
Developing Local Plug-ins with the
vSphere Client SDK

Update 2
Modified 28 April 2020
VMware vSphere 6.7
vSphere Client SDK 6.7

You can find the most up-to-date technical documentation on the VMware website at:

https://docs.vmware.com/

If you have comments about this documentation, submit your feedback to

docfeedback@vmware.com

VMware, Inc.
3401 Hillview Ave.
Palo Alto, CA 94304
www.vmware.com

Copyright © 2018-2020 VMware, Inc. All rights reserved. Copyright and trademark information.

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 2

https://docs.vmware.com/
mailto:docfeedback@vmware.com
http://pubs.vmware.com/copyright-trademark.html

Contents

1 About This Book 6

Revision History 7

2 About the vSphere Client 8
Understanding the vSphere Client Architecture 8

Overview of the User Interface Layer Components 9

Understanding Extensibility in the vSphere Client 12

Extending the User Interface Layer 12

Extending the Java Service Layer 13

3 About the vSphere Client 15
Knowledge Requirements for Using the vSphere Client SDK 15

SDK Versions and Compatibility 16

vSphere Client SDK Contents 17

vSphere Web Client Compatibility 17

4 vSphere Client SDK Setup 18
Software Requirements 18

Development Environment Requirements Overview 18

Setting Up for HTML-Based Plug-In Development 19

Set Up for Java Development 19

Automate the Plug-In Build Process 20

Download the vSphere Client SDK 20

Set Up the Eclipse Integrated Development Environment (optional) 21

Install the vSphere Client Tools Eclipse Plug-In (optional) 23

Register Your Local vSphere Client with the vCenter Server Instance 23

Configure the Tomcat Server in Your Eclipse IDE 26

5 Using the vSphere Client SDK Samples 28
Location of Sample Plug-in in the vSphere Client SDK 28

vSphere HTML SDK Sample 28

Build and Deploy the vSphere HTML SDK Sample Plug-in 29

Running the vSphere HTML SDK Sample 29

6 Creating a vSphere Client SDK Solution 31
Before Creating an HTML Plug-In 31

Creating an HTML Plug-In Project 31

VMware, Inc. 3

Generate an HTML Plug-In Project with a Script 32

Create an HTML Plug-In Project with Eclipse 32

Contents of the HTML Plug-In Project Template 33

Building a Plug-In Package from the Project Template 44

Testing the Generated Plug-Ins 45

Deploy the Plug-In on a Local vSphere Client 45

Deploying Your Plug-In on a Remote vSphere Client 46

7 Extension Points in the vSphere Client 49
Global Extension Points 49

Object Navigator Extension Points 51

Object Workspace Extension Points 52

Actions Extension Points 57

Extension Templates 60

Custom Object Extension Points 61

Ordering Extensions 66

Filtering Extensions 66

8 vSphere Client SDK Extension Points 70
Global View Extension Point for the vSphere Client 70

Navigation Extension Point for the vSphere Client 72

vSphere Objects Extension Points for the vSphere ClientvSphere Client 73

Actions Extension Point for the vSphere Client 77

9 Using the vSphere Client JavaScript API 80
vSphere Client JavaScript API: Modal Interface 80

vSphere Client JavaScript API: Application Interface 83

vSphere Client JavaScript API: Event Interface 85

Example Using the modal API 86

10 Using Themes with vSphere Client Plug-ins 88
Using Style Variables in Plug-In CSS 88

Building Output Style Sheets for vSphere Client Plug-Ins 90

Configuring and Loading Theme Style Sheets in vSphere Client Local Plug-Ins 92

11 Developing HTML-Based User Interface Extensions 95
Overview 95

Global View Extensions 96

Properties of the HtmlView Extension Object 97

Adding a vCenter Server Selector 97

Extending the vCenter Object Workspace 98

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 4

Extending an Existing Object Workspace 98

Creating an Object Workspace for a Custom Object 99

Creating Extensions to the Summary Tab 99

Creating Data View Extensions 100

Creating Actions Extensions 102

Actions Framework Overview 102

Defining an Action Set 103

Defining Individual Actions for HTML-Based Action Extensions 103

Handling Actions for HTML-Based Action Extensions 106

Handling Locales 107

Guidelines for Creating Plug-Ins Compatible with the vSphere Client 109

12 Developing for the vSphere Client Service Layer 112
Developing Extensions to the Service Layer 112

Understanding the vSphere Client Data Service 112

Overview of Data Service Queries 116

Extending the Data Service with a Data Service Adapter 118

Creating a Custom Java Service 129

Importing a Service in a User Interface Plug-In Module 131

13 Creating and Deploying Plug-In Packages 132
Plug-In Package Overview 132

XML Elements of the Plug-In Package Manifest File 133

Deploying a Plug-In Package 135

Plug-In Caching 135

Deploying a Plug-In Package From a Remote Server 136

Register a Plug-In Package as a vCenter Server Extension 136

Creating the vCenter Server Extension Data Object 137

Verifying Your Plug-In Package Deployment 139

Unregister a Plug-In Package 139

14 Best Practices for Developing Extensions for the vSphere Client 141
Best Practices for Creating Plug-In Packages 141

Best Practices for Plug-In Modules Implementation 143

Best Practices for Developing HTML-Based Extensions 143

Best Practices for Extending the User Interface Layer 144

Best Practices for Extending the Service Layer 145

OSGi-Specific Recommendations 146

DataService-Specific Best Practices 148

Best Practices for Deploying and Testing Your vSphere Client Extensions 150

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 5

About This Book 1
Developing Local Plug-ins with the vSphere Client SDK provides information about developing and
deploying HTML-5 extensions to the vSphere Client user interface.

VMware provides many APIs and SDKs for different applications and goals. This documentation provides
information about the extensibility framework of the vSphere Client for developers who are interested in
extending the web application with custom functionality.

Intended Audience
This information is intended for anyone who wants to extend the vSphere Client with custom functionality.
Users typically are software developers who use HTML and JavaScript to create graphical user interface
components that work with VMware vSphere®.

VMware Technical Publications Glossary
VMware Technical Publications provides a glossary of terms that might be unfamiliar to you. For
definitions of terms as they are used in VMware technical documentation, go to http://www.vmware.com/
support/pubs.

VMware, Inc. 6

http://www.vmware.com/support/pubs
http://www.vmware.com/support/pubs

Revision History

This Developing Local Plug-ins with the vSphere Client SDK is updated with each release of the product
or when necessary.

This table provides the update history of Developing Local Plug-ins with the vSphere Client SDK.

Revision Description

28APR2020 n Corrected nodejs version range required by sample program.

n Corrected erroneous book title.

11APR2019 Changes for vSphere 6.7U2.

n Replaced Virgo server with Tomcat server.

n Updated JavaScript API to handle UI themes.

n Added information about plug-in caching.

n Added information about plug-in handling in linked mode.

n Revised SDK directory structure.

n Added chapter about integrating Clarity themes.

16OCT2018 Renamed for vSphere 6.7U1 release, since remote plug-ins are documented in a parallel book.

17APR2018 Initial release.

VMware, Inc. 7

About the vSphere Client 2
The VMware vSphere® Client provides a means for connecting to VMware vCenter Server® systems and
managing the objects in the vSphere infrastructure. The VMware vSphere Client is an HTML5-based web
application with a modular architecture that allows you to extend the functionality by means of custom
plug-ins.

This chapter includes the following topics:

n Understanding the vSphere Client Architecture

n Overview of the User Interface Layer Components

n Understanding Extensibility in the vSphere Client

Understanding the vSphere Client Architecture
The vSphere Client architecture consists of three layers: the user interface layer, the Java service layer,
and the back end layer.

User Interface Layer

The user interface layer consists of an HTML platform that provides a framework for plug-in
extensions displayed in a Web browser. The HTML application contains all user interface elements
with which the user interacts, such as menus, commands, home screen shortcuts, and other views.
You can use the user interface elements to view information about an object in the vSphere
environment and to make changes to your vSphere infrastructure.

The vSphere Client platform ensures that each plug-in view is isolated from the vSphere Client
application, which allows you to use the UI technology of your choice when developing HTML plug-
ins. You can also use any library to implement the UI components within your views.

At the user interface layer vSphere Client plug-ins use the JavaScript API to communicate with the
HTML platform components.

Java Service Layer

The Java service layer provides session management, a data query interface, controller components,
and communication with the back end layer. HTML platform components use RESTful API calls over
HTTPS to communicate with the Java platform in the service layer.

VMware, Inc. 8

The service layer is based on the Spring MVC and the OSGI framework. Both the platform services
and the vSphere Client plug-ins run in this environment.

Back End Layer

The back end layer consists of services belonging to VMware vCenter Server, and of services created
by third parties. Java components in the service layer use the vSphere Web Services SDK to access
one or more instances of vCenter Server, or any custom or standard API to access third party
services.

UI layer (Browser)

SOAP using vSphere
Web Services SDK

Any remoting
protocol

JavaScript API
JavaScript API

HTTPS

HTTPS calls to
GET / POST data

Service layer

Back-end layer

vSphere Client / SDK

VMware vSphere

Partners

Main UI,
core plugin views

3rd party
plugin views

Java Services

Back-end Server

Data Service
Adapters

Web
Controllers

vCenter 1.. N

• Container and views
• JavaScript API
• Extension points

HTML Platform

 • Core Services
 • Data Service (DS) API
 • User Session API

JAVA Platform

Overview of the User Interface Layer Components
The user interface layer of the vSphere HTML5 Web Client 6.5 contains a limited set of the views and the
features that are provided by the vSphere Web Client for managing vSphere objects.

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 9

The user interface layer of the vSphere HTML5 Web Client contains HTML views, such as the data views,
portlets, navigation options, and search bar. The vSphere HTML5 Web Client provides a vSphere objects
navigator, the same top-level tabs for the vSphere objects in the main workspace area, and a panel that
displays the recent tasks and events.

You navigate through the user interface of the vSphere HTML5 Web Client application in the same way
as you do with the vSphere Web Client.

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 10

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 11

Understanding Extensibility in the vSphere Client
The vSphere Client provides a modular architecture that enables plug-in developers to add new user
interface elements and business logic to the VMware feature set.

When you add to the user interface layer, you create one or more extensions, which contain the HTML
content that you want to visualize. This can be views, menus, or any other UI controls.

When you extend the Java service layer, you create one or more web services that provide data or
perform actions on behalf of your UI extensions.

Each plug-in module extends either the user interface layer or the service layer of the vSphere Client. The
user interface plug-in modules and service plug-in modules together form a complete solution to add new
capabilities to the vSphere Client graphical user interfaces.

In general, you extend the vSphere Client for one of the following reasons.

n You extended the vSphere environment by adding a new type of object to the environment, or by
adding more data to an existing object. If you extend vSphere in this way, you can extend the
vSphere Client with new user interface elements that allow users to observe, monitor, and control
these new objects.

n You extended the vSphere Client without having added new objects or data to the vSphere
environment. For example, you might want to collect existing vSphere data on a single screen or
location in the user interface. Shortcuts, global views, and object navigator inventory lists are
examples of extensions that you can use for these purposes. You can also create a new second-level
tab, portlet, or other data view that displays existing vSphere data, such as performance data, as a
custom graph or chart.

Extending the vSphere Client can involve creating both user interface plug-in modules and service plug-in
modules. For more information about the architecture of the vSphere Client, see Understanding the
vSphere Client Architecture.

n Extending the User Interface Layer

A user interface plug-in module adds one or more extensions to the vSphere HTML5 Web Client and
the vSphere Web Client user interface layer.

n Extending the Java Service Layer

You can add new Java services to the service layer. The Java services you add can perform any of
the functions of a typical Java Web service.

Extending the User Interface Layer
A user interface plug-in module adds one or more extensions to the vSphere HTML5 Web Client and the
vSphere Web Client user interface layer.

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 12

Extensions to the user interface layer can include new data views, either in the virtual infrastructure or as
global views. When you create a data view extension, you must also create the actual GUI objects in
Adobe Flex or in HTML and package them in the plug-in module. These GUI objects rely on data from the
vSphere HTML5 Web Client and the vSphere Web Client service layers. You can use the libraries
included with the vSphere Web Client SDK to enable communication between your GUI objects and the
service layer or if you create an HTML plug-in, you can use a library of your choice.

Other user interface extensions can include new workspaces for custom objects, shortcuts added to the
object navigator or home screen, new relations between vSphere objects, and new actions associated
with vSphere objects.

Concepts for Extending the User Interface Layer in the vSphere Client
There are three main concepts in vSphere Client UI extensibility.

Extension point

An integration point on the vSphere Client user interface where a plug-in can hook and add its own
capability.

