entire ovf:Section_Type elements included
in the VirtualApp object body. Other sections are transformed or extended by instantiation. You do not need
detailed knowledge of all OVF package elements, but a basic understanding of key parts of the package and
how they relate to virtual applications is useful.

See the OVF specification at the DMTF Web site for additional information.

Creating a VirtualApp
You always create a VirtualApp without children. The CreateVApp method includes the following
parameters:

 resSpec – Properties you would specify for a ResourcePool.

 configSpec – VAppConfigSpec data object for specifying virtual-application specific information.

 vmFolder – Depends on the VirtualApp structure:

 When creating top-level virtual applications, that is, virtual applications with no ancestor virtual
applications, you must specify a folder.

 If the VirtualApp has another virtual application in the ancestry chain, the folder parameter must
be NULL when you create the VirtualApp.

Managing VirtualApp Children
You can add virtual machines and virtual applications to your virtual application as direct or linked children.
See “Direct and Linked Children” on page 148. You use different methods for adding or removing direct or
linked children, as follows:

 Direct children. Use one of the following methods:

 CreateChildVMTask adds a new virtual machine.

 CreateVApp adds a new virtual application.

 MoveIntoResourcePool adds or removes an existing virtual machine or virtual application

 Linked children. Use UpdateLinkedChildren to add or remove virtual machines or virtual
applications.

You can call the UpdateVappConfig method to specify how each virtual machine fits into the virtual
application.

Table 12-1. VAppEntityConfigInfo Properties

Property Enumeration

destroyWithParent True if the entity should be removed when the VirtualApp is removed.

key Key for the virtual machine or virtual application, a managed object reference to the child.

startAction One of the strings in the VAppAutoStartAction enumeration.

startDelay Delay, in seconds, before continuing with the next entity.

startOrder Specifies the start order for this entity. Entities are started from lower numbers to
higher-numbers and reverse on shutdown. Multiple entities with the same start order are
started in parallel and the order is unspecified. This value must be 0 or higher.

stopAction Defines the stop action for the entity. Can be set to none, powerOff, guestShutdown, or
suspend. If set to none, then the entity does not participate in auto-stop.

stopDelay Delay, in seconds, before continuing with the next entity.

tag Tag for the entity.

waitingForGuest Determines if the virtual machine should start after receiving a heartbeat, from the guest.

vSphere Web Services SDK Programming Guide

150 VMware, Inc.

Exporting a Virtual Application
To export a virtual application, you must generate an OVF package. The vSphere API supports the generation
of OVF packages. It does not support the generation of OVA files. An OVA file is a tar file that contains an OVF
package. The OVF package consists of one of more images and an OVF file descriptor. You can create an OVA
file by creating a tar file out of the OVF package for your exported virtual application.

The following steps describe how to use the vSphere VirtualApp and OvfManager API to generate an OVF
package for a virtual application. The steps assume the simplest scenario: downloading one image from one
device URL. You use the same steps to download many images from many device URLs. You can also export
a VirtualMachine with the same steps, but use VirtualMachine.ExportVm rather than
VirtualApp.ExportVApp.

1 Call the VirtualApp.ExportVApp method, which returns HttpNfcLease. The deviceURL is stored in the
info property of HttpNfcLease.

2 Call the HttpNfcLeaseInfo.getDeviceUrl method to access the device URL and download the image data
from the device URL.

3 Add the image to the OVF package.

4 Call the OvfManager.CreateDescriptor method, which returns OvfCreateDescriptorResult. Write the file
descriptor to a file with the file extension .ovf. Add the .ovf file to the OVF package.

Figure 12-1 shows the major steps.

Figure 12-1. Generating an OVF Package

VirtualApp and OvfManager Methods

Table 12-2 describes the methods used by the VirtualApp and the OvfManager API:

image data

OvfManager.CreateDescriptor

Client

1. Get the lease.

2. Download the
image.

3. Add the image
to the OVF
package.

4.Get the OVF
descriptor and
add it to the OVF
package.

VirtualApp.ExportVApp

HttpNfcLease

HttpNfcLeaseInfo.getDeviceUrl

OvfCreateDescriptorResult

Server

Table 12-2. Methods Used in Exporting a VirtualApp

Method Description

CreateDescriptor Creates an OVF descriptor for the specified ManagedEntity, which may be a VirtualMachine or
a VirtualApp. CreateDescriptor is a method in the OvfManager managed object.

VMware, Inc. 151

Chapter 12 Virtual Applications

The next two sections deal with the VirtualApp and OvfManager data structures.

VirtualApp Data Structures

The VirtualApp managed object contains the ExportVApp method, which returns an HttpNfcLease. The
HttpNfcLease contains the info and state properties, where info is of type HttpNfcLeaseInfo and state is of
type HttpNfcLeaseState. The HttpNfcLeaseInfo data object has several properties, one of which is the
deviceUrl of type HttpNfcLeaseDeviceUrl[]. The HttpNfcLeaseState has four different states—done, error,
initializing and ready.

Figure 12-2 shows the UML representation of the data structures used in the VirtualApp API.

Figure 12-2. VirtualApp Class Diagram

The VirtualApp API data structures are the following:

 VirtualApp—A managed object that is a collection of virtual machines (and potentially other VirtualApp
containers) that are operated and monitored as a unit.

 HttpNfcLease—A managed object returned when you call VirtualApp.ExportVApp. It represents a lease
on the virtual application. While you hold the lease, you block the operations that alter the state of the
virtual application.

 HttpNfcLeaseInfo—A data object that holds information about the lease, such as the virtual application
covered by the lease, and the device URLs for up/downloading images.

 HttpNfcLeaseState—An enumeration that is a list of possible states of a lease.

ExportVApp Obtains an export lease on the virtual application. The export lease contains a list of URLs for the
disks of the virtual machines in this virtual application. ExportVApp is a method in the
VirtualApp managed object.

getDeviceUrl Retrieves the device IDs and URLs from the server. getDeviceUrl is an accessor method provided
in the generated JAX-WS bindings. It does not appear in Figure 12-2..

Table 12-2. Methods Used in Exporting a VirtualApp

Method Description

vSphere Web Services SDK Programming Guide

152 VMware, Inc.

HttpNfcLeaseDeviceUrl—A data object that provides a mapping from logical device IDs to upload/download
URLs.

OvfManager Data Structures

The OvfManager managed object has a CreateDescriptor method that returns an OvfCreateDescriptorResult.
The OvfCreateDescriptorResult has the ovfDescriptor string.

Figure 12-3 shows the UML representation of the data structures used in the OvfManager API.

Figure 12-3. OvfManager Class Diagram

The OvfManager data structures are the following:

 OvfManager—A managed object that provides a service interface to parse and generate OVF descriptors.

 OvfCreateDescriptorResult—A data object that contains the result of creating the OVF descriptor for the
virtual application.

Example of Generating an OVF Package

In summary, the steps in generating an OVF package are the following:

1 Get the managed object reference to the VirtualApp object. Call the ExportVApp method, which returns
an HttpNfcLease data object. Wait for the state of the lease to turn to READY. Get the list of device URLs
from the lease and store them in an array.

2 For each of the URLs in the list of device URLs, download the images from that URL to the client.

3 Save the image to the OVF package (directory/folder). Create an OvfFile object using the deviceID,
absolute path of the downloaded image, and the size of the image on the local disk.

4 Call the OvfManager.CreateDescriptor method by passing the managed object reference to the
VirtualApp and the OvfFile object wrapped in an OvfCreateDescriptorParams object. This method
returns OvfCreateDescriptorResult, which contains the file descriptor. Write the file descriptor to a file
with the file extension .ovf. Add the .ovf file to the OVF package.

The following is an example of how to generate an OVF package. The example assumes a more complex
scenario: downloading more than one image from more than one device URL. The example is based on the
OVFManagerExportVAAP.java sample, which is located in the
SDK/vsphere-ws/java/JAXWS/samples/com/vmware/vapp/ directory.

You can use the ExportVM method instead of the ExportVapp method when exporting a VirtualMachine.

package com.vmware.vapp;

VMware, Inc. 153

Chapter 12 Virtual Applications

import java.io.*;

import java.net.URL;
import java.util.*;

...
/** 1. Get the MOR of the VirtualApp.

M ManagedObjectReference vAppMoRef = getVAPPByName(vApp);
...

/** Call the ExportVApp method, which returns an HttpNfcLease data object. */
ManagedObjectReference httpNfcLease = vimPort.exportVApp(vAppMoRef);

...
/** Wait for the state of the lease to turn to READY. */

Object[] result = waitForValues.wait(httpNfcLease, new String[]{"state"},
new String[]{"state"},

new Object[][]{new Object[]{
HttpNfcLeaseState.READY,
HttpNfcLeaseState.ERROR}});

if (result[0].equals(HttpNfcLeaseState.READY)) {

...
/** Get the list of device URLs from the lease. */

List<HttpNfcLeaseDeviceUrl> deviceUrlArr =
httpNfcLeaseInfo.getDeviceUrl();

if (deviceUrlArr != null) {
...

/** 2. For each of the URLs in the list of device URLs, download the images from that URL to
the client. */

for (int i = 0; i < deviceUrlArr.size(); i++) {

String deviceId = deviceUrlArr.get(i).getKey();
 String deviceUrlStr = deviceUrlArr.get(i).getUrl();
 String absoluteFile =
 deviceUrlStr.substring(deviceUrlStr
 .lastIndexOf("/") + 1);

/** 3. Save the image to the OVF package (directory/folder). Create an OvfFile object using
* the deviceID, absolute path of the downloaded image, and the size of the image on the
* local disk.
*/

long writtenSize =
 writeVMDKFile(absoluteFile,
 deviceUrlStr.replace("*", host));
 OvfFile ovfFile = new OvfFile();
 ovfFile.setPath(absoluteFile);
 ovfFile.setDeviceId(deviceId);
 ovfFile.setSize(writtenSize);

 ovfFiles.add(ovfFile);
}

/** 4. Call the OvfManager.CreateDescriptor method by passing the managed object reference
* to the VirtualApp and the OvfFile object wrapped in an OvfCreateDescriptorParams object.
* This method returns OvfCreateDescriptorResult, which contains the file descriptor.
* Write the file descriptor to a file with the file extension .ovf. Add the .ovf file to
* the OVF package.
*/

 ovfCreateDescriptorParams.getOvfFiles().addAll(ovfFiles);
 OvfCreateDescriptorResult ovfCreateDescriptorResult =
 vimPort.createDescriptor(
 serviceContent.getOvfManager(), vAppMoRef,
 ovfCreateDescriptorParams);

 String outOVF = localpath + "/" + vApp + ".ovf";
 File outFile = new File(outOVF);
 FileWriter out = new FileWriter(outFile);

 out.write(ovfCreateDescriptorResult.getOvfDescriptor());

 out.close();

vSphere Web Services SDK Programming Guide

154 VMware, Inc.

Importing an OVF Package
To import the virtual application OVF template, you follow a few basic steps. The steps are the same for an
OVF package that contains a single virtual machines or an OVF package that contains a more complex virtual
application.

1 Parse the OVF descriptor by calling OvfManager.parseDescriptor.

2 Validate the target ESX/ESXi host by calling OvfManager.validateHost.

3 Create the VirtualAppImportSpec by calling OvfManager.createImportSpec.

This structure contains all the information needed to create the entities on the vCenter Server, including
children. Clients do not have to read or modify VirtualAppImportSpec to perform basic OVF
operations.

4 Create the vCenter Server entities by calling ResourcePool.importVApp.

The method uses a parsed OVF descriptor to create VirtualApp and VirtualMachine objects in the
vSphere environment.

The import process itself consists of two steps:

 The server creates the virtual machines and virtual applications.

You must wait for the server to create all inventory objects. During object creation, the server monitors the
state property on the HttpNfcLease object returned from the ImportVApp call. When the server
completes object creation, the server changes the lease to ready state and you can begin uploading virtual
disk contents. If an error occurs while the server is creating inventory objects, the lease changes to the error
state, and the import process is aborted.

 The client application uploads virtual disk contents do an HTTP POST request with the content of the disk
to the provided URLs. The disk is in the stream-optimized VMDK format
(http://www.vmware.com/technical-resources/interfaces/vmdk.html). As an alternative, you can use the
OVF tool, available at http://communities.vmware.com/community/developer/forums/ovf at VMware
Communities.

When all inventory objects have been created and the HttpNfcLease has changed to ready state, you can
upload disk contents by using the URLs provided in the info property of the HttpNfcLease object. You
must call the HttpNfcLeaseProgress method on the lease periodically to keep the lease alive and report
progress to the server. Failure to do so causes the lease to time out, aborting the import process.

When you are done uploading disks, complete the lease by calling the HttpNfcLeaseComplete method. You
can terminate the import process by calling the HttpNfcLeaseAbort method.

If the import process fails, is terminated, or times out, all created inventory objects are removed, including all
virtual disks.

Virtual Application Life Cycle
You can power a virtual application on or off and perform other lifecycle operations.

Powering a Virtual Application On or Off

You can use the PowerOnVApp_Task method to power on a VirtualApp object. This method starts the virtual
machines or child virtual applications in the order specified in the virtual application configuration.

While a virtual application is starting, all power operations performed on subentities are disabled.

If a virtual machine in a virtual application fails to start, an exception is returned and the power-on sequence
terminates. In case of a failure, virtual machines that are already started remain powered on.

http://communities.vmware.com/community/developer/forums/ovf
http://www.vmware.com/technical-resources/interfaces/vmdk.html

VMware, Inc. 155

Chapter 12 Virtual Applications

You can use the PowerOffVApp_Task method to power off a virtual application. This method stops the virtual
machines or child virtual applications in the order specified in the VirtualApp object configuration if force
is false. If force is set to true, this method stops all virtual machines (in no specific order and possibly in
parallel) regardless of the VirtualApp object auto-start configuration.

While a virtual application is stopping, all power operations performed on subentities are disabled.

Unregistering a Virtual Application

You can call the UnregisterVApp_Task method to remove a VirtualApp object from the inventory without
removing any of the component virtual machine files on disk. All high-level information stored with the
management server (ESX/ESXi or vCenter Server system) is removed, including information about
VirtualApp object configuration, statistics, permissions, and alarms.

Suspending a Virtual Application

You can call the SuspendVApp_Task method to suspend all running virtual machines in a virtual application,
including virtual machines running in child virtual application. The virtual machines are suspended in the
order that is used for a power off operation, which is the reverse of a power on sequence.

While a virtual application is being suspended, all power operations performed on subentities are disabled. If
you attempt to perform a power operation, a TaskInProgress error results.

Destroying a Virtual Application

When a VirtualApp object is destroyed, all of its virtual machines and any child virtual applications are
destroyed.

The VirtualAppVAppState type defines the set of states a VirtualApp object can be in. The transitory state
between started and stopped is modeled explicitly, since the starting or stopping of a virtual application might
take minutes to complete.

The life-time of a linked child is determined by the destroyWithParent property on the
VAppEntityConfigInfo data object. If set to true, the child is destroyed when the parent virtual application
is destroyed. Otherwise, only the link is removed when the virtual application is destroyed.

vSphere Web Services SDK Programming Guide

156 VMware, Inc.

VMware, Inc. 157

13

Underlying all virtual components are the actual physical resources of the host system, such as CPU, RAM,
storage, network infrastructure, and so on. vSphere supports sharing of resources on an individual host or
across hosts using resource pools. vSphere also supports clusters for failover or load balancing.

The chapter includes the following topics:

 “Resource Management Objects” on page 157

 “Introduction to Resource Management” on page 158

 “Resource Allocation” on page 158

 “Creating and Configuring Resource Pools” on page 160

 “Introduction to VMware DRS and VMware HA Clusters” on page 162

 “Creating and Configuring Clusters” on page 163

 “Managing DRS Clusters” on page 164

 “Managing HA Clusters” on page 165

Resource Management Objects
Central to resource management for all environments is either a ComputeResource or a
ClusterComputeResource managed object.

 The ComputeResource managed object represents the set of resources for a set of virtual machines. A
ComputeResource is always associated with a root ResourcePool object.

 The ResourcePool managed object represents a set of physical resources of a single host, a subset of a
host's resources, or resources spanning multiple hosts. Resource pools can be subdivided by creating
child resource pools. Only virtual machines associated with a resource pool can be powered on.

 The ClusterComputeResource data object aggregates the compute resources of multiple associated
HostSystem objects into a single compute resource for use by virtual machines. If you plan on using
VMware cluster services such as HA (High Availability), DRS (Distributed Resource Scheduling), or on
using EVC (Enhanced vMotion Compatibility), use ClusterComputeResource.

Resource Management 13

IMPORTANT HA, DRS, and EVC require licenses. If any clustering functionality does not work properly, check
whether you have licenses for it.

vSphere Web Services SDK Programming Guide

158 VMware, Inc.

Introduction to Resource Management
An ESX/ESXi host allocates each virtual machine a portion of the underlying hardware resources based on
several factors:

 Total available resources for the ESX/ESXi host, resource pool, or cluster to which the virtual machine
belongs.

 Number of virtual machines powered on and resource usage by those virtual machines.

 Overhead required to manage the virtualization.

 Limits defined by the user.

Resource management allows you to dynamically allocate resources to virtual machines so that you can more
efficiently use available capacity. You can change resource allocation in the following ways.

 Specify resource allocation for individual virtual machines. See “CPU and Memory Resource Allocation”
on page 132.

 Create a hierarchy of resource pools and add the virtual machine to a resource pool with characteristics
appropriate for its use. See “Resource Pool Hierarchies” on page 158.

 Add hosts and virtual machines to a cluster so you can take advantage of VMware DRS for
recommendations or automatic resource redistribution. See “Creating and Configuring Clusters” on
page 163.

Resource Allocation
When you create a virtual machine, you always specify the resource pool that the virtual machine can draw
resources from and optionally a host on which the virtual machine should run. You can access the resource
pool as follows:

 Standalone host – When you call Folder.AddStandaloneHost_Task, the call returns a Task object that
contains the ComputeResource. The ComputeResource.resourcePool property is the root resource
pool associated with the compute resource (and with the host).

 Cluster – When you call Folder.CreateClusterEx, the method returns a managed object reference to a
ClusterComputeResource instance. Because ClusterComputeResource inherits all properties of
ComputeResource, you can access the root folder through the
ClusterComputeResource.resourcePool property.

Resource Pool Hierarchies

Resource pool hierarchies allow detailed control over which virtual machines are allowed how many
resources.

For example, assume a standalone host has several virtual machines. The marketing department uses three of
the virtual machines and the QA department uses two virtual machines. Because the QA department needs
larger amounts of CPU and memory, the administrator creates one resource pool for each group. The
administrator sets CPU Shares to High for the QA department pool and to Normal for the Marketing
department pool so that the QA department users can run automated tests. The second resource pool with
fewer CPU and memory resources is sufficient for the lighter load of the marketing staff. Whenever the QA
department is not fully using its allocation, the marketing department can use the available resources.

VMware, Inc. 159

Chapter 13 Resource Management

Figure 13-1. Allocating Resources to Resource Pools

Resource Pool Management Guidelines

The following rules govern resource pool creation.

 A root resource pool must always have at least as many resources as all its immediate children.

 Do not overcommit resource pool resources. The sum of all child pools should always be less than (not
equal to or more than) the parent. For example, if four child resource pool reservations total 40 gigabytes
and the parent resource pool has a reservation of 60 gigabytes, you have some room to create another
resource pool. However, if the four child resource pool reservations total 60 gigabytes, you do not. For
virtual machine, some overcommitment of resources is supported. See the technical white papers on the
VMware web site.

 Before creating new child resource pools, check available resources in the parent pool. The
ResourcePool.runtimeInfo property is a ResourcePoolRuntimeInfo data object.
ResourcePoolRuntimeInfo.cpu and ResourcePoolRuntimeInfo.memory properties are
ResourcePoolResourceUsage objects with resource usage information, including an
unreservedForPool property. If the parent resource pool does not have enough available resources,
reconfigure the reservation values of child pools before adding the new pool.

 Reconfigure child resource pools first, to ensure that the reservation properties of each child do not absorb
all the resources of the parent.

Cluster Overview

vSphere supports grouping ESX/ESXi hosts that are managed by the same vCenter Server system into clusters.
Clusters take advantage of features such as VMware DRS and VMware HA.

 VMware HA (VMware High Availability) migrates virtual machine from one host in a cluster to another
host, in the event of host failure.

 VMware DRS (VMware Distributed Resource Scheduler, provides dynamic redistribution of resources.
DRS also includes support for Distributed Power Management (DTM), which makes recommendations
or decisions to power off hosts and power them on again as needed, to save energy.

You can set up VMware DRS to automatically migrate virtual machines, or to display recommendations
if resources are not used efficiently across the datacenter.

See “Creating and Configuring Clusters” on page 163 and “Managing DRS Clusters” on page 164.

vSphere Web Services SDK Programming Guide

160 VMware, Inc.

Creating and Configuring Resource Pools
A root resource pool is associated with each ComputeResource and with each ClusterComputeResource.

You can create a hierarchy of resource pools by calling the ResourcePool.CreateResourcePool method
passing in a ResourceConfig method as an argument. The ResourceConfig.cpuAllocation and
ResourceConfig.memoryAllocation properties point to a ResourceAllocationInfo object that allows
you to specify the information.

 reservation – Amount of CPU or memory that is guaranteed available to the resource pool. Reserved
resources are not wasted if they are not used. If the utilization is less than the reservation, the resources
can be utilized by other resource pools or running virtual machines.

 expandableReservation – In a resource pool with an expandable reservation, the reservation on a
resource pool can expand beyond the specified value, if the parent resource pool has unreserved
resources. A non-expandable reservation is called a fixed reservation. See “Understanding Expandable
Reservation” on page 160. This property is ignored for virtual machines.

 limit – Upper limit for CPU or memory resources assigned to this resource pool. The virtual machine or
resource pool does not exceed this limit, even if resources are available. This property is typically used to
ensure consistent performance. Set this property to -1 to indicate no fixed upper limit on resource usage.

 shares – Relative metric for allocating memory or processing capacity among multiple resource pools.
The SharesInfo data object has two properties, level and shares, that allow you to specify resource
allocation.

 level – Choose high, low, or normal to map to a predetermined set of numeric values for shares. See
the API Reference Guide for the numbers for CPU, memory, and disk shares. Set this property to
custom to specify an explicit number of shares instead.

 shares – Allows you to specify the number of shares you want to allocate to the resource pool. The
allocation is divided evenly between resource pools with the same level.

Calling the ResourcePool.UpdateConfig or ResourcePool.UpdateChildResourceConfiguration
method allows you to change the configuration.

Understanding Expandable Reservation

Expandable reservations are best illustrated with examples.

Expandable Reservation Example 1

Assume an administrator manages pool P, and defines two child resource pools, S1 and S2, for two different
users (or groups).

The administrator knows that users want to power on virtual machines with reservations, but does not know
how much each user will reserve. Making the reservations for S1 and S2 expandable allows the administrator
to more flexibly share and inherit the common reservation for pool P.

Without expandable reservations, the administrator needs to explicitly allocate S1 and S2 a specific amount.
Such specific allocations can be inflexible, especially in deep resource pool hierarchies and can complicate
setting reservations in the resource pool hierarchy.

Expandable reservations cause a loss of strict isolation; that is, S1 can start using all of P's reservation, so that
no memory or CPU is directly available to S2.

Expandable Reservation Example 2

Assume the following scenario (shown in Figure 13-2):

 Parent pool RP-MOM has a reservation of 6GHz and one running virtual machine VM-M1 that reserves
1GHz.

 You create a child resource pool RP-KID with a reservation of 2GHz and with Expandable Reservation
selected.

VMware, Inc. 161

Chapter 13 Resource Management

 You add two virtual machines, VM-K1 and VM-K2, with reservations of 2GHz each to the child resource
pool and try to power them on.

 VM-K1 can reserve the resources directly from RP-KID (which has 2GHz).

 No local resources are available for VM-K2, so it borrows resources from the parent resource pool,
RP-MOM. RP-MOM has 6GHz minus 1GHz (reserved by the virtual machine) minus 2GHz (reserved by
RP-KID), which leaves 3GHz unreserved. With 3GHz available, you can power on the 2GHz virtual
machine.

Figure 13-2. Admission Control with Expandable Resource Pools, Scenario 1

Now, consider another scenario with VM-M1 and VM-M2, shown in Figure 13-3.

 Power on two virtual machines in RP-MOM with a total reservation of 3GHz.

 You can still power on VM-K1 in RP-KID because 2GHz are available locally.

 When you try to power on VM-K2, RP-KID has no unreserved CPU capacity so it checks its parent.
RP-MOM has only 1GHz of unreserved capacity available (5GHz of RP-MOM are already in use—3GHz
reserved by the local virtual machines and 2GHz reserved by RP-KID). As a result, you cannot power on
VM-K2, which requires a 2GHz reservation.

Figure 13-3. Admission Control with Expandable Resource Pools, Scenario 2

Deleting Child Resource Pools

The ResourcePool.DestroyChildren method recursively deletes all the child resource pools of a resource
pool. The operation takes a single parameter, a reference to the parent ResourcePool managed object. Any
virtual machines associated with the child resource pool are reassigned to the parent resource pool.

VM-K1, 2GHz VM-K2, 2GHz

2GHz

6GHz

RP-KID

VM-M1, 1GHz

RP-MOM

VM-K1, 2GHz VM-K2, 2GHz

2GHz

6GHz

RP-KID

VM-M1, 1GHz VM-M2, 2GHz

RP-MOM

vSphere Web Services SDK Programming Guide

162 VMware, Inc.

Moving Resource Pools or Virtual Machines Into a Resource Pool

You can move a resource pool and its children within a resource pool hierarchy.

The ResourcePool.MoveIntoResourcePool method lets you move virtual machines, virtual applications, or
resource pool hierarchies into a new resource pool. You call the method with an array of ResourcePool or
VirtualMachine managed object references that you want to move. The whole resource pool hierarchy,
including child resource pools and virtual machines, is moved when you move a resource pool.

Minimum available resources of the immediate children must always be less than or equal to the resources of
the immediate parent. The root resource pool cannot be moved.

Introduction to VMware DRS and VMware HA Clusters
Clusters are useful primarily with VMware DRS and VMware HA. This guide only gives a brief introduction.
See the following manuals for details:

 VMware DRS. vSphere Resource Management Guide

 VMware HA. vSphere Availability Guide

VMware DRS

A VMware DRS cluster is a collection of ESX/ESXi hosts and associated virtual machines with shared resources
and a shared management interface. Before you can obtain the benefits of cluster-level resource management
you must create a DRS cluster.

When you add a host to a DRS cluster, the host’s resources become part of the cluster’s resources. In addition
to this aggregation of resources, a DRS cluster supports cluster-wide resource pools and enforces cluster-level
resource allocation policies. The following cluster-level resource management capabilities are available.

 Load Balancing. The vCenter Server system monitors distribution and usage of CPU and memory
resources for all hosts and virtual machines in the cluster. DRS compares these metrics to an ideal resource
utilization given the attributes of the cluster’s resource pools and virtual machines, the current demand,
and the imbalance target. DRS then performs (or recommends) virtual machine migrations. When you
first power on a virtual machine in the cluster, DRS attempts to maintain proper load balancing either by
placing the virtual machine on an appropriate host or by making a recommendation.

 Power Management. When the VMware DTM (Distributed Power Management) feature is enabled, DRS
compares cluster- and host-level capacity to the demands of the cluster’s virtual machines, including
recent historical demand. DTM places (or recommends placing) hosts in standby power mode if sufficient
excess capacity is found. DTM powers on (or recommends powering on) hosts if capacity is needed.
Depending on the resulting host power state recommendations, virtual machines might need to be
migrated to and from the hosts.

 Virtual Machine Placement. You can control the placement of virtual machines on hosts within a cluster,
by assigning DRS affinity or antiaffinity rules.

See “Managing DRS Clusters” on page 164.

VMware HA

VMware HA supports high availability for virtual machines by pooling them and the hosts they reside on into
a cluster. VMware HA monitors the hosts. In the event of host failure, VMware HA migrates virtual machines
to hosts with capacity. When you add new virtual machines to a VMware HA cluster, VMware HA checks
whether enough capacity to power on that virtual machine on a different host in case of host failure is
available.

See “Managing HA Clusters” on page 165.

VMware, Inc. 163

Chapter 13 Resource Management

Creating and Configuring Clusters
The vSphere Web Services SDK includes objects and methods for all cluster management tasks. Some
documentation is available in the API Reference. For additional background and details about the failover and
load balancing behavior, see the Resource Management Guide and the High Availability Guide.

Creating a Cluster

If your environment includes a vCenter Server system and multiple ESX/ESXi hosts, you can create a cluster
by calling the Folder.CreateCluster method. You pass in a name for the new cluster and a
ClusterConfigSpec data object. In the data object, you can specify the following properties:

 VMware HA

 dasConfig – ClusterDasConfigInfo data object that specifies the HA service on the cluster.
Properties on this object determine whether strict admission control is enabled, what the default
virtual machine settings in this cluster are, whether VMware HA restarts virtual machines after host
failure, and so on. See the API Reference.

 dasVMConfigSpec – ClusterDasVMConfigSpec object. ClusterDasVMConfigSpec.info is a
ClusterDasVmConfigInfo data object that specifies the HA configuration for a single virtual
machine. You can apply different settings to different virtual machines, or use the default specified
in the dasConfig property.

 VMware DRS

 drsConfig – ClusterDrsConfigInfo data object that contains configuration information for the
VMware DRS service. Properties in this object specify the cluster-wide (default) behavior for virtual
machine and the threshold for generating cluster recommendations. You can enable and disable
VMware DRS with the ClusterDrsConfigInfo.enabled property.

 drsVmConfigSpec – ClusterDrsVMConfigSpec data object that points to a
ClusterDrsVmConfigInfo data object which specifies the DRS configuration for a single virtual
machine. ClusterDrsVmConfigInfo overrides the default DRS configuration for an individual
virtual machine and allows you to specify the DRS behavior and whether DRS can perform migration
or recommend initial placement for a virtual machine.

When you update a DRS configuration, you call ComputeResource.ReconfigurComputeResource_Task
and pass in a ClusterConfigSpecEx object. In the ClusterConfigSpecEx.drsVmConfigSpec
property, you can specify an array of ClusterDrsVMConfigSpec objects that define the configuration
for individual virtual machines.

 rulesSpec – ClusterDrsRuleSpec data object that points a ClusterRuleInfo data object which
specifies the affinity and antiaffinity rules DRS should use. See the API Reference entry for
ClusterRuleInfo.

vSphere Web Services SDK Programming Guide

164 VMware, Inc.

Adding a Host to a Cluster

The methods available for adding hosts to a cluster are useful under different circumstances. Each method
returns a managed object reference to a task.

 ClusterComputeResource.AddHost_Task – Adds a host to a cluster. The host name must be either an
IP address, such as 192.168.0.1, or a DNS resolvable name. If the cluster supports nested resource pools
and you specify the optional resourcePool argument, the host's root resource pool becomes the specified
resource pool, and that resource pool and the associated hierarchy is added to the cluster.

If a cluster does not support nested resource pools and you add a host to the cluster, the standalone host
resource pool hierarchy is discarded and all virtual machines on the host are added to the cluster's root
resource pool.

 ClusterComputeResource.moveHostInto_Task moves a host that is in the same datacenter as the
cluster into the cluster. If the host is already part of a different cluster, the host must be in maintenance
mode.

 ClusterComputeResource.moveInto_Task works like moveHostInto_Task, but supports an array of
hosts at a time. When using this method, you cannot preserve the original resource pool hierarchy of the
hosts.

Reconfiguring a Cluster

You can reconfigure a cluster by calling the ClusterComputeResource.ReconfigureCluster_Task
method. The method allows you to enable or disable VMware DRS or VMware HA and to define attributes.
See “Creating a Cluster” on page 163.

To remove hosts from a cluster, you can use one of the following methods:

 ClusterComputeResource.MoveHostInto_Task or MoveInto_Task—Removes a host from a cluster
and moves the host into another cluster. See “Adding a Host to a Cluster” on page 164.

 Folder.MoveIntoFolder_Task—Removes a host from a cluster and make it a standalone host.

 Host.Destroy_Task—Removes a host from inventory.

Managing DRS Clusters
The vSphere Client UI allows you to explore DRS cluster behavior, which is also described in the Resource
Management Guide. When DRS is running, it generates recommendations and associated information that
result in a well balanced cluster.

 Initial placement of virtual machines

 Virtual machine migration for load balancing. Each migration recommendation has a rating, which you
can find in the ClusterRecommendation.rating property. Client applications can choose to consider
only high-priority migrations are considered or migrations with multiple priority levels.

 Checks whether DRS clusters are valid — enough resources are available to start additional virtual
machines — or not valid.

DRS recommentations are stored in the ClusterComputeResource.recommendation property, which is an
array of ClusterRecommendation data objects. Each ClusterRecommendation includes information about
the action to perform and information you can use to display information to end users or for logging.

 Client applications can call ClusterComputeResource.ApplyRecommendation to apply one or more
recommendations.

VMware, Inc. 165

Chapter 13 Resource Management

 For more fine-grained control, client applications can perform individual actions only. The
ClusterRecommendation.action property is an array of ClusterAction objects. Each ClusterAction
includes a target for the action and the type, which is a string that is one of the values of the ActionType
enum (HostPowerV1, MigrationV1, VmPowerV1). Client applications can use the ActionType
information to act on DRS recommendations by powering on hosts, migrating virtual machines, or
powering on virtual machines by calling Datacenter.PowerOnMultiVM_Task.

Managing HA Clusters
You can add a host to an HA cluster by calling one of the methods for moving hosts into a cluster. See “Adding
a Host to a Cluster” on page 164. You might have to call HostSystem.ReconfigureHostForDAS_Task to
reconfigure the host for HA if the automatic HA configuration fails.

Primary and Secondary Hosts

You can add a host to a cluster by calling the ClusterComputeResource.AddHost_Task method, which
requires that you specify the host name, port, and password for the host to be added as a HostConnectSpec.

When you add a host to a VMware HA cluster, an agent is uploaded to the host and configured to
communicate with other agents in the cluster. The first five hosts added to the cluster are designated as
primary hosts, and all subsequent hosts are designated as secondary hosts. The primary hosts maintain and
replicate all cluster state and are used to initiate failover actions. If a primary host is removed from the cluster,
VMware HA promotes another host to primary status.

Any host that joins the cluster must communicate with an existing primary host to complete its configuration
(except when you are adding the first host to the cluster). At least one primary host must be functional for
VMware HA to operate correctly. If all primary hosts are unavailable (not responding), no hosts can be
successfully configured for VMware HA.

One of the primary hosts is also designated as the active primary host and its responsibilities include:

 Deciding where to restart virtual machines.

 Keeping track of failed restart attempts.

 Determining when it is appropriate to keep trying to restart a virtual machine.

Failure Detection and Host Network Isolation

Agents on the different hosts contact and monitor each other through the exchange of heartbeats, by default
every second. If a 15-second period elapses without the receipt of heartbeats from a host, and the host cannot
be pinged, the host is declared as failed. The virtual machines running on the failed host are restarted on the
alternate hosts with the most available unreserved capacity (CPU and memory.)

Host network isolation occurs when a host is still running, but it can no longer communicate with other hosts
in the cluster. With default settings, if a host stops receiving heartbeats from all other hosts in the cluster for
more than 12 seconds, it attempts to ping its isolation addresses. If this also fails, the host declares itself
isolated from the network.

When the isolated host's network connection is not restored for 15 seconds or longer, the other hosts in the
cluster treat that host as failed and try to fail over its virtual machines. However, when an isolated host retains
access to the shared storage it also retains the disk lock on virtual machine files. To avoid potential data
corruption, VMFS disk locking prevents simultaneous write operations to the virtual machine disk files and
attempts to fail over the isolated host's virtual machines fail. By default, the isolated host leaves its virtual
machines powered on, but you can change the host isolation response.

vSphere Web Services SDK Programming Guide

166 VMware, Inc.

Using VMware HA and DRS Together

Using VMware HA with VMware DRS combines automatic failover with load balancing. This combination
can result in faster rebalancing of virtual machines after VMware HA has moved virtual machines to different
hosts.

When VMware HA performs failover and restarts virtual machines on different hosts, its first priority is the
immediate availability of all virtual machines. After the virtual machines have been restarted, those hosts on
which they were powered on might be heavily loaded, while other hosts are comparatively lightly loaded.
VMware HA uses the CPU and memory reservation to determine failover, while the actual usage might be
higher.

In a cluster using DRS and VMware HA with admission control turned on, virtual machines might not be
evacuated from hosts entering maintenance mode because of resources reserved to maintain the failover level.
You must manually migrate the virtual machines off of the hosts using VMotion.

When VMware HA admission control is disabled, failover resource constraints are not passed on to DRS and
VMware Distributed Power Management (DPM). The constraints are not enforced.

 DRS evacuates virtual machines from hosts and place the hosts in maintenance mode or standby mode
regardless of the effect this might have on failover requirements.

 VMware DPM powers off hosts (place them in standby mode) even if doing so violates failover
requirements.

VMware, Inc. 167

14

VMware vSphere uses an asynchronous client-server communication model. Methods that end with _Task are
non-blocking, returning a reference to a Task managed object. You can use Task and ViewManager managed
objects to monitor tasks, cancel certain tasks, and create custom tasks.

If you are using a vCenter Server system, the ScheduledTaskManager allows you to schedule your own tasks
for a one-time run or for repeated runs.

The chapter includes the following topics:

 “Creating Tasks” on page 167

 “Using TaskInfo to Determine Task Status” on page 168

 “Monitoring TaskInfo Properties” on page 169

 “Accessing and Manipulating Multiple Tasks” on page 170

 “Understanding the ScheduledTaskManager Interface” on page 179

 “Using a TaskHistoryCollector” on page 183

 “Sample Code Reference” on page 184

Creating Tasks
Each time a vSphere server runs a method, it creates a Task and a corresponding TaskInfo data object. Some
methods run synchronously and return data as the Task completes. But methods that end with _Task run
asynchronously, and return a reference to a Task that will be created and completed as a processor becomes
available. They are created to perform the functions in a non-blocking manner. Therefore, you must use the
reference to the Task to monitor the status and results of the Task. vSphere operations that include the suffix
_Task in their names are asynchronous and return Task references.

The Task object provides information about the status of the invoked operation through its TaskInfo data
object. An instance of TaskInfo populates the info property of the Task managed object at runtime. By
monitoring properties of the TaskInfo object, a client application can take appropriate action when the Task
completes, or can handle errors if the Task does not complete successfully.

When a vSphere server creates a Task, it also creates a TaskEvent object. The TaskEvent object contains a
copy of the TaskInfo object (TaskEvent.info). The TaskEvent copy of the TaskInfo object is a snapshot of
the Task state at the time of its creation. It does not change after it is created. To find the current status of the
task, use the Task.info.eventChainId property.

Session Persistence

A Task and its associated objects are session specific, so they will not persist after the session is closed. When
your client opens a session, you can only obtain information about the Task objects that your client is
authorized to view.

Tasks and Scheduled Tasks 14

vSphere Web Services SDK Programming Guide

168 VMware, Inc.

Cancelling a Task

To cancel a Task that is still running, call the Task.CancelTask method, passing in the managed object
reference to the Task you want to cancel, as shown in this example:

my_conn.cancelTask(taskMoRef);

You can only cancel a Task that has its cancelable property set to true and its state property set to
running. The operation that initiates the Task sets the value of cancelable when it creates the Task.
For example, a CreateVM_Task cannot be cancelled. Before attempting to cancel a running Task, you can
check the values of the cancelable property and the state property of the TaskInfo data object associated
with the Task.

Using TaskInfo to Determine Task Status

A Task object provides information about the status of the invoked operation through its TaskInfo data
object. An instance of TaskInfo populates the info property of the Task managed object at runtime. By
monitoring properties of the TaskInfo object, a client application can take appropriate action when the Task
completes, or can handle errors if the Task does not complete successfully.

The Task.info property contains a TaskInfo data object that contains information about the Task the server
returns to your client application.

When a Task is instantiated by the server, the TaskInfo.result property is initialized to Unset. Upon
successful completion of an operation, the result property is populated with the return type specific to the
operation. The result might be a data object, a reference to a managed object, or any other data structure as
defined by the operation.

For example:

1 The ClusterComputeResource.AddHost_Task method returns a Task object whose info property
contains a TaskInfo data object.

2 At the start of the operation, the result property is Unset.

3 Upon successful completion of the operation, the result property of TaskInfo contains the managed
object reference of the newly added HostSystem.

Table 14-1 lists some of the values obtained from a TaskInfo data object at the beginning and the end of
the Task instantiated by the CreateVM_Task method.

Table 14-1. Sample TaskInfo Values

Property Datatype Start of Task Sample Values End of Task Sample Values

cancelable boolean false false

...

completeTime dateTime Unset "2009-02-19T22:53:35.015338Z"

progress int 36 100

queueTime dateTime "2009-02-19T22:50:39.111604Z" "2009-02-19T22:50:39.111604Z"

reason TaskReason reason reason

result anyType Unset 64

....

state TaskInfoState "running" "success"

VMware, Inc. 169

Chapter 14 Tasks and Scheduled Tasks

Monitoring TaskInfo Properties

To monitor the state of a Task, use the PropertyCollector.WaitForUpdatesEx method. See “Client Data
Synchronization (WaitForUpdatesEx)” on page 77. You can monitor the values of TaskInfo properties, which
change as the Task runs to completion. For example, you can check the values of startTime, queueTime,
completeTime, progress, result, and state as the operation progresses. Monitor these properties in your
code in a separate thread until the Task completes, while the main line of your code continues with other
activities.

Your code must handle the datatype returned when the Task completes (managed object reference, data
object, and so on). In addition to success, queued, and running, an operation can enter an error state, which
your code must handle.

A Task object has a lifecycle that is independent of the TaskManager that creates it and independent of the
entity with which it is associated. It exists to convey status about an operation. You can discard the reference
to it when your application no longer needs the information.

Example 14-1 shows a code fragment that obtains values for the info property from each Task object in the
array.

Example 14-1. Displaying TaskInfoState Values for Tasks in recentTask Array

...
private void displayTasks(ObjectContent[] oContents) {
 for(int oci=0; oci<oContents.length; ++oci) {
 System.out.println("Task");
 DynamicProperty[] dps = oContents[oci].getPropSet();
 if(dps!=null) {
 String op="", name="", type="", state="", error="";
 for(int dpi=0; dpi<dps.length; ++dpi) {
 DynamicProperty dp = dps[dpi];
 if("info.entity".equals(dp.getName())) {
 type = ((ManagedObjectReference)dp.getVal()).getType();
 } else if ("info.entityName".equals(dp.getName())) {
 name = ((String)dp.getVal());
 } else if ("info.name".equals(dp.getName())) {
 op = ((String)dp.getVal());
 } else if ("info.state".equals(dp.getName())) {
 TaskInfoState tis = (TaskInfoState)dp.getVal();
 if(TaskInfoState.error.equals(tis)) {
 state = "-Error";
 } else if(TaskInfoState.queued.equals(tis)) {
 state = "-Queued";
 } else if(TaskInfoState.running.equals(tis)) {
 state = "-Running";
 } else if(TaskInfoState.success.equals(tis)) {
 state = "-Success";
 }
 } else if ("info.cancelled".equals(dp.getName())) {
 Boolean b = (Boolean)dp.getVal();
 if(b != null && b.booleanValue()) {
 state += "-Cancelled";
 }

}...

vSphere Web Services SDK Programming Guide

170 VMware, Inc.

Example 14-2 shows output from a run of the program. See the source code listing for TaskList.java or for
TaskList.cs in the vSphere Web Services SDK package for details.

Example 14-2. Sample Run of the TaskList Java Application

java com.vmware.samples.general.TaskList --url https://srv/sdk --username root --password *******

Started
Task
Operation AcquireCimServicesTicket
Name srv
Type HostSystem
State -Success
Error
======================
Ended TaskList

Accessing and Manipulating Multiple Tasks
Use the ViewManager’s ListView method to identify the set of Tasks you want to monitor.

You can specify a smaller and more efficient data set using one of the ViewManager views with the Property
Collector. Each view represents objects you have selected on the server. Views are more efficient because you
only need a single instance of a PropertyCollector object, instead of multiple instances with multiple filter
specifications.

Gathering Data with a ViewManager Object

Use one of the ViewManager methods to obtain information about Task objects and references while the
session is running. The ViewManager’s ListView method allows you to customize your view with an input
object list, the ContainerView method lets you view all objects in a folder, datacenter, resource pool, or other
data container, and the InventoryView method lets you monitor the entire inventory. The smallest view you
can create will be the most efficient way to retrieve task data.

The ViewManager has the following property:

viewList – An array of view references. Each array entry is a managed object reference to a view created by
this View Manager.

See “PropertyCollector Example (RetrievePropertiesEx)” on page 59 for an example that uses the
ContainerView method to access Inventory data.

Task Monitoring Example Using the ListView Object

Use the ViewManager’s ListView method to specify the set of tasks that you want to monitor.

The following example uses the ViewManager service interface with a ListView method to access and
manipulate Task objects. This example uses the property collector to monitor tasks that are created in the
process of virtual machine cloning. This program creates two clones of the specified virtual machine and then
monitors the tasks and prints out status and reference values when the tasks have completed.

The following steps describe the procedure for creating a program that uses the ListView managed object.

You can run the example below as a stand-alone program against your own server by copying the code
sections into .java file, compiling it, and then using the following command line syntax:

>cloneVMTask server-name username password vm-name

VMware, Inc. 171

Chapter 14 Tasks and Scheduled Tasks

To create a program that uses the ListView managed object

1 Import the vSphere Web Services API libraries:

import com.vmware.vim25.*;

2 Import the necessary Java (and JAX-WS connection, bindings, and SOAP) libraries:

import java.util.*;
import javax.net.ssl.HostnameVerifier;
import javax.net.ssl.HttpsURLConnection;
import javax.net.ssl.SSLSession;
import javax.xml.ws.BindingProvider;
import javax.xml.ws.soap.SOAPFaultException;

3 Create the cloneVMTask class to create cloned virtual machine Tasks on a host, so we can demonstrate
how to monitor these Tasks.

public class cloneVMTask {

4 Declare variables for the service instance objects and methods:

// Services and methods
static ManagedObjectReference pCollector;
static ManagedObjectReference viewMgr;
static ServiceContent serviceContent;
static VimPortType methods;

/**
* getVmRef() retrieves a reference to the specified virtual machine.
*
* vmName - name of the virtual machine specified on the command line
*
* This function retrieves references to all of the virtual machines
* in the datacenter and looks for a match to the specified name.
*/

5 Create a function that retrieves references to all of the virtual machines in the datacenter and looks for a
match to the specified name. The function in this example uses getVMRef(String, vmName), which
retrieves a reference to the virtual machine that you specify on the command line (vmName) when you run
this sample. The function also initializes the vmRef variable to null.

private static ManagedObjectReference getVmRef(String vmName)
throws Exception
{
ManagedObjectReference vmRef = null;

6 Use a container view to collect references to all virtual machines in the datacenter.

List<String> vmList = new ArrayList<String>();
vmList.add("VirtualMachine");

ManagedObjectReference cViewRef = methods.createContainerView(viewMgr,
serviceContent.getRootFolder(),
vmList,
true);

7 Create an ObjectSpec to define the beginning of the traversal. Use the setObj method to specify that the
container view is the root object for this traversal. Set the setSkip method to true to indicate that you
don't want to include the container in the results.

ObjectSpec oSpec = new ObjectSpec();
oSpec.setObj(cViewRef);
oSpec.setSkip(true);

8 Create a traversal spec to select all objects in the view.

TraversalSpec tSpec = new TraversalSpec();
tSpec.setName("traverseEntities");
tSpec.setPath("view");
tSpec.setSkip(false);
tSpec.setType("ContainerView");

vSphere Web Services SDK Programming Guide

172 VMware, Inc.

9 Add the traversal spec to the object spec.

oSpec.getSelectSet().add(tSpec);

10 Specify the property for retrieval (virtual machine name).

PropertySpec pSpec = new PropertySpec();
pSpec.setType("VirtualMachine");
pSpec.getPathSet().add("name");

11 Create a PropertyFilterSpec and add the object and property specs to it.

PropertyFilterSpec fSpec = new PropertyFilterSpec();
fSpec.getObjectSet().add(oSpec);
fSpec.getPropSet().add(pSpec);

12 Create a list for the filters and add the spec to it.

List<PropertyFilterSpec> fSpecList = new ArrayList<PropertyFilterSpec>();
fSpecList.add(fSpec);

13 Get the data from the server.

RetrieveOptions ro = new RetrieveOptions();
RetrieveResult props = methods.retrievePropertiesEx(pCollector,fSpecList,ro);

14 Go through the returned list and look for a match to the specified vmName.

if (props != null) {
for (ObjectContent oc : props.getObjects()) {
String vmname = null;
List<DynamicProperty> dps = oc.getPropSet();
if (dps != null) {

for (DynamicProperty dp : dps) {
vmname = (String) dp.getVal();
// If the name of this virtual machine matches
// the specified name, save the managed object reference.
if (vmname.equals(vmName)) {

vmRef = oc.getObj();
break;

}
}
if (vmRef != null) { break; }

}
}

}
if (vmRef == null) {

System.out.println("Specified Virtual Machine not found.");
throw new Exception();

}
return vmRef;

}

15 Get the folder that contains the specified virtual machine (VirtualMachine.parent)

private static ManagedObjectReference getVMParent(ManagedObjectReference vmRef)
throws Exception {

16 Create an Object Spec to define the property collection. Use the setObj method to specify that the
vmRef is the root object for this traversal. Set the setSkip method to true to indicate that you don't want
to include the virtual machine in the results.

// don't include the virtual machine in the results
ObjectSpec oSpec = new ObjectSpec();
oSpec.setObj(vmRef);
oSpec.setSkip(false);

17 Specify the property for retrieval (virtual machine parent).

PropertySpec pSpec = new PropertySpec();
pSpec.setType("VirtualMachine");
pSpec.getPathSet().add("parent");

VMware, Inc. 173

Chapter 14 Tasks and Scheduled Tasks

18 Create a PropertyFilterSpec and add the object and property specs to it.

PropertyFilterSpec fSpec = new PropertyFilterSpec();
fSpec.getObjectSet().add(oSpec);
fSpec.getPropSet().add(pSpec);

19 Create a list for the filters and add the property filter spec to it.

List<PropertyFilterSpec> fSpecList = new ArrayList<PropertyFilterSpec>();
fSpecList.add(fSpec);

20 Get the data from the server.

RetrieveOptions ro = new RetrieveOptions();
RetrieveResult props = methods.retrievePropertiesEx(pCollector,fSpecList,ro);

21 Get the parent folder reference.

ManagedObjectReference folderRef = null;
if (props != null) {

for (ObjectContent oc : props.getObjects()) {
List<DynamicProperty> dps = oc.getPropSet();
if (dps != null) {

for (DynamicProperty dp : dps) {
folderRef = (ManagedObjectReference) dp.getVal();
}

}
}

}

if (folderRef == null) {
System.out.println("Folder not found.");
throw new Exception();

}
return folderRef;
}

Now that we have the reference information for the virtual machine that you specified on the command
line (vmRef) and a reference for the parent directory (folderRef), we are ready to create the clone virtual
machines.

22 To create clones, use the cloneVM method and pass in the vmRef that we retrieved previously.

private static void cloneVM(ManagedObjectReference vmRef) throws Exception {

23 After you have created the clone managed object, create a clone specification. Use default values
whenever possible.

VirtualMachineCloneSpec cloneSpec = new VirtualMachineCloneSpec();
VirtualMachineRelocateSpec vmrs = new VirtualMachineRelocateSpec();
cloneSpec.setLocation(vmrs);
cloneSpec.setPowerOn(true);
cloneSpec.setTemplate(false);

24 Get the destination folder for the clone virtual machines (VirtualMachine.parent). The clones will be
created in the same folder that contains the specified virtual machine (vmName).

ManagedObjectReference folder = getVMParent(vmRef);

25 Create two clone virtual machines.

ManagedObjectReference cloneTask = methods.cloneVMTask(vmRef, folder, "clone__1",
cloneSpec);

ManagedObjectReference cloneTask2 = methods.cloneVMTask(vmRef, folder, "clone__2",
cloneSpec);

26 Create a list view for the clone tasks.

List<ManagedObjectReference> taskList = new ArrayList<ManagedObjectReference>();
taskList.add(cloneTask);
taskList.add(cloneTask2);
ManagedObjectReference cloneTaskList = methods.createListView(viewMgr, taskList);

vSphere Web Services SDK Programming Guide

174 VMware, Inc.

Next we will set up a property filter for WaitForUpdatesEx. This includes creating an object spec, a
traversal spec, a property spec, a filter spec, and finally a property filter. The next six steps will describe
these procedures.

27 Create an object spec to start the traversal.

ObjectSpec oSpec = new ObjectSpec();
oSpec.setObj(cloneTaskList);
oSpec.setSkip(true);

28 Create a traversal spec to select the list of tasks in the view.

TraversalSpec tSpec = new TraversalSpec();
tSpec.setName("traverseTasks");
tSpec.setPath("view");
tSpec.setSkip(false);
tSpec.setType("ListView");

29 Add the traversal spec to the object spec.

oSpec.getSelectSet().add(tSpec);

30 Create property spec for Task.info.state and Task.info.result.

PropertySpec pSpec = new PropertySpec();
pSpec.setType("Task");
pSpec.setAll(false);
pSpec.getPathSet().add("info.state");
pSpec.getPathSet().add("info.result");

31 Create a filter spec.

PropertyFilterSpec fSpec = new PropertyFilterSpec();
fSpec.getObjectSet().add(oSpec);
fSpec.getPropSet().add(pSpec);

32 Create the filter.

ManagedObjectReference pFilter = methods.createFilter(pCollector, fSpec, true);

In the next section, we use the waitForUpdatesEx method to look for a change in
cloneTask.info.state and cloneTask.info.result. When the state is "success",
cloneTask.info.result is the managed object reference of the clone. Note that the order of property
retrieval is not guaranteed, and it may take more than one call to waitForUpdatesEx to retrieve both
properties for a task.

This code does not set a time-out (WaitOptions.maxWaitSeconds is unset), so after it has retrieved all of
the property values, waitForUpdatesEx will block the thread, waiting for the TCP connection with the
vSphere Server to time-out.

How a client application handles the session depends on the particular context. (The client can call
WaitForUpdatesEx from its own thread, look for specific updates and then stop calling the method.)

For more information about WaitOptions and the waitForUpdatesEx method, see “Client Data
Synchronization (WaitForUpdatesEx)” on page 77.

33 Initialize wait loop (?)

String version = "";
Boolean wait = true;
WaitOptions waitOptions = new WaitOptions();

while (wait) {

34 Call WaitForUpdatesEx.

UpdateSet uSet = methods.waitForUpdatesEx(pCollector, version, waitOptions);

if (uSet == null) {
wait = false;
}
else {

VMware, Inc. 175

Chapter 14 Tasks and Scheduled Tasks

35 Get the version for subsequent calls to WaitForUpdatesEx.

version = uSet.getVersion();

36 Get the list of property updates.

List<PropertyFilterUpdate> pfUpdates = uSet.getFilterSet();
for (PropertyFilterUpdate pfu : pfUpdates) {

37 Get the list of object updates produced by the filter.

List<ObjectUpdate> oUpdates = pfu.getObjectSet();
for (ObjectUpdate ou : oUpdates) {

38 Look for ObjectUpdate.kind=MODIFY (property modified).

if (ou.getKind() == ObjectUpdateKind.MODIFY) {

String name = "";
TaskInfoState state;
ManagedObjectReference cloneRef = new ManagedObjectReference();

39 Get the changed data.

List<PropertyChange> pChanges = ou.getChangeSet();

40 Retrieve the name of the property

for (PropertyChange pc : pChanges) {
name = pc.getName();

//The task property names are info.state or info.result;
//pc.val is an xsd:anyType:
//-- for info.state, it is the state value
//-- for info.result, it is the clone reference
if (name.equals("info.state")) {

state = (TaskInfoState)pc.getVal();
System.out.println("State is "+state.value());

}
else if (name.equals("info.result")) {

cloneRef = (ManagedObjectReference)pc.getVal();
System.out.println("Clone reference is "+cloneRef.getValue());

}
}

Authentication is handled using a TrustManager and supplying a host name verifier method. (The host
name verifier is declared in the main function.)

For the purposes of this example, this TrustManager implementation will accept all certificates. This is
only appropriate for a development environment. Production code should implement certificate support.

private static class TrustAllTrustManager implements javax.net.ssl.TrustManager,
javax.net.ssl.X509TrustManager {

public java.security.cert.X509Certificate[] getAcceptedIssuers() {
return null;

}

public boolean isServerTrusted(
java.security.cert.X509Certificate[] certs) {
return true;

}

public boolean isClientTrusted(
java.security.cert.X509Certificate[] certs) {
return true;

}

public void checkServerTrusted(java.security.cert.X509Certificate[] certs,
String authType)
throws java.security.cert.CertificateException {
return;

}

vSphere Web Services SDK Programming Guide

176 VMware, Inc.

public void checkClientTrusted(java.security.cert.X509Certificate[] certs,
String authType)
throws java.security.cert.CertificateException {
return;

}
}

Now we are set to retrieve the task information, so we implement the main method.

// cloneVMTask(server, user, password, virtual-machine)
public static void main(String [] args) throws Exception {

41 We create variables to hold the values passed in from the command line.

String serverName = args[0];
String userName = args[1];
String password = args[2];
String vmName = args[3];
String url = "https://"+serverName+"/sdk/vimService";

42 Add variables for access to the API methods and services.

// -- ManagedObjectReference for the ServiceInstance on the Server
// -- VimService for access to the vSphere Web service
// -- VimPortType for access to methods
// -- ServiceContent for access to managed object services
ManagedObjectReference SVC_INST_REF = new ManagedObjectReference();
VimService vimService;

43 Declare a host name verifier that will automatically enable the connection. The host name verifier is
invoked during the SSL handshake.

HostnameVerifier hv = new HostnameVerifier() {
public boolean verify(String urlHostName, SSLSession session) {

return true;
}

};

44 Create the trust manager.

javax.net.ssl.TrustManager[] trustAllCerts = new javax.net.ssl.TrustManager[1];
javax.net.ssl.TrustManager tm = new TrustAllTrustManager();
trustAllCerts[0] = tm;
// Create the SSL context
javax.net.ssl.SSLContext sc = javax.net.ssl.SSLContext.getInstance("SSL");
// Create the session context
javax.net.ssl.SSLSessionContext sslsc = sc.getServerSessionContext();
// Initialize the contexts; the session context takes the trust manager.
sslsc.setSessionTimeout(0);
sc.init(null, trustAllCerts, null);
// Use the default socket factory to create the socket for the secure connection
javax.net.ssl.HttpsURLConnection.setDefaultSSLSocketFactory(sc.getSocketFactory());

45 Set the default host name verifier to enable the connection.

HttpsURLConnection.setDefaultHostnameVerifier(hv);

46 Set up the manufactured managed object reference for the ServiceInstance

SVC_INST_REF.setType("ServiceInstance");
SVC_INST_REF.setValue("ServiceInstance");

47 Create a VimService object to obtain a VimPort binding provider. The BindingProvider provides access to
the protocol fields in request/response messages. Retrieve the request context which will be used for
processing message requests.

vimService = new VimService();
methods = vimService.getVimPort();
Map<String, Object> ctxt = ((BindingProvider) methods).getRequestContext();

VMware, Inc. 177

Chapter 14 Tasks and Scheduled Tasks

48 Store the Server URL in the request context and specify true to maintain the connection between the client
and server. The client API will include the Server's HTTP cookie in its requests to maintain the session. If
you do not set this to true, the Server will start a new session with each request.

ctxt.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY, url);
ctxt.put(BindingProvider.SESSION_MAINTAIN_PROPERTY, true);

49 Retrieve the ServiceContent object and login.

serviceContent = methods.retrieveServiceContent(SVC_INST_REF);
methods.login(serviceContent.getSessionManager(),
userName,
password,
null);

50 Get references to the property collector and the view manager.

pCollector = serviceContent.getPropertyCollector();
viewMgr = serviceContent.getViewManager();

51 Get a reference to the specified virtual machine.

ManagedObjectReference vmRef = getVmRef(vmName);

52 Clone the virtual machine and wait for the result.

cloneVM(vmRef);

53 Close the connection.

methods.logout(serviceContent.getSessionManager());
}

}

Gathering Data with a TaskManager Interface

TaskManager is a service interface that you can also use for accessing and manipulating Task objects. This
approach uses a PropertyCollector that includes the recentTask property of the TaskManager managed
object that corresponds to the Recent Tasks pane at the bottom of the vSphere client User Interface.

You can use the following TaskManager properties in your client application.

 description – TaskDescription object that includes a methodInfo property. methodInfo contains a
key-based array that TaskManager uses to populate the value of a TaskInfo data object’s descriptionId
property with the name of the operation. Examples of two elements from this key-based array are
methodInfo["Folder.createVm"] and methodInfo["Folder.createClusterEx"].

 recentTask – Array of Task managed object references that are queued to run, running, or completed
within the past 10 minutes. On ESX/ESXi hosts that are managed by a vCenter Server, a completed task
must also be one of the 200 most recent tasks to be included in the array. A vSphere Client connected to a
vSphere Server displays queued, running, and completed tasks in the Recent Tasks pane.

In addition to these properties, TaskManager has the following methods:

 CreateTask – Used by other methods to create a custom Task object. Developers creating extensions can
use this method to create custom Task objects.