Extension

The UI content that you want to visualize. This can be views, menus or any other UI controls.

Extension ID

A unique identifier that you define to refer to your extension.

Extending the Java Service Layer
You can add new Java services to the service layer. The Java services you add can perform any of the
functions of a typical Java Web service.

The Java services you add to the Java service layer are used to retrieve data from the vSphere
environment and display the data in the user interface layer, or to make changes to the vSphere
environment in response to actions in the user interface layer.

Getting Data from the vSphere Environment
Service plug-in modules that gather data from the vSphere environment usually extend the native
services on the vSphere HTML5 Web Client and the vSphere Web Client application servers, such as the
Data Service. You can create standalone custom Java services for data gathering, but a best practice is
to extend the built-in services in the vSphere Web Client SDK. Extensions to the built-in services in the
vSphere Web Client SDK are often simple wrappers around existing Java services that you create.

In general, you must extend the Data Service if your extension solution meets any of the following criteria.

n Your extension provides new data about existing vSphere objects. If your extension provides a GUI
element to display data that the vSphere HTML5 Web Client or the vSphere Web Client services do
not already provide, you must extend the Data Service to provide such data.

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 13

n You want to add a new type of object to the vSphere environment. If you are adding a new type of
object to the vSphere environment, you can extend the Data Service to provide data for objects of the
new type.

The service extensions you create can access data from any source, either inside or outside of the
vSphere environment. For example, you can create an extension to the Data Service that retrieves data
from an external Web server, rather than from vCenter Server.

Making Changes to the vSphere Environment
Service plug-in modules that make changes to the vSphere environment are standalone Java services
that you create. These services are used when the user starts an action in the vSphere HTML5 Web
Client or the vSphere Web Client user interfaces. If you create an action extension, you must also create
the Java service that performs the action operation on the vSphere environment as a service plug-in
module.

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 14

About the vSphere Client 3
The VMware vSphere® Client provides a means for connecting to VMware vCenter Server® systems and
managing the objects in the vSphere infrastructure. The VMware vSphere Client is an HTML5-based web
application with a modular architecture that allows you to extend the functionality by means of custom
plug-ins.

This chapter includes the following topics:

n Knowledge Requirements for Using the vSphere Client SDK

n SDK Versions and Compatibility

n vSphere Client SDK Contents

n vSphere Web Client Compatibility

Knowledge Requirements for Using the vSphere Client
SDK
Developing extensions for the vSphere Client by using the vSphere Client SDK, requires familiarity with
HTML and JavaScript for the user interface components. The server components of remote plug-ins can
be written using any technology you choose.

n You can extend the vSphere Client if you have skill with Web application development by using
JavaScript and HTML. You can use any user interface technology to create views for the vSphere
Client user interface layer. The sample provided within the SDK uses Angular, TypeScript, and the
Clarity Design System.

n You can use any coding language you choose for server components. A remote plug-in generally
places these functional requirements on the server components:

n A web server that provides HTML, JavaScript, graphic, and localization resources for the user
interface.

n A fixed Service Provider Interface that responds to vSphere Client requests for dynamic view
content, such as menus.

n A custom API that provides controller and model functionality to support the view component.

VMware, Inc. 15

n Business logic components that establish Web Services API sessions with vCenter Server
instances, and retrieve data to satisfy requests from the view component. The Web Services API
is language agnostic, but requesters often use Java, C#, or Python bindings.

SDK Versions and Compatibility
When you upgrade from an older version of the vSphere Client SDK, you must consider whether your
plug-ins will be compatible with the new vSphere Client.

You can refer to the following tables for more information about the compatibility of the plug-ins you
developed with the different versions of the vSphere Client SDK.

Table 3-1. Compatibility Between the HTML Plug-In Created with a Specific Version of the
SDK and the Different Web Client Applications

Version of
the SDK
That Is Used
to Create
the HTML
Plug-In vSphere Web Client 6.0

vSphere Web
Client 6.5 and
vSphere Client 6.5

vSphere Web Client 6.5
U2 and vSphere Client
6.5 U2

vSphere Web Client 6.7 and
vSphere Client 6.7

version 6.0 Yes Yes* Yes* Yes

version 6.5 No, if the plug-in uses APIs
introduced in 6.5

Yes Yes Yes

version 6.5
U2

No, if the plug-in uses APIs
introduced in 6.5 or 6.7

No, if the plug-in
uses APIs
introduced in 6.7
and 6.5 U2

Yes Yes

version 6.7 No, if the plug-in uses APIs
introduced in 6.5 or 6.7

No, if the plug-in
uses APIs
introduced in 6.7

Yes Yes

Note * If you have HTML-based plug-ins that are created with the vSphere Web Client SDK 6.0, you
must follow the steps for upgrading your plug-in to ensure compatibility with the 6.5 versions of the
vSphere Web Client and the vSphere Client.

Table 3-2. Compatibility Between JavaScript APIs and vSphere Client Versions

Version of the vSphere Client vSphere 6.7/6.5 U2 JavaScript API vSphere 6.0/6.5 Bridge API

version 6.0 No Yes

version 6.5 No Yes

version 6.5 U2 Yes Yes

version 6.7 Yes Yes

Note The Bridge API is deprecated in the vSphere 6.7 release and the vSphere 6.5 U2 release. VMware
will discontinue support for the Bridge API in a future vSphere Client release.

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 16

vSphere Client SDK Contents
The vSphere Client SDK contains the following directories to aid plug-in developers.

docs

n Detailed instructions for setting up IDEs.

n Documentation for JavaScript API used by UI components of plug-ins.

n FAQ with troubleshooting and development advice for plug-in developers.

libs

Run-time libraries for Spring framework and vSphere API RPC.

samples

A complete remote plug-in sample that demonstrates both client-side and server-side modules, as
well as accompanying metadata.

tools

Scripts to assist with development tasks.

vsphere-ui

A complete version of the vSphere Client, both client and server modules. This directory is not
relevant for remote plug-ins.

vSphere Web Client Compatibility
The vSphere Web Client supported Flex-based plug-ins. If your application includes such plug-ins, you
might need this compatibility information.

Table 3-3. Compatibility Between the Flex-Based Plug-In Created with a Specific Version of
the SDK and the vSphere Web Client

Version of the vSphere Web Client SDK
That Is Used to Create the Flex-Based
Plug-In vSphere Web Client 6.0 vSphere Web Client 6.5

version 6.0 Yes Yes*

version 6.5 Yes Yes*

Note * To make the plug-ins that are created with the older versions of the vSphere Web Client SDK
compatible with the vSphere Web Client 6.5, make sure that you update the plug-ins according to the
release notes provided within the SDKs.

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 17

vSphere Client SDK Setup 4
To develop HTML plug-ins for the vSphere Client, you must first set up your development environment.

This chapter includes the following topics:

n Software Requirements

n Development Environment Requirements Overview

n Setting Up for HTML-Based Plug-In Development

Software Requirements
You can set up your development environment for developing HTML-based plug-ins by using specific
software components.

To set up your development environment, you can use the following software components with their
respective versions.

Software Component
Minimum Required
Version Description

Java Standard Edition
Development Kit (JDK)

1.8.x For information about the required setup for Java development, see Setup
for Java Development. The local application server runtime requires JDK
1.8.x to work with the vCenter Server 6.5 instance.

Apache Ant 1.9.x For more information about how to use Ant to automate the build process of
your plug-ins, see Automate the Plug-in Build Process.

Eclipse IDE for Java EE
Developers or Spring Tool
Suite

For developing HTML
plug-ins, download
Eclipse Neon.

For more information about how to set up the Eclipse IDE, see Set up the
Eclipse Integrated Development Environment.

IntelliJ IDEA Standard Edition You can use the IntelliJ IDEA as an alternative to the Eclipse IDE for
developing your Java and JavaScript code.

Development Environment Requirements Overview
Before you start setting up your development environment, you must download the vSphere Client SDK
to your working machine and have access to a vCenter Server for Windows or a vCenter Server
Appliance instance.

VMware, Inc. 18

To create a vSphere Client plug-in, your development environment must include the following items.

n A development environment capable of developing Web applications by using JavaScript and HTML.

n A development environment capable of developing Java-based Web applications. You can use the
Eclipse IDE or IntelliJ IDEA.

n Access to an instance of vCenter Server for Windows or a vCenter Server Appliance instance to
register your plug-in. Plug-in registration allows the vSphere Client to download and install the plug-in.

You can set up the vSphere Client SDK on a machine with Windows or Mac OS operating systems.
Before you begin the SDK setup, you can set up your Java environment and Apache Ant, and install and
configure the Eclipse IDE or IntelliJ IDEA.

Setting Up for HTML-Based Plug-In Development
The vSphere Client SDK contains libraries, sample plug-ins, and various SDK tools that help you develop
and build plug-ins for the vSphere Client.

Setting up your development environment for creating HTML plug-ins for the vSphere Client involves
several tasks.

Set Up for Java Development
You must set up your Java development environment to create extensions to the Service Layer.

You might already have the Java platform installed on your development machine. To check the version of
your Java installation, open a command prompt and enter java -version.

Procedure

1 From the Oracle Web site at http://www.oracle.com/technetwork/java/javase/downloads/index.html,
download the Java SE Development Kit installer.

For developing HTML plug-ins, download JDK 1.8.x.

Download the 64-bit version of the JDK installer if you need to allocate more memory.

2 Install the JDK following the instructions of Oracle for the operating system of your development
machine.

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 19

http://www.oracle.com/technetwork/java/javase/downloads/index.html

3 Specify the location of the JDK.

Operating System Java Location

Windows Use the JAVA_HOME environment variable to specify the
location of the JDK. For example, set the environment
variable to C:\Program Files\Java\jdk1.8.0_10.

Mac OS Open the Terminal application and enter the following
command: echo export "JAVA_HOME=\$(/usr/libexec/
java_home)" >> ~/.bash_profile. In case you have more
than one Java Development Kits installed, you can specify
only the version you want by using a command like the
following: echo export "JAVA_HOME=\$(/usr/libexec/
java_home -v 1.8.0_17)" >> ~/.bash_profile.

What to do next

Set the Java compiler compliance level to Java 1.7 in your automation build scripts or in Eclipse, so that
your plug-in will generate code compatible with older versions of vCenter Server .

Automate the Plug-In Build Process
Apache Ant is used by the scripts in the SDK to generate plug-in project templates and to build plug-ins.

You can set up Apache Ant in your development environment to generate plug-in project templates and
build plug-ins out of the projects. You can also build the samples provided with the vSphere Client SDK.

To use the SDK build scripts inside Eclipse, you can use the Apache Ant version provided with the
Eclipse package. The following procedure sets up Apache Ant for running scripts by using the command
line console.

Prerequisites

Verify that you have a Java environment installed on your development machine. See Set Up for Java
Development.

Procedure

1 From the Apache Ant site at http://ant.apache.org/bindownload.cgi, download the Apache Ant binary
distribution.

For developing HTML plug-ins, download Apache Ant 1.9.x.

2 Install Apache Ant by following the provided instructions for the operating system of your
development machine.

3 Set the ANT_HOME environment variable to the directory on your development machine where you
installed Apache Ant.

Download the vSphere Client SDK
Download the .zip file that contains all components of the vSphere Client SDK.

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 20

http://ant.apache.org/bindownload.cgi

Prerequisites

Create a My VMware account at https://my.vmware.com/web/vmware/.

Procedure

1 Download the vSphere Client SDK from the VMware Web site at https://my.vmware.com/web/
vmware/downloads.

The vSphere Client SDK is part of the VMware vCloud Suite and VMware vSphere, listed under
Datacenter & Cloud Infrastructure.

2 Confirm the md5sum is correct.

See the VMware Web site topic Using MD5 Checksums at http://www.vmware.com/download/
md5.html.

3 Extract the content of the SDK in a directory on your development machine.

Note The name of the directory where you extract the vSphere Client SDK must be short and
without spaces.

4 Set the VSPHERE_SDK_HOME environment variable to the directory on your development machine where
you extracted the vSphere Client SDK.

For example:

VSPHERE_SDK_HOME=C:\sdk\html-client-sdk

5 Set up the VMWARE_CFG_DIR environment variable on your local machine to point to one of the following
directories:

n For a Windows development environment, set C:\ProgramData\VMware\vCenterServer\cfg\
as a value to the variable.

n For a Mac OS development environment, set /var/lib/vmware/vsphere-ui as a value to the
variable.

What to do next

Open the README.html file and review the information about the other files and directories in the vSphere
Client SDK.

Set Up the Eclipse Integrated Development Environment
(optional)
You can use an IDE of your choice to develop custom plug-ins for the vSphere Client. The SDK provides
an Eclipse plug-in to assist the development process for those who use the Eclipse IDE.