 CreateCollectorForTasks – Creates an object that contains all tasks from the vCenter Server database
that meet specific criteria. You cannot run this method against an ESX/ESXi system. See “Using a
TaskHistoryCollector” on page 183.

NOTE For general task monitoring, it is a best practice to use a ViewManager to monitor specific tasks. See the
API Reference for more information about using views.

vSphere Web Services SDK Programming Guide

178 VMware, Inc.

Figure 14-1 shows a UML class diagram for TaskManager and associated objects.

Figure 14-1. TaskManager and Task Managed Objects

Examining Recent Tasks with TaskManager

To obtain the list of recent tasks, use a PropertyCollector to obtain references to the TaskManager and to
all Task objects from the recentTask property of the TaskManager. Example 14-3 shows an excerpt from the
TaskList.java sample that creates the ObjectSpec, PropertySpec, and a TraversalSpec to obtain
references to all Task objects on the server from the TaskList. See also Chapter 5, “Property Collector,” on
page 57.

Example 14-3. PropertyFilterSpec Definition to Obtain recentTask Property Values

private PropertyFilterSpec[] createPFSForRecentTasks(ManagedObjectReference taskManagerRef) {
PropertySpec pSpec = new PropertySpec();

pSpec.setAll(Boolean.FALSE);
pSpec.setType("Task");
pSpec.setPathSet(new String[] {"info.entity", "info.entityName", "info.name",

"info.state", "info.cancelled", "info.error"});
ObjectSpec oSpec = new ObjectSpec();

oSpec.setObj(taskManagerRef);
oSpec.setSkip(Boolean.FALSE);

TraversalSpec tSpec = new TraversalSpec();
tSpec.setType("TaskManager");
tSpec.setPath("recentTask");
tSpec.setSkip(Boolean.FALSE);

oSpec.setSelectSet(new SelectionSpec[]{tSpec});
PropertyFilterSpec pfSpec = new PropertyFilterSpec();

pfSpec.setPropSet(new PropertySpec[]{pSpec});
pfSpec.setObjectSet(new ObjectSpec[]{oSpec});

return new PropertyFilterSpec[]{pfSpec};
}

For ESX/ESXi systems managed by a vCenter Server system, use a TaskHistoryCollector. See “Using a
TaskHistoryCollector” on page 183.

VMware, Inc. 179

Chapter 14 Tasks and Scheduled Tasks

Understanding the ScheduledTaskManager Interface
You can use the ScheduledTaskManager to schedule tasks. In the vSphere Client, scheduled tasks display in
the Task & Events tab.

You can define actions to occur on vCenter Server at different times:

 When a vCenter Server system starts up operations, such as after a reboot

 At a specific time and day

 At hourly, daily, weekly, or monthly intervals

You can schedule scripts to be run or methods to be invoked on the server. You apply the action to an entity in
the inventory, such as a virtual machine or a host.

You can perform the following actions with ScheduledTaskManager.

 Retrieve scheduled tasks for a specific managed entity by calling the
ScheduledTaskManager.RetrieveEntityScheduledTask method.

 Create a scheduled task by calling the ScheduledTaskManager.CreateScheduledTask method. See
“Scheduling Tasks” on page 180.

Figure 14-2 shows the ScheduledTaskManager service interface and associated data objects.

Figure 14-2. ScheduledTaskManager and ScheduledTask Managed Objects

The ScheduledTaskManager.scheduledTask property contains an array of the ScheduledTask objects
configured for the server. If you have no actions scheduled, this property is empty. For any ScheduledTask
objects in this array, you can use the info property of the ScheduledTask object to obtain information about
the status of the scheduled action. Information includes the task’s progress, state, previous and next
runtimes, and other details contained in the ScheduledTaskInfo data object.

If the action specified for a ScheduledTask creates its own Task (such as with any of the asynchronous
operations), the managed object reference to the Task populates the activeTask property of
ScheduledTaskInfo.

vSphere Web Services SDK Programming Guide

180 VMware, Inc.

Scheduling Tasks

You create a ScheduledTask by invoking the ScheduledTaskManager.CreateScheduledTask method.
When you invoke the method, you include a ScheduledTaskSpec object that defines the schedule and
specifies the action to take at the specified time. A scheduled action applies to an object based on these rules:

 If you specify a container object as the entity for the scheduled action, the schedule applies to all entities
that are direct descendents of the container. You can set a ScheduledTask at the Folder, Datacenter, or
VirtualApp level and have the scheduled action apply to all entities associated with the Folder,
Datacenter, or VirtualApp.

 If you specify a node object in the inventory, such as a virtual machine, the action applies only to the
virtual machine.

Figure 14-3. Using ScheduledTaskManager to Create a ScheduledTask

Defining the Schedule and Action

The ScheduledTaskSpec data object contains all the information to create a ScheduledTask.

 action – Action to take when the ScheduledTask runs. Specify an Action data object, which is an
abstract type that is extended by several specific action types. The Action data objects are also used by
the Alarm infrastructure. See “Specifying Alarm Actions” on page 192.

 notification – Specifies the email address for sending notification messages about the ScheduledTask.
To use notifications, the vCenter Server system must have an SMTP email gateway configured. By default,
notification is set to an empty string.

 scheduler – Specifies the time, frequency, and other details of the schedule. The TaskScheduler data
object is the base type for several specific schedule objects. See “Scheduling Recurring Operations” on
page 180.

Scheduling Recurring Operations

You can specify the times, days, or frequency of scheduled tasks by creating the appropriate instances of
TaskScheduler subtypes and setting the scheduler property of the ScheduledTaskSpec.

The TaskScheduler base type has two properties:

 activeTime is the time at which the action should occur. If you leave this property unset, it defaults to
the time when that specification for the scheduled task was submitted to the server.

 expireTime is the time after which the scheduled action should not occur. By default, this property is
unset, so the scheduled task does not expire.

VMware, Inc. 181

Chapter 14 Tasks and Scheduled Tasks

Table 14-2 provides some usage information about the TaskScheduler subtypes. The examples in the table
are Java code fragments.

Table 14-2. TaskScheduler Data Object Subtypes

TaskScheduler Subtype Usage

AfterStartupTaskScheduler Schedule a task to start as soon as the vCenter Server system is started, or at a defined time
after startup. The value must be zero (task triggered at startup) or higher.
Example: Schedule a task to run 10 minutes after vCenter Server startup.

AfterStartupTaskScheduler asts = new AfterStartupTaskScheduler();

asts.setMinute(10);

OnceTaskScheduler

.
Schedule an action to run once only at the specified date and time.
Example: Schedule a task to run 30 minutes after the schedule is submitted to the server.

Calendar runTime = Calendar.getInstance();

runtime.add(Calendar.MINUTE, 30);

OnceTaskScheduler ots = new OnceTaskScheduler ();

ots.setRunAt(runTime);

RecurrentTaskScheduler Base type for HourlyTaskScheduler, DailyTaskScheduler, WeeklyTaskScheduler,
and MonthlyTaskScheduler objects. Set the interval property to define how frequently a
task should run. For example, setting the interval property of an hourly task to 4 causes the
task to run every 4 hours.

HourlyTaskScheduler Schedule a task to run once every hour (or every specified number of hours) at a specified
time. Set the interval property to run the task after a specified number of hours.
Example: Schedule a task to run every 4 hours at half-past the hour.

HourlyTaskScheduler hts = new HourlyTaskScheduler();

hts.setMinute(30);

hts.setInterval(4);

DailyTaskScheduler Schedule a task to run daily or a specified number of days at a specified time (hour and
minutes). Use in conjunction with the interval property to run the task after a specified
number of days.
Example: Schedule a task to run daily at 9:30 am (EST).

DailyTaskScheduler dts = new DailyTaskScheduler();

dts.setMinute(30);

dts.setHour(14);

WeeklyTaskScheduler Schedule a task to run every week (or every specified number of weeks) on a specified day
(or days) at a specific time. The hours and minutes are set as UTC values. At least one of
the boolean values must be set to true. You can also set the interval property to run the task
after a specified number of weeks.
Example: Schedule a task to run every Tuesday and Sunday at 30 minutes past midnight.

WeeklyTaskScheduler wts = new WeeklyTaskScheduler();

wts.setMonday(true);

wts.setTuesday(true);

...

wts.setSaturday(false);

wts.setSunday(true);

dts.setMinute(30);

dts.setHour(4);

vSphere Web Services SDK Programming Guide

182 VMware, Inc.

The hour and minute properties of all objects that extend the RecurrentTaskSchedule data object are
specified in Coordinated Universal Time (UTC) values rather than the local time of the server. When you
define the schedule, convert your local time to a UTC value.

The code fragment in Example 14-4 defines a ScheduledTask that powers on virtual machines daily at 4:15
a.m., if the server local time is in the Pacific Standard Time (PST) time zone. For a server in the Eastern
European Summer Time (EEST) zone, the setting is read by the system as 3:15 pm.

Example 14-4. Scheduled Task for Powering-on Virtual Machines

...
// Set the schedule using the DailyTaskScheduler subtype.
DailyTaskScheduler dTScheduler = new DailyTaskScheduler();
dTScheduler.setHour(12);
dTScheduler.setMinute(15);
ScheduledTaskSpec tSpec = new ScheduledTaskSpec();
tSpec.setDescription("Start virtual machine as per schedule.");
tSpec.setEnabled(Boolean=TRUE);
tSpec.setName("Power On Virtual Machine");
tSpec.setAction(ma);
tSpec.setScheduler(dTScheduler);
tSpec.setNotification("admin@vmware.com");
my_conn.createScheduledTask(_sic.getScheduledTaskManager, vmRef, tSpec);
...

Cancelling a Scheduled Task

You can cancel a scheduled task in several ways.

 To cancel the current run of a scheduled task, call ScheduledTask.RemoveScheduledTask. This method
does not cancel subsequent runs of the ScheduledTask.

 To cancel an upcoming run of a ScheduledTask, call ScheduledTask.ReconfigureScheduledTask
with a new ScheduledTaskSpec data object containing the new specifications for the schedule.

 To cancel a ScheduledTask that spawns a second task, create a PropertyCollector to obtain the
reference to the Tasks and call its CancelTask method. The task must be cancellable.

MonthlyByDayTaskScheduler Schedule a task to run every month (or every specified number of months) on a specified
day at a specified time (hour and minutes). You can also set the interval property to run the
task after a specified number of months.
Example: Schedule a task to run every 3 months (on the last day of the month) at 12:30 p.m.

MonthlyByDayTaskScheduler mbdts = new MonthlyByDayTaskScheduler();

mbdts.setDay(31);

mbdts.setInterval(3);

mbdts.setMinute(30);

mbdts.setHour(14);

MonthlyByWeekdayTaskScheduler Schedule a task to run every month (or every specified number of months) on a specified
week, weekday, and time (hour: minutes). You can also set the interval property to run the
task after a specified number of months.
Example: Schedule a task to run on the last Wednesday of each month at 12:30 a.m.

MonthlyByWeekdayTaskScheduler mbwts = new

MonthlyByWeekdayTaskScheduler();

mbwts.setOffset(WeekOfMonth.last);

mbwts.setWeekday(DayOfWeek.wednesday);

mbwts.setHour(4);

mbwts.setMinute(30);

Table 14-2. TaskScheduler Data Object Subtypes (Continued)

TaskScheduler Subtype Usage

VMware, Inc. 183

Chapter 14 Tasks and Scheduled Tasks

Using a TaskHistoryCollector
A TaskHistoryCollector lets you gather information about tasks. You create a TaskHistoryCollector
using the TaskManager.CreateCollectorForTasks method.

To create a TaskHistoryCollector

1 Identify the type of Task objects that you want to collect, and create an instance of a TaskFilterSpec data
object that specifies your filter criteria.

The TaskFilterSpec includes an taskTypeId property, which you use to limit the set of collected task
objects to specific types. You can also provide a time range in the TaskFilterSpec by defining an
TaskFilterSpecByTime data object for its time property. See the vSphere API Reference.

2 Obtain the managed object reference to the TaskManager on your server instance.

3 Submit the filter and the reference to the server in the CreateTaskHistoryCollector method.
The server returns a reference to a TaskHistoryCollector object.

After a HistoryCollector has been created, the server appends new objects that meet the filter criteria to the
collection as they occur. The system appends the new object to the collection by placing it in the first position
of the latestPage and removes the oldest object from the collection. The latestPage property of the
TaskHistoryCollector object has a property that consists of the 1000 most recent objects in the collection.
Use a PropertyCollector to obtain the items from the latestPage property.

A HistoryCollector exists only for the duration of the session that instantiated it. Call the
HistoryCollector.DestroyCollector method to delete the collector before the session ends.

Creating a TaskHistoryCollector Filter

When you create a TaskHistoryCollector, you can define filters. For example, rather than returning all Task
objects associated with virtual machines, you might create a filter to collect only Task objects associated with
virtual machines that were executed by the backup-administrator between 2:00 and 4:00 a.m. on a specific date.

The TaskFilterSpec object allows you to specify the collection criteria. Most of the properties are optional
and can be submitted as null values. The TaskFilterSpec lets you collect tasks based on user name, entity
type, time, and state of the Task.

Managing the HistoryCollector

The HistoryCollector managed object provides operations for managing the life-cycle and scrollable views
of a collection.

 DestroyCollector – A HistoryCollector exists only for the current session. Invoke the
DestroyCollector operation to explicitly destroy the collector before the session ends.

 ResetCollector – Adjusts the starting position for the subset of objects from the collector to the object
immediately preceding the current latestPage.

 RewindCollector – Positions the latestPage to the oldest item in the array. When a
HistoryCollector is created, this is the default location.

 SetCollectorPageSize – Accepts an integer parameter to set the size of the latestPage property of a
HistoryCollector. The default size of a HistoryCollector is an array with a maximum of 1000 objects
of the appropriate type (Task, Event). The array is sorted by creation date and time of the objects.

vSphere Web Services SDK Programming Guide

184 VMware, Inc.

Sample Code Reference
Table 14-3 lists the sample applications included with the vSphere Web Services SDK that demonstrate Task
monitoring. In addition to the samples listed in the table, the helper classes associated with the C# sample
applications use Task objects extensively.
java

Table 14-3. Task and ScheduledTask Sample Applications

Java C#

vsphere-ws\java\JAXWS\samples\com\vmware\general\

TaskList.java

vsphere-ws\dotnet\cs\samples\TaskList\
TaskList.cs

vsphere-ws\dotnet\cs\samples\TaskList\
TaskList.csproj

vsphere-ws\dotnet\cs\samples\TaskList\
TaskList2008.csproj

vsphere-ws\dotnet\cs\samples\TaskList\
TaskList2010.csproj

vsphere-ws\java\JAXWS\samples\com\vmware\scheduling\

DeleteOneTimeScheduledTask.java

vsphere-ws\dotnet\cs\samples\DeleteOneTimeSchedu
ledTask\DeleteOneTimeScheduledTask.cs

vsphere-ws\dotnet\cs\samples\DeleteOneTimeSchedu
ledTask\DeleteOneTimeScheduledTask.csproj

vsphere-ws\dotnet\cs\samples\DeleteOneTimeSchedu
ledTask\DeleteOneTimeScheduledTask2008.csproj

vsphere-ws\dotnet\cs\samples\DeleteOneTimeSchedu
ledTask\DeleteOneTimeScheduledTask2010.csproj

vsphere-ws\java\JAXWS\samples\com\vmware\scheduling\

OneTimeScheduledTask.java

vsphere-ws\dotnet\cs\samples\OneTimeScheduledTas
k\OneTimeScheduledTask.cs

vsphere-ws\dotnet\cs\samples\OneTimeScheduledTas
k\OneTimeScheduledTask.csproj

vsphere-ws\dotnet\cs\samples\OneTimeScheduledTas
k\OneTimeScheduledTask2008.csproj

vsphere-ws\dotnet\cs\samples\OneTimeScheduledTas
k\OneTimeScheduledTask2010.csproj

vsphere-ws\java\JAXWS\samples\com\vmware\scheduling\

WeeklyRecurrenceScheduledTask.java

vsphere-ws\dotnet\cs\samples\WeeklyRecurrenceSch
eduledTask\WeeklyRecurrenceScheduledTask.cs

vsphere-ws\dotnet\cs\samples\WeeklyRecurrenceSch
eduledTask\WeeklyRecurrenceScheduledTask.csproj

vsphere-ws\dotnet\cs\samples\WeeklyRecurrenceSch
eduledTask\WeeklyRecurrenceScheduledTask2008.csp
roj

vsphere-ws\dotnet\cs\samples\WeeklyRecurrenceSch
eduledTask\WeeklyRecurrenceScheduledTask2010.csp
roj

VMware, Inc. 185

15194

Events are sent by vSphere to convey information about things that happen in the system. You can monitor
events directly or use an EventHistoryCollector to retrieve events from a certain period.

Alarms are sent by vSphere to alert users to problems. You can also create your own alarm to monitor the
system and set up follow-up actions. Alarm setup includes specifying the trigger condition and defining the
action that should result.

The chapter includes the following topics:

 “Event and Alarm Management Objects” on page 185

 “Understanding Events” on page 185

 “Using an EventHistoryCollector” on page 188

 “Using Alarms” on page 189

 “Defining Alarms Using the AlarmSpec Data Object” on page 190

 “Sample Code Reference” on page 193

Event and Alarm Management Objects
EventManager is the service interface for working with the event infrastructure. See “Managing Events with
EventManager” on page 186.

Event subtypes define the events that the system generates. See “Event Data Objects” on page 187 and
“Creating Custom Events” on page 188.

EventHistoryCollector allows you to monitor events. You can create a filter to limit the number of events
your code retrieves. You can monitor both system events and your own events. See “Using an
EventHistoryCollector” on page 188.

The AlarmManager is the service interface for creating, setting, and managing alarms. You create an alarm,
specifying trigger conditions and the action to take. When the conditions defined for the Alarm occur on the
system, the Action specified for the alarm starts. The alarm also generates an Event that you can retrieve with
an EventHistoryCollector.

Understanding Events
An Event is a data object type that contains information about state changes of managed entities and other
objects on the server. Events include user actions and system actions that occur on datacenters, datastores,
clusters, hosts, resource pools, virtual machines, networks, and distributed virtual switches. For example,
these common system activities generate one or more Event data objects:

 Powering a virtual machine on or off

 Creating a virtual machine

Events and Alarms 15

vSphere Web Services SDK Programming Guide

186 VMware, Inc.

 Installing VMware Tools on the guest OS of a virtual machine

 Reconfiguring a compute resource

 Adding a newly configured ESX/ESXi system to a vCenter Server system

In the vSphere Client, information from Event objects generated on a standalone ESX/ESXi system displays in
the Events tab. For managed hosts, information from Event objects displays in the Tasks & Events tab.

Persistence of Event objects depends on the system setup.

 Standalone ESX/ESXi systems – Event objects are not persistent. Events are retained only for as long as
the host system’s local memory can contain them. Rebooting a standalone ESX/ESXi host or powering off
a virtual machine removes Event objects from local memory.

A standalone ESX/ESXi system might keep about 15 minutes worth of Event data, but this can vary
depending on the processing load of the host, the number of virtual machines, and other factors.

 Managed ESX/ESXi systems. Event objects are persistent. Managed ESX/ESXi systems send Event data
to the vCenter Server system that manages them, and the vCenter Server system stores the information
its database.

You can use the event sample applications included in the SDK package with either managed or standalone
ESX/ESXi systems and with vCenter Server systems.

Using an EventHistoryCollector, you can obtain information about these objects as they are being collected
on a specific ESX/ESXi system, or from a specific historical period from the database. See “Using an
EventHistoryCollector” on page 188.

Managing Events with EventManager

EventManager is the service interface for working with the event infrastructure. Figure 15-1 shows
EventManager and related objects. An EventManager has these properties:

 A description property, defined as an instance of an EventDescription data object, which contains an
event category and other information.

 A latestEvent property that contains the most recent Event data object in memory.

 A maxCollector property that specifies the number of EventHistoryCollector objects per client
session that can be created. This value is set by the vCenter Server system.

Figure 15-1. EventManager Managed Object and Associated Objects

VMware, Inc. 187

Chapter 15 Events and Alarms

Event Data Objects

Event subtypes define the events that the system generates. Figure 15-2 shows only a few of the subtypes that
extend the Event data object. For example, TaskEvent inherits all Event properties and includes an info
property that is an instance of a TaskInfo object (see “Monitoring TaskInfo Properties” on page 169).

The following event objects are commonly generated by a console-style client application:

com.vmware.vim.VmPoweredOnEvent
com.vmware.vim.VmStartingEvent
com.vmware.vim.VmReconfiguredEvent
com.vmware.vim.VmCreatedEvent
com.vmware.vim.VmBeingCreatedEvent

Figure 15-2. Event Data Object and Sample Subtypes

Formatting Event Message Content

When displayed at the console, Event data objects are not formatted and do not provide context information.
You can format an Event message using the predefined string in the Event.fullFormattedMessage
property.

You can also format an Event message based on contextual information. At runtime, the Event data object is
populated with values that contain information associated with the source of an event, for example, the Event
data object’s computeResource, datacenter, ds, dvs, host, net, and vm properties.

You can use the properties of an Event object with the information in the EventDescriptionEventDetail in
EventManager.description.eventInfo to format event messages.

vSphere Web Services SDK Programming Guide

188 VMware, Inc.

Creating Custom Events

The EventManager. LogUserEvent method allows you to create custom Event objects. You can associate
your custom Event with any managed entity.

To define a custom Event

1 Obtain the managed object reference to the EventManager.

..
ManagedObjectReference _svcRef = new ManagedObjectReference();
ServiceContent _sic = my_conn.retrieveServiceContent(_svcRef);
ManagedObjectReference eMgrRef = _sic.getEventManager();
...

2 Obtain the managed object reference to the entity with which you are associating the Event.

For example, suppose you have a reference to a virtual machine (myVMRef) and you want to log a
message to record the fact that a virus check completed. You want to use myVMRef as a parameter to the
LogUserEvent method in the next step.

3 Call the LogUserEvent method, passing in the EventManager and the Event reference and a string
consisting of the Event message for the msg parameter of the operation.

LogUserEvent(eMgrRef, myVMRef, "Completed virus check at 1:05 AM on Sunday December 21.");

User-defined Event objects display in the vSphere Client among the other events on the system, with the prefix
User logged event: followed by the text submitted in your msg parameter. In other client applications, such as
in the console-based Event sample applications, custom events display as
com.vmware.vim.GeneralUserEvent objects.

Using an EventHistoryCollector
An EventHistoryCollector lets you gather information about events that the server has generated. You
create an EventHistoryCollector using the EventManager.CreateCollectorForEvents method.

To create an EventHistoryCollector

1 Identify the type of Event objects that you want to collect, and create an instance of an EventFilterSpec
data object that specifies your filter criteria. See “Creating an EventHistoryCollector Filter” on page 188.

The EventFilterSpec includes an eventTypeId property, which you use to limit the set of collected
event objects to specific types. You can also provide a time range in the EventFilterSpec, by defining
an EventFilterSpecByTime data object for its time property. See the vSphere API Reference for details.

2 Obtain the managed object reference to the EventManager on your server instance.

3 Submit the filter and the reference to the server in the CreateEventHistoryCollector operation.
The server returns a reference to an EventHistoryCollector object.

After you have created the HistoryCollector, the server appends new objects that meet the filter criteria to
the collection as they occur. The system appends the new object to the collection by placing it in the first
position of the latestPage and it removes the oldest object from the collection. The latestPage property of
the EventHistoryCollector object has a property that consists of the 1000 most recent objects in the
collection. Use a PropertyCollector to obtain the items from the latestPage property.

A HistoryCollector exists only for the duration of the session that instantiated it. You invoke the
DestroyCollector operation to explicitly eliminate the collector before the session ends.

Creating an EventHistoryCollector Filter

When you create an EventHistoryCollector, you can define filters. For example, rather than returning all
Event objects associated with virtual machines, you might create a filter to collect only those Event objects
associated with virtual machines that were executed by the backup-administrator between 2:00 and 4:00 a.m.
on a specific date.

VMware, Inc. 189

Chapter 15 Events and Alarms

The EventFilterSpec object allows you to specify the collection criteria. Most of the properties are optional
and can be submitted as null values. The EventFilterSpec lets you collect events based on user name, entity
type, time, and state of the Event.

Managing the HistoryCollector

The HistoryCollector managed object provides operations for managing the life-cycle and scrollable view
of a collection.

 DestroyCollector – A HistoryCollector exists only for the current session. Invoke the
DestroyCollector operation to explicitly destroy the collector before the session ends.

 ResetCollector – Adjusts the starting position for the subset of objects from the collector to the object
immediately preceding the current latestPage.

 RewindCollector – Positions the latestPage to the oldest item in the array. When a
HistoryCollector is created, this is the default location.

 SetCollectorPageSize – Accepts an integer parameter to set the size of the latestPage property of a
HistoryCollector. The default size of a HistoryCollector is an array that consists of at most 1000
objects of the appropriate type (Task, Event). The array is sorted by creation date and time of the objects.

Using Alarms
The vSphere alarm infrastructure supports automating actions and sending different types of notification in
response to certain server conditions. Many Alarms exist by default on vCenter Server systems. You can also
create alarms yourself. For example, an Alarm can send an alert email message when CPU usage on a specific
virtual machine exceeds 99% for more than 30 minutes.

The alarm infrastructure integrates with other server components, such as events and performance counters.

The AlarmManager is the service interface for creating, setting, and managing alarms. You create an alarm,
specifying trigger conditions and the action to take. When the conditions defined for the Alarm occur on the
system, the Action specified for the alarm starts. The alarm also generates an Event that is posted to the Event
history database. In addition, the action initiated by the Alarm might also post a second Event to the database,
depending on the Action type.

Obtaining a List of Alarms

Use the AlarmManager. GetAlarm method to obtain an array of references to all Alarm managed objects
defined for a specific managed entity. When you call the method, you can pass in an optional reference to a
managed entity. Without a reference to a managed entity, the GetAlarm operation returns all Alarm objects for
all entities that are visible to the principal associated with the session invoking the operation.

Figure 15-3. Alarm Managed Object

The Alarm.info property is an AlarmInfo data object. You can obtain information about active Alarms by
collecting the properties of the AlarmInfo data object.

vSphere Web Services SDK Programming Guide

190 VMware, Inc.

Creating an Alarm

You create an alarm with the AlarmManager.CreateAlarm method. In the simplest case, you specify the
trigger condition in the AlarmSpec.expression property and the action to perform in the
AlarmSpec.action property. When the expression evaluates to true, the alarm performs the action.

Figure 15-4 shows the CreateAlarm method.

Figure 15-4. CreateAlarm Method Inputs and Outputs

To create an alarm

1 Obtain a managed object reference to the AlarmManager associated with the vCenter Server.

2 Obtain a managed object reference of the entity on which you want to set the Alarm.

3 Create an AlarmSpec data object and specify the alarm details in its properties. See “Defining Alarms
Using the AlarmSpec Data Object” on page 190.

4 Call AlarmManager.CreateAlarm, passing in the references and the AlarmSpec data object. The system
returns a managed object reference to the Alarm (see Figure 15-4).

The state of an alarm is contained in an AlarmState data object.

Defining Alarms Using the AlarmSpec Data Object
The AlarmSpec data object has properties for all aspects of an Alarm, including its expression and the action
to take when the expression evaluates to true. The following properties define the alarm; see the API Reference
for a complete list.

 action – Action to initiate when the Alarm becomes active. Specify one of the Action subtypes. See
“Specifying Alarm Actions” on page 192.

 actionFrequency – Number of seconds that the Alarm remains in the state required to initiate the
specified action.

 expression – One or more AlarmExpression data objects combined in a way that evaluates to a
true-false expression. See “Specifying Alarm Trigger Conditions with AlarmExpression” on page 191.

 setting – Tolerance and frequency limits for the Alarm defined in the AlarmSetting data object.
AlarmSetting contains two integer properties:

VMware, Inc. 191

Chapter 15 Events and Alarms

 reportingFrequency, which specifies the number of seconds between activation of an alarm. Use 0
to specify that the alarm can activate as frequently as required.

 toleranceRange, which specifies the acceptable range (measured in hundredth percentage) above
and below the specified value defined in a MetricAlarmExpression.

Specifying Alarm Trigger Conditions with AlarmExpression

You use the AlarmExpression data object to specify the conditions under which you want the Alarm to
become active. The AlarmExpression data object is an abstract type with several subtypes, which allow you
to specify thresholds on objects, state of objects, or specify specific events to monitor.

Figure 15-5. AlarmExpression and Its Subtypes

AlarmExpression Types

By using the appropriate type of AlarmExpression, you can set alarms for different conditions, states, or
events.

Using MetricAlarmExpression

The MetricAlarmExpression data object lets you set an alarm to monitor performance metrics. The vSphere
Client uses the data object to indicate when hosts or clusters do not have sufficient resources in a DAS or DRS
cluster environment. See the Resource Management Guide.

Table 15-1. Alarm Expressions and Examples

AlarmExpression Description Example

StateAlarmExpression Specifies thresholds that trigger the alarm. Triggered by a power state change of a
virtual machine or state change of a
distributed virtual switch.

MetricAlarmExpression Specifies levels at which the alarm
changes state. See “Using
MetricAlarmExpression” on page 191.

Triggered when resource utilization
metrics exceed a specified limit.

EventAlarmExpression Specifies a type of event as the basis for the
alarm.

Triggered by power on or power off
events of primary or secondary virtual
machines in a fault-tolerant cluster.

EventAlarmComparison Specifies the property of the Event that
should trigger the alarm and the operator
to use as the basis for comparison.

AndAlarmExpression

OrAlarmExpression

Combines one or more instances of the
AndAlarmExpression and the
OrAlarmExpression data objects into an
expression that evaluates to true or
false.

vSphere Web Services SDK Programming Guide

192 VMware, Inc.

You set the metric property to the PerfMetricId of a performance metric that you want to monitor on the
system. Set the red or yellow properties to identify the level at which the metric value moves from green, to
yellow, to red. You must define red, yellow, or both properties. Use each of these properties with the isAbove
or isBelow MetricAlarmOperator enumerations to complete the definition of the threshold.

In conjunction with red and yellow properties, you can use the redInterval or yellowInterval properties.
These properties enable you to set the number of seconds that the performance metric must be in red or
yellow state before the expression becomes true and triggers the defined action.

Specifying Alarm Actions

You specify the actions that the system should take by setting the action property of the AlarmSpec data
object to the AlarmAction data object defined for the purpose.

The AlarmAction data object is an abstract type that has two descendent objects.

 The AlarmTriggeringAction data object has an action property and a transitionSpecs property.
AlarmTriggeringActionTransitionSpec allows you to define a starting state and a final state for the
Alarm. You can limit the number of Alarm objects actually triggered to a single Alarm by specifying false
for the repeats property of the AlarmTriggeringActionTransitionSpec.

 The GroupAlarmAction data object is an array version of the AlarmAction base type. You can create a
single AlarmAction instance or an array of AlarmAction instances to take effect when the conditions
specified for your alarm are met on the system.

The system can respond to an alarm in several ways:

 Invoking an operation. To invoke an operation, create a MethodAction data object.

 Running a Script. To run a script, create an instance of the RunScriptAction data object that specifies
the fully qualified path to the shell script on the vCenter Server.

 Send an email message. To send an email message to a system administrator, use the SendEmailAction
data object.

Figure 15-6. AlarmAction and Related Objects

For example, you can use the MethodAction data object type to invoke an operation on the server.
The MethodAction data object contains the following properties:

 name—Name of the operation that you want to invoke at the scheduled time.

VMware, Inc. 193

Chapter 15 Events and Alarms

 argument—Specifies required parameters, if any, as an array of MethodArgumentAction data objects.

Depending on the entity associated with the alarm, the MethodAction.argument property might not be
needed.

Deleting or Disabling an Alarm

An Alarm remains active until you delete it or disable it. To delete the alarm, obtain a managed object reference
to the Alarm and invoke its RemoveAlarm operation.

To disable the Alarm, obtain managed object references to the AlarmManager and to the entity on which the
Alarm is set. Call AlarmManager.EnableAlarmActions operation, passing the value false for the enabled
parameter.

Sample Code Reference
Table 15-2 lists the sample applications included with the vSphere Web Services SDK that demonstrate some
of the topics discussed in this chapter.

Table 15-2. Sample Applications that Use Alarm

Java C#

\samples\alarms\MPowerStateAlarm.java VMPowerStateAlarm

\samples\events\EventFormat.java EventFormat

\samples\events\EventHistoryCollectorMonitor.java EventHistoryCollectorMonitor

\samples\events\VMEventHistoryCollectorMonitor.java VMEventHistoryCollectorMonitor

vSphere Web Services SDK Programming Guide

194 VMware, Inc.

VMware, Inc. 195

16

VMware vSphere servers use performance counters to track resource use. At runtime, vSphere components
generate performance data which the vSphere servers store in performance counters. You can use the
PerformanceManager interface to retrieve the data.

This chapter includes the following topics:

 “vSphere Performance Data Collection” on page 195

 “PerformanceManager Objects and Methods” on page 197

 “Retrieving vSphere Performance Data” on page 198

 “Performance Counter Metadata” on page 208

 “Performance Intervals” on page 208

 “vSphere Performance and Data Storage” on page 210

 “Sample Code Reference” on page 211

vSphere Performance Data Collection
In a vSphere environment, virtual and physical components generate performance data. To track the use of
resources, ESXi Servers perform real-time data collection and vCenter Servers store the data in the vCenter
database. vCenter Servers also store a historical rollup of the data according to defined performance intervals.

 Real-time data collection – An ESXi Server collects data for each performance counter every 20 seconds
and maintains that data for one hour.

 Historical data rollup – A vCenter Server collects data from all of the hosts that the vCenter Server
manages. The PerformanceManager defines performance intervals that specify time periods for
performance data rollup, a methodology for combining data values. The server stores the rolled up
performance counter data in the vCenter database.

The following figure represents vSphere performance data collection and retrieval.

vSphere Performance 16

vSphere Web Services SDK Programming Guide

196 VMware, Inc.

Figure 16-1. vSphere Performance Data Collection and Retrieval

1 ESXi Servers sample performance counter instances every 20 seconds and maintain the real-time instance
data for one hour. For example, the figure shows collection of CPU statistics for four CPU cores.

2 The vCenter Server retrieves and stores data from the servers that it manages. The Server produces rollup
data according to the settings of the historical intervals.

3 vSphere client applications can retrieve real-time instance data, aggregated instance data, historical rollup
data, and summary data.

The following table defines terms that are used to describe vSphere performance management.
Table 16-1. Performance Management Terminology

Term Definition

performance providers Performance providers include managed entities, such as hosts, virtual machines,
compute resources, resource pools, datastores, and networks.

performance counter Unit of statistical data collected on a vSphere server. For example, a vCenter server
collects the average CPU utilization for hosts, virtual machines and clusters (the counter
cpu.usage.average).

counter ID System-generated identifier for a performance counter.

instance An identifier derived from device configuration names. Examples of counter instances
are the name of a virtual Ethernet adapter such as “vmnic0:”, or a number that identifies
a CPU core, such as 0, 1, 2, or 3. Performance data is retrieved as specific instances of
performance counters.

instance data Performance data collected at 20-second intervals.

metric ID Combination of a counter ID and an instance. You use metric IDs – PerfMetricId
objects – when you construct a performance query specification to identify the data to
be collected.
There are two system-defined instances that you can use to specify aggregate retrieval.
See the description of aggregate performance data below.
 “*” – An asterisk directs the vSphere Server to return all instances plus rollup data.

This is not supported for some disk-related counters.
 ““ – A string of length zero directs the vSphere Server to return only aggregated

instance data or rollup type data.
The vSphere Server returns metric IDs embedded in the data objects that it returns as a
response to performance queries.

ESXi Server vCenter Server

Virtual
Machine

CPU core 0

CPU core 1

CPU core 2

CPU core 3

Performance
Manager

vCenter Server
Database

Performance
Manager

Historical
Rollup
Data

2

vSphere client
application1

3

Real-time
Instance Data

Instance Data

Rollup Data

Aggregated
Instance Data

Summary Data

VMware, Inc. 197

Chapter 16 vSphere Performance

PerformanceManager Objects and Methods
PerformanceManager provides methods for obtaining statistical data about various aspects of system
performance, as generated and maintained by the performance providers. It also defines historical
performance intervals and it identifies the set of performance counters that you can use to obtain performance
data. The following table shows the PerformanceManager properties.

performance interval Data object (PerfInterval) which defines the time interval between collection events,
the collection level, and the time period that the data will be stored on the Server.
 ESXi Servers define a built-in performance interval that specifies data collection

every 20 seconds for each performance counter. ESXi Servers also define a single
historical interval (PerformanceManager.historicalInterval) that defines
aggregate performance data. This system-defined performance interval specifies
aggregate data collection every 300 seconds for each counter. You cannot modify the
performance intervals on an ESXi Server.

 vCenter Servers define four performance intervals that determine how collected
instance data is aggregated and stored. You can modify the system-defined intervals
on a vCenter Server to a limited extent.

collection level Number between one and four that is assigned to a performance interval
(PerformanceManager.historicalInterval[].level). The interval collection level
corresponds to the level specified for individual performance counters
(PerfCounterInfo.level). A vCenter Server uses a performance interval to perform
performance data aggregation, using data for the counters with levels that match the
performance interval collection level.

rollup type Methodology for producing a single value from a set of statistical values
(PerformanceManager.perfCounter[].rollupType). Examples of rollup types are
average, latest, and summation.

aggregate performance data A single value that represents a set of instance data values collected for a performance
counter. The single value is derived using one of the rollup types.

Table 16-1. Performance Management Terminology

Term Definition

Table 16-2. PerformanceManager Properties

Property Description

description Composite object that includes information about the types of counters (counterType) and
statistics (statsType) available on the system.

historicalInterval Array of system-defined performance intervals (PerfInterval data objects). Each object
defines the interval between rollup events, the collection level, and the time period that the data
is stored on the system.
 For an ESXi system, the array contains a single performance interval. You cannot modify the

ESXi performance interval.
 For vCenter Server systems, the PerfInterval objects control how ESXi performance data

are rolled up and stored in the database. You can modify some of the PerfInterval
properties on a vCenter Server.

perfCounter Array of PerfCounterInfo data objects. The array identifies all of the performance counters
known to the vCenter Server at the time a client accesses the array. The set of counters may
change as ESXi hosts are added or removed from vCenter management. Each PerfCounterInfo
object contains metadata associated with a performance counter.

vSphere Web Services SDK Programming Guide

198 VMware, Inc.

The PerformanceManager methods allow you to retrieve performance statistics and to retrieve metadata that
defines the statistics. The following table classifies the methods and describes their purposes.

Retrieving vSphere Performance Data
To retrieve collected data, your client application creates a query specification and passes the specification to
a performance query method. The query specification is composed of one or more PerfQuerySpec objects.
Each object identifies the following:

 Performance provider – managed entity for which the Server will return performance data
(PerfQuerySpec.entity).

 Performance counters – PerfMetricId objects that identify performance counter instances
(PerfQuerySpec.metricId).

 Performance interval – the sampling period that defines the data rollup (PerfQuerySpec.intervalId).

 Amount of data to be returned – start and end times (PerfQuerySpec.startTime,
PerfQuerySpec.endTime) and maximum number of values (PerfQuerySpec.maxSample) to limit the
amount of data to be returned.

 Output data format (PerfQuerySpec.format) – one of two kinds:

 Normal output returned as values contained in data objects.

 Formatted output returned as strings containing comma-separated values.

Table 16-3. PerformanceManager Methods

Method Type Method Purpose

Performance data availability QueryAvailablePerfMetric Returns PerfMetricId objects which identify
the counter data available on the specified entity.
For example, a virtual machine provides the
memory counter granted, which indicates the
amount of physical memory that is mapped for
the virtual machine. The PerfMetricId object
for the mem.granted.average counter specifies
the system-defined counter ID. Since this is a
memory counter, the PerfMetricId.instance
property is empty.

Performance data retrieval QueryPerf Returns statistics for a specific list of managed
entities that provide performance data.

QueryPerfComposite Returns statistics for a host and its virtual
machines. This method accepts the refreshRate
for current statistics or the intervalId of one of
the historical intervals as a parameter. Supported
for the HostSystem managed entity only.

Performance counter metadata
retrieval

QueryPerfCounter Returns PerfCounterInfo data objects for the
specified list of counter IDs.

QueryPerfCounterByLevel Returns PerfCounterInfo data objects for the
specified collection level.

Performance provider
information

QueryPerfProviderSummary Returns the PerfProviderSummary data object
for the specified managed object.

Collection parameters ResetCounterLevelMapping Restores a set of performance counters to their
default collection levels.

UpdateCounterLevelMapping Changes the collection level for a set of
performance counters.

UpdatePerfInterval Modifies the system-defined performance
intervals.

VMware, Inc. 199

Chapter 16 vSphere Performance

The combination of the entity and metricID properties determine the set of counters for which the server
will return performance data. The combination of the interval, startTime, endTime properties produce
instance, aggregated instance, rollup, or summarized data. The following table summarizes the different
classifications of performance data that you can retrieve from a vCenter Server.

Performance Counter Example (QueryPerf)

The following code fragments are part of an example that uses the PerformanceManager.QueryPerf method
to obtain performance statistics for a virtual machine. The example code in this section does not include server
connection code and it does not show the code for obtaining the managed object reference for the virtual
machine. See “Client Applications” on page 27 for an example of server connection code.

This example retrieves the following statistics:

 disk.provisioned.LATEST – virtual machine storage capacity.

 mem.granted.AVERAGE – amount of physical memory mapped for the virtual machine.

 power.power.AVERAGE – current power usage.

The example creates a query specification (PerfQuerySpec) to identify the data to be retrieved, calls the
QueryPerf method, and prints out the retrieved performance data and corresponding performance counter
metadata. The following sections describe the basic steps involved in retrieving performance statistics.

 Map the performance counters – “Mapping Performance Counters (Counter Ids and Metadata)” on
page 199.

 Create a performance query specification and call the QueryPerf method – “Retrieving Statistics” on
page 202.

 Process the returned data – “Handling Returned Performance Data” on page 205.

Mapping Performance Counters (Counter Ids and Metadata)

Performance counters are represented by string names, for example disk.provisioned.LATEST or
mem.granted.AVERAGE. A vSphere server tracks performance counters by using system-generated counter
IDs. When you create a performance query, you use counter IDs to specify the statistics to be retrieved, so it is
useful to map the names to IDs.

Table 16-4. Classification of Performance Data By Performance Interval

Performance Data Description

Instance ESXi Servers sample performance data every 20 seconds. 20-second interval data is called instance
data or real-time data. To retrieve instance data, specify a value of 20 seconds for the
PerfQuerySpec.intervalId property.

Aggregated
Instance

A vSphere client can retrieve aggregated instance data. To obtain aggregated instance data, specify
the following PerfQuerySpec properties.
 intervalId – Specify 20 seconds to indicate instance data.
 metricId[].instance – specify a zero-length string (““) for aggregated instance data.

Rollup The vCenter Server uses the historical intervals to rollup performance data from the servers that it
manages. To retrieve historical performance data, specify the following PerfQuerySpec
properties.
 intervalId – Specify a value that corresponds to one of the historical intervals

(PerformanceManager.historicalInterval[].samplingPeriod) .
 startTime/endTime – If specified, use time values that are not within the last 30 minutes of

the current time. If you do not specify a starting time, the Server will return values starting
with the earliest data. If you do not specify an end time, the Server will return values that
include the latest data.

Summary When you call the QueryPerf method and specify a performance interval
(PerfQuerySpec.intervalId) that does not match one of the historical intervals
(PerformanceManager.historicalInterval[].samplingPeriod), the Server will attempt to
summarize the stored data for the specified interval. In this case, the Server may return values that
are different from the values that were stored for the historical intervals.

vSphere Web Services SDK Programming Guide

200 VMware, Inc.

The example must specify counter IDs in the calls to QueryPerf, and it will use performance counter metadata
when it prints information about the returned data. To obtain performance counter IDs and the corresponding
performance counter metadata, the example creates two hash maps. This example maps the entire set of
performance counters to support retrieval of any counter.

HashMap Declarations

The following code fragment declares two hash maps.

 countersIdMap – Uses full counter names to index performance counter IDs. A full counter name is the
combination of counter group, name, and rollup type. The example uses this map to obtain counter IDs
when it builds the performance query specification.

 countersInfoMap – Uses performance counter IDs to index PerformanceCounterInfo data objects. The
example uses this map to obtain metadata when it prints the returned performance data.

/*
 * Map of counter IDs indexed by counter name.
 * The full counter name is the hash key - group.name.ROLLUP-TYPE.
 */
private static HashMap<String, Integer> countersIdMap = new HashMap<String, Integer>();

/*
 * Map of performance counter data (PerfCounterInfo) indexed by counter ID
 * (PerfCounterInfo.key property).
 */
 private static HashMap<Integer, PerfCounterInfo> countersInfoMap =

new HashMap<Integer, PerfCounterInfo>();

The following figure shows a representation of the hash maps.

Figure 16-2. Performance Counter Hash Maps

Creating the Map

The example uses the Property Collector to retrieve the array of performance counters (PerfCounterInfo)
known to the vCenter Server (PerformanceManager.perfCounter[]). It then uses the data to create the
maps. The code fragment uses the variable apiMethods, which is a VimPortType object that provides access
to the vSphere API methods. For information about the VimPortType object, see “Overview of a Java Sample
Application” on page 38.

countersIdMap countersInfoMap

PerfCounterInfo

performance
counter name counter ID PerfCounterInfo

PerfCounterInfo

Key Value

performance
counter name counter ID

performance
counter name counter ID

counter ID

Key Value

counter ID

counter ID

performance
counter name counter ID

performance
counter name counter ID PerfCounterInfo

PerfCounterInfocounter ID

counter ID

VMware, Inc. 201

Chapter 16 vSphere Performance

The following code fragment performs these steps:

1 Create an ObjectSpec to define the property collector context. This example specifies the Performance
Manager.

2 Create a PropertySpec to identify the property to be retrieved. This example retrieves the perfCounter
property, which is an array of PerfCounterInfo objects.

3 Create a PropertyFilterSpec for the call to the PropertyCollector. The PropertyFilterSpec creates
the association between the ObjectSpec and PropertySpec for the operation.

4 Call the PropertyCollector.RetrievePropertiesEx method. This method blocks until the server
returns the requested property data.

5 Cast the returned xsd:anyType value into the array of PerfCounterInfo objects.

6 Cycle through the returned array and load the maps. The counter-name to counter-ID map uses a fully
qualified counter name. The qualified name is a path consisting of counter group, counter name, and
rollup type – group.counter.ROLLUP-TYPE. The rollup type must be coded in uppercase letters. Examples
of qualified names are disk.provisioned.LATEST and mem.granted.AVERAGE.

/*
 * Create an object spec to define the context to retrieve the PerformanceManager property.
 */
ObjectSpec oSpec = new ObjectSpec();
oSpec.setObj(performanceMgrRef);

/*
 * Specify the property for retrieval
 * (PerformanceManager.perfCounter is the list of counters of which the vCenter Server is aware.)
 */
PropertySpec pSpec = new PropertySpec();
pSpec.setType("PerformanceManager");
pSpec.getPathSet().add("perfCounter");

/*
 * Create a PropertyFilterSpec and add the object and property specs to it.
 */
PropertyFilterSpec fSpec = new PropertyFilterSpec();
fSpec.getObjectSet().add(oSpec);
fSpec.getPropSet().add(pSpec);

/*
 * Create a list for the filter and add the spec to it.
 */
List<PropertyFilterSpec> fSpecList = new ArrayList<PropertyFilterSpec>();
fSpecList.add(fSpec);

/*
 * Get the performance counters from the server.
 */
RetrieveOptions ro = new RetrieveOptions();
RetrieveResult props = apiMethods.retrievePropertiesEx(pCollectorRef,fSpecList,ro);

/*
 * Turn the retrieved results into an array of PerfCounterInfo.
 */
List<PerfCounterInfo> perfCounters = new ArrayList<PerfCounterInfo>();
if (props != null) {
 for (ObjectContent oc : props.getObjects()) {
 List<DynamicProperty> dps = oc.getPropSet();
 if (dps != null) {
 for (DynamicProperty dp : dps) {
 /*
 * DynamicProperty.val is an xsd:anyType value to be cast
 * to an ArrayOfPerfCounterInfo and assigned to a List<PerfCounterInfo>.
 */
 perfCounters = ((ArrayOfPerfCounterInfo)dp.getVal()).getPerfCounterInfo();

vSphere Web Services SDK Programming Guide

202 VMware, Inc.

 }
 }
 }
}

/*
 * Cycle through the PerfCounterInfo objects and load the maps.
 */
for(PerfCounterInfo perfCounter : perfCounters) {

 Integer counterId = new Integer(perfCounter.getKey());

 /*
 * This map uses the counter ID to index performance counter metadata.
 */
 countersInfoMap.put(counterId, perfCounter);

 /*
 * Obtain the name components and construct the full counter name,
 * for example – power.power.AVERAGE.
 * This map uses the full counter name to index counter IDs.
 */
 String counterGroup = perfCounter.getGroupInfo().getKey();
 String counterName = perfCounter.getNameInfo().getKey();
 String counterRollupType = perfCounter.getRollupType().toString();
 String fullCounterName = counterGroup + "." + counterName + "." + counterRollupType;

 /*
 * Store the counter ID in a map indexed by the full counter name.
 */
 countersIdMap.put(fullCounterName, counterId);

}

Retrieving Statistics

The following code fragment calls the QueryPerf method to retrieve statistics. It performs these tasks:

1 Create a list of qualified performance counter names for retrieval. The name is a path consisting of
group-name.counter-name.ROLLUP-TYPE, for example mem.granted.AVERAGE. The rollup type must be
coded in uppercase letters to match the character case of the rollup type in the performance counter
metadata (PerfCounterInfo.rollupType). See the vSphere API Reference for tables of available counters.
The vSphere API Reference page for the PerformanceManager managed object contains links to the tables.

2 Create a list of PerfMetricId objects, one for each counter to be retrieved. The metric ID is a combination
of the counter ID and the instance. To fill in the PerfMetricId properties, the example does the following:

 Use the countersIdMap to translate a full counter name into a counter ID.

 Specify an asterisk (*) for the PerfMetricId.instance property. The asterisk is the system-defined
instance specification for combined instance and rollup retrieval.

3 Build a query specification for the method call. This query specifies the following:

 Virtual machine for which performance data is being retrieved (entityMor);

 Interval ID of 300 to collect 5-minute rollup data.

 Comma-separated value (CSV) format for the retrieved data.

4 Call the QueryPerf method.

/*
 * Use <group>.<name>.<ROLLUP-TYPE> path specification to identify counters.
 */
String[] counterNames = new String[] {"disk.provisioned.LATEST",
 "mem.granted.AVERAGE",
 "power.power.AVERAGE"};

VMware, Inc. 203

Chapter 16 vSphere Performance

/*
 * Create the list of PerfMetricIds, one for each counter.
 */
List<PerfMetricId> perfMetricIds = new ArrayList<PerfMetricId>();
for(int i = 0; i < counterNames.length; i++) {

 /*
 * Create the PerfMetricId object for the counterName.
 * Use an asterisk to select all metrics associated with counterId (instances and rollup).
 */
 PerfMetricId metricId = new PerfMetricId();
 /* Get the ID for this counter. */
 metricId.setCounterId(countersIdMap.get(counterNames[i]));
 metricId.setInstance("*");
 perfMetricIds.add(metricId);

}

/*
 * Create the query specification for queryPerf().
 * Specify 5 minute rollup interval and CSV output format.
 */
int intervalId = 300;
PerfQuerySpec querySpecification = new PerfQuerySpec();
querySpecification.setEntity(entityMor);
querySpecification.setIntervalId(intervalId);
querySpecification.setFormat("csv");
querySpecification.getMetricId().addAll(perfMetricIds);

List<PerfQuerySpec> pqsList = new ArrayList<PerfQuerySpec>();
pqsList.add(querySpecification);

/*
 * Call queryPerf()
 *
 * QueryPerf() returns the statistics specified by the provided
 * PerfQuerySpec objects. When specified statistics are unavailable -
 * for example, when the counter doesn't exist on the target
 * ManagedEntity - QueryPerf() returns null for that counter.
 */
List<PerfEntityMetricBase> retrievedStats = apiMethods.queryPerf(performanceMgrRef, pqsList);

Performance Data Returned by a vSphere Server

The query methods return sampling information and performance data. The sampling information indicates
the collection interval in seconds and the time that the data was collected. When you call performance query
methods, you pass in query specifications (PerfQuerySpec) to identify the performance data to be retrieved.
To indicate the format of the output data, specify either “normal” or “csv” for the PerfQuerySpec.format
property.

The query methods return PerfEntityMetricBase objects which you must cast into the appropriate type that
corresponds to the PerfQuerySpec.format value specified in the call to the method.

 The QueryPerf method returns a list of PerfEntityMetricBase objects.

 The QueryPerfComposite method returns a PerfCompositeMetric object, which contains
PerfEntityMetricBase objects.

Normal Output Format

When you specify “normal” format, you must cast the returned PerfEntityMetricBase objects into
PerfEntityMetric objects. Each PerfEntityMetric object contains the following properties:

 entity – Reference to the performance provider.

vSphere Web Services SDK Programming Guide

204 VMware, Inc.

 sampleInfo – Array of sample information (PerfSampleInfo data objects), encoded as xsd:int and
xsd:dateTime values.

 value – Array of data values (PerfMetricIntSeries data objects). Each object in the array contains the
following properties:

 id – Performance metric ID that identifies the counter instance.

 value – Array of integers that corresponds to the array of sample information
(PerfEntityMetric.sampleInfo).

The following figure shows a representation of the data object hierarchy returned by the query methods for
normal format.

Figure 16-3. PerfEntityMetric Object Hierarchy

CSV Output Format

When you specify “csv” format, you must cast the returned PerfEntityMetricBase objects into
PerfEntityMetricCSV objects. Both the sampling information and the collected data are encoded as
comma-separated values suitable for display in tabular format.

The PerfEntityMetricCSV object contains the following properties:

 entity – Reference to the performance provider.

 sampleInfoCSV – String containing a set of interval and date-time values. The property contains string
representations of PerfSampleInfo xsd:int and xsd:dateTime values. The string values are encoded
in the following CSV format:

 interval1, date1, interval2, date2

 value – Array of data values (PerfMetricSeriesCSV data objects). Each object in the array contains the
following properties:

 id – Performance metric ID that identifies the counter instance.

 value – Set of sample values in CSV format, corresponding to the list of sample information
(PerfEntityMetricCSV.sampleInfoCSV).

The following figure shows a representation of the data object hierarchy returned by the query methods for
CSV format.

PerfEntityMetric

sampleInfo : PerfSampleInfo[]

value : PerfMetricIntSeries[]

PerfSampleInfo

interval : xsd:int

timestamp : xsd:dateTime

PerfMetricIntSeries

id : PerfMetricId PerfMetricId

value : xsd:long[]
instance : xsd:string

entity : ManagedObjectReference

counterId : xsd:int

VMware, Inc. 205

Chapter 16 vSphere Performance

Figure 16-4. PerfEntityMetricCSV Object Hierarchy

Handling Returned Performance Data

The following code fragment prints out the returned performance data. This example uses CSV formatted
data. The code fragment performs these tasks:

 Loop through the list of PerfEntityMetricBase objects returned by the QueryPerf method
(retrievedStats).

 Cast the PerfEntityMetricBase object to a PerfEntityMetricCSV object to handle the CSV output
specified in the PerfQuerySpec.

 Retrieve the sampled values.

 Retrieve the interval information (csvTimeInfoAboutStats). The sampleInfoCSV string
(PerfEntityMetricCSV.sampleInfoCSV) is PerfSampleInfo data formatted as interval,time pairs
separated by commas – interval-1,time-1,interval-2,time-2. The list of pairs embedded in
the string corresponds to the list of sampled values (PerfEntityMetricCSV.value[]).

 Print the time and interval information.

 Loop through the sampled values (metricsValues).

 Use the countersInfoMap to translate the counter ID returned in the PerfMetricSeriesCSV
object into the corresponding PerfCounterInfo object.

 Use the counter metadata to print out identifying information about the counter along with the
returned sampled value for the counter.

/*
 * Cycle through the PerfEntityMetricBase objects. Each object contains
 * a set of statistics for a single ManagedEntity.
 */
for(PerfEntityMetricBase singleEntityPerfStats : retrievedStats) {

 /*
 * Cast the base type (PerfEntityMetricBase) to the csv-specific sub-class.
 */
 PerfEntityMetricCSV entityStatsCsv = (PerfEntityMetricCSV)singleEntityPerfStats;

 /* Retrieve the list of sampled values. */
 List<PerfMetricSeriesCSV> metricsValues = entityStatsCsv.getValue();

 if(metricsValues.isEmpty()) {
 System.out.println("No stats retrieved. " +
 "Check whether the virtual machine is powered on.");
 throw new Exception();
 }

 /*
 * Retrieve time interval information (PerfEntityMetricCSV.sampleInfoCSV).
 */
 String csvTimeInfoAboutStats = entityStatsCsv.getSampleInfoCSV();

 /* Print the time and interval information. */

PerfEntityMetricCSV

sampleInfoCSV : xsd:string

value : PerfMetricIntSeriesCSV[] PerfMetricSeriesCSV

id : PerfMetricId PerfMetricId

value : xsd:string
instance : xsd:string

entity : ManagedObjectReference

counterId : xsd:int

vSphere Web Services SDK Programming Guide

206 VMware, Inc.

 System.out.println("Collection: interval (seconds),time (yyyy-mm-ddThh:mm:ssZ)");
 System.out.println(csvTimeInfoAboutStats);

 /*
 * Cycle through the PerfMetricSeriesCSV objects. Each object contains
 * statistics for a single counter on the ManagedEntity.
 */
 for(PerfMetricSeriesCSV csv : metricsValues) {

 /*
 * Use the counterId to obtain the associated PerfCounterInfo object
 */
 PerfCounterInfo pci = countersInfoMap.get(csv.getId().getCounterId());

 /* Print out the metadata for the counter. */
 System.out.println("--");
 System.out.println(pci.getGroupInfo().getKey() + "."
 + pci.getNameInfo().getKey() + "."
 + pci.getRollupType() + " - "
 + pci.getUnitInfo().getKey());
 System.out.println("Instance: "+csv.getId().getInstance());
 System.out.println("Values: " + csv.getValue());

 }
}

Large-Scale Performance Data Retrieval

The example described in the previous sections (“Performance Counter Example (QueryPerf)” on page 199)
shows how to retrieve performance data for a single entity. When you design your application to retrieve
performance data on a large scale, take the following information into consideration for more efficient
processing.

 Use CSV formatted output. CSV format provides a more compact representation of the output data which
can save on meta-data overhead.

 Create query specifications to reference a set of vSphere entities.

 Using one QueryPerf method call per entity is not efficient.

 Using a single call to QueryPerf to retrieve all of the performance data is not efficient.

 As a general rule, specify between 10 and 50 entities in a single call to the QueryPerf method. This
is a general recommendation because your system configuration may impose different constraints.

 Do not retrieve statistics more frequently than they are refreshed. For example, when you retrieve
20-second interval data, the data will not change until the next 20-second data collection event.

 Use QueryAvailablePerfMetric only when you intend to send a query for a specific counter using a
specific performance interval. The method will return PerfMetricId objects that you can use for the
query.

In all other cases, create the PerfMetricId objects for the query.

 For the counterId property, use the counter IDs from the PerformanceManager counter list
(PerformanceManager.perfCounter[].key).

 For the instance property, specify an asterisk (“*”) to retrieve instance and aggregate data or a
zero-length string (““) to retrieve aggregate data only.

Using the QueryPerf Method as a Raw Data Feed

The QueryPerf method can operate as a raw data feed that bypasses the vCenter database and instead
retrieves performance data from an ESXi host. You can use a raw data feed to obtain real-time instance data
associated with 20-second interval collection and aggregate data associated with the 5-minute intervals.

VMware, Inc. 207

Chapter 16 vSphere Performance

You can use a raw data feed on VirtualCenter Server 2.5 and later.

Comparison of Query Methods

The following table presents a comparison of performance query methods.

Retrieving Summary Performance Data

You can obtain near real-time summary information about performance or utilization without using the
PerformanceManager methods. vSphere servers maintain “quick stats” data objects for hosts
(HostListSummaryQuickStats), virtual machines (VirtualMachineQuickStats), and resource pools
(ResourcePoolQuickStats). For more information about these objects, see the vSphere API Reference.

Table 16-5. Raw Data Feed

Performance Interval Description

20-second ESXi servers collect data for each performance counter every 20 seconds and maintain that data
for an hour. When you specify a 20-second interval in the query specification for the QueryPerf
method (PerfQuerySpec.intervalId), the method operates as a raw data feed. The Server
ignores the historical interval collection levels and retrieves data for all of the requested
counters from the ESXi servers. When you send a query for 20-second instance data, the server
returns the most recent data collected for the 20-second interval. The server does not perform
additional, unscheduled data collection to satisfy the query.

5-minute ESXi servers aggregate performance data according to the system-defined performance
interval which specifies data collection every 300 seconds. To use a raw data feed for this data,
specify the following PerfQuerySpec properties in the call to the QueryPerf method.
 intervalId – Specify 300 seconds to match the system-defined performance interval.
 startTime/endTime – Specify time values within the last 30 minutes of the current time.