Procedure

1 From the Eclipse Web site at http://www.eclipse.org/downloads/eclipse-packages/, download the
Eclipse IDE for Java EE Developers package.

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 21

https://my.vmware.com/web/vmware/
https://my.vmware.com/web/vmware/downloads
https://my.vmware.com/web/vmware/downloads
http://www.vmware.com/download/md5.html
http://www.vmware.com/download/md5.html
http://www.eclipse.org/downloads/eclipse-packages/

2 Extract the contents of the downloaded file into an appropriate location on your development
machine.

3 If you do not have the minimum and maximum heap size automatically set up for Eclipse, edit the
eclipse.ini file before you start Eclipse. You must add the location to the JDK you installed and
increase the heap space and the maximum permanent space used by the JVM.

You must add or edit the Eclipse initialization file to contain the following lines:

-vm

C:/<your JAVA_HOME directory>/bin/java.exe

-Xmx1024m

-XX:MaxPermSize=512m

4 Start Eclipse and edit the Eclipse preferences to set up your workspace for developing plug-ins for
the vSphere Client.

a Open the Preferences dialog.

n On a Microsoft Windows platform, choose Window > Preferences.

n On a Macintosh platform, choose Eclipse > Preferences.

The Preferences dialog opens.

b From the General page, select the Show heap status option to display information about the
current Java heap usage.

c From General > Network Connections, configure the proxy settings to be used when opening a
connection.

d From General > Workspace, select the Build automatically and Refresh using native hooks
or polling check boxes.

e From Java > Code Style > Formatter, configure your code and naming conventions.

f From Java > Installed JREs, add the location of the JDK you installed. See Set Up for Java
Development.

g From General > Workspace > Linked Resources, set the location of your SDK.

Set the path to the html-client-sdk folder as a value of the VSPHERE_CLIENT_SDK path variable.

h From Java > Build Path > Classpath Variables, set the location of your SDK.

Set the path to the html-client-sdk folder as a value of the VSPHERE_CLIENT_SDK classpath
variable.

What to do next

After you install and set up the Eclipse IDE on your development machine, you can install the vSphere
Client SDK Tools Eclipse plug-in.

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 22

Install the vSphere Client Tools Eclipse Plug-In (optional)
The vSphere Client SDK provides an Eclipse plug-in that adds tools and wizards to your Eclipse IDE to
ease your HTML plug-in development process. This step is useful only if you use the Eclipse IDE for
developing HTML plug-ins.

Prerequisites

n Configure the proxy to be used for your development machine. For more information, see Set Up the
Eclipse Integrated Development Environment (optional) .

Procedure

1 Start Eclipse on your development machine.

2 From Help > Install New Software ..., click Add in the Install dialog box.

The Add Repository dialog box appears.

3 In the Name text box, enter a name for this local site, such as vSphere Client plug-in site.

You can reuse the created repository, if you install a new version of Eclipse at the same place on your
machine.

4 Click Local ... and browse to the your_SDK_location/tools/Eclipse plugin site directory,
then click Open.

5 Select the vSphere Client SDK Tools node from the discovered software and click Next.

6 Check the installation details and accept the license agreement.

7 Click Finish to complete the wizard.

Click Install anyway on the security warning pop-up dialog box that shows up during the installation
process.

8 Restart your Eclipse SDK to apply the changes.

What to do next

Verify that the Eclipse plug-in is installed correctly by going to Help > About Eclipse and selecting
Installation Details.

Register Your Local vSphere Client with the vCenter Server
Instance
If you want to verify your custom plug-ins, you can deploy the plug-ins first on your local vSphere Client.
You must register your local instances of the Web browser applications with the vCenter Server Appliance
or vCenter Server for Windows to be able to deploy your plug-ins locally.

There are two options available to register your local vSphere Client. The automatic registration option
applies only to the vCenter Server Appliance. The manual registration option applies to either the vCenter
Server Appliance or to vCenter Server for Windows.

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 23

Manual Registration of Local vSphere Client
You can register your local vSphere Client with the vCenter Server instance using a manual method that
applies to either the vCenter Server Appliance or to vCenter Server for Windows.

The SDK provides a registration script that you can run in the vCenter Server instance. The files
generated by this script connect your local Web browser application to the remote vCenter Server system.

Prerequisites

n Verify that you have access to a vCenter Server instance.

Procedure

1 Navigate to the vCenter registration scripts folder under tools in your SDK installation.

2 Copy the dev-setup script to one of the following locations on the vCenter Server system depending
on your vSphere deployment.

n On the vCenter Server Appliance, use the root directory to copy the script. You must make the
file executable.

n On the vCenter Server for Windows, use the C:\Users\Administrator directory to copy the
script.

3 Run the dev-setup script in the corresponding directory.

The script generates the following files: webclient.properties, store.jks, and ds.properties.

4 Copy the generated files on your development machine in one of the following locations.

Note On a Windows operating system, you might not be able to see the ProgramData folder. To
change the way items are displayed on a Windows machine, use Folder Options from Control
Panel.

Operating
System Generated File Location on Your Development Machine

Windows webclient.properties C:\ProgramData\VMware\vCenterServer\cfg\vsphere-client\

Mac OS /var/lib/vmware/vsphere-client/vsphere-client/

Windows store.jks C:\ProgramData\VMware\vCenterServer\cfg\

Mac OS /var/lib/vmware/vsphere-client/

Windows ds.properties C:\ProgramData\VMware\vCenterServer\cfg\vsphere-client

\config\

Mac OS /var/lib/vmware/vsphere-client/vsphere-client/config/

5 If you use a Mac OS development environment, edit the webclient.properties file and set the
keystore.jks.path property to point to the /var/lib/vmware/vsphere-client/store.jks file.

6 If you use a Mac OS development environment, edit the ds.properties file and set the
solutionUser.keyStorePath property to point to the /var/lib/vmware/vsphere-client/
store.jks file.

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 24

7 If you use a Mac OS development environment, before you connect your local Web browser
application to the vCenter Server system for the first time, edit the server.xml file. Change the value
of the certificateKeystoreFile attribute of the <Certificate> element to /var/lib/vmware/
vsphere-client/store.jks.

You can locate the file at your_SDK_folder/html-client-sdk/vsphere-ui/server/conf.

8 Start the local vSphere Client by running the startup script located at the bin directory of the
server folder.

For example, if you use a Mac OS development environment, the script for starting the vSphere
Client is located at your_SDK_folder/html-client-sdk/vsphere-ui/server/bin.

Note You might need to make the script executable: chmod +x startup.sh

9 Open a Web browser and log into your local vSphere Client at https://localhost:9443/ui.

Your local vSphere Client connects to the vCenter Server instance and displays the vSphere
inventory.

What to do next

You can deploy your custom plug-ins to the local vSphere Client and verify whether the plug-ins function
properly in your development environment before deploying them on the remote Web browser
applications.

Automated Registration of Local vSphere Client
You can register your local vSphere Client with the vCenter Server instance using an automated method
that applies only to the vCenter Server Appliance.

The SDK provides a registration script that you can run on your development machine. The script
connects to the vCenter Server Appliance and configures your local Web browser application to interact
with it.

Prerequisites

n Verify that you have access to the vCenter Server Appliance.

n Verify that SSH is enabled on the vCenter Server Appliance.

Procedure

1 Set the environment variable VMWARE_CFG_DIR to specify the directory where the script will place the
configuration files it creates.

On a Windows development machine, set the variable to C:\Program Data\VMware\vCenter Server
\cfg.

On a MacOS development machine, set the variable to /var/lib/vmware/vsphere-client/.

2 In a command window, navigate to the vCenter registration scripts folder under tools in your
SDK installation.

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 25

3 Run the registration script with the following parameters:

n -vcip vc server ip is the IPv4 address of the vCenter Server instance where you want to
register your local vSphere Client.

n -u SSH username is the user account to authenticate the SSH connection with the vCenter
Server instance.

n -pw SSH password is the password for the SSH username.

n -p vc server ssh port is the port on which the vCenter Server instance serves the SSH
connection. The parameter is optional. The default value is 22.

n On a Windows development machine, the script is server-registration.bat.

n On a MacOS development machine, the script is server-registration.sh.
./server-registration.sh -vcip 192.0.2.1 -u myUser -pw myPassword -p 22

Note To view the full list of parameters for the script, use the --help option.

4 Start the local vSphere Client by running the startup script located in your_SDK_folder/html-
client-sdk/vsphere-ui/server/bin.

n On a Windows development machine, the script is startup.bat.

n On a MacOS development machine, the script is startup.sh.

Note You might need to make the script executable: chmod +x startup.sh

5 Open a Web browser and log into your local vSphere Client at https://localhost:9443/ui.

Your local vSphere Client connects to the vCenter Server instance and displays the vSphere
inventory.

What to do next

You can deploy your custom plug-ins to the local vSphere Client and verify whether the plug-ins function
properly in your development environment before deploying them on the remote Web browser
applications.

Configure the Tomcat Server in Your Eclipse IDE
You can use the Tomcat application server from the Eclipse IDE in your development environment to test
easily your HTML plug-ins. This step is required only if you use the Eclipse IDE for developing HTML
plug-ins.

Prerequisites

n Configure the proxy to be used for your development machine. For more information, see Set Up the
Eclipse Integrated Development Environment (optional) .

n Register your local vSphere Client with a vCenter Server instance. See Register Your Local vSphere
Client with the vCenter Server Instance.

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 26

Procedure

1 Start Eclipse on your development machine.

2 Go to Window > Show View > Servers, right-click in the Servers view, and select New > Server.

3 In the New Server wizard, select Apache > Tomcat v8.5 Server and click Next.

4 Use the Browse button to navigate to the your_SDK_folder\html-client-sdk\vsphere-ui
\server directory on your development machine.

5 Click Finish to complete the Tomcat server creation.

What to do next

Before you start the local Tomcat server application, you must register the server with a vCenter Server
instance. See Register Your Local vSphere Client with the vCenter Server Instance.

You must reconfigure also the following settings:

n Set the VMWARE_CFG_DIR environmental variable in the Edit Configuration dialog box that opens when
you select Open launch configuration from the General Information pane.

n In a Mac OS development environment, click the Environment tab and set the /var/lib/
vmware/vsphere-client value to the variable.

n In a Windows development environment, click the Environment tab and set the C:/
ProgramData/VMware/vCenterServer/cfg/ value to the variable.

n From the Overview page of the Tomcat server instance that opens when you double-click in the
instance in the Server view, configure the following options:

n From the Server Startup Configuration pane, select the Tail application trace files into
Console view and Start server with -clean option startup options.

n From the Redeploy Behavior pane, remove the *.xml file extension.

n From the General Information pane, select Open launch configuration. Click the Arguments
tab and under VM arguments add the following lines at the end of the text:

-XX:+CMSClassUnloadingEnabled

-XX:MaxPermSize=512m

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 27

Using the vSphere Client SDK
Samples 5
The vSphere Client SDK provides a sample to illustrate ways you can extend the vSphere Client. You can
use the scripts provided in the SDK to rebuild and run the sample.

This chapter includes the following topics:

n Location of Sample Plug-in in the vSphere Client SDK

n vSphere HTML SDK Sample

n Build and Deploy the vSphere HTML SDK Sample Plug-in

n Running the vSphere HTML SDK Sample

Location of Sample Plug-in in the vSphere Client SDK
When you download the vSphere Client SDK, you can find the sample plug-in in the your_SDK_folder/
html-client-sdk/samples directory. The sample code is already built and deployed in the application
server location: your_SDK_folder/html-client-sdk/vsphere-ui/plugin-packages.

The sample plug-in code demonstrates how you can create a custom object and a customized workspace
for this object based on your business needs. The sample demonstrate best practices for single entry
point, plug-in structure organization such as a Welcome page, a Settings page, and navigation between
views. The sample uses Clarity Components and a design similar to the theme of the vSphere Client. The
sample also demonstrates the usage of internationalization for different locales. For more information
about the Clarity Design System, see https://vmware.github.io/clarity/.

vSphere HTML SDK Sample
The vSphere Client SDK contains a sample plug-in that demonstrates the use of the following extension
points.

n vise.navigator.nodespecs

n vise.global.views

n vsphere.core.menus.solutionMenus

n vise.action.sets

VMware, Inc. 28

https://vmware.github.io/clarity/

Build and Deploy the vSphere HTML SDK Sample Plug-in
The vSphere Client SDK contains a sample plug-in that demonstrates the use of several extension points.
Use this procedure after you modify the sample.

After you modify the sample plug-in, you must re-build and re-deploy it. To build the html-sample, execute
the following steps from the command line.

Prerequisites

Before you modify the sample, see vSphere Client SDK Setup for instructions to install and configure all
required components. In particular, you need the following tools installed:

n nodejs, versions 6.9.x to 11.15.x, inclusive

n npm 5.x.x

n Angular-CLI

Also you must set the following environment variables:

n Set the environment variable ANT_HOME to your Apache Ant folder.

n Set the environment variable VSPHERE_SDK_HOME to your vSphere Client SDK folder.

Procedure

1 In a command shell, change to the html-sample-ui directory.

cd samples/html-sample-ui

2 Build the modified sample.

On a MacOS system, run ./build-plugin-package.sh.
On a Windows system, run build-plugin-package.bat.

The build output is in samples/html-sample-ui/target.

3 Copy the output folders to the plugin-packages directory, confirming that you want to replace existing
files.

cp -r samples/html-sample-ui/target vsphere-ui/plugin-packages

The vsphere-ui/plugin-packages directory is where local plug-ins are picked up automatically
when the server starts.

Running the vSphere HTML SDK Sample
Use this procedure to run the vSphere HTML SDK sample.

Procedure

1 Start or restart the application server from the command line

On a MacOS system, run vsphere-ui/server/bin/startup.sh [-debug] in a shell window.

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 29

The -debug option allows you to specify a debug port, if desired. The default, if no port is specified, is
8000.

On a Windows system, run vsphere-ui/server/bin/startup.bat -debug in a shell window.

2 Check that there are no errors in the console or in the logs.

3 Log in to your local HTML Client at https://localhost:9443/ui/.

4 Click the vSphere HTML SDK Sample entry in the Policies and profiles section to explore the
sample functionality.

What to do next

If you need to modify the logging level, modify the file html-client-sdk/vsphere-ui/server/conf/
serviceability.xml. The XML file contains instructions to modify the logging level.

To stop running samples in your local client, delete the sample folders from the vsphere-ui/plugin-
packages directory and restart the server.

Note Do not delete other plugin packages. Do not delete the entire plugin-packages directory.

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 30

https://localhost:9443/ui/

Creating a vSphere Client SDK
Solution 6
After you successfully install and configure your vSphere Client development environment, you can easily
create an HTML plug-in project, then build and test your plug-in with a local or remote vSphere Client.

This chapter includes the following topics:

n Before Creating an HTML Plug-In

n Creating an HTML Plug-In Project

n Generate an HTML Plug-In Project with a Script

n Create an HTML Plug-In Project with Eclipse

n Contents of the HTML Plug-In Project Template

n Building a Plug-In Package from the Project Template

n Testing the Generated Plug-Ins

n Deploy the Plug-In on a Local vSphere Client

n Deploying Your Plug-In on a Remote vSphere Client

Before Creating an HTML Plug-In
Before you create a plug-in, you must set up your development environment to use the vSphere Client
SDK.

To set up your development machine, see Setting Up for HTML-Based Plug-In Development.

Creating an HTML Plug-In Project
HTML plug-ins for the vSphere Client have two components. User interface components run in the Web
browser and Java service components run on the Tomcat server. The vSphere Client SDK provides tools
for creating an HTML plug-in project template for each of these components.

You have two options for creating the HTML plug-in project template. Choose an option depending on
your development setup:

n Create the project template by using the scripts provided in the your_SDK_folder/html-client-
sdk/tools/Plugin generation scripts directory.

VMware, Inc. 31

n Create an HTML plug-in project by using the vSphere Client Tools Eclipse plug-in. For more
information about how to set up the Eclipse plug-in, see Set Up the Eclipse Integrated Development
Environment.

Generate an HTML Plug-In Project with a Script
You can run the plug-in project generation scripts to create an HTML plug-in project template and build a
plug-in out of the project.

The vSphere Client SDK provides two project generation scripts which you can use depending on the
operating system of your development environment.

Prerequisites

n Verify that you set up the correct paths for the ANT_HOME and VSPHERE_SDK_HOME environment
variables. See Automate the Plug-In Build Process.

Procedure

1 In your development environment, open a command prompt or launch the Terminal application.

2 Navigate to the Plugin generation scripts folder.

On a Windows machine, the generation scripts are located at SDK_folder\html-client-sdk
\tools\Plugin generation scripts.

3 Run the create-html-plugin.bat or the create-html-plugin.sh script depending on your OS.

4 When prompted, enter the plug-in name, the directory on your machine where the project template
folder structure will be created, and the plug-in package name.

If you do not specify a value when prompted, the generation script uses predefined default values.

Results

The script generates two folders, myplugin-service and myplugin-ui. For more information about the
contents of each folder, see Contents of the HTML Plug-In Project Template.

What to do next

After you generate the HTML plug-in project template, you can build the plug-in package and test whether
your plug-in works by deploying the plug-in on the vSphere Client. For detailed information, see Building a
Plug-In Package from the Project Template and Testing the Generated Plug-Ins .

Create an HTML Plug-In Project with Eclipse
If you have the Eclipse IDE set up on your development environment, you can create HTML plug-in
projects by using the vSphere Client Tools Eclipse plug-in.

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 32

Prerequisites

n Verify that you have the Eclipse IDE installed and configured correctly on your development
environment. See Set Up the Eclipse Integrated Development Environment (optional) .

n Verify that you have the vSphere Client Tools Eclipse plug-in installed and configured in the Eclipse
IDE. See Install the vSphere Client Tools Eclipse Plug-In.

n Verify that you have the Tomcat server set up in your Eclipse IDE. See Configure the Tomcat Server
in Your Eclipse IDE.

Procedure

1 Start Eclipse on your development machine.

2 From File > New, select Other.

The New wizard appears.

3 From the New wizard, select the HTML Plug-in Project node under the vSphere Client folder and click
Next.

The New vSphere Client HTML plug-in dialog box appears.

4 In the New vSphere Client HTML plug-in dialog box, enter the name of the plug-in project and click
Finish.

Best practice is to use -ui at the end of the project name for the user interface components and to
use lowercase letters for the project name. The project name is used to create the Web context path
of the plug-in.

Optionally, you can change the location where your plug-in project is stored and also the default plug-
in and plug-in package names.

Results

Two plug-in projects are created for the HTML plug-in, user interface project and Java service project.
Before you start editing the files generated by the wizard, make sure that you understand what each file
must contain. For detailed information about the structure of the HTML plug-in project template, see
Contents of the HTML Plug-In Project Template.

What to do next

Before you start editing the generated HTML project files, you can build and deploy the HTML plug-in on
the vSphere Client.

Contents of the HTML Plug-In Project Template
Once you create a template project for your HTML plug-in, you must be familiar with the folder structure of
the project and the purpose of each file inside the project. This knowledge will help you to easily create
your custom plug-ins for the vSphere Client.

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 33

The following tables contain detailed information about the structure of the UI and Java service
components of the HTML plug-in project template.

Table 6-1. Details About the UI Project Template Structure

Directory: myplugin-id/src/... Description

app/ ??? Main source files for the plug-in user interface, including Javascript and
Typescript files.

assets/css/ CSS files used in the plug-in. The css folder contains the plugin-
icons.css file that you can use to define the external icons.

assets/i18n/ Localized resources used in the plug-in.

assets/images/ Images used in the plug-in.

main/locales/ Key strings specific to the locale.

main/webapp/plugin.xml Manifest file of the plug-in. Defines extensions and resources.

main/webapp/META-INF/MANIFEST.MF Manifest file of the WAR bundle.

main/webapp/WEB-INF/spring/bundle-context.xml Spring configuration. Declares the service that this UI bundle uses.

UI Project Template Structure

n myplugin-id/src/

n app/

Main source files for the plug-in user interface, including Javascript and Typescript files.

n assets/

n css/

CSS files used in the plug-in. The css folder contains the plugin-icons.css file that you can use to
define the external icons.

n i18n/

Localized resources used in the plug-in.

n images/

Images used in the plug-in.

n main/webapp/

n plugin.xml

Manifest file of the plug-in. Defines extensions and resources.

n META-INF/

n MANIFEST.MF

Manifest file of the WAR bundle.

n WEB-INF/spring/

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 34

Spring configuration.

n bundle-context.xml

Declares the service that this UI bundle uses.

Table 6-2. Details About the UI Project Template Structure

User Interface Project
Structure

Descr
iption

myplugin-ui/

 src/main/

locale/

 en_US

Contai
ns
string
resour
ces
for the
Englis
h
locale.
You
can
use
the
build

-

resou

rces

script
to
compil
e the
resour
ces.

Contains string resources for
the French locale. You can use
the build-resources script to
compile the resources.

fr_FR

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 35

Table 6-2. Details About the UI Project Template Structure
(continued)

User Interface Project
Structure

Descr
iption

webapp/assets

webapp/css

webapp/Images

Contai
ns
assets
used
in the
plug-
in
such
as
image
s,
CSS
files,
and
JavaS
cript
librari
es.
The
css

folder
contai
ns the
plugi

n-

icons

.css

file
that
you
can
use to
define
the
extern
al
icons.

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 36

Table 6-2. Details About the UI Project Template Structure
(continued)

User Interface Project
Structure

Descr
iption

webapp/META-INF/

MANIFEST.MF

Contai
ns the
manif
est file
of the
WAR
bundl
e. The
file
contai
ns the
followi
ng
manif
est
heade
rs:

n Bu

nd

le

-

Sy

mb

ol

ic

Na

me

-
S
pe
cif
ie
s
a
un
iq
ue
id
en
tifi
er
fo
r
th
e
bu
nd
le.

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 37

Table 6-2. Details About the UI Project Template Structure
(continued)

User Interface Project
Structure

Descr
iption

n We

b-

Co

nt

ex

tP

at

h -
S
pe
cif
ie
s
th
e
W
eb
ap
pli
ca
tio
n
co
nt
ex
t
pa
th
w
hi
ch
m
us
t
st
ar
t
wi
th
vs

ph

er

e-

ui

/.

n Im

po

rt

-

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 38

Table 6-2. Details About the UI Project Template Structure
(continued)

User Interface Project
Structure

Descr
iption

Pa

ck

ag

e -
Li
st
s
th
e
pa
ck
ag
es
on
w
hi
ch
th
e
UI
bu
nd
le
de
pe
nd
s
in
cl
ud
in
g
re
fe
re
nc
es
to
cl
as
se
s
fr
o
m
th
e
Ja
va

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 39

Table 6-2. Details About the UI Project Template Structure
(continued)

User Interface Project
Structure

Descr
iption

se
rvi
ce
la
ye
r.

webapp/resources/js

webapp/resources/host-

monitor.html

webapp/resources/

mainView.html

Contai
ns the
HTML
and
JavaS
cript
resour
ces of
the UI
bundl
e.

webapp/WEB-INF/spring/

bundle-context.xml

spri

ng

bund

le-

cont

ext.

xml

Contai
ns the
Spring
config
uratio
n
which
you
can
use to
declar
e the
servic
es
from
the
servic
e
layer
that
the UI
bundl
e
uses.

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 40

Table 6-2. Details About the UI Project Template Structure
(continued)

User Interface Project
Structure

Descr
iption

webapp/WEB-INF/web.xml The
deplo
yment
descri
ptor
that
descri
bes
the
classe
s,
resour
ces
and
config
uratio
n of
the
applic
ation.

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 41

Table 6-2. Details About the UI Project Template Structure
(continued)

User Interface Project
Structure

Descr
iption

webapp/plugin.xml The
manif
est file
that
uses
metad
ata to
define
the
plug-
in
exten
sions
and
resour
ces.

build-plugin-package.bat

build-plugin-package.sh

build-plugin-package.xml

build-resources.bat

build-resources.sh

build-resources.xml

build-war.bat

build-war.sh

build-war.xml

plugin-package.xml

Contai
ns the
autom
ation
scripts
for
gener
ating
the
WAR
file,
compil
ing
the
resour
ces
for the
UI
comp
onent,
for
buildin
g the
plug-
in
packa
ge
folder
from
the UI
and
Java
servic

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 42

Table 6-2. Details About the UI Project Template Structure
(continued)

User Interface Project
Structure

Descr
iption

e
comp
onent
s, and
the
templ
ate
plugi

n-

packa

ge.xm

l

manif
est
file.

Table 6-3. Details About the Java Service Project Template Structure

Directory: myplugin-id/src/... Description

main/java/com/example/services/ Core implementations of Java services provided by the plug-in.

main/java/com/example/vim25/ Modules to interface with vSphere Web Services API.

main/resources/META-INF/MANIFEST.MF Manifest file of the JAR bundle.

main/resources/META-INF/spring/ Spring configuration files.

main/java/com/example/services/controllers Controller modules associated with Java services.

main/java/com/example/services/model Data model modules for Java services.