The QueryPerf method checks the performance interval collection level on the vCenter
Server. The method returns aggregated statistics for performance counters that specify a
collection level (PerfCounterInfo.level) at or below the vCenter Server performance
interval for the 300 second sampling period (PerfInterval.level). For example, if the
vCenter Server performance interval is set to level one, and your query specification
requests only performance counters that specify level four, the QueryPerf method will not
return any data.

Table 16-6. Performance Query Methods

Method Notes

QueryPerf  Specify an array of PerfQuerySpec objects.
 An unset PerfQuerySpec.metricId property produces results for all counters defined

for PerfQuerySpec.entity.
 PerfQuerySpec.maxSample is ignored for historical statistics.
You can use this method to retrieve historical statistics; you can also use it as a raw data feed.
For information about retrieving the raw data collected on ESXi servers, see “Using the
QueryPerf Method as a Raw Data Feed” on page 206.

QueryPerfComposite  Method works only at the host level. You can use a single call to the QueryPerfComposite
method to retrieve performance data for a host and its virtual machines.

 Specify a single PerfQuerySpec object.
 You must specify a list of performance metrics to identify the data to be retrieved

(PerfQuerySpec.metricId).
 You cannot specify PerfQuerySpec.maxSample.
This method is designed for efficient client-server communications. QueryPerfComposite
usually generates less network traffic than QueryPerf because it returns a large-grained
object, a PerfCompositeMetric data object, that contains all the data.

vSphere Web Services SDK Programming Guide

208 VMware, Inc.

Performance Counter Metadata
Performance counters are organized by groups of system resources. Examples of performance counter groups
are memory, CPU, and disk. The counter groups and specific counters used on any vSphere server depend on
the server configuration. The vSphere API Reference contains a table for each counter group. The table includes
the counter name, type of statistics being collected, unit of measurement, level, and so on. The vSphere API
Reference page for the PerformanceManager managed object contains links to the tables.

The PerformanceManager.perfCounter property is an array of PerfCounterInfo data objects. Each object
provides metadata for the collected data. A PerfCounterInfo object has a unique key, the counter ID. The
actual performance data collected at runtime are identified by this counter ID. The following table lists the
PerfCounterInfo properties.

Performance Intervals
The PerformanceManager defines performance intervals which specify the period of time between collection
events, how much data will be collected, and how long the collected data will be saved.

 An ESXi server has a built-in performance interval that produces discrete data values from counter
instances sampled every 20 seconds. The server will maintain this instance data for one hour.

 Additional data collection is specified by historical performance intervals which produce data aggregated
from counter instances according to the individual intervals.

The PerformanceManager.historicalInterval property is an array of PerfInterval objects. The
following table lists the PerfInterval properties.

Table 16-7. PerfCounterInfo Data Object Properties

Property Description

groupInfo Name of the resource group to which this counter belongs, such as disk, cpu, or memory.

key Unique integer that identifies the counter. Also called the counter ID. The value is unique and
it is not static—it might, for example, change between system reboots. The counter key on an
ESXi system might not be the same as the counter key for the same counter on the vCenter
Server system managing the ESXi system. However, the system maps the keys from ESXi to
vCenter Server systems automatically.

level Number from 1 to 4 that identifies the level at which data values for this counter are
aggregated.

nameInfo Descriptive name for the counter. The name component of a fully qualified counter name, for
example “granted” is the nameInfo property for the mem.granted.AVERAGE counter.

rollupType Indicates how multiple samples of a counter are transformed into a single statistical value.
Examples of rollup types are average, summation, and minimum. No conversion of values
occurs for counters that specify absolute values, such as the total number of seconds that the
system has been running continuously since startup. The PerfSummaryType is an
enumeration containing valid constants for this property.

statsType Type of statistical data that the value represents over the course of the interval, such as an
average, a rate, the minimum value, and so on. The PerfStatsType is an enumeration
containing valid constants for this property.

unitInfo Unit of measure, such as megahertz, kilobytes, kilobytes per second, and so on. The
ElementDescription’s key property is populated using one of the constants available in the
PerformanceManagerUnit enumeration.

Table 16-8. PerfInterval Properties

Property Description

samplingPeriod Number of seconds for the interval. You can modify this property on a vCenter Server only.

length Period of time for which the server will save the data that it collects. You can modify this property
on a vCenter Server only.

VMware, Inc. 209

Chapter 16 vSphere Performance

ESXi Server Performance Intervals

An ESXi server collects performance data for each performance counter every 20 seconds. The
PerformanceManager.historicalInterval array for an ESXi Server contains a single, readonly
PerfInterval object that specifies rollup data collection every 5 minutes. You cannot retrieve 5-minute rollup
data from an ESXi Server directly. You can use a vCenter Server connection to obtain 5-minute rollup data for
an ESXi Server. The following table shows the historical interval property values on an ESXi server. You cannot
modify this performance interval.

vCenter Server Performance Intervals

A vCenter Server system aggregates performance data from all ESXi systems that it manages. The amount of
data aggregated depends on the level setting configured for the vCenter Server. The level settings are reflected
in the PerformanceManager.historicalInterval property for the vCenter Server system.
historicalInterval is an array of PerfInterval data objects that define four different level settings, 1
through 4.

Table 16-10 lists the default values for the performance intervals on a vCenter Server system.

level Level at which the Server collects data. The interval level corresponds to the performance counter
level (PerfCounterInfo.level). The Server will collect data for all counters with levels that
match PerfInterval.level, and for all counters with levels lower than PerfInterval.level.
You can modify this property on a vCenter Server only.

enable Enable/disable performance data collection. You can modify this property on a vCenter Server
only.

key Unique identifier for the interval. You cannot modify this property.

name Label for the historical interval; one of the following strings:
 “Past Day”
 “Past Week”
 “Past Month”
 “Past Year”
The PerformanceManager uses the samplingPeriod, level, and length properties to
determine its collection behavior. It does not interpret the name string. You cannot modify this
property.

Table 16-9. Values of PerfInterval Data Object from an ESXi System

Property Value Description

key 1 Numeric identifier for the PerfInterval.

name PastDay Name of the PerfInterval.

samplingPeriod 300 Time interval between data sampling events.

length 129600 Number of seconds that statistics associated with the interval are kept
by the vCenter Server.

enabled true This PerfInterval is enabled on the system.

level null Statistics collection level. For an ESXi system, this property is null. The
PerfInterval object on an ESXi system defines the baseline interval.

Table 16-10. Values of PerfInterval Data Objects from a vCenter Server System

Key Name Sampling Period Length Enabled Level

1 Past Day 300 86400 TRUE 1

2 Past Week 1800 604800 TRUE 1

3 Past Month 7200 2592000 TRUE 1

4 Past Year 86400 31536000 TRUE 1

Table 16-8. PerfInterval Properties (Continued)

Property Description

vSphere Web Services SDK Programming Guide

210 VMware, Inc.

By default, the collection level is set to 1 for each of the four intervals. Using the default level, a vCenter Server
will collect data for all performance counters that specify collection level 1. Using the default length value, a
vCenter Server will save collection data for the following time periods:

 5-minute samples for the past day

 30-minute samples for the past week

 2-hour samples for the past month

 1-day samples for the past year

Data older than a year is purged from the vCenter Server database.

vSphere Performance and Data Storage
The following sections provide information about modifying the operation of the PerformanceManager and
vSphere Server performance data collection and storage.

 “Modifying Historical Intervals” on page 210

 “Modifying Performance Counter Collection Levels” on page 210

Modifying Historical Intervals

Changes to a vCenter performance interval are global and apply to all entities in the system. VMware
recommends that you do not modify the historical intervals. The PerfInterval data objects in the
PerformanceManager.historicalInterval array are related. Modifications to a performance interval
affects the entire system and may cause problems.

If you must modify a performance interval, use the PerformanceManager.UpdatePerfInterval method
and follow these guidelines.

 Performance data retention time (PerfInterval.length) must be a multiple of the collection interval
(PerfInterval.samplingPeriod).

 Performance data retention length must increase in each interval compared to its predecessor. The
PerfInterval.length value for each successive performance interval must be greater than the length
property for the previous interval in the historical interval array.

 You cannot modify the value of the PerfInterval.samplingPeriod property on ESXi systems.

Modifying Performance Counter Collection Levels

The PerformanceManager provides the UpdateCounterLevelMapping method to change the collection level
for individual performance counters (PerfCounterInfo.level). Consider carefully the performance and
storage consequences of using the UpdateCounterLevelMapping method. If you use this method, you may
cause a significant increase in data collection and storage, along with a corresponding decrease in
performance. vCenter Server performance and database storage requirements depend on the collection levels
defined for the performance intervals (PerformanceManager.historicalInterval) and the collection
levels specified for individual performance counters (PerfCounterInfo.level).

Performance Counter Data Collection

vSphere defines four levels of data collection for performance counters. Each performance counter specifies a
level for collection. The historical performance intervals (PerformanceManger.historicalInterval) define
the sampling period and length for a particular collection level.

The amount of data collected for a performance counter depends on the performance interval and on the type
of entity for which the counter is defined. For example, a datastore counter such as datastoreIops (the
aggregate number of IO operations on the datastore) will generate a data set that corresponds to the number
of datastores on a host. If a vCenter Server manages a large number of hosts with a large number of datastores,
the Server will collect a large amount of data.

VMware, Inc. 211

Chapter 16 vSphere Performance

There are other counters for which the vCenter Server collects a relatively smaller amount of data. For
example, memory counters are collected as a single counter per virtual machine and a single counter per host.

Performance Counter Data Storage

The performance interval collection level (PerfInterval.level) defines the set of counters for which the
vCenter Server stores performance data. The Server will store data for counters at the specified level and for
counters at all lower levels.

By default, all the performance intervals specify collection level one. Using these defaults, the vCenter Server
stores performance counter data in the vCenter database for all counters that specify collection level one. It
does not store data for counters that specify collection levels two through four.

 Performance Manager Method Interaction

You can use the UpdateCounterLevelMapping method to change the collection level for individual counters.
You can also use the UpdatePerfLevel method to change the collection level for the system-defined
performance intervals. These methods can cause a significant increase in the amount of data collected and
stored in the vCenter database.

 By default the system-defined performance intervals use collection level one, storing data for all counters
that specify collection level one. If you use the UpdateCounterLevelMapping method to change the
collection level of performance counters to level one, you will increase the amount of stored performance
data.

 If you use the UpdatePerfLevel method to increase the collection level for the system-defined
performance intervals, you will increase the amount of stored performance data.

To restore counter levels to default settings use the ResetCounterLevelMapping method.

vSphere Client Management of Performance Statistics

The vSphere Client displays the Performance Manager historical interval collection levels in the vCenter
management statistics display. The vSphere Client also displays an estimate of the amount of storage that is
required for data collection at the displayed levels. If individual counter levels are modified through the
vSphere API (the UpdateCounterLevelMapping method), the vSphere Client will show a modified estimate.
However, the vSphere Client cannot detect that the method has been called and it cannot display the current
levels for individual counters. If you see a significantly increased estimate for storage, be aware that someone
may have used the vSphere API to modify data collection.

Sample Code Reference
Table 16-11 lists the sample applications included with the vSphere Web Services SDK that demonstrate some
of the topics discussed in this chapter.

Table 16-11. PerformanceManager Sample Applications

Java
(SDK\vsphere-ws\java\JAX-WS\samples\com\vmware\performance)

C#
(SDK\vsphere-ws\dotnet\cs\samples\)

Basics.java Basics\Basics.cs

Basics\Basics.csproj

Basics\Basics2008.csproj

Basics\Basics2010.csproj

History.java History\History.cs

History\History.csproj

History\History2008.csproj

History\History2010.csproj

PrintCounters.java PrintCounters\PrintCounters.cs

vSphere Web Services SDK Programming Guide

212 VMware, Inc.

PrintCounters\PrintCounters.csproj

PrintCounters\PrintCounters2008.csproj

PrintCounters\PrintCounters2010.csproj

QueryMemoryOverhead\QueryMemoryOverhead.
cs

QueryMemoryOverhead\QueryMemoryOverhead.
csproj

QueryMemoryOverhead\QueryMemoryOverhead2
008.csproj

QueryMemoryOverhead\QueryMemoryOverhead2
010.csproj

RealTime.java RealTime\RealTime.cs

RealTime\RealTime.csproj

RealTime\RealTime2008.csproj

RealTime\RealTime2010.csproj

VITop.java

VIUsage.java

Table 16-11. PerformanceManager Sample Applications (Continued)

Java
(SDK\vsphere-ws\java\JAX-WS\samples\com\vmware\performance)

C#
(SDK\vsphere-ws\dotnet\cs\samples\)

VMware, Inc. 213

A

vSphere includes several logs, which you can access and customize. You can also use the DiagnosticManager
service interface for troubleshooting.

This appendix includes the following topics:

 “Troubleshooting Best Practices” on page 213

 “Overview of Configuration Files and Log Files” on page 214

 “Modifying the Log Level to Obtain Detailed Information” on page 216

 “Using DiagnosticManager” on page 217

 “Using the MOB to Explore the DiagnosticManager” on page 219

 “Generating Diagnostic Bundles” on page 220

Troubleshooting Best Practices
Approach troubleshooting and problem-solving systematically, and take notes so you can trace your steps.
Follow these guidelines to resolve issues with your client application.

 Do not change more than one thing at a time, and document each change and its result. Try to isolate the
problem: Does it seem to be local, to the client? An error message generated from the server? A network
problem between client and server?

 Use the logging facilities for your programming language to capture runtime information for the client
application. See the Log.cs sample application as an example.

 C# client logging example: \SDK\vsphere-ws\dotnet\cs\samples\AppUtil\Log.cs

 Use the following VMware tools for analysis and to facilitate debugging.

 vSphere Web Services API. The DiagnosticManager service interface allows you to obtain
information from the server log files, and to create a diagnostic bundle that contains all system log
files and all server configuration information. The vSphere Client and the MOB provide graphical
and Web based access to the DiagnosticManager. PerformanceManager supports exploration of
bottlenecks. See Chapter 16, “vSphere Performance,” on page 195.

 Managed Object Browser (MOB). The MOB provides direct access to live runtime server-side
objects. You can use the MOB to explore the object hierarchy, obtain property values, and invoke
methods. See Appendix B, “Managed Object Browser,” on page 221.

 VMware vSphere Client GUI. The vSphere Client allows you to examine log files for ESX/ESXi,
vCenter Server, and virtual machines, and to change log level settings. Use vSphere Client menu
commands to create reports that summarize configuration information, performance, and other
details, and to export diagnostic bundles. The vSphere Client maintains its own local log files.

Diagnostics and Troubleshooting A

vSphere Web Services SDK Programming Guide

214 VMware, Inc.

Overview of Configuration Files and Log Files
ESX/ESXi and vCenter Server configuration files control the behavior of the system. Most configuration file
settings are set during installation, but can be modified after installation. Log files capture messages generated
by the kernel and different subsystems and services. ESX/ESXi and vCenter Server services maintain separate
log files. Table A-1 lists log files or reports, their locations and associated configuration files.

For developers, the following files are most relevant:

 hostd.log – Host daemon log, see “ESX/ESXi Log File” on page 214. Can be used as a SOAP monitor
when set to trivia log level as in“Generating Logs” on page 217.

 vpxa.log – Agent log file found on each managed ESX/ESXi system.

 vmware.log – Virtual machine log. See “Virtual Machine Log Files” on page 215.

In addition to viewing log files in real time you can also generate reports and complete diagnostic bundles. See
“Generating Diagnostic Bundles” on page 220.

ESX/ESXi Log File

The ESX/ESXi log (hostd.log) captures information of varying specificity and detail, depending on the log
level. Each request to the server is logged. You can view the file using the vSphere Client. The raw text form
of an ESX/ESXi (hostd) log file is shown in Example A-1.

Example A-1. Sample ESX/ESXi Log (hostd.log) Data

...
[2008-05-07 09:50:04.857 'SOAP' 2260 trivia] Received soap response from

[TCP:myservername.vmware.com:443]: GetInterfaceVersion
[2008-05-07 09:50:04.857 'ClientConnection' 2260 info] UFAD interface version is

vmware-converter-4.0.0
[2008-05-07 09:50:04.857 'SOAP' 2260 trivia] Sending soap request to

[TCP:myservername.eng.vmware.com:443]: logout
[2008-05-07 09:50:04.857 'ProxySvc Req00588' 3136 trivia] Client HTTP stream read error
[2008-05-07 09:50:04.872 'ProxySvc Req00612' 3136 trivia] Request header:
POST /vmc/sdk HTTP/1.1
User-Agent: VMware-client
Content-Length: 435
Content-Type: text/xml; charset=utf-8

Table A-1. Server and System Logs

Description Log Location Filename or Names Configuration File

ESX/ESXi service log /var/log/vmware/ hostd.log [hostd-0.log,
...hostd-9.log]

config.xml

vCenter Server agent log /var/log/vmware/vpx/ vpxa.log

Virtual machine kernel
core file

/root/ vmkernel-core.<date>

vmkernel-log.<date>

syslog.conf,
logrotate.conf, various
other

syslogd log /var/log/ messages
[messages.1,...

messages.4]

syslog.conf,
logrotate.conf

Service console
availability report

/var/log/ vmkernel [vmkernel.1,
... vmkernel.8]

syslog.conf,
logrotate.conf

VMkernel messages,
alerts, and availability
reports

/var/log/vmkernel syslog.conf,
logrotate.conf

VMkernel warning /var/log/ vmkwarning
[vmkwarning.1 ... 4 for
history]

syslog.conf,
logrotate.conf

Virtual machine log file vmfs/volume/<vm_name> vmware.log <vm_name>/<vm_name>.vmx

VMware, Inc. 215

Appendix A Diagnostics and Troubleshooting

Cookie: vmware_soap_session="F127B435-56C7-4580-BAC4-3034DA1E67B6"; $Path=/
Host: myservername.vmware.com

[2008-05-07 09:50:04.872 'ProxySvc Req00588' 3816 trivia] Closed
[2008-05-07 09:50:08.450 'App' 3560 verbose] [VpxdHeartbeat] Invalid heartbeat from 10.17.218.46
[2008-05-07 09:50:10.013 'App' 3560 verbose] [VpxdHeartbeat] Queuing 10.17.218.45:829 (host-55)
[2008-05-07 09:50:10.013 'App' 1928 verbose] [HeartbeatHandler]

50208862-2752-d94c-2a73-fa2ec9e38ecc:829 (host-55)

Virtual Machine Log Files

Each running virtual machine has its own log file, vmware.log, stored on the VMFS volume. By default, the
log file is rotated whenever the virtual machine is powered on, but file rotation is configurable.

 ESX/ESXi maintains six log files that rotate at each power-cycle (the default) or at a configured file size.

 ESX/ESXi can be configured to maintain a specific number of log files. When the limit is reached, the
oldest file is deleted.

 VMware recommends a log file size of 500 KB.

 Messages that are generated by VMware Tools are logged separately.

Example A-2. VMkernel Availability Report

Availability Report for <servername>
Feb 27, 2008 - May 7, 2008

Availability: 99.949%
Total time: 69 days, 15 hours
Uptime: 69 days, 14 hours
Downtime: 51 minutes

Note: Downtime is any time the system isn't capable of running
Virtual Machines. This includes reboots, crashes, configuration and running linux

Downtime Analysis:
0.1% (51 minutes) downtime caused by:
13.1% (6 minutes) scheduled downtime
86.9% (44 minutes) unscheduled downtime

Reasons for scheduled downtime:
84.9% server rebooting (1 instance)
9.4% VMkernel unloaded (1 instance)
5.7% server booting (3 instances)

Reasons for unscheduled downtime:
100.0% unknown (powerfail / reset?) (1 instance)

Stats:
Current uptime: 8 days, 11 hours
Longest uptime: 61 days, 2 hours
Shortest uptime: 38 minutes
Average uptime: 23 days, 4 hours
Longest downtime: 44 minutes
Shortest downtime: 7 seconds
Average downtime: 8 minutes
Maximum VMs Sampled: 1
Average VMs Sampled: 0.94

Server Information: Number of CPUs: 4 logical 4 cores
 2 packages, Intel(R) Xeon(R) CPU 5150 @ 2.66GHz
 Installed Memory: 2096416 kB
 Current Build: 78591

Report generated Wed May 7 04:02:04 PDT 2008

vSphere Web Services SDK Programming Guide

216 VMware, Inc.

vCenter Server Log Files

vCenter Server log files are located by default in the Documents and Settings subdirectory of the Windows
account used to install the software. For example:

C:\Documents and Settings\Administrator\Local Settings\Application Data\VMware\

By default, the log files are hidden files. See the procedure for your Windows operating system to make the
files visible.

Modifying the Log Level to Obtain Detailed Information
The amount of information captured in the log files varies, depending on the level setting.

For example, the hostd service running on ESX/ESXi systems has a default log level setting of info. The
vCenter Server logs are controlled by settings through the vSphere Client.

Setting the Log Level on ESX/ESXi Systems

The ESX/ESXi logs are controlled by a setting in the config.xml file, located in the /etc/vmware/hostd
subdirectory of an ESX/ESXi system (Example A-3).

Example A-3. ESX/ESXi Config.xml File Excerpt Showing Default Log Level Setting

<config>
<vmacore>
<threadPool>
<MaxFdsPerThread>2048</MaxFdsPerThread>
</threadPool>
<ssl>
<doVersionCheck> false </doVersionCheck>
</ssl>
<vmdb>
<maxConnectionCount>8</maxConnectionCount>
</vmdb>
<loadPlugins> true </loadPlugins>
</vmacore>
<workingDir> /var/log/vmware/ </workingDir>
<log>
<directory>/var/log/vmware/</directory>
<name>hostd</name>
<outputToConsole>false</outputToConsole>
<level>info</level>
</log>
,,,
</config>

IMPORTANT VMware recommends creating a user account especially for vCenter Server installation.

Table A-2. Log Level Settings

Log Level Setting Description

None Disables logging.

Error Logging limited to error messages.

Warning Error messages plus warning messages are logged.

Info Default setting on ESX/ESXi and vCenter Server systems. Errors, warnings, plus informational
messages about normal operations are logged. Acceptable for production environments.

Verbose Can facilitate troubleshooting and debugging. Not recommended for production environments.

Trivia Extended verbose logging. Provides complete detail, including content of all SOAP messages
between client and server. Use for debugging and to facilitate client application development only.
Not recommended for production environments.

VMware, Inc. 217

Appendix A Diagnostics and Troubleshooting

By default, the log level setting is info. If you run into issues during development, you can set the log level to
verbose, or to trivia to obtain SOAP message content to use in debugging.

The following procedure is meant for an ESX system. On ESXi, use vifs to move the config.xml file to a
server from which you can edit the file.

To change the log level in config.xml for hostd on an ESX system

1 Connect to the ESX system using putty or an other secure shell.

2 Open the config.xml file located at /etc/vmware/hostd

3 Change <level>info</level> to <level>trivia</level>, and save and close the file.

4 Navigate to the init.d directory and restart the host agent.

cd /etc/init.d
./mgmt-vmware restart

After the service restarts, the new log level is in effect.

Generating Logs

If you are connected to ESX, you can use the tail command to explicitly create a log file that captures detail
about actions that follow. For example, you can use the vSphere Client to create a new virtual machine and
then use the content from the log as a model for how to create your own code.

To start the logging process and capture content to a file

1 Navigate to the location of the hostd.log file:

cd /var/log/vmware

2 Run the tail command, passing a filename in which to capture output:

tail -f hostd.log > yourfilenamehere

3 Use the vSphere Client to perform whatever action you are having difficulty modeling in your own code.
For example, create a new virtual machine and stop the tail process with Ctrl-C when the operation
completes.

The file contains the SOAP message content and other log messages sent and received by hostd during the
execution.

Setting the Log Level on vCenter Server Systems

To change log-level settings on vCenter Server, you must use the vSphere Client.

To set logging level for vCenter Server using the VMware vSphere Client

1 Log in to the vSphere Client and connect to the vCenter Server instance.

2 Choose Administration and click Server Settings > Logging Options.

3 Choose Trivia from the pop-up menu and click OK.

Using DiagnosticManager
The vSphere API provides access to the DiagnosticManager, the service interface for obtaining information
from the log files and for generating diagnostic bundles. The logs are populated based on configuration
settings, such as info, trivia, and so on. See Table A-2, “Log Level Settings,” on page 216.

The DiagnosticManager is a managed object that works service-wide, rather than on a per-session basis. The
DiagnosticManager has no properties, but provides operations for these tasks:

 Obtaining information about the logs and how they have been defined.

 Generating a diagnostic bundle that can be sent to VMware support for analysis.

vSphere Web Services SDK Programming Guide

218 VMware, Inc.

Figure A-1 shows a UML class diagram for DiagnosticManager, which is available on ESX/ESXi and vCenter
Server systems.

Figure A-1. DiagnosticManager Managed Object and Associated Data Objects

As shown in Figure A-1, DiagnosticManager supports these methods:

 BrowseDiagnosticLog

 GenerateLogBundleTask

 QueryDescriptions

The DiagnosticManagerLogDescriptor.creator property contains the creator of the log, which is the
system or subsystem that controls a specific log.

The creator value is populated from the DiagnosticManagerLogCreator enumeration. Table A-3 lists all
string values currently available from the DiagnosticManagerLogCreator enumeration that can populate
the creator property of the DiagnosticManagerLogDescriptor data object.

Table A-3. DiagnosticManagerLogCreator Enumeration

Name Description

hostd Host daemon

install Installation

recordLog System record log

serverd Host server agent

vpxa vCenter agent

vpxClient vSphere Client

vpxd vCenter service

Table A-4. ESX/ESXi Sample DiagnosticManager Log Descriptor Values

Creator File Name Format Info.label Info.summary Key Mime Type

hostd /var/log/vmware/hostd.log plain ESX Log ESX log in plain
format

hostd text/plain

hostd /var/log/messages plain ESX Log ESX log in plain
format

messages text/plain

hostd /var/log/vmkernel plain ESX Log ESX log in plain
format

vmkernel text/plain

hostd /var/log/vmksummary.txt plain ESX Log ESX log in plain
format

vmksummary text/plain

VMware, Inc. 219

Appendix A Diagnostics and Troubleshooting

Using the MOB to Explore the DiagnosticManager
You can access the DiagnosticManager using the MOB. See Appendix B, “Managed Object Browser,” on
page 221.

To explore DiagnosticManager

1 Start the mob by typing the MOB URL (https://hostname.yourcompany.com/mob) into a Web
browser.

2 In the ServiceContent data object, click the link (ha-diagnosticmanager or DiagMgr) in the Value
column for the diagnosticManager property, to navigate to the DiagnosticManager for the system.

 For ESX/ESXi, ha-diagnosticsmanager is the managed object ID.

 For vCenter Server, DiagMgr is typically the managed object ID.

3 Click the link to the reference to display the managed object reference to the DiagnosticManager in the
MOB.

DiagnosticManager provides three operations that allow you to obtain information about the
descriptions currently available in the log file and log file content.

Because DiagnosticManager can track multiple ESX/ESXi systems, you can use the
QueryDescriptions operation to return the names of keys used for all hosts. From this array, select the
key for the host from which you want to obtain the log file.

4 On QueryDescriptions, click the Invoke Method link.

The vCenter Server system returns the contents of the log file for the selected host as a string array for the
lineText property of DiagnosticManagerLogHeader.

The string array returned through the MOB in this way is the content of the log file. The content contained in
the log file is the same content that is available through the following other mechanisms:

 Displayed in the vSphere Client

 Included in a diagnostic bundle created through the DiagnosticManager.GenerateLogBundles_Task
method.

 Available in the hostd.log file

 Returned to a client application that you write

hostd /var/log/vmkwarning plain ESX Log ESX log in plain
format

vmkwarning text/plain

vpxa /var/log/vmware/vpx/vpxa
.log

plain VirtualCe
nter Agent
Log

VirtualCenter
agent log in
plain format

vpxa text/plain

Table A-4. ESX/ESXi Sample DiagnosticManager Log Descriptor Values (Continued)

Creator File Name Format Info.label Info.summary Key Mime Type

vSphere Web Services SDK Programming Guide

220 VMware, Inc.

Generating Diagnostic Bundles
Typically, customers create diagnostic bundles at the request of VMware technical support. Diagnostic
bundles also allow developers to quickly obtain all configuration files and log files in a complete package.

The generated compressed files are packaged in a file having the following pattern:

<fqdn-hostname>-esxsupport-yyyy-mm-dd@hh-mm-ss.tgz

To export diagnostic data using the vSphere Client

1 Start the vSphere Client and connect to the ESX/ESXi or vCenter Server system.

2 Select Administration > Export Diagnostic Data.

 For vCenter Server systems, you can filter for specific hosts whose logs you want to export and the
location for storing the log files.

 For ESX/ESXi host systems, you can specify the location for the bundle.

3 Click OK.

To use the command line to collect ESX log files

1 Use putty or an other SSH tool to connect to the service console. On ESXi systems, use the unsupported
shell if VMware Technical Support requests that you use it.

2 Navigate to the /usr/bin subdirectory.

3 Run the vm-support script:

/usr/bin/vm-support

This script collects all relevant ESX system log files, configuration files, and other server details into a
compressed file (the diagnostic bundle) whose name includes the date and time.

See “Managing Diagnostic Partitions” on page 110 for information about setting up your system for core
dumps.

VMware, Inc. 221

B

The Managed Object Browser (MOB) is a graphical interface that allows you to navigate the objects on a server
and to invoke methods. Any changes you make through the MOB take effect on the server.

This appendix explains how to use the MOB. The examples invoke PerformanceManager query methods to
demonstrate how to pass primitive data types, arrays, and complex data types (data objects, including
managed object references) using the MOB.

The appendix includes the following topics:

 “Using the MOB to Explore the Object Model” on page 221

 “Using the MOB to Invoke Methods” on page 222

Using the MOB to Explore the Object Model
The Managed Object Browser, or MOB, is a Web-based server application available for all ESX/ESXi and
vCenter Server systems. The MOB lets you examine the objects that exist on the server and navigate through
the hierarchy of live objects by clicking on links. The MOB populates the browser with actual runtime
information, for example, the names of properties.

Accessing the MOB

The MOB runs in a web browser and is accessed by using the fully-qualified domain name or IP address for
the ESX/ESXi or vCenter Server system.

To access the MOB

1 Start a Web browser.

2 Enter the fully-qualified domain name (or the IP address) for the ESX/ESXi or vCenter Server system:

https://hostname.yourcompany.com/mob

3 Enter the user account and password for the system.

If warning messages regarding the SSL certificate appear, you can disregard them and continue to log in
to the MOB, if VMware is the certificate authority and you are not in a production environment.

The MOB reveals the underlying structures of the object model. Seeing the structure in conjunction with the
API Reference Guide, can help with understanding the model.

Managed Object Browser B

CAUTION Despite the word “browser” in its name, the MOB is not a read-only mechanism. The MOB allows
you to make changes on the server by clicking the InvokeMethod link associated with methods.

vSphere Web Services SDK Programming Guide

222 VMware, Inc.

Using the MOB to Navigate the VMware Infrastructure Object Model

Upon successful connection to the MOB, the browser displays the managed object reference for
ServiceInstance (see Figure B-1). Client applications do not use managed objects directly, but interact with
server-side managed objects by reference, using instances of the ManagedObjectReference data created for
this purpose.

The page lists the properties and methods available through a ServiceInstance object. The ServiceInstance
methods and properties provide access to the entire set of services and inventory objects available on the
server. See Chapter 4, “Datacenter Inventory,” on page 49.

Figure B-1. Managed Object Browser Connected to a VirtualCenter Server System

The MOB lets you examine the relationships among objects by looking at the properties and their values, and
then drilling down into the objects. To explore the objects on the server, click the links in the Value column to
navigate to the page that displays the object.

For example, to find out more about ServiceContent, click the content link to display the ServiceContent
data object instance.

Using the MOB to Invoke Methods
You can use the MOB to invoke methods as follows:

1 In the display of the object in which the method lives, click the name of the method.

A browser window displays information about the parameter name and type and allows you to specify
parameter values.

2 Specify parameter values, using the method appropriate for the type, and click Invoke Method.

The rest of this section discusses how to pass different types of parameters to the MOB.

Passing Primitive Datatypes to Method

vSphere Web Services SDK data types are defined in the WSDL using XML Schema markup. The primitive
data types are specified using the xsd namespace. For example, a string value for a property is defined as data
type xsd:string. Enter a primitive value in the MOB as plain text, without quotation marks or other markup.
For example, to enter an integer value of 10, type 10 in the field.

To obtain information about the available performance counters at level 4 on the server, enter a 4 in the level
field of the PerformanceManager.QueryPerfCounterByLevel method. (This method is available only on
the vCenter Server PerformanceManager API, not from an ESX/ESXi system.)

VMware, Inc. 223

Appendix B Managed Object Browser

In response to the query, the array of PerfCounterInfo data objects and nested objects, with populated values
from the server, displays in the Web browser.

Passing Arrays of Primitives to Methods

For an array, use the name of the parameter as the name of the property. For example, the
PerformanceManager.QueryPerfCounter method requires an array of integers for the counterId
parameter, as follows:

<counterId>58</counterId><counterId>65603</counterId><counterId>65604</counterId>

Even if you want to submit a single value for a single array element, you must wrap the parameter name
around the value in this way.

Passing Complex Structures to Methods

For complex datatypes, enter the value as defined by the XML Schema in the WSDL. You can obtain the WSDL
definition from the vSphere API Reference using the Show WSDL type definition links. Each data object type
has an associated link.

Simple Content

The data object type ManagedObjectReference is one of the most commonly required parameters to be
passed to the server. For example, the MOB for the PerformanceManager.QueryPerfProviderSummary
method shows that the method requires a single parameter, the managed object reference (an instance of
ManagedObjectReference) of the entity for which you want to obtain the PerfProviderSummary object.

Using the vSphere API Reference for ManagedObjectReference type, you can obtain the schema information
from the Show WSDL type definition link at the bottom of the documentation page for
ManagedObjectReference.

Example B-1. XML Schema Definition of ManagedObjectReference Data Object

<complexType xmlns="http://www.w3.org/2001/XMLSchema" xmlns:vim25="urn:vim25"
name="ManagedObjectReference">

<simpleContent>
<extension base="xsd:string">

<attribute name="type" type="xsd:string"/>
</extension>

</simpleContent>
</complexType>

Example B-1 shows that a managed object reference is defined as a <SimpleContent> element that consists
of a string that specifies the attribute type with its associated value, also as string. Use this information to
construct the appropriate structure by replacing type with the parameter name from the MOB, setting the
value as needed, and submitting in the entry field of the MOB. (The value for the Datacenter is displayed in
the MOB.)

<entity type=”Datacenter”>datacenter-21</entity>

Figure B-2 shows the result of using the definition listed in Example B-1 to specify the managed object
reference for a target datacenter to the PerformanceManager.QueryPerfProviderSummary method.

Figure B-2. Using the MOB to Pass Complex Types to a Method

vSphere Web Services SDK Programming Guide

224 VMware, Inc.

As another example, one of the parameters required by the VirtualMachine.CloneVM_Task method is a
folder. In this case, the parameter is defined as a managed object reference to a specific Folder object. Using
the same definition shown in Example B-1, the result is as follows:

<folder type=”Folder”>folder-87</folder>

Although both examples submit a ManagedObjectReference to the MOB, each is specific to the parameter
name required by the method (entity type for PerformanceManager.QueryPerfProviderSummary
method, folder type for the VirtualMachine.CloneVM_Task method).

Complex Content

Many of the data objects required for method invocation consist of XML Schema elements defined as
<complexContent> that can encompass many other elements.

For example, the PropertyCollector.CreateFilter method has a spec parameter that must be defined
before method invocation. The spec parameter is defined as an instance of a PropertyFilterSpec.

Figure B-3 shows the relationships among several data objects that PropertyFilterSpec consists of.

Figure B-3. PropertyFilterSpec and Associated Data Objects

To submit complex data structures such as this to the MOB, start by navigating the vSphere API Reference. Find
the PropertyFilterSpec data object. Find the Show WSDL type definition link, and click it to display the
XML Schema definition (see Example B-2).

Example B-2 shows that the PropertyFilterSpec data object is a <complexContent> element that extends
the DynamicData class with a sequence of two additional properties propSet (of type PropertySpec) and
objectSet (of type ObjectSpec).

Example B-2. XML Schema Definition of PropertyFilterSpec Data Object Type

<complexType xmlns="http://www.w3.org/2001/XMLSchema" xmlns:vim25="urn:vim25"
name="PropertyFilterSpec">

<complexContent>
<extension base="vim25:DynamicData">

<sequence>
<element name="propSet" type="vim25:PropertySpec" maxOccurs="unbounded"/>
<element name="objectSet" type="vim25:ObjectSpec" maxOccurs="unbounded"/>

</sequence>
</extension>

</complexContent>
</complexType>

VMware, Inc. 225

Appendix B Managed Object Browser

Because both elements are defined as a sequence, they must exist in the order listed. To obtain the definitions
of propSet and objectSet, you must navigate further into the vSphere API Reference. Example B-3 shows only
the relevant parts of the XML Schema definition for PropertySpec. The minOccurs=”0” attribute means that
the element does not have to exist. The maxOccurs=”unbounded” attribute means that the element can be
populated as an array of any size. (When minOccurs is not set, but maxOccurs is set, the default for minOccurs
defaults to 1, meaning one instance is required.)

Example B-3. XML Schema Extract for PropertySpec

<sequence>
<element name="type" type="xsd:string"/>
<element name="all" type="xsd:boolean" minOccurs="0"/>
<element name="pathSet" type="xsd:string" minOccurs="0" maxOccurs="unbounded"/>

</sequence>

Navigate through the vSphere API Reference to the ObjectSpec definition. Example B-4 shows the excerpt.

Example B-4. ObjectSpec Definition as XML Schema

...
<sequence>

<element name="obj" type="vim25:ManagedObjectReference"/>
<element name="skip" type="xsd:boolean" minOccurs="0"/>
<element name="selectSet" type="vim25:SelectionSpec" minOccurs="0" maxOccurs="unbounded"/>

</sequence>
...

Extrapolating from the WSDL definitions shown in Example B-2, Example B-3, and Example B-4 might
produce results similar to those shown in Example B-5.

Example B-5. CreateFilter Spec Property Entry

<spec>
<propSet>

<type>VirtualMachine</type>
<all>false</all>
<pathSet>config.guestFullName</pathSet>

</propSet>
<objectSet>

<obj type=”Folder”>group-v4</obj>
<skip>true</skip>

</objectSet>
</spec>

In this example, the <spec> element identifies the spec parameter of the CreateFilter method. The order
of the element tags is as defined in the XML Schema for the property (Example B-2). The pathSet property
defines the full path to the nested data object of interest. In Example B-5, the pathSet property defines the
path to the guestFullName property of the target virtual machine. Figure B-4 shows the UML of these nested
data objects.

vSphere Web Services SDK Programming Guide

226 VMware, Inc.

Figure B-4. Nested Data Objects

All of these details are available in the vSphere API Reference. By examining the WSDL definition, you can
construct the strings needed to submit parameters through the MOB. Table B-1 provides a brief summary of
the steps involved when you use the MOB and the vSphere API Reference together.

Table B-1. Comparison of Datatypes for MOB Usage

Datatype How to Input Values for Methods

Primitive Enter the value as plain text regardless of its data type (int, string, boolean). Do not use quotes or
other markup.

Array Use the name of the parameter as the name of the element, wrap the values in a series of opening and
closing tags for each array element.

Complex Obtain XML Schema format information from the vSphere API Reference for the type (from the Show
WSDL type definition link).
Use the schema definition to construct the sequence of tags around the value (or values) you want to pass
to the MOB.

VMware, Inc. 227

C

In most cases, client applications interact with vSphere servers by using the vSphere Web Services SDK, as
explained in Chapter 2, “vSphere API Programming Model,” on page 17. In some cases, direct access to
configuration files, log files, and other data on an ESX/ESXi or vCenter Server systems is more efficient. This
appendix explains direct file access.

The appendix includes the following topics:

 “Introduction to HTTP Access” on page 227

 “URL Syntax for HTTP Access” on page 228

Introduction to HTTP Access
ESX/ESXi and vCenter Server systems support file access using HTTP and secure HTTP. You can use
HTTP/HTTPS for the following kinds of access.

 Datastore access on ESX/ESXi and vCenter Server systems.

 ESX/ESXi configuration and log file access on ESX/ESXi systems.

 Update bundle access on ESX/ESXi systems.

You can use the HTTP methods GET, HEAD, PUT, and DELETE to access files. The URL of the HTTP/HTTPS
request must contain an embedded keyword that specifies the type of access. Table C-1 shows the server access
types with the corresponding URL keyword and HTTP methods.

Use the PUT method to create new files or overwrite existing files. You can create a subdirectory by using a
URL that is consistent with the supported top-level directories. You cannot create datastores or datacenters
because the URL must refer to a valid datacenter or datastore.

You can use a Web browser to browse and download files. You cannot use a Web browser to post or delete files.

HTTP Access to vSphere Server Files C

Table C-1. HTTP Access to vSphere Servers

Server Access URL Keyword HTTP Method or Methods

Datastore folder GET, HEAD, PUT, DELETE

ESX/ESXi configuration file host GET, HEAD, PUT
(See Table C-2 for the specific methods supported for each file type.)

Update bundle tmp PUT

vSphere Web Services SDK Programming Guide

228 VMware, Inc.

URL Syntax for HTTP Access
The URL specification in an HTTP request to a vSphere server includes one of the following keywords, which
determines the type of access.

 “Datastore Access (/folder)” on page 228

 “Host File Access (/host)” on page 229

 “Update Package Access (/tmp)” on page 230

Datastore Access (/folder)

An HTTP request for datastore access uses the following syntax:

http-method http[s]://server/folder[[/path]?dcPath=path[&dsName=name]]

The following examples illustrate the syntax. If the target server is an ESX/ESXi system, dcPath=DCPATH& is
optional and defaults to dcPath=ha-datacenter.

http-method One of the methods GET, HEAD, PUT, or DELETE.

http:// or https:// Access protocol (standard access or secure access).

server ESX/ESXi or vCenter Server target system. The server value can be an IP address
or a DNS name.

/folder Specifies datastore access on an ESX/ESXi or vCenter Server system. The
datastore URL can include the following optional elements:

 path – Path to a file or directory in the datastore, relative to the root of the
datastore.

 dcPath – Inventory path to a datacenter. Specify the datacenter path as a
name-value pair in the request. For a datacenter named Datacenter located
in the root folder, the dcPath value is MyDatacenter. For a datacenter
named YourDatacenter located in the folder NorthAmerica which is
located in the root folder, the cdPath value is
NorthAmerica/YourDatacenter.

 dsName – Datastore associated with the datacenter. Specify the datastore
name as a name-value pair in the request.

Example Description

/folder Directory listing of known datacenters on this server.

/folder?dcPath=path Directory listing of all datastores available at the
specified datacenter.

/folder?dcPath=path&dsName=name Top-level directory listing of the datastore.

/folder/path?dcPath=path&dsName=name Directory listing of all files in a datastore directory.

/folder/path/disk-flat.vmdk?dcPath=path&dsName=name Access individual files.

VMware, Inc. 229

Appendix C HTTP Access to vSphere Server Files

Host File Access (/host)

An HTTP request for access to ESX/ESXi configuration files uses the following syntax:

GET http[s]://my_system/host
http-method http[s]://my_system/host/file

Table C-2 shows ESX host configuration files and the corresponding HTTP/HTTPS methods for access. The set
of files might change from version to version.

Syntax Element Description

http-method One of GET, HEAD, or PUT, depending on the type of configuration file (see Table C-2).

http:// or
https://

Access protocol (standard access or secure access).

esx-server IP address or a DNS name.

/host List of configuration files that you can access. (Use /host to retrieve the list.)

/host/file A specific ESX/ESXi configuration file.

Table C-2. HTTP Host Access (/host URL)

Configuration File HTTP Access Method(s) Configuration File HTTP Access Method(s)

hostAgentConfig.xml GET, HEAD, PUT ipmi0_sel.raw GET, HEAD

sfcb.cfg GET, HEAD, PUT ipmi0_sel GET, HEAD

openwsman.conf GET, HEAD, PUT ipmi0_sdr_content.raw GET, HEAD

license.cfg GET, HEAD, PUT ipmi0_sdr_header.raw GET, HEAD

vmware.lic GET, HEAD, PUT ipmi0_sensor_readings.raw GET, HEAD

vmware_config GET, HEAD, PUT ipmi1_sel.raw GET, HEAD

vmware_configrules GET, HEAD, PUT ipmi1_sel GET, HEAD

proxy.xml GET, HEAD, PUT ipmi1_sdr_content.raw GET, HEAD

snmp.xml GET, HEAD, PUT ipmi1_sdr_header.raw GET, HEAD

syslog.conf GET, HEAD, PUT ipmi1_sensor_readings.raw GET, HEAD

ssl_cert GET, HEAD, PUT ipmi2_sel.raw GET, HEAD

ssl_key PUT ipmi2_sel GET, HEAD

hosts GET, HEAD, PUT ipmi2_sdr_content.raw GET, HEAD

motd GET, HEAD, PUT ipmi2_sdr_header.raw GET, HEAD

vpxa.cfg GET, HEAD, PUT ipmi2_sensor_readings.raw GET, HEAD

esx.conf GET, HEAD, PUT ipmi3_sel.raw GET, HEAD

config.log GET, HEAD ipmi3_sel GET, HEAD

messages GET, HEAD ipmi3_sdr_content.raw GET, HEAD

hostd.log GET, HEAD ipmi3_sdr_header.raw GET, HEAD

vpxa.log GET, HEAD ipmi3_sensor_readings.raw GET, HEAD

vSphere Web Services SDK Programming Guide

230 VMware, Inc.

Update Package Access (/tmp)

An HTTP request for update package access uses the following syntax:

PUT http[s]://esx-server/tmp/file-path

Privilege Requirements for HTTP Access

HTTP access to a vSphere file is access to a datastore object that is associated with the folder structure in the
vSphere inventory. HTTP access requires the same privileges needed to obtain these files using any other
mechanism, such as the vSphere Client. Table C-3 shows the required privileges.

http:// or https:// Access protocol.

esx-server IP address or a DNS name.

/tmp/file-path Target file on an ESX/ESXi system.

Table C-3. Privileges Required for HTTP Access Datastore Objects

Object Associated with File Portion of URL Required Privileges

Root folder /folder System.View

Datacenter ?dcPath Datastore.Browse

Datastore.FileManagement

Datastore &dsName Datastore.Browse

Datastore.FileManagement

Host /host Host.Config.AdvancedConfig

/tmp/ Host.Config.SystemManagement

VMware, Inc. 231

D

VMware vSphere components are secured through a system of privileges, roles, and permissions (see
Chapter 6, “Authentication and Authorization,” on page 81 for more information). This appendix lists
privileges required to perform various operations, and privileges required to read properties.

The appendix includes the following topics:

 “Privileges Required to Invoke Operations” on page 231

 “Privileges Required to Read Properties” on page 239

 “Privileges Defined for the Administrator Role” on page 240

Privileges Required to Invoke Operations
By default, all users who are members of the Windows Administrators group on the vCenter Server system
have the same access rights as a user assigned to the Administrator role on all objects. When connecting
directly to an ESX/ESXi host, the root and vpxuser user accounts have the same access rights as any user
assigned the Administrator role on all objects.

All other users initially have no permissions on any objects, which means they cannot view these objects or
perform operations on them. A user with Administrator privileges must assign permissions to these users to
allow them to perform tasks.

Table D-1 lists the privileges required to perform various operations. (For privileges identified as dynamic, see
the vSphere API Reference.) Operations can be supported by vCenter Server, ESX/ESXi, or both, as shown in
Table D-1.

Privileges Reference D

IMPORTANT The information does not include operations new in ESX/ESXi 4.1.

Table D-1. Privileges Required for vCenter Server and ESX/ESXi Operations

Operation Privilege VS ESX/ESXi

AcquireLocalTicket System.Anonymous X X

AcquireMksTicket VirtualMachine.Interact.ConsoleInteract X X

AddAuthorizationRole Authorization.ModifyRoles X X

AddCustomFieldDef Global.ManageCustomFields X

AddHost_Task Host.Inventory.AddHostToCluster X

AddInternetScsiSendTargets Host.Config.Storage X X

AddInternetScsiStaticTargets Host.Config.Storage X X

AddPortGroup Host.Config.Network X X

AddServiceConsoleVirtualNic Host.Config.Network X X

AddStandaloneHost_Task Host.Inventory.AddStandaloneHost X

vSphere Web Services SDK Programming Guide

232 VMware, Inc.

AddVirtualNic Host.Config.Network X X

AddVirtualSwitch Host.Config.Network X X

AnswerVM VirtualMachine.Interact.AnswerQuestion X X

ApplyRecommendation Resource.ApplyRecommendation X

AssignUserToGroup Host.Local.ManageUserGroups X X

AttachVmfsExtent Host.Config.Storage X X

AutoStartPowerOff Host.Config.AutoStart X X

AutoStartPowerOn Host.Config.AutoStart X X

BrowseDiagnosticLog Global.Diagnostics X X

CancelTask Global.CancelTask X

CancelWaitForUpdates System.View X X

CheckCustomizationResources System.View X

CheckCustomizationSpec VirtualMachine.Provisioning.Customize X

CheckForUpdates System.View X X

CheckIfMasterSnmpAgentRunning Host.Config.Snmp X X

CheckLicenseFeature Global.Licenses X X

CloneVM_Task NONE.
Privileges are required on the virtual machine being
cloned and depend on whether the virtual machine is a
template. See CloneVM_Task in the vSphere API
Reference for specific privileges.
You need the VirtualMachine.Inventory.Create
privilege on the folder where the new virtual machine
is located.

X

ComputeDiskPartitionInfo Host.Config.Storage X X

ConfigureDatastorePrincipal Host.Config.Maintenance X X

ConfigureLicenseSource Global.Licenses X X

CreateAlarm NONE.
Create privilege required on the entity associated with
the alarm.

X

CreateCluster Host.Inventory.CreateCluster X

CreateCollectorForEvents System.View X X

CreateCollectorForTasks System.View X

CreateCustomizationSpec VirtualMachine.Provisioning.ModifyCustSpecs X

CreateDatacenter Datacenter.Create X X

CreateDiagnosticPartition Host.Config.Storage X X

CreateFilter System.View X X

CreateFolder Folder.Create X X

CreateGroup Host.Local.ManageUserGroups X X

CreateNasDatastore Host.Config.Storage X X

CreatePerfInterval Performance.ModifyIntervals X X

CreateResourcePool Resource.CreatePool X X

Table D-1. Privileges Required for vCenter Server and ESX/ESXi Operations (Continued)

Operation Privilege VS ESX/ESXi

VMware, Inc. 233

Appendix D Privileges Reference

CreateScheduledTask NONE.
ScheduledTask.Create required on the entity
associated with the scheduled task.

X

CreateSnapshot_Task VirtualMachine.State.CreateSnapshot X X

CreateUser Host.Local.ManageUserGroups X X

CreateVM_Task VirtualMachine.Inventory.Create

Also, Resource.AssignVMToPool privilege required
on the resource pool with which the virtual machine
will be associated.

X X

CreateVmfsDatastore Host.Config.Storage X X

CurrentTime System.View X X

CustomizationSpecItemToXml System.View X

CustomizeVM_Task VirtualMachine.Provisioning.Customize X

DeleteCustomizationSpec VirtualMachine.Provisioning.ModifyCustSpecs X

DeleteFile Datastore.DeleteFile X X

DeselectVnic Host.Config.Network X X

Destroy_Task See Destroy_Task in the vSphere API Reference. X X

DestroyChildren See DestroyChildren in the vSphere API Reference. X X

DestroyCollector NONE X X

DestroyDatastore Datastore.Delete X X

DestroyNetwork Network.Delete X X

DestroyPropertyFilter NONE X X

DisableFeature Global.Licenses X X

DisableHyperThreading Host.Config.HyperThreading X X

DisableMultipathPath Host.Config.Storage X X

DisableRuleSet Host.Config.NetService X X

DisconnectHost_Task Host.Config.Connection X X

DoesCustomizationSpecExist VirtualMachine.Provisioning.ReadCustSpecs X

DuplicateCustomizationSpec VirtualMachine.Provisioning.ModifyCustSpecs X

EnableFeature Global.Licenses X X

EnableHyperThreading Host.Config.HyperThreading X X

EnableMultipathPath Host.Config.Storage X X

EnableRuleset Host.Config.NetService X X

EnterMaintenanceMode_Task Host.Config.Maintenance X X

ExitMaintenanceMode_Task Host.Config.Maintenance X X

ExtendVmfsDatastore Host.Config.Storage X X

FindByDatastorePath System.View X X

FindByDnsName System.View X X

FindByInventoryPath System.View X X

FindByIp System.View X X

FindByUuid System.View X X

FindChild System.View X X

Table D-1. Privileges Required for vCenter Server and ESX/ESXi Operations (Continued)

Operation Privilege VS ESX/ESXi

vSphere Web Services SDK Programming Guide

234 VMware, Inc.

FormatVmfs Host.Config.Storage X X

GenerateLogBundles_Task Global.Diagnostics X X

GetAlarm System.View X

GetAlarmState NONE
System.Read privilege is required on the entity
associated with the alarm.

X

GetCustomizationSpec VirtualMachine.Provisioning.ReadCustSpecs X

JoinDomainTask Host.Config.AuthenticationStore X

LeaveCurrentDomain_Task Host.Config.AuthenticationStore X

Login System.Anonymous X X

Logout System.View X X

LogUserEvent NONE
Global.LogEvent required on the entity associated
with the event.

X X

MarkAsTemplate VirtualMachine.Provisioning.MarkAsTemplate X

MarkAsVirtualMachine VirtualMachine.Provisioning.MarkAsVM

Resource.AssignVMToPool required on the resource
pool to associate with the virtual machine.

X

MergePermissions Authorization.ReassignRolePermissions X X

MigrateVM_Task See MigrateVM_Task in the vSphere API Reference. X

MountToolsInstaller VirtualMachine.Interact.ToolsInstall X X

MoveHostInto_Task Host.Inventory.EditCluster

Host.Inventory.MoveHost required on the host
being moved.

X

MoveInto_Task Host.Inventory.EditCluster

Host.Inventory.MoveHost required on the host
being moved.

X X

MoveIntoFolder_Task See MoveIntoFolder_Task in the vSphere API Reference. X X

MoveIntoResourcePool See MoveIntoFolder_Task in the vSphere API Reference. X X

OverwriteCustomizationSpec VirtualMachine.Provisioning.ModifyCustSpecs X

PowerOffVM_Task VirtualMachine.Interact.PowerOff X X

PowerOnVM_Task VirtualMachine.Interact.PowerOn X X

QueryAvailableDisksForVmfs Host.Config.Storage X X

QueryAvailablePartition Host.Config.Storage X X

QueryAvailablePerfMetric NONE
System.Read is required on the entity for which
available performance metrics are queried.

X X

QueryConfigOption System.Read X X

QueryConfigOptionDescriptor System.Read X X

QueryConfigTarget System.Read X X

QueryConnectionInfo Host.Inventory.AddStandaloneHost X X

QueryDescriptions Global.Diagnostics X X

QueryEvents System.View X X

QueryHostConnectionInfo System.Read X X

Table D-1. Privileges Required for vCenter Server and ESX/ESXi Operations (Continued)

Operation Privilege VS ESX/ESXi

VMware, Inc. 235

Appendix D Privileges Reference

QueryLicenseSourceAvailability Global.Licenses X X

QueryLicenseUsage Global.Licenses X X

QueryMemoryOverhead System.Read X X

QueryNetworkHint Host.Config.Network X X

QueryOptions System.Read X X

QueryPartitionCreateDesc Host.Config.Storage X X

QueryPartitionCreateOptions Host.Config.Storage X X

QueryPerf NONE
System.Read privilege is required on the entity whose
performance statistics are being queried.

X X

QueryPerfComposite NONE
System.Read privilege is required on the entity whose
performance statistics are being queried.

X X

QueryPerfCounter System.View X X

QueryPerfProviderSummary NONE
System.Read privilege is required on the entity whose
performance statistics are being queried.

X X

QueryVmfsDatastoreCreateOptions Host.Config.Storage X X

QueryVmfsDatastoreExtendOptions Host.Config.Storage X X

QueryVMotionCompatibility Resource.QueryVMotion X

ReadNextEvents NONE X X

ReadNextTasks NONE X

ReadPreviousEvents NONE X X

ReadPreviousTasks NONE X

RebootGuest VirtualMachine.Interact.Reset X X

RebootHost_Task Host.Config.Maintenance X X

RecommendHostsForVm System.Read X

ReconfigureAlarm Alarm.Edit X

ReconfigureAutostart Host.Config.AutoStart X X

ReconfigureCluster_Task Host.Inventory.EditCluster X

ReconfigureHostForDAS_Task Host.Config.Connection X

ReconfigureScheduledTask ScheduledTask.Edit X

ReconfigureServiceConsoleReservation Host.Config.Memory X X

ReconfigVM_Task dynamic X X

ReconnectHost_Task Host.Config.Connection X

RefreshDatastore System.Read X X

RefreshFirewall Host.Config.NetService X X

RefreshNetworkSystem Host.Config.Network X X

RefreshServices Host.Config.NetService X X

RefreshStorageSystem Host.Config.Storage X X

Table D-1. Privileges Required for vCenter Server and ESX/ESXi Operations (Continued)

Operation Privilege VS ESX/ESXi

vSphere Web Services SDK Programming Guide

236 VMware, Inc.

RegisterVM_Task VirtualMachine.Inventory.Create

Resource.AssignVMToPool privilege is required on
the resource pool to which the virtual machine should
be attached.

X X

ReleaseLease NONE. X X

Reload System.Read X X

RelocateVM_Task Resource.ColdMigrate X

RemoveAlarm Alarm.Delete X

RemoveAllSnapshots_Task VirtualMachine.State.RemoveSnapshot X X

RemoveAuthorizationRole Authorization.ModifyRoles X X

RemoveCustomFieldDef Global.ManageCustomFields X

RemoveDatastore Host.Config.Storage X X

RemoveEntityPermission NONE
Authorization.ModifyPermissions privilege is
required on the entity associated with the permission.

X X

RemoveGroup Host.Local.ManageUserGroups X X

RemoveInternetScsiSendTargets Host.Config.Storage X X

RemoveInternetScsiStaticTargets Host.Config.Storage X X

RemovePerfInterval Performance.ModifyIntervals X X

RemovePortGroup Host.Config.Network X X

RemoveScheduledTask ScheduledTask.Delete X

RemoveServiceConsoleVirtualNic Host.Config.Network X X

RemoveSnapshot_Task VirtualMachine.State.RemoveSnapshot X X

RemoveUser Host.Local.ManageUserGroups X X

RemoveVirtualNic Host.Config.Network X X

RemoveVirtualSwitch Host.Config.Network X X

Rename_Task See Rename_Task in the vSphere API Reference. X X

RenameCustomFieldDef Global.ManageCustomFields X

RenameCustomizationSpec VirtualMachine.Provisioning.ModifyCustSpecs X

RenameDatastore Datacenter.RenameDatastore X X

RenameSnapshot VirtualMachine.State.RenameSnapshot X All but
ESX 2.x

RenewLease NONE X X

RescanAllHba Host.Config.Storage X X

RescanHba Host.Config.Storage X X

RescanVmfs Host.Config.Storage X X

ResetCollector NONE X X

ResetEntityPermissions NONE
Authorization.ModifyPermissions privilege is
required on the entity associated with the permission
and the entity’s parent.

X X

ResetGuestInformation VirtualMachine.Config.ResetGuestInfo X X

ResetVM_Task VirtualMachine.Interact.Reset X X

RestartMasterSnmpAgent Host.Config.Snmp X X

Table D-1. Privileges Required for vCenter Server and ESX/ESXi Operations (Continued)

Operation Privilege VS ESX/ESXi

VMware, Inc. 237

Appendix D Privileges Reference

RestartService Host.Config.NetService X X

RestartServiceConsoleVirtualNic Host.Config.Network X X

RetrieveAllPermissions System.View X X

RetrieveDiskPartitionInfo Host.Config.Storage X X

RetrieveEntityPermissions NONE
System.Read privilege is required on the entity whose
performance statistics are being queried.

X X

RetrieveEntityScheduledTask System.View X

RetrieveProperties System.View X X

RetrieveRolePermissions System.View X X

RetrieveServiceContent System.Anonymous X X

RetrieveUserGroups System.View X X

RevertToCurrentSnapshot_Task VirtualMachine.State.RevertToSnapshot X On all but
ESX 2.x

RevertToSnapshot_Task VirtualMachine.State.RevertToSnapshot

RewindCollector NONE X X

RunScheduledTask ScheduledTask.Run X

SearchDatastore_Task Datastore.Browse X X

SearchDatastoreSubFolders_Task Datastore.Browse X X

SelectActivePartition Host.Config.Storage X X

SelectVnic Host.Config.Network X X

SetCollectorPageSize NONE X X

SetEntityPermissions NONE
Authorization.ModifyPermissions required on
entity associated with the permissions and its parent.

X X

SetField NONE
Global.SetCustomField required on the entity
associated with the custom field.