Table 6-4. Details About the Java Service Project Template Structure

Java Service Project Structure Description

myplugin-

service

/src/main java/com/

mycompany/

myplugin

mvc Contains the controllers that manage requests to
the /actions.html, /data, and /services
endpoints. The folder contains also utility classes
related to the controllers.

services Contains the sample Echo service and the sample
service that responds to user actions.

resources/

META-INF

spring Contains the Spring configuration files and the
bundle manifest file.

MANIFEST.MF

build-java.bat

build-java.sh

build-java.xml

Contains the automation scripts for generating the
Java service bundle.

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 43

Java Service Project Template Structure

n myplugin-service/

n build-java.bat

Windows script to generate the Java service bundle.

build-java.sh

MacOS script to generate the Java service bundle.

build-java.xml

ant script to generate the Java service bundle.

n src/main/

n resources/META-INF/

n MANIFEST.MF

The bundle manifest file.

n spring/

Spring configuration files.

n java/com/mycompany/myplugin/

n services/

Interfaces and implementations for plug-in services.

n model/

Data models for plug-in services.

n controllers/

Controllers for plug-in services.

Building a Plug-In Package from the Project Template
You build an HTML plug-in from the plug-in project template by using the automation scripts provided with
the SDK.

To build a plug-in package from the project template, run the build-plugin-package.bat or the build-
plugin-package.sh script depending on your operating system. You can locate these scripts in the
plugin_name-ui folder of the project template.

After you run the script, you see the plugin_name folder that contains the plugin-package.xml
manifest file and the plugins folder with the WAR and JAR files generated for the UI and service
components.

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 44

Example: Plug-In Package Manifest File
The following example shows the contents of the plugin-package.xml manifest file that is generated for
the template HTML plug-in.

<pluginPackage id="com.mycompany.myplugin" version="1.0.0"

 type="html" name="myplugin"

 description="Add plugin description" vendor="Add vendor"

 <dependencies>

 <pluginPackage id="com.vmware.vsphere.client" version="6.5.0" />

 <pluginPackage id="com.vmware.vsphere.client.html" version="6.5.0" />

 </dependencies>

 <bundlesOrder>

 <!-- Include a 3rd-party library (for example gson) -->

 <bundle id="com.google.gson" />

 <!-- Include my plug-in modules -->

 <!-- These are example IDs; prefix should match the package ID -->

 <bundle id="com.mycompany.myplugin.myplugin-service" />

 <bundle id="com.mycompany.myplugin.myplugin-ui" />

 </bundlesOrder>

</pluginPackage>

Follow these recommendations for the plugin-package.xml file to ensure that your plug-in can be
deployed on the vSphere Client:

n Specify a unique plug-in package ID for the id attribute of the pluginPackage XML element.

n Add the type="html" attribute to the pluginPackage elements. This attribute is required if you want
your plug-in to be deployed on the vSphere Client.

n Specify that your plug-in depends on the com.vmware.vsphere.client package and the
com.vmware.vsphere.client.html package, version 6.5.0. This dependency ensures that your plug-
in can be deployed on the vSphere Client 6.5.

n To specify an Update release as the minimum version supported by your plug-in, you need to use a
special numbering system. For example, to specify that your plug-in supports only 6.5 Update 2 or
above, use the version 6.5.0.20000 for the dependency.

Testing the Generated Plug-Ins
You can verify that your plug-in packages work correctly with the vSphere Client by deploying the plug-ins
on a local and remote vSphere Client.

Deploy the Plug-In on a Local vSphere Client
This procedure describes how you can use the pickup directory to speed up your development process.
You can repeat the steps for each new version of the UI and Java service components of your plug-in.

Using the pickup during development is convenient for debugging, but it imposes a performance penalty
in production.

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 45

Prerequisites

n Register the local vSphere Client with the vCenter Server instance. See Register Your Local vSphere
Client with the vCenter Server Instance.

n Verify that you run successfully the automation script for generating the plug-in package folder for
your plug-in. See Building a Plug-In Package from the Project Template.

n Set the option pickup.deployer=true in the webclient.properties file.

Procedure

1 Navigate to the plugin folder where the WAR and JAR files of your plug-in are generated.

For example, on a Windows machine if you used the default settings of the plug-in generation script,
go to your_SDK_location\html-client-sdk\tools\Plugin generation scripts\plugin-
packages\myplugin\plugin.

2 Start the vSphere Client application server by running the startup script under bin.

For example, on a Windows machine you can find the startup script at your_SDK_location\html-
client-sdk\vsphere-ui\server\bin.

The string resources are reloaded when you restart the Tomcat server.

3 Copy JAR files to the pickup folder on the server. If the JAR files are deployed successfully, copy the
WAR files to the same folder.

For example, on a Windows machine you can paste the files in the your_SDK_location\html-
client-sdk\vsphere-ui\server\pickup directory.

The Tomcat server console is updated when the bundles are deployed on the local vSphere Client.

4 Refresh your Web browser at https://localhost:9443/ui to see the changes.

What to do next

To complete the verification of your plug-in, deploy the plug-in on a remote vSphere Client.

Deploying Your Plug-In on a Remote vSphere Client
You can verify whether your custom plug-in runs as expected by deploying the plug-ins on a remote
vSphere Client.

You can register your plug-ins with the remote Web browser applications by using one of the following
options:

n Create an Extension data object and register the data object with the ExtensionManager by using the
Managed Object Browser (MOB) of your vCenter Server instance.

n Use the vCenter Server plug-in registration tool provided with the vSphere Client SDK.

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 46

vCenter Server Plug-In Registration Tool
The vSphere Client SDK provides a tool to ease the registration of custom plug-ins with the vSphere
Client. You can locate the tool at the vCenter plugin registration folder under html-client-sdk
\tools.

The prebuilt folder contains the extension-registration script that allows you to register and
unregister your plug-ins as extensions to the vCenter Server instance. You can also update the
registration of an existing plug-in extension to vCenter Server.

The project folder contains the source code and build scripts for the plug-in registration tool which you
can use to extend the logic of the tool.

To use the plug-in registration tool, run the script from the command line by providing the following
command-line options:

extension-registration -action <action> [-c <company>] [-k <key>]

 [-n <name>] [-p <vc pass>] [-pu <plugin url>] [-s <summary>]

 [-show] [-st <server thumbprint>] [-u <vc user>] [-url <vc url>]

 [-v <version>]

Table 6-5. Command-Line Options for the Plug-In Registration Tool

Command-Line Option Description

-action <action> The action that the tool must perform. You can choose from the following
options:

n registerPlugin

n unregisterPlugin

n isPluginRegistered

n updatePlugin

-c or --company <company> The company that developed the plug-in.

-k or --key <key> The unique extension key that must be the same as the plug-in package ID of
your plug-in.

-n or --name <name> The name of your plug-in.

-url <vc url> The URL of the vCenter Server instance where you want to register your plug-
in. The URL must end with /sdk.

-p or --password <vc pass> The credentials for logging into the vCenter Server instance.

-u or --username <vc user>

-pu or --pluginUrl <plugin url> The URL from which your plug-in package ZIP file is downloaded.

-s or --summary <summary> The short description of your plug-in.

-show or --showInSolutionManager The plug-in is available under Administrator > Solutions > vCenter Server
Extensions.

Note This option is not supported by the vSphere Client.

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 47

Table 6-5. Command-Line Options for the Plug-In Registration Tool (continued)

Command-Line Option Description

-st or --serverThumbprint <server thumbprint> The thumbprint of the Web server hosting your plug-in package. This option is
required when your plug-in package ZIP file location is a secure URL (HTTPS).

-v or --version <version> The dot-separated version number of the plug-in package that is defined in the
plugin-package.xml manifest file.

For example, to register the com.acme.myplugin plug-in with version 1.0.0 that is located at https://
150.20.23.254/MyPluginpackage.zip, use the following command on a Mac OS development
machine:

./extension-registration.sh -url https://10.23.222.35/sdk -username administrator@vsphere.local -

password administrator -action registerPlugin -key com.acme.myplugin -version 1.0.0 -pluginUrl

https://150.20.23.254/MyPluginpackage.zip -serverThumbprint

99:FD:2B:0D:12:85:37:AA:DA:A0:08:E1:F4:3B:4A:E6:08:AC:49:CD

After you register your custom plug-in, log in the vSphere Client to verify that the plug-in is visible in the
remote vSphere Client. You can also use the MOB of your vCenter Server instance to view all registered
plug-ins.

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 48

Extension Points in the vSphere
Client 7
The vSphere Client publishes extension points that you can use to create your extensions. The following
sections contain a list of the currently supported extension points, including a brief description of each
extension point and the required extension definition type.

This chapter includes the following topics:

n Global Extension Points

n Object Navigator Extension Points

n Object Workspace Extension Points

n Actions Extension Points

n Extension Templates

n Custom Object Extension Points

n Ordering Extensions

n Filtering Extensions

Global Extension Points
Global extension points allow you to extend the home screen, to add a global view to the main
workspace, or to control application-wide settings.

VMware, Inc. 49

vise.global.views

Adds a global UI view to the main area that is not related to vSphere objects.

Requires a data object of type GlobalViewSpec with available properties:

n name - user-visible name of the global view.

n contentSpec

n url - relative URL to the HTML page that loads the view content.

n metadata (optional)

n key - "hasTitle"

n value - "false" opens an empty iframe, without a title.

Accessibility: can be a target of any navigation request.

Example:

<extension id="com.vmware.samples.h5.globalview.mainView">
 <extendedPoint>vise.global.views</extendedPoint>
 <object>
 <name>My Global View</name>
 <contentSpec>
 <url>/ui/globalview/resources/mainView.html</url>
 <metadata><entry><key>hasTitle</key><value>false</value></entry></metadata>
 </contentSpec>
 </object>
</extension>

vise.home.shortcuts deprecated

Adds a home screen shortcut to a global view or other data view.

Requires a data object of type ShortcutSpec with available properties:

n name - user-visible name of the shortcut.

n icon - (optional) resource ID of 32x32 shortcut icon.

n categoryUid - ID of the category this shortcut will be displayed in. Supported values are
"vsphere.core.controlcenter.inventoriesCategory" and "vsphere.core.controlcenter.monitoringCategory".

n targetViewUid - identifier of the extension to navigate to when the shortcut is clicked.

Accessibility on vSphere Client: Shortcuts.

Example:

<extension id="com.vmware.samples.h5.globalview.shortcut">
 <extendedPoint>vise.home.shortcuts</extendedPoint>
 <object>
 <name>My Shortcut</name>
 <icon>#{appIcon}</icon>
 <categoryUid>vsphere.core.controlcenter.monitoringCategory</categoryUid>
 <targetViewUid>com.vmware.samples.h5.globalview.mainView</targetViewUid>
 </object>
</extension>

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 50

vsphere.core.objectTypes deprecated

Declares UI information that is associated with a custom object type.

Requires a data object of type com.vmware.core.specs.ObjectTypeSpec with available properties:

n types - list of type names applicable to the same type info.

n icon - resource ID of a 18x18 icon associated with this object type.

n label - localized type name.

n labelPlural - plural of the localized type name.

n listViewId - (optional) ID of the list view extension used to display multiple objects of this object type. If missing or null, the
default ${namespace}.list is used.

Accessibility: Not directly displayed, just declares the new object type.

Example:

<extension id="com.vmware.samples.chassisa.objectType">
 <extendedPoint>vsphere.core.objectTypes</extendedPoint>
 <object>
 <types>
 <String>samples:ChassisA</String>
 </types>
 <label>Chassis</label>
 <labelPlural>ChassisA's</labelPlural>
 <icon>#{chassis.icon}</icon>
 </object>
</extension>

Object Navigator Extension Points
You can extend the object navigator by creating new nodes and categories on each page. You can
customize also any object collection node that you create by adding a new icon and label.

vise.navigator.nodespecs

Adds an object collection node, category, or pointer node extension to the object navigator.

Requires a data object of type ObjectNavigatorNodeSpec with available properties:

n title - user-visible node title.

n icon - (optional) 18x18 node icon resource ID.

n navigationTargetUid - (optional) ID of the view extension to navigate to when the node is selected.

n viewOpenedUponFocus - (optional) open a new empty object navigator for this view.

n parentUid - ID of the parent extension this node will be displayed in. This can be another vise.navigator.nodespecs extension
ID defined by your plug-in or it can be "vsphere.core.navigator.solutionsCategory". Accessibility: Object Navigator root.

Example:

<extension id="com.vmware.samples.entryPoint">
 <extendedPoint>vise.navigator.nodespecs</extendedPoint>
 <object>
 <title>ChassisA Category</title>
 <parentUid>vsphere.core.navigator.solutionsCategory</parentUid>
 <navigationTargetUid>com.vmware.samples.htmlsample.welcomeView</navigationTargetUid>
 </object>
</extension>

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 51

vise.inventory.representationspecs deprecated

Defines one or more new icon and label sets for an object collection node in the object navigator, along with the conditions under
which the icon and label sets appear.