X X

SetLicenseEdition Global.Licenses X X

SetLocale System.View X X

SetMultipathLunPolicy Host.Config.Storage X X

SetScreenResolution VirtualMachine.Interact.ConsoleInteract X X

ShutdownGuest VirtualMachine.Interact.PowerOff X X

ShutdownHost_Task Host.Config.Maintenance X X

StandbyGuest VirtualMachine.Interact.Suspend X X

StartService Host.Config.NetService X X

StopMasterSnmpAgent Host.Config.Snmp X X

StopServiceq Host.Config.NetService X X

SuspendVM_Task VirtualMachine.Interact.Suspend X X

TerminateSession Sessions.TerminateSession X X

UnassignUserFromGroup Host.Local.ManageUserGroups X X

UninstallService Host.Config.NetService X X

UnmountToolsInstaller VirtualMachine.Interact.ToolsInstall X X

Table D-1. Privileges Required for vCenter Server and ESX/ESXi Operations (Continued)

Operation Privilege VS ESX/ESXi

vSphere Web Services SDK Programming Guide

238 VMware, Inc.

UnregisterAndDestroy_Task Folder.Delete
The privilege is also required on the parent managed
entity.

X X

UnregisterVM VirtualMachine.Inventory.Delete X X

UpdateAuthorizationRole Authorization.ModifyRoles X X

UpdateChildResourceConfiguration See UpdateChildResourceConfiguration in the
vSphere API Reference.

X X

UpdateConfig See UpdateConfig in the vSphere API Reference. X X

UpdateConsoleIpRouteConfig Host.Config.Network X X

UpdateDefaultPolicy Host.Config.Network X X

UpdateDiskPartitions Host.Config.Storage X X

UpdateDnsConfig Host.Config.Network X X

UpdateInternetScsiAlias Host.Config.Storage X X

UpdateInternetScsiAuthenticationProperties Host.Config.Storage X X

UpdateInternetScsiDiscoveryProperties Host.Config.Storage X X

UpdateInternetScsiIPProperties Host.Config.Storage X X

UpdateInternetScsiName Host.Config.Storage X X

UpdateIpConfig Host.Config.Network X X

UpdateIpRouteConfig Host.Config.Network X X

UpdateNetworkConfig Host.Config.Network X X

UpdateOptions See UpdateOptions in the vSphere API Reference. X

UpdatePerfInterval Performance.ModifyIntervals X X

UpdatePhysicalNicLinkSpeed Host.Config.Network X X

UpdatePortGroup Host.Config.Network X X

UpdateServiceConsoleVirtualNic Host.Config.Network X X

UpdateServiceMessage Sessions.GlobalMessage X X

UpdateServicePolicy Host.Config.NetService X X

UpdateSnmpConfig Host.Config.Snmp X X

UpdateSoftwareInternetScsiEnabled Host.Config.Storage X X

UpdateSystemResources Host.Config.Resources X X

UpdateUser Host.Local.ManageUserGroups X X

UpdateVirtualNic Host.Config.Network X X

UpdateVirtualSwitch Host.Config.Network X X

UpgradeTools_Task VirtualMachine.Interact.ToolsInstall X X

UpgradeVM_Task VirtualMachine.Config.UpgradeVirtualHardware X X

UpgradeVmfs Host.Config.Storage X X

UpgradeVmLayout Host.Config.Storage X X

ValidateMigration See ValidateMigration in the vSphere API Reference.
Resource.AssignVMToPool required on the target
resource pool for the virtual machines.

X

WaitForUpdates System.View X X

XmlToCustomizationSpecItem System.View X

Table D-1. Privileges Required for vCenter Server and ESX/ESXi Operations (Continued)

Operation Privilege VS ESX/ESXi

VMware, Inc. 239

Appendix D Privileges Reference

Privileges Required to Read Properties
Table D-2 lists the privileges required to read specific managed object properties.

Table D-2. Privileges Required for Reading Object Properties

Object Property Privilege

AlarmManager defaultExpression System.View

description System.View

AuthorizationManager privilegeList System.View

roleList System.View

description System.View

ComputeResource resourcePool System.View

host System.View

CustomFieldsManager field System.View

CustomizationSpecManager info VirtualMachine.Provisioning.ReadCustSpecs

encryptionKey System.View

Datacenter vmFolder System.View

hostFolder System.View

EventManager description System.View

latestEvent System.View

maxCollector System.View

Folder childType System.View

childEntity System.View

HostCpuSchedulerSystem hyperThread Host.Config.HyperThreading

HostDiagnosticSystem activePartition Host.Config.Storage

HostFirewallSystem firewallInfo Host.Config.NetService

HostMemoryManagerSystem consoleReservationInfo Host.Config.Memory

HostNetworkSystem capabilities Host.Config.Network

networkConfig Host.Config.Network

networkInfo Host.Config.Network

offloadCapabilities Host.Config.Network

HostPowerSystem capability Host.Config.Power

info Host.Config.Power

HostServiceSystem serviceInfo Host.Config.NetService

HostSnmpSystem snmpConfig Host.Config.Snmp

HostStorageSystem fileSystemVolumeInfo Host.Config.Storage

storageDeviceInfo Host.Config.Storage

HostVMotionSystem netConfig Host.Config.Network

ipConfig Host.Config.Network

LicenseManager source Global.Licenses

sourceAvailable Global.Licenses

featureInfo Global.Licenses

vSphere Web Services SDK Programming Guide

240 VMware, Inc.

Privileges Defined for the Administrator Role
The Administrator role as defined on a vCenter Server 4.0 system contains all the privileges listed in Table D-3.

ManagedEntity parent System.View

effectiveRole System.View

name System.View

PerformanceManager description System.View

historicalInterval System.View

perfCounter System.View

PropertyCollector filter System.View

ResourcePool owner System.View

ScheduledTaskManager scheduledTask System.View

description System.View

ServiceInstance serverClock System.View

capability System.View

SessionManager sessions Sessions.TerminateSession

currentSession System.Anonymous

message System.View

messageLocaleList System.Anonymous

supportedLocaleList System.Anonymous

defaultLocale System.Anonymous

TaskManager recentTask System.View

description System.View

maxCollector System.View

UserDirectory domainList System.View

Table D-2. Privileges Required for Reading Object Properties (Continued)

Object Property Privilege

Table D-3. Privileges Granted to the Administrator Role

Privilege Privilege

Alarm.Acknowledge Resource.AssignVAppToPool

Alarm.Create Resource.AssignVMToPool

Alarm.Delete Resource.ColdMigrate

Alarm.DisableActions Resource.CreatePool

Alarm.Edit Resource.DeletePool

Alarm.SetStatus Resource.EditPool

Authorization.ModifyPermissions Resource.HotMigrate

Authorization.ModifyRoles Resource.MovePool

Authorization.ReassignRolePermissions Resource.QueryVMotion

Datacenter.Create Resource.RenamePool

Datacenter.Delete ScheduledTask.Create

Datacenter.IpPoolConfig ScheduledTask.Delete

Datacenter.Move ScheduledTask.Edit

VMware, Inc. 241

Appendix D Privileges Reference

Datacenter.Rename ScheduledTask.Run

Datastore.AllocateSpace Sessions.GlobalMessage

Datastore.Browse Sessions.ImpersonateUser

Datastore.Delete Sessions.TerminateSession

Datastore.DeleteFile Sessions.ValidateSession

Datastore.FileManagement StorageViews.ConfigureService

Datastore.Move StorageViews.View

Datastore.Rename System.Anonymous

DVPortgroup.Create System.Read

DVPortgroup.Delete System.View

DVPortgroup.Modify Task.Create

DVPortgroup.PolicyOp VApp.ApplicationConfig

DVPortgroup.ScopeOp VApp.AssignResourcePool

DVSwitch.Create VApp.AssignVApp

DVSwitch.Delete VApp.AssignVM

DVSwitch.HostOp VApp.Clone

DVSwitch.Modify VApp.Create

DVSwitch.Move VApp.Delete

DVSwitch.PolicyOp VApp.Export

DVSwitch.PortConfig VApp.ExtractOvfEnvironment

DVSwitch.PortSetting VApp.Import

DVSwitch.Vspan VApp.InstanceConfig

Extension.Register VApp.Move

Extension.Unregister VApp.PowerOff

Extension.Update VApp.PowerOn

Folder.Create VApp.Rename

Folder.Delete VApp.ResourceConfig

Folder.Move VirtualMachine.Config.AddExistingDisk

Folder.Rename VirtualMachine.Config.AddNewDisk

Global.CancelTask VirtualMachine.Config.AddRemoveDevice

Global.CapacityPlanning VirtualMachine.Config.AdvancedConfig

Global.Diagnostics VirtualMachine.Config.ChangeTracking

Global.DisableMethods VirtualMachine.Config.CPUCount

Global.EnableMethods VirtualMachine.Config.DiskExtend

Global.GlobalTag VirtualMachine.Config.DiskLease

Global.Health VirtualMachine.Config.EditDevice

Global.Licenses VirtualMachine.Config.HostUSBDevice

Global.LogEvent VirtualMachine.Config.Memory

Global.ManageCustomFields VirtualMachine.Config.QueryUnownedFiles

Global.Proxy VirtualMachine.Config.RawDevice

Global.ScriptAction VirtualMachine.Config.RemoveDisk

Table D-3. Privileges Granted to the Administrator Role (Continued)

Privilege Privilege

vSphere Web Services SDK Programming Guide

242 VMware, Inc.

Global.ServiceManagers VirtualMachine.Config.Rename

Global.SetCustomField VirtualMachine.Config.ResetGuestInfo

Global.Settings VirtualMachine.Config.Resource

Global.SystemTag VirtualMachine.Config.Settings

Global.VCServer VirtualMachine.Config.SwapPlacement

Host.Cim.CimInteraction VirtualMachine.Config.UpgradeVirtualHardware

Host.Config.AdvancedConfig VirtualMachine.Interact.AnswerQuestion

Host.Config.AutoStart VirtualMachine.Interact.Backup

Host.Config.Connection VirtualMachine.Interact.ConsoleInteract

Host.Config.DateTime VirtualMachine.Interact.CreateScreenshot

Host.Config.Firmware VirtualMachine.Interact.CreateSecondary

Host.Config.HyperThreading VirtualMachine.Interact.DefragmentAllDisks

Host.Config.Maintenance VirtualMachine.Interact.DeviceConnection

Host.Config.Memory VirtualMachine.Interact.DisableSecondary

Host.Config.NetService VirtualMachine.Interact.EnableSecondary

Host.Config.Network VirtualMachine.Interact.MakePrimary

Host.Config.Patch VirtualMachine.Interact.PowerOff

Host.Config.PciPassthru VirtualMachine.Interact.PowerOn

Host.Config.Resources VirtualMachine.Interact.Record

Host.Config.Settings VirtualMachine.Interact.Replay

Host.Config.Snmp VirtualMachine.Interact.Reset

Host.Config.Storage VirtualMachine.Interact.SetCDMedia

Host.Config.SystemManagement VirtualMachine.Interact.SetFloppyMedia

Host.Inventory.AddHostToCluster VirtualMachine.Interact.Suspend

Host.Inventory.AddStandaloneHost VirtualMachine.Interact.TerminateFaultTolerantVM

Host.Inventory.CreateCluster VirtualMachine.Interact.ToolsInstall

Host.Inventory.DeleteCluster VirtualMachine.Interact.TurnOffFaultTolerance

Host.Inventory.EditCluster VirtualMachine.Inventory.Create

Host.Inventory.MoveCluster VirtualMachine.Inventory.Delete

Host.Inventory.MoveHost VirtualMachine.Inventory.Move

Host.Inventory.RemoveHostFromCluster VirtualMachine.Provisioning.Clone

Host.Inventory.RenameCluster VirtualMachine.Provisioning.CloneTemplate

Host.Local.CreateVM VirtualMachine.Provisioning.CreateTemplateFromVM

Host.Local.DeleteVM VirtualMachine.Provisioning.Customize

Host.Local.InstallAgent VirtualMachine.Provisioning.DeployTemplate

Host.Local.ManageUserGroups VirtualMachine.Provisioning.DiskRandomAccess

Host.Local.ReconfigVM VirtualMachine.Provisioning.DiskRandomRead

Network.Assign VirtualMachine.Provisioning.GetVmFiles

Network.Config VirtualMachine.Provisioning.MarkAsTemplate

Network.Delete VirtualMachine.Provisioning.MarkAsVM

Network.Move VirtualMachine.Provisioning.ModifyCustSpecs

Table D-3. Privileges Granted to the Administrator Role (Continued)

Privilege Privilege

VMware, Inc. 243

Appendix D Privileges Reference

Performance.ModifyIntervals VirtualMachine.Provisioning.PromoteDisks

Profile.Clear VirtualMachine.Provisioning.PutVmFiles

Profile.Create VirtualMachine.Provisioning.ReadCustSpecs

Profile.Delete VirtualMachine.State.CreateSnapshot

Profile.Edit VirtualMachine.State.RemoveSnapshot

Profile.View VirtualMachine.State.RenameSnapshot

Resource.ApplyRecommendation VirtualMachine.State.RevertToSnapshot

Table D-3. Privileges Granted to the Administrator Role (Continued)

Privilege Privilege

vSphere Web Services SDK Programming Guide

244 VMware, Inc.

VMware, Inc. 245

E

VMware vSphere Web Services SDK includes samples for both the Java and C# platforms. This appendix lists
the available sample programs and provides some information about each program. Both the Java and C#
samples have been re-compiled with JAX-WS bindings for this release, and they use JAX-WS credential store
classes that allow you to ignore certificates when you connect to a server with the samples.

The information is presented in the following topics:

 “Java Sample Programs (JAXWS Bindings)” on page 245

 “C# Sample Programs” on page 249

Java Sample Programs (JAXWS Bindings)
When you download the SDK, you can find the java sample programs and related files in the following
directories.

 SDK\vsphere-ws\java\JAXWS\samples\com\vmware – Top-level directory for Java samples. Details
listed in Table E-1.

 SDK\vsphere-ws\java\JAXWS\samples\com\vmware\security – Credential store utilities

 SDK\vsphere-ws\java\JAXWS\samples\com\vmware\vim25 – Stub directories. The vim25 directory
contains stubs for VirtualCenter 2.5 and later, including vSphere 4.0 and later.

 SDK\vsphere-ws\java\JAXWS\samples\com\vmware\vm – samples written for a single vm

Sample Program Overview E

Table E-1. Java Sample Programs

Directory Example Description

alarm VMPowerStateAlarm Creates an alarm to monitor a virtual machine's power
state.

events EventFormat Retrieves and formats the last event from the host daemon
or vpxd. Includes a function that formats the event
message.

EventHistoryCollectorMonitor Demonstrates how to create and monitor an
EventHistoryCollector. Uses the latestPage property of
EventHistoryCollector to filter the events.

VMEventHistoryCollectorMonitor Standalone client that demonstrates how to perform the
following tasks:
Logging into the web service.
Creating EventHistoryCollector filtered for a single
virtual machine.
Monitoring events using the latestPage property of the
EventHistoryCollector.

vSphere Web Services SDK Programming Guide

246 VMware, Inc.

general Browser Prints all managed entities and for each entity its type,
reference value, property name, property value, inner
object type, inner reference value and inner property
value.

Connect Connects to an ESX/ESXi system or a vCenter Server
system.

Create Creates a managed entity such as a folder, datacenter, or
cluster.

Delete Deletes a managed entity from the inventory tree. The
managed entity can be a virtual machine, a
ClusterComputeResource, or a folder.

GetCurrentTime Retrieves the current time from the vSphere Server.

GetHostName Retrieves the hostname of the ESX Server.

GetUpdates Demonstrates how to use the PropertyCollector to
monitor one or more properties of one or more managed
objects. In particular this sample monitors one or all
virtual machines and all hosts or one host for changes to
some basic properties.

LicenseManager Demonstrates uses of the licensing API using License
managed object reference.

Move Moves a managed entity from its current location in the
inventory to a new location in a specified folder

PropertyCollector Illustrates the use of the PropertyCollector API.

RemoveManagedObject Destroys or unregisters a managed inventory object like a
Host, VirtualMachine, or Folder.

Rename Renames a managed entity object.

SearchIndex Illustrates the use of the SearchIndex API.

SimpleClient Connects to the server, logs in, lists the inventory contents
(managed entities) at the console, and logs out.

TaskList Displays a list of tasks performed on a specified managed
object.

guest CreateTemporaryFile Creates a temporary file inside a virtual machine.

DownloadGuestFile Downloads a file from the guest to a specified path on the
host where the client is running.

RunProgram Runs a specified program inside a virtual machine.
RunProgram re-directs output to a temporary file inside
the guest and downloads the output file.

UploadGuestFile Uploads a file from the client machine to a specified
location inside the guest operating system.

Table E-1. Java Sample Programs (Continued)

Directory Example Description

VMware, Inc. 247

Appendix E Sample Program Overview

host AcquireSessionInfo Acquires a session with a vCenter Server or ESX host and
prints a cim service ticket and related session information
to a file.

AddVirtualNic

RemoveVirtualNic

Adds a virtual NIC to a port group on a virtual switch.
Removes a virtual NIC from a port group.

AddVirtualSwitch

RemoveVirtualSwitch

Adds a virtual switch to a host. Removes a virtual switch
from the host.

AddVirtualSwitchPortGroup

RemoveVirtualSwitchPortGroup

Adds a port group to a virtual switch. Removes a port
group from a virtual switch.

DVSCreate Creates a distributed virtual switch.

HostProfileManager Demonstrates the use of HostProfileManager and
ProfileComplainceManager.

NIOCForDVS Adds a network resource pool to a distributed virtual
switch.

httpfileaccess GetVMFiles Retrieves configuration files, snapshots files, log files, and
virtual disk files of a virtual machine and places them on
the system on which the program is run.

ColdMigration Puts virtual machine files into a specified datacenter and
datastore and registers and reconfigures the
corresponding virtual machine.

performance Basics Displays available performance counters or other
metadata for an ESX/ESXi host.

History Reads performance measurements from the current time,
or from a specified start time, for a specified duration.

PrintCounters Writes the available counters of a managed entity into the
specified file at the specified location. The managed entity
can be a host system, a virtual machine, or a resource pool.

Realtime Displays performance measurements from the current
time at the console.

VItop An ESXtop-like sample application that lets
administrators specify the CPU and memory counters by
name to obtain metrics for a specified host.

VIUsage Creates a GUI for graphical representation of the
counters.

scheduling DeleteOneTimeScheduledTask Demonstrates deleting a ScheduledTask.

OneTimeScheduledTask Demonstrates creating a ScheduledTask using the
ScheduledTaskManager.

WeeklyRecurrenceScheduledTaks Demonstrates creating a weekly recurrent scheduled task.

scsilun SCSILunName Displays the CanonicalName,Vendor, Model, Data,
Namespace and NamespaceId of the host’s SCSI LUN.

Table E-1. Java Sample Programs (Continued)

Directory Example Description

vSphere Web Services SDK Programming Guide

248 VMware, Inc.

security credstore Base64 A fast, memory efficient class that encodes and decodes to
and from BASE64 in full accordance with RFC 2045.

CredentialStore Creates an example credential store.

CredentialStoreAdmin A command-line tool that provides completenaccess to
the credential store backing file on the local machine.

CredentialStoreFactory Factory class providing instances of a credential store.

CredentialStoreImpl Implementation class for CredentialStoreAdmin.

CredentialStoreObfuscate Converts the hostname string to lowercase, so that a
uniform representation of the hostname is used to
obfuscate and de-obfuscate the password.

CredentialStoreStorage This class provides the same functionality as
FileInputStream, except that the close() method is
overridden so that FileInputStream class’ close()
method does not get called.

simpleagent SimpleAgent Accesses the local credential store to obtain a single user
account to log in to the specified server.

CreateUsers Creates a user account and password and stores them in
the local credential store.

storage CreateStorageDRS Creates storage DRS.

SDRSRecommendation Runs storage DRS on an SDRS cluster to obtain SDRS
recommendations.

SDRSRules Configures rules for an SDRS cluster.

vApp OVFManagerExportVAPP Demonstrates the OvfManager by exporting VMDKs and
OVF Descriptors of all VM's in the vApps.

OVFManagerExportVMDK Demonstrates how the OvfManager exports VMDKs from
a VM to the localSystem.

OVFManagerImportLocal Use this class to import or deploy an OVF Appliance from
a local drive.

OVFManagerImportVAppFromUrl Use this class to import or deploy an OVF Appliance from
a specified URL.

vim25 This directory contains the Java classes that define the JAXWS bindings to the vSphere API.

Table E-1. Java Sample Programs (Continued)

Directory Example Description

VMware, Inc. 249

Appendix E Sample Program Overview

C# Sample Programs
The C# (.NET) sample programs are located in the SDK\vsphere-ws\dotnet\cs\samples\ directory. Details
listed in Table E-2. Each of the examples listed in the table is actually a directory that contains a .cs file, a .csproj
file, a filename2008.csproj file, and a filename2010.csproj file.

The samples include a GeneratingStubs.txt file and a readme_dotnet.html file at top level.

The readme file explains how to build the examples using Visual Studio 2005 or Visual C# 2005 Express.

vm VMClone Locates an existing virtual machine on the vCenter Server
system, makes a template from this virtual machine, and
deploys instances of the template onto a datacenter.

VMCreate Creates a virtual machine. Different command-line input
creates the virtual machine in different ways.

VMDeltaDisk Creates a delta disk on top of an existing virtual disk in a
virtual machine, and simultaneously removes the original
disk using the reconfigure API.
Use delta disks in conjunction with linked virtual
machines.

VMDiskCreate Creates a virtual disk.

VMLinkedClone Creates a linked virtual machine from an existing
snapshot.

VMManageCD Configures a CDROM for a virtual machine. Also lists
information about the CDROMs associated with a virtual
machine.

VMManageFloppy Configures a floppy drive for a virtual machine. Also lists
information about the floppy drives associated with a
virtual machine.

VMotion Checks whether migration with VMotion is feasible
between two hosts. Performs the migration if the hosts are
compatible.

VMpowerOps Performs power operations on a virtual machine.

VMPromoteDisks Consolidates a linked virtual machine by using the
VirtualMachine.PromoteDisks method.

VMReconfig Reconfigures a virtual machine. Includes reconfiguring
the disk size and disk mode.

VMRelocate Relocate a linked virtual machine using disk move type.

VMSnapshot Performs virtual machine snapshot operations

Table E-1. Java Sample Programs (Continued)

Directory Example Description

Table E-2. C# (.Net) Sample Programs

Example Description

AddVirtualNic Adds a virtual NIC to the ESX/ESXi system. First specifies a HostVirtualNicSpec, and
then adds the NIC to the host.

AddVirtualSwitch Adds a virtual switch to the ESX/ESXi system.

AddVirtualSwitchPortGroup Adds a virtual port group to the ESX/ESXi system.

vSphere Web Services SDK Programming Guide

250 VMware, Inc.

AppUtil Contains the following utility applications:
 AppUtil – Utility application that drives the user input mechanism for other

samples and includes some other utility functions.
 ArgumentHandlingException – Handles command-line exceptions. Used by

AppUtil.
 CertPolicy – Handles certification problems by displaying informational

messages.
 ClientUtil – Client utilities related to prompting the user and logging. Used by

AppUtil.
 Log – Logger to file or console.
 OptionSpec – Option parsing utility.
 ServiceUtils, ServiceUtilsV25 – Utilities for connecting to the server.
 VMUtils – Utility that sets values for a basic virtual machine. Some of the setup,

such as adding a floppy disk drive, might not always be needed.

Basics Uses the PerformanceManager for basic monitoring.

Browser Retrieves the contents of the ServiceInstance starting at the root folder, and prints a
listing of ManagedEntity objects. Optionally, obtains properties for a specific type, or
by default, for ManagedEntity itself.

CIMInfo CIMInfo versioning sample that retrieves the details of CIM_Fan like Activecooling,
Caption, CommunicationStatus and so on.

Coldmigration Migrates a powered off virtual machine from one host to another.

Connect Simple example that logs in and logs out.

Create Creates a Folder, Cluster, Datacenter or standalone host. Prompts the user for the
item to create and where to put the item, for example, in a folder.

CreateUser Creates a user. Specifies permissions for the user using the AuthorizationManager.

CredentialStorePSCmdLets Multiple commandlets for managing the credential store.

Delete Deletes a managed entity.

DeleteOneTimeScheduledTask Extracts a task from scheduledTaskManager and deletes it. This sample is well
commented and illustrates using the PropertyCollector. You can create the task
using the OneTimeScheduledTask example.

DisplayNewProperties Retrieves the specified set of properties for the given managed object reference into an
array of result objects (returned in the same order as the property list)

DisplayNewPropertiesHost Displays properties of an ESX/ESXi host. The properties displayed depend on the
version of the host.

DisplayNewPropertiesVM Displays a set of properties for a virtual machine. The properties displayed depend on
the version of the software on the host.

EventFormat Retrieves and formats the last event on the ESX/ESXi or vCenter Server system.
Demonstrates event formatting.

EventHistoryCollectorMonitor Creates an EventHistoryCollector and monitors the corresponding events.

GetUpdates Retrieves updates for a virtual machine or an ESX/ESXi host.

GetVirtualDiskFiles Retrieves the virtual disk files from a host’s datastores.

GetVMFiles Downloads the files in the virtual machine configuration directory as well as the files in
the virtual machine snapshot, suspend, and log directories. Writes progress to the
console.

History Displays the performance measurements of a specified counter of a specified ESX/ESXi
for a specified duration, or 20 minutes (default) at the console.

HostPowerOps Performs reboot, shutdown, or suspend (power off to standby) operations on an
ESX/ESXi system.

LicenseManager Displays licensing information. The user can specify a license server,

Table E-2. C# (.Net) Sample Programs (Continued)

Example Description

VMware, Inc. 251

Appendix E Sample Program Overview

MobStartPage Includes a program, image files, and HTML files for displaying a Managed Object
browser.

Move Moves a managed entity from one folder to another.

OneTimeScheduledTask Creates a ScheduledTask that powers off a virtual machine and schedules the task
using a OnceTaskScheduler. You can delete the task using the
DeleteOneTimeScheduledTask commandlet.

PrintCounters Defines a printEntityCounters function that prints counters for a virtual machine,
host, or resource pool.

PropertyCollector Illustrates use of the PropertyCollector.

QueryMemoryOverhead Illustrates use of the QueryMemoryOverhead method. The folder includes two
examples, QueryMemoryOverheadV25 uses the currently valid
QueryMemoryOverheadEx method, QueryMemoryOverhead uses the deprecated
QueryMemoryOverhead method.

RealTime Displays the current performance measurements of selected CPU counters of any
specified virtual machine at the console.

RecordSession Records a session and allows you to retrieve a specified set of properties for a specified
managed object reference into an array of result objects.

RemoveManagedObject Removes a host from a cluster or a virtual machine from a host. Handles errors, for
example, if the host is not in a cluster, by printing that information to the command line.

RemoveVirtualNic Removes a virtual NIC from the ESX/ESXi system.

RemoveVirtualSwitch Removes a virtual switch from the ESX/ESXi system.

RemoveVirtualSwitchPortGroup Removes a virtual port group from the ESX/ESXi system.

Rename Renames a managed entity.

SCSILunName Prints the virtual machine file system volumes on a specified SCSI LUN.

SearchIndex Illustrates the use of the SearchIndex API.

SimpleClient Demonstrates connecting to a service, logging on to service, obtaining service content,
and logging out from the service.

SSPI Illustrates how to use an SDK application with Microsoft SSPI.

SSPICIMClient Illustrates how to use an CIM client application with Microsoft SSPI.

TaskList Displays currently running tasks and their state.

VMClone Clones a virtual machine.

VMCreate Creates a virtual machine.

VMEventHistoryCollectorMonitor Returns all events on the latest page on the EventHistoryCollector.

VMotion Validates that migration with VMotion is feasible between two hosts, and performs the
migration if the hosts are compatible.

VMPowerOps Retrieves a reference to a virtual machine and invokes power operations specified on the
command line on that virtual machine.

VMPowerStateAlarm Creates an alarm that monitors virtual machine state and sends email if the virtual
machine power is off. Includes error handling, for example, when the command is
attempted with an ESX/ESXi host as a target.

VMReconfig Reconfigures a virtual machine by changing its memory, cpu, disk, nic, or cd.

VMSnapshot Performs snapshot operations such as create, revert to, remove, remove all, and so on.

VMware.Security.CredentialStore Illustrates use of the VMware credential store.

WatchVM Monitors updates on a virtual machine using the PropertyCollector.

WeeklyRecurrenceScheduledTask Creates a task that reboots a virtual machine once a week.

Table E-2. C# (.Net) Sample Programs (Continued)

Example Description

vSphere Web Services SDK Programming Guide

252 VMware, Inc.

Axis 4.1

 SDK\samples\Axis\java\com\vmware – Top-level directory for Java samples

 SDK\samples\Axis\java\com\vmware\apputils – Helper applications.

 SDK\samples\Axis\java\com\vmware\samples – Samples. Details listed in Table E-3.

 SDK\samples\Axis\java\com\vmware\security – Credential store utility

 SDK\samples\Axis\java\com\vmware\vim and SDK\samples\Axis\java\com\vmware\vim25 – Stub
directories. The vim directory contains stubs for servers that precede VirtualCenter 2.5, the vim25
directory contains stubs for VirtualCenter 2.5 and later, including vSphere 4.0 and later.

Table E-3. Java Sample Programs

Directory Example Description

alarm VMPowerStateAlarm Creates an alarm to monitor a virtual machine's power state.

ciminfo CIMInfo Includes functions for information retrieval, such as functions that
create an association traversal filter, retrieve an instance of a
specified CIM class, get a single instance of the class provided, and
run the specified operation for that instance of the class.

CIMUtil CIM utility functions, including a wrapper that provides an
enumerator over all the instances of the specified class and some
simpler wrappers.

events EventFormat Retrieves and formats the last event from the host daemon or vpxd.
Includes a function that formats the event message.

EventHistoryCollectorMonitor Demonstrates how to create and monitor an
EventHistoryCollector. Uses the latestPage property of
EventHistoryCollector to filter the events.

VMEventHistoryCollectorMonitor Standalone client that demonstrates how to perform the following
tasks:
 Logging into the web service.
 Creating EventHistoryCollector filtered for a single virtual

machine.
 Monitoring events using the latestPage property of the

EventHistoryCollector.

general Browser Prints all managed entities and for each entity its type, reference
value, property name, property value, inner object type, inner
reference value and inner property value.

Connect Connects to an ESX/ESXi system or a vCenter Server system.

Create Creates a managed entity such as a folder, datacenter, or cluster.

Delete Deletes a managed entity from the inventory tree. The managed
entity can be a virtual machine, a ClusterComputeResource, or a
folder.

GetUpdates Demonstrates how to use the PropertyCollector to monitor one
or more properties of one or more managed objects. In particular
this sample monitors one or all virtual machines and all hosts or
one host for changes to some basic properties.

LicenseManager Demonstrates uses of the licensing API using License managed
object reference.

Move Moves a managed entity from its current location in the inventory
to a new location in a specified folder

PropertyCollector Illustrates the use of the PropertyCollector API.

RemoveManagedObject Destroys or unregisters a managed inventory object like a Host,
VirtualMachine, Folder, and so on.

Rename Renames a managed entity object.

SearchIndex Illustrates the use of the SearchIndex API.

VMware, Inc. 253

Appendix E Sample Program Overview

SimpleClient Connects to the server, logs in, lists the inventory contents
(managed entities) at the console, and logs out.