Requires a data object of type ObjectRepresentationSpec with available properties:

n objectType - type of objects to which the specs apply.

n specCollection - array of IconLabelSpec objects, each of which contains:

n iconId - (optional) 18x18 icon resource ID.

n labelId - (optional) label or its resource ID.

n conditionalProperties - (optional) array of property names. The icon and label are applicable only if the values of all
properties evaluate to "true". Note: To test for "false" use the negation operator "!" in front of the property name.

n conditions - (optional) array of PropertyConstraint-s. The icon and label are applicable only if all constraints are satisfied.

Accessibility: Object Navigator → Global Inventory Lists.

Example:

<extension id="com.vmware.samples.chassisa.iconLabelSpecCollection">
 <extendedPoint>vise.inventory.representationspecs</extendedPoint>
 <object>
 <objectType>samples:ChassisA</objectType>
 <specCollection>
 <com.vmware.ui.objectrepresentation.model.IconLabelSpec>
 <iconId>#{chassis}</iconId>
 </com.vmware.ui.objectrepresentation.model.IconLabelSpec>
 </specCollection>
 </object>
</extension>

Object Workspace Extension Points
Each vSphere object type’s object workspace provides a set of extension points. Each extension point
corresponds to a specific data view, such as the Summary tab view or the Configure tab view. Every
object workspace extension point requires a data object of type com.vmware.ui.views.ViewSpec.

Most object workspace extension points follow the format vsphere.core.${objectType}.${view}. The $
{objectType} placeholder corresponds to the type of vSphere object, and the ${view} placeholder
corresponds to the specific view. For example, the extension point vsphere.core.cluster.manageViews is
the extension point for the Configure tab view for Cluster objects. The following names are valid $
{objectType} values.

n cluster: ClusterComputeResource object

n datacenter: Datacenter object

n dscluster: StoragePod object

n dvs: DistributedVirtualSwitch object

n dvPortgroup: DistributedVirtualPortgroup object

n folder: Folder object

n host: HostSystem object

n hp: HostProfile object

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 52

n network: Network object

n resourcePool: ResourcePool object

n datastore: Datastore object

n vApp: VirtualApp object

n vm: VirtualMachine object

n template: Virtual Machine template object

vsphere.core.${objectType}.summarySectionViews.html

Adds an HTML portlet to the Summary tab view.

Requires a data object of type ViewSpec with available properties:

n name - user-visible name of the global view.

n icon - (optional) 18x18 portlet icon resource ID.

n contentSpec

n url - relative URL to the HTML page that loads the view content.

n dialogTitle - portlet title.

n size - width and height of the portlet content area:

n width - can only be 1, the default width.

n height - can only be 1 or 2, multiples of the default height.

Note The portlet content area does not include the title size. The title size cannot be modified.

Accessibility: {vSphere object} → Summary page.

Example:

<extension id="com.vmware.samples.vspherewssdk.vm.summary2">
 <extendedPoint>vsphere.core.vm.summarySectionViews</extendedPoint>
 <object>
 <name>#{summaryView.title}</name>
 <contentSpec>
 <url>/ui/vspherewssdk/resources/vm-summary.html</url>
 <dialogTitle>WSSDK Summary Sample</dialogTitle>
 <size>
 <width>1</width>
 <height>2</height>
 </size>
 </contentSpec>
 </object>
</extension>

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 53

vsphere.core.${objectType}.monitorCategories

Adds a sub-view category to the Monitor tab view.

Requires a data object of type CategorySpec with available properties:

n label - user-visible name of the Monitor view category.

Accessibility: {vSphere object} → Monitor page

Example:

<extension id="com.vmware.samples.vspherewssdk.vm.monitor.category">
 <extendedPoint>vsphere.core.vm.monitorCategories</extendedPoint>
 <object>
 <label>WSSDK Category</label>
 </object>
</extension>

vsphere.core.${objectType}.monitorViews

Adds a sub-view to the Monitor tab view.

Requires a data object of type ViewSpec with available properties:

n name - user-visible name of the Monitor view.

n categoryUid - (optional) ID of the category this Monitor view belongs to.

n contentSpec

n url - relative URL to the HTML page that loads the view content.

Accessibility: {vSphere object} → Monitor page

Example:

<extension id="com.vmware.samples.vspherewssdk.vm.monitor">
 <extendedPoint>vsphere.core.vm.monitorViews</extendedPoint>
 <object>
 <name>Monitor view</name>
 <categoryUid>com.vmware.samples.vspherewssdk.vm.monitor.category</categoryUid>
 <contentSpec>
 <url>/ui/vspherewssdk/resources/vm-monitor.html</url>
 </contentSyec>
 </object>
</extension>

vsphere.core.${objectType}.manageCategories

Adds a sub-view category to the Configure tab view.

Requires a data object of type CategorySpec with available properties:

n label - user-visible name of the Configure view category.

Accessibility: {vSphere object} → Configure page

Example:

<extension id="com.vmware.samples.vspherewssdk.vm.manage.category">
 <extendedPoint>vsphere.core.vm.manageCategories</extendedPoint>
 <object>
 <label>WSSDK Category</label>
 </object>
</extension>

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 54

vsphere.core.${objectType}.manageViews

Adds a sub-view to the Configure tab view.

Requires a data object of type ViewSpec with available properties:

n name - user-visible name of the Configure view.

n categoryUid - (optional) ID of the category this Configure view belongs to.

n contentSpec

n url - relative URL to the HTML page that loads the view content.

Accessibility: {vSphere object} → Configure page

Example:

<extension id="com.vmware.samples.vspherewssdk.vm.manage">
 <extendedPoint>vsphere.core.vm.manageViews</extendedPoint>
 <object>
 <name>Configure view</name>
 <categoryUid>com.vmware.samples.vspherewssdk.vm.manage.category</categoryUid>
 <contentSpec>
 <url>/ui/vspherewssdk/resources/vm-configure.html</url>
 </contentSpec>
 </object>
</extension>

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 55

vise.relateditems.specs deprecated

Creates a new relation between object types, either vSphere objects or custom objects

Requires a data object of type ObjectRelationSetSpec with available properties:

n type - vSphere/Custom object type.

n relationViewId - ID of a view that can display object relations.

n conditionalProperty - (optional) property name to introduce additional constraints on the object type for a relation.

Note: To test for "false" use the negation operator "!" in front of the property name.

n relationSpecs

n id - relation ID

n label - user-visible label of the relation.

n icon - 18x18 relation icon resource ID.

n listViewId - ID of a view that can display relation items.

n relation - (optional) property name wrapped into a RelationalConstraint.

n inverseRelation - (optional) property name used to check if an object applies to the relation.

n conditionalProperty - (optional) property name wrapped into a PropertyConstraint.

Note: To test for "false" use the negation operator "!" in front of the property name.

n targetType - (optional) target type name used in any kind of Constraint.

n constraint - (optional) general constraint used in case of relations that cannot be expressed in terms of targetType,
relation and conditionalProperty

Accessibility: {vSphere object} → {related object type} in case of single relation; {vSphere object} → More objects in case of
multiple relations.

Example:

<extension id="com.vmware.samples.relateditems.specs.host">
 <extendedPoint>vise.relateditems.specs</extendedPoint>
 <object>
 <type>HostSystem</type>
 <relationsViewId>vsphere.core.host.related</relationsViewId>
 <relationSpecs>
 <com.vmware.ui.relateditems.model.RelationSpec>
 <id>chassisForHost</id>
 <icon>#{chassis}</icon>
 <label>Chassis relation</label>
 <relation>chassis</relation>
 <targetType>samples:ChassisB</targetType>
 <listViewId>com.vmware.samples.chassisb.list</listViewId>
 </com.vmware.ui.relateditems.model.RelationSpec>
 </relationSpecs>
 </object>
</extension>

vsphere.core.${objectType}.monitor.performanceViews deprecated

Adds a view under the Performance second-level tab of the Monitor tab view.

Accessibility: {vSphere object} → Monitor → Performance

vsphere.core.${objectType}.manage.settingsViews deprecated

Adds a view under the Settings second-level tab of the Configure tab view.

Accessibility: {vSphere object} → Configure → Settings

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 56

vsphere.core.${objectType}.manage.alarmDefinitionsViews deprecated

Adds a view to the Alarm Definitions element in the Issues second-level tab of the Configure tab view.

Accessibility: {vSphere object} → Monitor → Alarm Definitions

vsphere.core.${objectType}.list.columns deprecated

Creates a new column in the list of vSphere objects of type ${objectType} in the object workspace.

Requires a data object of type com.vmware.ui.lists.ColumnSetContainer.

Note: Only the XML representation is supported.

Accessibility: {vSphere object list}

Actions Extension Points
Actions are invoked in the vSphere Client from menus or toolbars. The actions extension points allow you
to add actions to global or contextual menus, and to prioritize the placement of actions within menus and
toolbars.

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 57

vise.actions.sets

Defines a set of actions, each of which is represented by the class ActionSpec.

Requires a data object of type ActionSpec with available properties:

n uid - action ID.

n label - user-visible action label.

n actionUrl - URL of the action target.

n dialogTitle - target dialog title.

n dialogSize - target dialog width and height.

n className - accepts the following classes:

n com.vmware.vsphere.client.HtmlPluginModalAction - opens a modal dialog by using the JavaScript API method
modal.open().

n com.vmware.vsphere.client.HtmlPluginHeadlessAction - initiates a function call with no associated UI view.

n com.vmware.vsphere.client.htmlbridge.HtmlActionDelegate - opens a modal dialog or initiates a headless function using
the deprecated htmlbridge JavaScript API.

Accessibility: {object} → {menu} → {plugin sub-menu}

Example:

<extension id="com.vmware.samples.htmlsample.vmActionSet">
 <extendedPoint>vise.actions.sets</extendedPoint>
 <object>
 <actions>
 <com.vmware.actionsfw.ActionSpec>
 <uid>com.vmware.samples.htmlsample.vm.action</uid>
 <label>#{action1.label}</label>
 <delegate>
 <className>com.vmware.vsphere.client.HtmlPluginModalAction</className>
 <object><root>
 <actionUrl>/ui/html-sample/index.html?view=vm-action-modal</actionUrl>
 <dialogTitle>#{actionModelTitle}</dialogTitle>
 <dialogSize>500,250</dialogSize>
 </root></object>
 </delegate>
 </com.vmware.actionsfw.ActionSpec>
 </actions>
 </object>
 <metadata>
 <objectType>VirtualMachine</objectType>
 </metadata>
</extension>

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 58

vmware.prioritization.listActions deprecated

Defines and prioritizes global list actions (not related to a particular object).

Requires a data object of type ActionPriorityGroup with available properties:

n prioritizedIds - list of action IDs to declare as global.

Note: The vSphere HTML Client does not support action prioritization.

n regionId - ID of the extension that contains the global actions.

Accessibility: {object list} → {action button bar} and {list menu}

Example:

<extension id="com.vmware.sample.chassis.listAction">
 <extendedPoint>vmware.prioritization.listActions</extendedPoint>
 <object>
 <prioritizedIds>
 <String>com.vmware.samples.chassisa.createChassis</String>
 </prioritizedIds>
 <regionId>com.vmware.samples.chassisa.list</regionId>
 </object>
</extension>

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 59

vsphere.core.menus.solutionMenus

Defines a custom sub-menu including actions, separators, and nested menus.

Requires a data object of type ActionMenuItemSpec with available properties:

n uid - menu item ID.

n type - type of menu item. Supported values are "menu", "action" and "separator".

n label - (optional) user-visible label of the menu item.

If omitted and the type is "action", the label defined in the action declaration will be used.

n icon - (optional) 18x18 icon resource ID.

If omitted and the type is "action", the icon defined in the action declaration will be used.

n children - (optional) array of child menu items (ActionMenuItemSpec) if the type is "menu".

Accessibility: {object} → {menu}

Example:

<extension id="com.vmware.samples.vspherewssdk.vmMenu">
 <extendedPoint>vsphere.core.menus.solutionMenus</extendedPoint>
 <object>
 <label>WSSDK menu</label>
 <children>
 <Array>
 <com.vmware.actionsfw.ActionMenuItemSpec>
 <type>action</type>
 <uid>com.vmware.samples.vspherewssdk.myVmAction1</uid>
 </com.vmware.actionsfw.ActionMenuItemSpec>
 <com.vmware.actionsfw.ActionMenuItemSpec>
 <type>separator</type>
 </com.vmware.actionsfw.ActionMenuItemSpec>
 <com.vmware.actionsfw.ActionMenuItemSpec>
 <type>action</type>
 <uid>com.vmware.samples.vspherewssdk.myVmAction2</uid>
 </com.vmware.actionsfw.ActionMenuItemSpec>
 </Array>
 </children>
 </object>
 <metadata>
 <objectType>VirtualMachine</objectType>
 </metadata>
</extension>

Extension Templates
When you add custom vSphere objects, use the extension templates to make the vSphere Client user
interface consistent.