TaskList Displays a list of tasks performed on a specified managed object.

host AddVirtualNic

RemoveVirtualNic

Adds a virtual NIC to a port group on a virtual switch an removes
a virtual NIC from a port group.

AddVirtualSwitch

RemoveVirtualSwitch

Adds a virtual switch to a host and removes a virtual switch from
the host.

AddVirtualSwitchPortGroup

RemoveVirtualSwitchPortGroup

Adds a port group to a virtual switch.

ColdMigration Puts virtual machine files into a specified datacenter and datastore
and registers and reconfigures the corresponding virtual machine.

httpfileaccess GetVMFiles Retrieves configuration files, snapshots files, log files, and virtual
disk files of a virtual machine and places them on the system on
which the program is run.

performance Basics Displays available performance counters or other metadata for an
ESX/ESXi host.

History Reads performance measurements from the current time, or from a
specified start time, for a specified duration.

PrintCounters Writes the available counters of a managed entity into the specified
file at the specified location. The managed entity can be a host
system, a virtual machine, or a resource pool.

Realtime Displays performance measurements from the current time at the
console.

VItop An esxtop-like sample application that lets administrators specify
the CPU and memory counters by name to obtain metrics for a
specified host.

VIUsage Creates a GUI for graphical representation of the counters.

scheduling DeleteOneTimeScheduledTask Demonstrates deleting a ScheduledTask.

OneTimeScheduledTask Demonstrates creating a ScheduledTask using the
ScheduledTaskManager.

WeeklyRecurrenceScheduledTask Demonstrates creating a weekly recurrent scheduled task.

scsilun SCSILunName Displays the CanonicalName,Vendor, Model, Data, Namespace
and NamespaceId of the host’s SCSI LUN.

simpleagent SimpleAgent Accesses the local credential store to obtain a single user account to
log in to the specified server.

CreateUsers Creates a user account and password and stores them in the local
credential store.

vm VMClone Locates an existing virtual machine on the vCenter Server system,
makes a template from this virtual machine, and deploys instances
of the template onto a datacenter.

VMCreate Creates a virtual machine. Different command-line input creates
the virtual machine in different ways.

VMDeltaDisk Creates a delta disk on top of an existing virtual disk in a virtual
machine, and simultaneously removes the original disk using the
reconfigure API.
Use delta disks in conjunction with linked virtual machines.

VMLinkedClone Creates a linked virtual machine from an existing snapshot.

VMotion Checks whether migration with VMotion is feasible between two
hosts. Performs the migration if the hosts are compatible.

Table E-3. Java Sample Programs (Continued)

Directory Example Description

vSphere Web Services SDK Programming Guide

254 VMware, Inc.

VMpowerOps Performs power operations on a virtual machine.

VMPromoteDisks Consolidates a linked virtual machine by using the
VirtualMachine.PromoteDisks method.

VMReconfig Reconfigures a virtual machine. Includes reconfiguring the disk
size, disk mode and so on.

VMRelocate Relocate a linked virtual machine using disk move type.

VMSnapshot Performs virtual machine snapshot operations

version Samples in the version directory illustrate running against hosts that have different versions of vSphere or
VMware Infrastructure installed.
The HostPowerOps sample includes running against Virtual Infrastructure 2.0. The other samples apply to
Virtual Infrastructure 2.5 and later versions including vSphere 4.0.

displaynewpropertieshost/

DisplayNewPropertiesHost

DisplayNewPropertiesHostV25

Displays properties of the host based on the API version supported
by ESX/ESXi or vCenter Server.

displaynewpropertiesvm/

DisplayNewPropertiesVM

DisplayNewPropertiesVMV25

Displays properties of a virtual machine based on the API version
supported by the host to which you connect.

getvirtualdiskfiles/

GetVirtualDiskFiles

GetVirtualDiskFilesV25

Searches the virtual disk files in all the datastores available in a
specified host using the properties ControllerType and
ThinProperty.

hostpowerops/

HostPowerOps

HostPowerOpsV25

Powers down a host.
This samples illustrates how to run a sample against hosts of
multiple versions, including Virtual Infrastructure 2.0.

installhostpatch/

InstallHostPatch

InstallHostPatchV25

Uses the HostPatchManager managed object to upgrade the
components in an ESXi system.

querymemoryoverhead/

QueryMemoryOverhead

QueryMemoryOverheadV25

Determines the amount of memory overhead necessary to power
on a virtual machine with the specified characteristics.

recordsession/

RecordSession

RecordSessionV25

Demonstrates recording a session.

Table E-3. Java Sample Programs (Continued)

Directory Example Description

VMware, Inc. 255

Index

A
accessing property values 22

accessor (getter) method 19, 22

Action object 192

Active Directory 85

AddHost_Task 164

administrator role 240

admission control with expandable resource
pools 161

affinity

CPU 132

DRS 162

memory 132

Alarm object 189, 190

AlarmAction object 192

AlarmExpression object 191

AlarmManager object 189

alarms

creating 190

deleting 193

disabling 193

email message 192

introduction 185

listing 189

red or yellow 192

running script 192

samples 193

AlarmSpec object 190

anti-affinity, DRS 162

API versions 45, 46

applying permissions 90

AppUtil (.NET connection object) 19

apputils 46, 47

architecture, client-server 17

array properties 24

ArrayOf... types 23

authenticating users 91

authentication 81

authorization 81

AuthorizationManager 81, 86, 87

automated login 91

Axis

vSphere web service connection 19

WSDL files 18

B
backup, VmwareDistributedVirtualSwitch 116

bond bridge 120

boot options 131

C
C#

credential store library 91

datatypes,map to XML 20

helper classes 46

sample programs 254

sample project

LoginByToken 29

certificate

X509 30

certificates 82

changing permissions 89

CHAP 106

childEntity property 51

chunked data 79

CIM APIs 14

client applications

deploying 221

patterns 27, 81

client data synchronization 77

client-server architecture 17

client-side proxy interface 18

ClusterComputeResource 157, 163

clusters

adding hosts 164

configuring 163

creating 163

overview 159

reconfiguring 164

VMware DRS 162

VMware HA 162

cold migration 140

collecting properties 57

complex content 224

concurrent sessions 91

config.xml file 216

configuration files 214

ContainerView 66

core dumps 110

CPU

affinity 132

vSphere Web Services SDK Programming Guide

256 VMware, Inc.

allocation 132

expandable reservation 160

limit 160

number of CPUs 132

resource pools 158

shares 158, 160

CreateAlarm operation 190

CreateCluster 163

CreateFilter 225

CreateUser sample 93

CreateVM_Task 126

creating custom events 188

creating datastores 106

creating ScheduledTask object 180

creating UserAccount objects 90

creating virtual machines 126

credential store

automated login 91

backing file 92

client API libraries 92

CreateUser sample 93

file format 93

roles 93

SimpleAgent sample 93

D
data chunk 79

data objects 17

data structures 22

Datastore object 100, 107

datastores

access 107

creating 106

definition 101

managing 106

removing 109

updating 109

VMFS 107, 108

datatypes for MOB usage 226

default log level setting 216

default port groups 119

deleting alarms 193

deleting permissions 89

deleting scheduled tasks 182

delta disks 145

deploying client applications 221

DestroyChildren method 161

destroying resource pools 161

devices for virtual machines 134

diagnostic bundles 220

diagnostic partitions 110, 111

DiagnosticManager

introduction 217

log descriptor values 218

managed object 218

DiagnosticManagerLogCreator enumeration 218

diagnostics 213

disabling alarms 193

disk backings for linked VMs 142

disk partitions

configuration 103

configuring 103

HostStorageSystem use 108

Distributed Power Management 162

DistributedVirtualSwitch 114

DRS 159, 162, 164

DTM 162

dumps 110

E
embedded SMNP agent 122

enumerated types 22

escape character 25

ESX/ESXi

config.xml file 216

embedded SNMP agent 122

hypervisor 13

inventory 54

log file 214

log level 216

managed hosts 54

PerfInterval 209

sample log 214

standalone hosts 54

user model 82

Event objects 185, 187

EventManager object 186

events

creating 188

formatting messages 187

message content 187

persistance 186

expandable reservations 160

exporting virtual applications 150

F
failure detection 165

Fibre Channel NPIV settings 133

file format, credential store 93

file system volumes 103

files of virtual machines 128

filters 57

folders 50

force mount 110

VMware, Inc. 257

Index

G
generating logs 217

getting data from a server 22

granting privileges 89

groups

membership 90

permissions 90

guest OS, customizing 137

H
HA Clusters, managing 165

hardware version 130

helper classes 46, 47

C# 47

sample applications 46

hierarchies 50, 51

historical intervals 210

HistoryCollector overview 183, 189

host network isolation 165

hostd.log 214

HostDatastoreBrowser 99

HostDatastoreSystem 99

HostDiagnosticPartition 100, 111

HostDiskPartitionInfo 103

HostLocalAccountManager object 81, 86

HostNetworkConfig 117

HostNetworkSecurityPolicy 120

HostNetworkSystem 117

HostNetworkTrafficShapingPolicy 120

HostNicTeamingPolicy 120

HostProxySwitch 114

hosts

adding to cluster 164

clusters, creating 163

configuring 96

disconnecting 97

health status 95

lifecycle 97

management objects 95

network policies 120

NUMA information 96

reboot 97

reconnecting 97

retrieve information 95

time 98

HostStorageSystem 109

HostStorageSystem object 99, 103, 109

HostSystem 95

HostVirtualSwitchBondBridge 120

HTTP access 227, 228, 229, 230

HTTP header methods

example 37

LoginByToken 33

HTTPS server access 19

hypervisor 13, 138

I
import client libraries 19

incremental property retrieval 58

indexed arrays 24

interface 18

inventory

folders 50

introduction 55

managed and standalone hosts 54

permissions 54

privileges 52

root folders 52

inventory management privileges 52

inventory traversal 66

IP gateway 122

IP route configuration 122

IPv6 121

iSCSI

ISO file mounting 114

storage 104

virtual machine datastore 114

VMkernel 105

J
java

credential store library 91

datatypes, map to XML 20

sample programs 245

TaskList application 170

K
key-based arrays 24

L
language-specific classes and methods 19

LicenseAssignmentManager 82, 94

LicenseManager 82, 94

licenses

adding 94

introduction 94

removing 94

limit 160

linked virtual machines

creating 143

disk backings 142

from running point 144

from snapshot 143

relocating 144

Linux pluggable authentication module 83

vSphere Web Services SDK Programming Guide

258 VMware, Inc.

local user accounts 82

log descriptor values 218

log files

overview 214

vCenter Server 216

virtual machines 215

log in 85

log level

default settings 216

ESX system 216

modifying 216

settings 216

vCenter Server system 217

LoginByToken method

C#

sample project 29

logs

generating 217

hostd 214

server 214

system 214

M
MAC address 133

manage VMFS 109

managed hosts 54

Managed Object Browser 221, 226

managed object references 17

managed objects

definition 17

handling local user accounts 82

ManagedObjectReference XML schema 223

managing storage 99

mapping XML datatypes to java and C#
datatypes 20

maxObjects 79

maxObjectsUpdates 79

memory

affinity 132

allocation 132

expandable reservation 160

limit 160

overhead 98

shares 160

messages (event), formatting 187

Methods object 19

Microsoft .NET 18, 19

migration 139

MOB 221, 226

monitoring performance 195

multipath management 104

multiple API versions 45

mutator (setter) method 19

Mutual CHAP 106

N
nested data objects 226

nested properties 22, 23

network access 19

Network Information System (NIS) 85

Network object 117

network policies 120

networking

adding services 122

configuration 118

DistributedVirtualSwitch 114

IPv6 121

objects and methods 113

standard virtual switch 116

virtual machines 133

NFS 114

NIC teaming 120

NIS 85

NPIV 133

NTP service

adding 122

querying 98

O
ObjectSpec definition as XML Schema 225

obtaining values from nested properties 25

operations

passing complex datatypes 223

privileges required 231

required privileges for 231

OVF packagess

exporting 150

P
PAM 83

parent property 51

partitions 103, 108

passing complex datatypes to operations 223

PerfCounterInfo

properties 208

PerfInterval data objects

ESX/ESXi system 209

vCenter Server system 209

performance 195

PerformanceManager

overview 209

samples 211

Perl

credential store library 91

vSphere SDK for Perl 14

permissions 89

VMware, Inc. 259

Index

AuthorizationManager 86

changing 89

definition 84

deleting 89

group membership 90

information 89

inheritance 54

inventory management 53

setting 89

users and groups 90

physical network adapter 114

pnic 114

port 443 (server access) 19

port groups 113, 119

power management 162

PowerCLI 14

powering on VM 182

PowerOnMultiVM_Task 136

PowerShell 14

Privileges 83

privileges

administrator role 240

ESX/ESXi operations 231

for inventory management 52

format 53, 83

inventory management 52

invoking operations 231

operations, required for 231

properties, required for 239

reading object properties 239

roles 88

vCenter Server operations 231

properties

arrays 22

complex 22

enumerated types 22

filters 77

incremental retrieval 58

retrieving 57

simple data types 22

property paths 22

property values 22

PropertyCollector

example 62

filters 77

introduction 57

methods 59

order of returned data 58

performance 79

SearchIndex 79

view objects 58

WaitForUpdatesEx 77

PropertyFilter 77

PropertyFilterSpec 178, 224

PropertySpec XML schema 225

proxy interface 18

Q
QuickStats object 207

R
recentTask array 169

recurring operations 180

recursive traversal 72, 73

red alarms 192

rescan 103

reservations 160

resignaturing 109

resource allocation 158

resource management 158

resource management objects 157

resource pools

adding children 162

allocating resources 159

creating 160

deleting 161

expandable reservation 160

hierarchy 158

management guidelines 159

moving into resource pools 162

root resource pool 160

RetrieveOptions 79

RetrievePropertiesEx method 58, 73

retrieving data from a server 22

return datatypes 23

role ID 88

roles

and security management 88

creating 89

creating from sample roles 89

credential store 93

definition 84

modifying 89

sample roles 88

system roles 88

user roles 88

rollback, VmwareDistributedVirtualSwitch 116

root folders 52

root resource pool 160

route configuration 122

RunScriptAction 192

S
sample applications 46, 47

sample code reference 122

vSphere Web Services SDK Programming Guide

260 VMware, Inc.

sample ESX log 214

sample programs

C# 254

Java 245

sample roles 88, 89

samples

alarm 193

overview 184

PerformanceManager 211

ScheduledTask 180

deleting 182

introduction 179, 180

power on VM 182

ScheduledTaskManager 179, 180

scheduling recurring operations 180

scheduling vCenter Server operations 180

SearchIndex 79

security 83, 93, 120

segmented data 79

SelectionSpec 72

SendEmailAction 192

server logs 214

ServiceContent 43

ServiceInstance 21, 42, 51

session cookie 28

session tokens 44

SessionManager 82, 91

SessionManager.Login method 85

sessions

concurrent 91

state 41

token 41

setting permissions 89

shares 160

SimpleAgent sample 93

Snapshots 140

snapshots

creating 141

removing 144

reverting 141

virtual machine 129

SNMP 122

SOAP 18

SOAP header methods

LoginByToken 33

LoginByToken output filter (C#) 30

SOAP tools 19

software iSCSI 105

special characters 25

standalone hosts 54

standby mode 97

storage

architecture 100

introduction 100

iSCSI 104

management objects 99

multipath management 104

overview 100

rescan 103

virtual machines 100

storage API, choosing 102

storage VMotion 140

supported version 46

sVMotion 140

system logs 214

system roles 88

T
task infrastructure 167

Task object 167, 178

TaskInfo

object 168

properties 169

TaskInfoState values 169

TaskList java application 170

TaskManager 178

TaskManager object 167, 178

TaskScheduler subtypes 181

templates 127

templates, converting to virtual machine 128

time zone 98

tokens 41, 79

traffic shaping 120

traversal, recursive 72

TraversalSpec 60, 66

troubleshooting 213

U
UML diagrams 15

Unified Modeling Language 15

URL syntax for HTTP access 228

user accounts 82, 90

creating 86

on ESX/ESXi and vCenter 83

user roles 88

UserAccount object 90

UserDirectory 81, 85

users

credential store 93

overview 85

permissions 90

utility classes 46, 47

V
vCenter Server

VMware, Inc. 261

Index

definition 13

DistributedVirtualSwitch 114

inventory 54

log files 216

scheduling operations 180

user model, overview 83

vCenter Server session 28

vCenter Single Sign On session 33

versions 45, 46

view objects 58

VimPortType (Axis methods object) 19, 43, 60

VimService 43

VimService (Microsoft .NET methods object) 19

VimServiceLocator (Axis connection object) 19

vimServiceVersions.xml 45

Virtual 125, 139

virtual applications

exporting 150

virtual machines

access 128

adding devices 134

and deleted resource pools 161

attributes 127

cloning 127, 128

configuring 129

CPU allocation 132

creating 126

creating from scratch 126

files 128

hardware version 130, 138

log files 215

MAC address 133

management objects 125

managing 147

memory allocation 132

migrating 139

moving into resource pools 162

network interface 114

overhead 98

power operations 135

powering on 182

registering 136

snapshot files 129

snapshots 141

storage access 100

templates 127, 128

upgrading 138

VirtualMachineConfigSpec 126

VMware DRS 136

virtual port groups,adding 119

virtual switch

DistributedVirtualSwitch 114

standard switch 116

virtual switches, overview 118

VirtualMachine

nested properties 23

overview 23

VirtualMachineConfigSpec 126, 127

VIX API 14

VMFS

force mount 110

managing 109

provisioning 106, 107

resignaturing 109

VMFS datastores 101, 107, 108, 109

VMkernel availability report 215

VMkernel network interface 119

adding 119, 120

VMotion 114, 140

VMware DRS 162

and clusters 159

introduction 162

powering on VMs 136

standby mode 97

VMware DTM 162

VMware HA

overview 159

primary and secondary hosts 165

VMware standard virtual switch 116

VMware Tools 137

VmwareDistributedVirtualSwitch 116

vNetwork Standard Switch 113, 117, 118

volumes 103

vSphere

object model 227

security model 83

vSphere SDK for Perl 14

vSS environment 118

W
WaitForUpdatesEx method 58, 77

WaitOptions 79

web service network access 19

Windows PowerShell 14

WSDL 18, 19

X
X.509 certificates 82

X509 certificate 30

XML schema

ManagedObjectReference 223

PropertyFilterSpec 224

PropertySpec 225

xsd, anyType arrays 23

vSphere Web Services SDK Programming Guide

262 VMware, Inc.

Y
yellow alarms 192

	vSphere Web Services SDK Programming Guide
	Contents
	About This Book
	VMware vSphere and vSphere Management APIs
	Virtualization and VMware vSphere Components
	vSphere Development Tools
	vSphere Web Services SDK
	CIM APIs
	vSphere SDK for Perl
	vSphere PowerCLI
	VIX API

	SDK Developer Setup
	SDK Samples
	UML Diagrams Used in This Guide

	vSphere API Programming Model
	vSphere Client-Server Architecture
	vSphere API as a Web Service
	WSDL Files and the Client-Side Proxy Interface
	Network Access to the vSphere Web Service
	Language-Specific Classes and Methods
	Mapping XML Data Types to Java and C# Data Types

	Access to Managed Objects
	Access to vSphere Server Data
	Obtaining Information from a Server
	Working with Data Structures
	Accessing Property Values
	Nested Properties and Property Paths in Composite Data Structures
	xsd:anyType Arrays
	Indexed Array and Key-Based Array Properties

	Unset Optional Properties
	Escape Character in Name and Path Properties

	Client Applications
	vCenter Server Connections
	Establishing a Single Sign On Session with a vCenter Server
	LoginByToken (C# Example)
	vCenter Server Single Sign On Session
	Sample Code
	Using LoginByToken

	LoginByToken (Java Example)
	Client Support for a vCenter Single Sign On Session with a vCenter Server
	Saving the vCenter Server Session Cookie
	Using LoginByToken
	Restoring the vCenter Server Session Cookie

	Establishing a Session with Username and Password Credentials
	Overview of a Java Sample Application
	Java Client Example

	Web Server Session Token
	Accessing the HTTP Endpoint with JAX-WS
	Accessing the vSphere Server
	Closing the Connection
	Using the Java Samples as Reference

	Multiple Versions of the vSphere API
	Identifying the API Version Supported by the Server
	Java and C# Sample Applications
	Java Samples
	C# Samples
	Helper Classes for C# Sample Applications

	Datacenter Inventory
	Inventory Overview
	Inventory Hierarchies and ServiceInstance
	Folders in the Hierarchy
	ESXi Inventory Hierarchy

	Accessing Inventory Objects
	Creating Inventory Objects
	Privileges Required for Inventory Management
	Privileges
	Permissions

	Managed and Standalone ESX/ESXi Hosts

	Property Collector
	Introduction to the PropertyCollector
	Data Retrieval
	Inventory Traversal and Object Selection

	vSphere Data Objects for Property Collection
	vSphere Methods for Property Collection
	PropertyCollector Example (RetrievePropertiesEx)
	Inventory Traversal
	TraversalSpec Traversal
	SelectionSpec Traversal
	Simple Reference SelectionSpec
	Recursive Traversal

	Client Data Synchronization (WaitForUpdatesEx)
	Property Filters
	WaitForUpdatesEx

	Server Data Transmission
	PropertyCollector Performance
	SearchIndex

	Authentication and Authorization
	Objects for Authentication and Authorization Management
	Authentication and Authorization for ESXi and vCenter Server
	ESXi User Model
	vCenter Server User Model
	vSphere Security Model
	Privileges
	Roles
	Permissions

	Setting Up Users, Groups, and Permissions

	Obtaining User and Group Information from UserDirectory
	Managing ESXi Users with HostLocalAccountManager
	Managing Roles and Permissions with AuthorizationManager
	Using Roles to Consolidate Sets of Privileges
	Modifying Sample Roles to Create New Roles
	Granting Privileges Through Permissions
	Obtaining Information About Permissions
	Setting, Changing, or Deleting Permissions
	Impact of Group Membership on Permissions
	Applying Permission to a Managed Entity

	Authenticating Users Through SessionManager
	Using VMware Single Sign On for vCenter Server Sessions

	Using the Credential Store for Automated Login
	Credential Store Methods
	Credential Store Backing File
	Credential Store Samples
	Specifying Roles and Users with the Credential Store

	Managing Licenses with LicenseManager

	Hosts
	Host Management Objects
	Retrieving Host Information
	Configuring and Reconfiguring Hosts
	Managing the Host Lifecycle
	Reboot and Shutdown
	Using Standby Mode
	Disconnecting and Reconnecting Hosts

	Querying and Changing the Host Time
	Querying Virtual Machine Memory Overhead

	Storage
	Storage Management Objects
	Introduction to Storage
	How Virtual Machines Access Storage
	Datastores

	Choosing the Storage API to Use
	Configuring Disk Partitions
	Multipath Management
	Configuring iSCSI Storage
	Creating and Managing Datastores
	Accessing Datastores
	Creating and Modifying a VMFS Datastore
	Removing and Updating Datastores
	Managing VMFS Datastores with HostStorageSystem

	Managing VMFS Volume Copies (Resignaturing)
	Managing Diagnostic Partitions
	Retrieving Diagnostic Partition Information
	Creating a Diagnostic Partition

	Sample Code Reference

	vSphere Networks
	Virtual Switches
	Port Group
	Virtual Machine Network Interface
	VMkernel Network Interfaces
	Physical Network Adapter (pnic)

	Using a Distributed Virtual Switch
	Distributed Virtual Switch Configuration
	Backup, Rollback, and Query Operations

	VMware Standard Virtual Switch
	vNetwork Standard Switch Environment
	Virtual Switches

	Setting Up Networking with vSS
	Retrieving Information About the Network Configuration
	Adding a Standard Virtual Switch
	Adding a Virtual Port Group
	Adding a VMkernel Network Interface

	Defining the Host Network Policies
	NIC Teaming
	Setting Up IPv6 Networking
	Adding Networking Services
	Adding an NTP Service
	Setting Up the IP Route Configuration
	Setting Up SNMP

	Sample Code Reference

	Virtual Machine Configuration
	VirtualMachine Management Objects and Methods
	Creating Virtual Machines and Virtual Machine Templates
	Creating a Virtual Machine Using VirtualMachineConfigSpec
	Calling the CreateVM_Task Method
	Specifying Virtual Machine Attributes with VirtualMachineConfigSpec

	Creating Virtual Machine Templates
	Cloning a Virtual Machine
	Converting a Template to a Virtual Machine
	Accessing Information About a Virtual Machine
	Checking Default Files
	Checking Default Devices

	Configuring a Virtual Machine
	Name and Location
	Hardware Version
	Boot Options
	Operating System
	CPU and Memory Information
	CPU and Memory Resource Allocation
	CPU and Memory Modification for Running Virtual Machines
	Number of CPUs
	CPU Processors and Memory Affinity
	CPU Features

	Networks
	Virtual Network Interfaces
	Virtual Machine MAC Address

	Fibre Channel NPIV Settings
	File Locations

	Adding Devices to Virtual Machines
	Performing Virtual Machine Power Operations
	Registering and Unregistering Virtual Machines
	Customizing the Guest Operating System
	Installing VMware Tools
	Upgrading a Virtual Machine

	Virtual Machine Management
	Virtual Machine Migration
	Cold Migration
	Migration with VMotion
	Using Storage VMotion

	Snapshots
	Creating a Snapshot
	Reverting to a Snapshot
	Deleting a Snapshot

	Linked Virtual Machines
	Linked Virtual Machines and Disk Backings
	Limitation for HA Clusters

	Creating a Linked Virtual Machine
	Creating a Linked Virtual Machine From a Snapshot
	Creating a Linked Virtual Machine From the Current Running Point

	Removing Snapshots and Deleting Linked Virtual Machines
	Relocating a Virtual Machine in a Linked Virtual Machine Group
	Promoting a Virtual Machine's Disk
	Performing Advanced Manipulation of Delta Disks

	Virtual Applications
	About Virtual Applications
	Management Overview
	Direct and Linked Children
	OVF Packages

	Creating a VirtualApp
	Managing VirtualApp Children
	Exporting a Virtual Application
	VirtualApp and OvfManager Methods
	VirtualApp Data Structures
	OvfManager Data Structures
	Example of Generating an OVF Package

	Importing an OVF Package
	Virtual Application Life Cycle
	Powering a Virtual Application On or Off
	Unregistering a Virtual Application
	Suspending a Virtual Application
	Destroying a Virtual Application

	Resource Management
	Resource Management Objects
	Introduction to Resource Management
	Resource Allocation
	Resource Pool Hierarchies
	Resource Pool Management Guidelines
	Cluster Overview

	Creating and Configuring Resource Pools
	Understanding Expandable Reservation
	Expandable Reservation Example 1
	Expandable Reservation Example 2

	Deleting Child Resource Pools
	Moving Resource Pools or Virtual Machines Into a Resource Pool

	Introduction to VMware DRS and VMware HA Clusters
	VMware DRS
	VMware HA

	Creating and Configuring Clusters
	Creating a Cluster
	Adding a Host to a Cluster
	Reconfiguring a Cluster

	Managing DRS Clusters
	Managing HA Clusters
	Primary and Secondary Hosts
	Failure Detection and Host Network Isolation
	Using VMware HA and DRS Together

	Tasks and Scheduled Tasks
	Creating Tasks
	Session Persistence
	Cancelling a Task
	Using TaskInfo to Determine Task Status
	Monitoring TaskInfo Properties

	Accessing and Manipulating Multiple Tasks
	Gathering Data with a ViewManager Object
	Task Monitoring Example Using the ListView Object

	Gathering Data with a TaskManager Interface
	Examining Recent Tasks with TaskManager

	Understanding the ScheduledTaskManager Interface
	Scheduling Tasks
	Defining the Schedule and Action
	Scheduling Recurring Operations

	Cancelling a Scheduled Task

	Using a TaskHistoryCollector
	Creating a TaskHistoryCollector Filter
	Managing the HistoryCollector

	Sample Code Reference

	Events and Alarms
	Event and Alarm Management Objects
	Understanding Events
	Managing Events with EventManager
	Event Data Objects
	Formatting Event Message Content
	Creating Custom Events

	Using an EventHistoryCollector
	Creating an EventHistoryCollector Filter
	Managing the HistoryCollector

	Using Alarms
	Obtaining a List of Alarms
	Creating an Alarm

	Defining Alarms Using the AlarmSpec Data Object
	Specifying Alarm Trigger Conditions with AlarmExpression
	AlarmExpression Types
	Using MetricAlarmExpression

	Specifying Alarm Actions
	Deleting or Disabling an Alarm

	Sample Code Reference

	vSphere Performance
	vSphere Performance Data Collection
	PerformanceManager Objects and Methods
	Retrieving vSphere Performance Data
	Performance Counter Example (QueryPerf)
	Mapping Performance Counters (Counter Ids and Metadata)
	Retrieving Statistics
	Performance Data Returned by a vSphere Server
	Handling Returned Performance Data

	Large-Scale Performance Data Retrieval
	Using the QueryPerf Method as a Raw Data Feed
	Comparison of Query Methods
	Retrieving Summary Performance Data

	Performance Counter Metadata
	Performance Intervals
	ESXi Server Performance Intervals
	vCenter Server Performance Intervals

	vSphere Performance and Data Storage
	Modifying Historical Intervals
	Modifying Performance Counter Collection Levels
	Performance Counter Data Collection
	Performance Counter Data Storage
	Performance Manager Method Interaction
	vSphere Client Management of Performance Statistics

	Sample Code Reference

	Diagnostics and Troubleshooting
	Troubleshooting Best Practices
	Overview of Configuration Files and Log Files
	ESX/ESXi Log File
	Virtual Machine Log Files
	vCenter Server Log Files

	Modifying the Log Level to Obtain Detailed Information
	Setting the Log Level on ESX/ESXi Systems
	Generating Logs
	Setting the Log Level on vCenter Server Systems

	Using DiagnosticManager
	Using the MOB to Explore the DiagnosticManager
	Generating Diagnostic Bundles

	Managed Object Browser
	Using the MOB to Explore the Object Model
	Accessing the MOB
	Using the MOB to Navigate the VMware Infrastructure Object Model

	Using the MOB to Invoke Methods
	Passing Primitive Datatypes to Method
	Passing Arrays of Primitives to Methods
	Passing Complex Structures to Methods
	Simple Content
	Complex Content

	HTTP Access to vSphere Server Files
	Introduction to HTTP Access
	URL Syntax for HTTP Access
	Datastore Access (/folder)
	Host File Access (/host)
	Update Package Access (/tmp)
	Privilege Requirements for HTTP Access

	Privileges Reference
	Privileges Required to Invoke Operations
	Privileges Required to Read Properties
	Privileges Defined for the Administrator Role

	Sample Program Overview
	Java Sample Programs (JAXWS Bindings)
	C# Sample Programs
	Axis 4.1

	Index