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 60

vsphere.core.inventory.objectViewTemplate deprecated

Creates a complete object workspace for a given custom object type. When you create an instance of the objectViewTemplate, the
vSphere Client generates an extension point for each of the standard object workspace tabs, second-level tabs, and views.

Requires the following variables:

n namespace - plugin-specific prefix to use in all extension IDs of the template. A best practice is to use reverse domain naming,
such as com.myCompany, to start the namespace name, followed by a unique extension name. For example, if your company
name is Acme, and you create a plug-in for a custom object called Rack, you could use the namespace
com.acme.plugin01.rack.

n objectType - custom object type of the instance. Should be qualified with its own namespace to avoid collisions.

The objectViewTemplate creates extension points in the format namespace.extension-point-name. To continue the previous
example, one extension point might be com.acme.plugin01.rack.monitorViews.

For the full list of object workspace extension points, see Custom Object Extension Points. A given tab does not appear in the
vSphere Client user interface unless you explicitly create an extension that references that tab's extension point.

Example:

<templateInstance id="com.vmware.samples.chassisb.viewTemplateInstance">
 <templateId>vsphere.core.inventory.objectViewTemplate</templateId>
 <variable name="namespace" value="com.vmware.samples.chassisb"/>
 <variable name="objectType" value="samples:ChassisB"/>
</templateInstance>

vsphere.core.inventorylist.objectCollectionTemplate deprecated

Creates an object collection node in the object navigator for a given custom object type.

Requires the following variables:

n namespace - plugin-specific prefix to use in all extension IDs of the template. It must be different than the one in
objectViewTemplate.

n title - custom object title or its resource ID.

n icon - 18x18 custom object icon resource ID.

n objectType - custom object type of the instance. Should be qualified with its own namespace to avoid collisions.

n listViewId - container view ID for the current object collection.

n parentUid - extension ID of the category node which the current node belongs to.

Example:

<templateInstance id="com.vmware.samples.lists.allChassis">
 <templateId>vsphere.core.inventorylist.objectCollectionTemplate</templateId>
 <variable name="namespace" value="com.vmware.samples.chassisb_collection"/>
 <variable name="title" value="Chassis"/>
 <variable name="icon" value="#{chassis}"/>
 <variable name="objectType" value="samples:ChassisB"/>
 <variable name="listViewId" value="com.vmware.samples.chassisb.list"/>
 <variable name="parentUid" value="com.vmware.samples.chassisBCategory"/>
</templateInstance>

Custom Object Extension Points
When you instantiate a objectViewTemplate for your custom object, the template creates a number of
extension points that you can use to fill out the user interface for the object.

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 61

The extension points that are created for a custom object include some of the listed extension points in
Object Workspace Extension Points. In addition, the objectViewTemplate creates the following list of
extension points at runtime for a particular namespace.

You can use the extension points to define views and tabs for the custom object workspace. If you want a
specific view or tab to appear in the vSphere Client user interface for a custom object, you must explicitly
create an extension that references the extension point of the view or tab.

${namespace}.views deprecated

Adds a top-level tab view for custom objects.

Requires a data object of type ViewSpec with available properties:

n name - user-visible name of the Getting Started view.

n contentSpec

n url - relative URL to the HTML page that loads the view content.

Accessibility: {custom object root}

Example:

<extension id="com.vmware.samples.chassisa.MainView">
 <extendedPoint>com.vmware.samples.chassisa.views</extendedPoint>
 <object>
 <name>Chassis Main</name>
 <contentSpec>
 <url>/ui/chassisa/resources/chassis-main.html</url>
 </contentSpec>
 </object>
</extension>

${namespace}.summaryViews deprecated

Adds a Summary tab view for custom objects.

Requires a data object of type ViewSpec with available properties:

n name - user-visible name of the global view.

n icon - (optional) 18x18 portlet icon resource ID.

n contentSpec

n url - relative URL to the HTML page that loads the view content.

n dialogTitle- portlet title.

n dialogSize- portlet width and height.

Accessibility: {custom object root}

Example:

<extension id="com.vmware.samples.chassisa.SummaryView">
 <extendedPoint>com.vmware.samples.chassisa.summaryViews</extendedPoint>
 <object>
 <name>Chassis Summary</name>
 <contentSpec>
 <url>/ui/chassisa/resources/chassis-summary.html</url>
 </contentSpec>
 </object>
</extension>

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 62

${namespace}.monitorViews deprecated

Adds a sub-view to the Monitor tab view for custom objects.

Requires a data object of type ViewSpec with available properties:

n name - user-visible name of the Monitor view.

n categoryUid - (optional) ID of the category this monitor view belongs to.

n contentSpec

n url - relative URL to the HTML page that loads the view content.

Accessibility: {custom object root} → Monitor page

Example:

<extension id="com.vmware.samples.chassisa .monitor">
 <extendedPoint>com.vmware.samples.chassisa.monitorViews</extendedPoint>
 <object>
 <name>Monitor view</name>
 <categoryUid>com.vmware.samples.chassisa.monitor.category</categoryUid>
 <contentSpec>
 <url>/ui/vspherewssdk/resources/vm-monitor.html</url>
 </contentSpec>
 </object>
</extension>

${namespace}.manageViews deprecated

Adds a sub-view to the Configure tab view for custom objects.

Requires a data object of type ViewSpec with available properties:

n name - user-visible name of the Configure view.

n categoryUid - (optional) ID of the category this Configure view belongs to.

n contentSpec

n url - relative URL to the HTML page that loads the view content.

Accessibility: {custom object root} → Configure page

Example:

<extension id="com.vmware.samples.chassisa.manage">
 <extendedPoint>com.vmware.samples.chassisa.manageViews</extendedPoint>
 <object>
 <name>Configure view</name>
 <categoryUid>com.vmware.samples.chassisa.manage.category</categoryUid>
 <contentSpec>
 <url>/ui/vspherewssdk/resources/vm-configure.html</url>
 </contentSpec>
</extension>

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 63

${namespace}.list.columns deprecated

Creates a new column in the list of custom objects.

Requires a data object of type com.vmware.ui.lists.ColumnSetContainer which is a collection of columns with available
properties:

n headerText - column header text.

n requestedProperties - object properties whose value representation will be displayed in the column (commonly a 1-element
array).

n requestedParameters - parameters of the requested object properties.

n sortProperty - enables column sorting by header selection.

n exportProperty - enables exporting column data.

Note Only the XML representation is supported.

Accessibility: {custom object list}

Example:

<extension id="com.vmware.samples.chassisa.list.sampleColumns">
 <extendedPoint>com.vmware.samples.chassisa.list.columns</extendedPoint>
 <object>
 <items>
 <com.vmware.ui.lists.ColumnContainer>
 <uid>com.vmware.samples.chassisa.column.name</uid>
 <dataInfo>
 <com.vmware.ui.lists.ColumnDataSourceInfo>
 <headerText>Name</headerText>
 <requestedProperties>
 <String>name</String>
 </requestedProperties>
 <sortProperty>name</sortProperty>
 <exportProperty>name</exportProperty>
 </com.vmware.ui.lists.ColumnDataSourceInfo>
 </dataInfo>
 </com.vmware.ui.lists.ColumnContainer>
 ...
 </items>
 </object>
</extension>

${namespace}.gettingStartedViews deprecated

Adds a Getting Started tab view for custom objects.

Requires a data object of type ViewSpec with available properties:

n name - user-visible name of the Getting Started view.

n categoryUid - (optional) ID of the category this Getting Started view belongs to.

n contentSpec - parameters of the requested object properties.

n url - relative URL to the HTML page that loads the view content.

Accessibility: {custom object root}

${namespace}.monitor.issuesViews deprecated

Adds a sub-view under the Issues second-level tab of the Monitor tab view for custom objects.

Requires a data object of type ViewSpec.

Accessibility: {custom object root} → Monitor → Issues

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 64

${namespace}.monitor.performanceViews deprecated

Adds a sub-view under the Performance second-level tab of the Monitor tab view for custom objects.

Requires a data object of type ViewSpec.

Accessibility: {custom object root} → Monitor → Performance

${namespace}.monitor.performance.overviewViews deprecated

Adds a sub-view under the Performance/Overview section of the Monitor tab view for custom objects.

Requires a data object of type ViewSpec.

Accessibility: {custom object root} → Monitor → Performance → Overview

${namespace}.monitor.performance.advancedViews deprecated

Adds a sub-view under the Performance/Advanced section of the Monitor tab view for custom objects.

Requires a data object of type ViewSpec.

Accessibility: {custom object root} → Monitor → Performance → Advanced

${namespace}.monitor.taskViews deprecated

Adds a sub-view under the Tasks second-level tab of the Monitor tab view for custom objects.

Requires a data object of type ViewSpec.

Accessibility: {custom object root} → Monitor → Tasks

${namespace}.monitor.eventsViews deprecated

Adds a sub-view under the Events second-level tab of the Monitor tab view for custom objects.

Requires a data object of type ViewSpec.

Accessibility: {custom object root} → Monitor → Events

${namespace}.manage.settingsViews deprecated

Adds a sub-view under the Settings second-level tab of the Configure tab view for custom objects.

Requires a data object of type ViewSpec.

Accessibility: {custom object root} → Configure → Settings

${namespace}.manage.alarmDefinitionsViews deprecated

Adds a sub-view under the Issues/Alarm Definitions section of the Configure tab view for custom objects.

Requires a data object of type ViewSpec.

Accessibility: {custom object root} → Configure → Alarm Definitions

${namespace}.manage.permissionsViews deprecated

Adds a sub-view to the Permissions tab view for custom objects.

Requires a data object of type ViewSpec.

Accessibility: {custom object root} → Configure → Permissions

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 65

Ordering Extensions
You can use the <precedingExtension> element to specify the order in which the vSphere Client renders
the extensions in your plug-in module.

Within each <extension> element, you can specify a <precedingExtension> element that contains the ID
of another extension that is to be rendered before the current extension. Setting the value of
<precedingExtension> to NULL causes that extension to be rendered first.

If no <precedingExtension> value is specified, the extensions are rendered in the order they appear in the
plugin.xml module manifest file. If you specify the same value for the <precedingExtension> element
for several extensions, the extensions are rendered in the order in which they appear in the manifest.

The following XML fragment shows how the <precedingExtension> element might appear in the
extension definitions in the plug-in module manifest file.

<extension id = "com.MyPluginPackage.MyPlugin.PerformanceView">

 <extendedPoint>vsphere.core.vm.views</extendedPoint>

 <precedingExtension>NULL</precedingExtension>

 ...(extension data)...

</extension>

<extension id = "com.MyPluginPackage.MyPlugin.UtilityView">

 <extendedPoint>vsphere.core.vm.views</extendedPoint>

 <precedingExtension>com.MyPluginPackage.MyPlugin.PerformanceView</precedingExtension>

 ...(extension data)...

</extension>

The <precedingExtension> elements in the example ensure that the PerformanceView extension is
rendered first, followed by the UtilityView extension.

Filtering Extensions
In your extension definition, you can use filtering metadata to control when the extension appears in the
vSphere Client GUI.

You can filter extensions based on the selected object type, on the value of any property associated with
the selected object, or on the user’s privilege level. You set the filter type and the specific filter values by
using the appropriate XML elements inside the <metadata> element of your extension definition.

Filtering Based on Selected Object Type
You can filter your extension to appear only when the user selects one or more specific types of vSphere
objects. You specify the types of objects for which the extension is valid by creating an <objectType>
element in the <metadata> element in the extension definition. The extension appears only when the user
selects an object whose type matches the value of the <objectType> element.

You can use any vSphere or custom object type name as the value for the <objectType> element. To
specify multiple object types, include two or more object type names in the <objectType> element,
separated by commas. You can also use the * symbol to specify all object types.

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 66

Example: Extension Filtered by Entity Type
The following example filters the extension action to appear only when the user has selected a virtual
machine object.

<extension id="com.vmware.samples.actions.vmActionSet">

 <extendedPoint>vise.actions.sets</extendedPoint>

 <object>

 <actions>

 <com.vmware.actionsfw.ActionSpec>

 <uid>com.vmware.samples.actions.myVmAction1</uid>

 <label>#{action1.label}</label>

 <command className="com.vmware.samples.actions.VmActionCommand"/>

 </com.vmware.actionsfw.ActionSpec>

 </actions>

 </object>

 <metadata>

 <!-- This filters the action to be visible only on VMs -->

 <objectType>VirtualMachine</objectType>

 </metadata>

</extension>

Filtering Based on the Value of a Property of the Selected Object
You can filter your extension to appear or not depending on the value of a property of the selected object.
You must use the property value filter together with the object type filter.

You create the property value filter by describing one or more property value comparisons to be made on
the selected object by using the <propertyConditions> element. You include the <propertyConditions>
element in the <metadata> element in the extension definition. You can define a single comparison, or
define multiple comparisons and conjoin those comparisons together.

In the <propertyConditions> element, you must describe a data object of type
com.vmware.data.query.CompositeConstraint using MXML syntax. Using the CompositeConstraint data
object, you specify the names of the object properties used in the filter, the desired value for each object
property, and the comparison operator. You can also specify a conjoiner if your CompositeConstraint data
object has multiple comparisons.

In the CompositeConstraint data object, you describe each property value comparison using the
<nestedConstraints> element. The <nestedConstraints> element contains an array of data objects of
type com.vmware.data.query.PropertyConstraint. Each PropertyConstraint data object represents one
comparison between a given object property and a value you specify.

When you create a PropertyConstraint data object, you specify the object property to compare by using
the <propertyName> element, the value to compare against using the <comparableValue> element, and the
comparison operator using the <comparator> element.

The value of the <propertyName> element must match the name of the object property to compare. You
can set the value of the <comparableValue> element depending on the type of property you are
comparing, but the value must be a primitive type. You can use a string value, an integer value, or a
Boolean value of true or false in the <comparableValue> element.

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 67

You use the <comparator> element to choose how the property is compared against the value you specify
in the filter. You can use values of EQUALS, NOT_EQUALS, GREATER, SMALLER, CONTAINS, EQUALS_ANY_OF or
CONTAINS_ANY_OF. If you use the CONTAINS operator, you must provide an array of values. If you use the
operators EQUALS_ANY_OF or CONTAINS_ANY_OF, you must provide a string containing multiple values in the
<comparableValue> element, each separated by a comma.

If your CompositeConstraint data object defines multiple comparisons, you can choose how those
comparisons are conjoined by using the <conjoiner> element. You can use a value of AND or OR in the
<conjoiner> element.

Example: Example Property Value Filter
The following example filters an action extension only when the value of the isRootFolder property is
true and the selected object contains child objects that are virtual machines.

<extension id="com.vmware.samples.actions.vmActionSet">

 <extendedPoint>vise.actions.sets</extendedPoint>

 <object>

 <actions>

 <com.vmware.actionsfw.ActionSpec>

 <uid>com.vmware.samples.actions.myVmAction1</uid>

 <label>#{action1.label}</label>

 <command className="com.vmware.samples.actions.VmActionCommand"/>

 </com.vmware.actionsfw.ActionSpec>

 </actions>

 </object>

 <metadata>

 <objectType>Folder</objectType>

 <propertyConditions>

 <com.vmware.data.query.CompositeConstraint>

 <nestedConstraints>

 <com.vmware.data.query.PropertyConstraint>

 <propertyName>isRootFolder</propertyName>

 <comparator>EQUALS</comparator>

 <comparableValue>

 <String>true</String>

 </comparableValue>

 </com.vmware.data.query.PropertyConstraint>

 <com.vmware.data.query.PropertyConstraint>

 <propertyName>childType</propertyName>

 <comparator>CONTAINS</comparator>

 <comparableValue>

 <String>VirtualMachine</String>

 </comparableValue>

 </com.vmware.data.query.PropertyConstraint>

 </nestedConstraints>

 <conjoiner>AND</conjoiner>

 </com.vmware.data.query.CompositeConstraint>

 </propertyConditions>

 </metadata>

</extension>

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 68

Filtering Based on User Privilege Level
You can filter your extension to appear only for users that have specific privileges. You can base your filter
on global privilege settings in the vSphere Client, such as settings or licenses. For example, you can use
a filter to make your extension available only to users that have global privileges to change settings.

You can also filter your extension based on privileges related to specific types of vSphere objects. For
example, you can use a filter to make your extension available only to users who have privileges to create
or delete datastore objects.

You specify the privilege for which the object is valid by creating a <privilege> element inside the
<metadata> element in the extension definition. The extension appears only for users whose privileges
include the value specified by the <privilege> element. You can specify multiple privilege values in the
<privilege> element, separated by commas. If you specify multiple privileges, the user must have all
specified privilege values for the extension to appear.

Limitations on Filtering Based on User Privilege Level
Filtering has no effect on nodespecs and shortcut items. To avoid impacting the load time of the object
navigator, home screen, and main menu, the vSphere Client does not check permissions for nodespecs
and shortcut items.

The vSphere Client shows plug-in views only if the user has the appropriate privilege. If not, the user
interface displays a message informing the user of the lack of privilege.

Example: Extension Filtered by User Privileges
The following example filters the extension to appear only when the user privileges include
Global.Licenses.

<extension id="vsphere.core.hosts.sampleMonitorView">

 <extendedPoint>vsphere.core.hosts.monitorViews</extendedPoint>

 <object>

 <name>Sample Monitor View Title</name>

 <componentClass className="com.vmware.vsphere.client.sampleplugin.SampleObjectView"/>

 </object>

 <metadata>

 <privilege>Global.Licenses</privilege>

 </metadata>

</extension>

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 69

vSphere Client SDK Extension
Points 8
The vSphere Client publishes extension points that you can use to create your extensions. The following
sections describe the extension points, including a brief description of each extension point and the
required extension definition type.

This chapter includes the following topics:

n Global View Extension Point for the vSphere Client

n Navigation Extension Point for the vSphere Client

n vSphere Objects Extension Points for the vSphere ClientvSphere Client

n Actions Extension Point for the vSphere Client

Global View Extension Point for the vSphere Client
The vSphere Client publishes an extension point for a Global view.

Name
Global view

Description
Adds a generic plug-in view that takes over the workspace and is not tied to any specific inventory object.

Single summary portlet helps:

n matching portlet to respective plugin/partner workflow.

n troubleshooting: see which plugin is misbehaving (for example, taking too long for the actions to
evaluate).

All other navigation menus and links are handled by the plugin itself (see Global Views).

Note This replaces the former vise.navigator.nodespecs extension point.

VMware, Inc. 70

Location in the UI

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 71

Navigation Extension Point for the vSphere Client
The vSphere Client publishes an extension points for the Navigation panel.

Name
Navigation

Description
Adds a plugin entry to the Home menu and top navigator that points to a global view.

Covers the following use cases:

n Plug-in dashboard / settings / main view

n Custom object list handling (without depending on the platform)

n Object relations (without depending on the platform)

n Custom navigation

All other navigation menus/links are handled by the partner's solution (plug-in + backend) in the most
effective way possible.

The "maximize" option leads to auto-collapsing of the Object Navigator and the Tasks & Events upon
navigation to the view.

Note This replaces the former vise.global.views extension point.

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 72

Location in the UI

Example XML

<displayName key="pluginName" />

<globalView id="myGlobalView"

 uri="/ui/myplugin/index.html?view=main"

 maximize="true" />

vSphere Objects Extension Points for the vSphere
ClientvSphere Client
The vSphere Client publishes extension points for vSphere objects menus.

Name
Summary Portlet

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 73

Description
Adds a summary portlet to a vSphere object's Summary page.

Single summary portlet helps:

n matching portlet to respective plugin/partner workflow.

n troubleshooting: see which plugin is misbehaving (for example, taking too long for the actions to
evaluate).

Available portlet/card sizes for plugins are

n 1:1

n 1:2

n 2:1

n 2:2

,

The icon is optional and is displayed at a fixed location.

Note This replaces the former vsphere.core.${objectType}.summarySectionViews extension point.

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 74

Location in the UI

Example XML

<summaryView id="hostSummaryView"

 objectType="host"

 icon="com_mycompany_myplugin_icon_summary.png"

 uri="/ui/myplugin/index.html?view=summary"

 height="2"

 width="1" />

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 75

Name
Monitor & Configure view

Description
Adds a ToC category with items to a vSphere object's Monitor (or Configure) page.

Monitor / Configure views are defined separately from the category as they might be reused in multiple
categories. A Monitor / Configure category consists of:

n Static ToC items when there is no filtering:

n Defined directly in the Monitor / Configure tag of the plugin manifest.

n Dynamic ToC items when there is filtering:

n All available ToC items will be retrieved from the backend server with one call for performance
reasons.

n To achieve this the extension point contains the plugin server endpoint to call for this object's
dynamic ToC items.

Note This replaces the former vsphere.core.${objectType}.monitorCategories, vsphere.core.$
{objectType}.monitorViews, vsphere.core.${objectType}.manageCategories, vsphere.core.$
{objectType}.manageViews extension points.

Location in the UI

Example XML

<!-- VM monitor category with a static view item and

an endpoint url to fetch all dynamic view items -->

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 76

<monitor id="vmMonitorCategory"

 objectType="vm"

 dynamicUri="/myplugin/monitor/vm?oid={objectId}">

 <view id="monitorView1" />

</monitor>

<monitorView id="monitorView1"

 labelKey="monitor.label"

 uri="/ui/myplugin/index.html?view=monitor" />

Note The definition of "configure" extension point is the same.

Actions Extension Point for the vSphere Client
The vSphere Client publishes an extension point for Actions menus.

Name
Object Menu & Actions

Description
Adds an action sub-menu to a vSphere object's menu.

Single menu per object type per plug-in helps:

n matching menu actions to respective plugin/partner workflow.

n troubleshooting: see which plugin is misbehaving (for example, taking too long for the actions to
evaluate).

Actions are defined separately from the menu so they can be reused in multiple menus. A menu consists
of:

n Static actions when there is no filtering:

n Defined directly in the Monitor / Configure tag of the plugin manifest.

n Can be 2 types:

n Dialog (with popup UI)

n Headless (operation execution)

n Dynamic actions when there is filtering:

n All available dynamic actions will be retrieved from the backend server with one call for
performance reasons.

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 77

n To achieve this the extension point contains the plugin server endpoint to call for this object's
dynamic actions. See the SPI section below for more info.

Note This extension point replaces the former vsphere.core.menus.solutionMenus and
vise.actions.specs extension points.

Location in the UI

Example XML

<!-- VM action menu with static headless and modal actions and

an endpoint URL to fetch all dynamic actions -->

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 78

<menu id="vmMenu">

 objectType="vm"

 dynamicUri="/myplugin/monitor/vm?oid={objectId}"

 <actionId>action1</actionId>

 <separator/>

 <actionId>action2</actionId>

</menu>

<action id="action1">

 labelKey="action1.label"

 icon="com_mycompany_myplugin_icon_action_modal.png"

 uri="/ui/myplugin/resources/vm-action-modal.html"

 type="modal"

 height="250"

 width="500" />

<action id="action2">

 labelKey="action2.label"

 icon="com_mycompany_myplugin_icon_action_headless.png"

 uri="/ui/myplugin/resources/vm-action-headless.html"

 type="headless" />

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 79

Using the vSphere Client
JavaScript API 9
The vSphere Client provides several interfaces that your plug-in can use to communicate with the HTML5
platform. These JavaScript methods are documented here as if they have TypeScript signatures, but they
run as pure JavaScript, and all complex types are plain old Javascript objects.

Each plug-in runs in an iframe that has the same origin as the vSphere Client.

This chapter includes the following topics:

n vSphere Client JavaScript API: Modal Interface

n vSphere Client JavaScript API: Application Interface

n vSphere Client JavaScript API: Event Interface

n Example Using the modal API

vSphere Client JavaScript API: Modal Interface
The modal interface enables your plug-in to manage modal dialog windows.

modal.AlertLevel type
Description Enum:

n SUCCESS

n INFO

n WARNING

n DANGER

modal.ButtonStyle type
Description Enum:

n SUCCESS

n INFO

n WARNING

n DANGER

VMware, Inc. 80

modal.ButtonType type
Description Enum:

n PRIMARY

n SECONDARY

modal.close() method
Signature modal.close(data:any):void

Description Closes the modal dialog box in the parent iframe.

Parameter: data Optional data passed to callback function specified by onClosed property at dialog open.

modal.ConfirmationModalConfig type
Description Specifies the properties of a confirmation modal dialog box.

Name Type Required? Notes

content string yes Confirmation message displayed in the dialog.

buttons ModalButton[] yes Buttons displayed in the dialog footer. (min 1, max 4)

title string no Dialog main title. May not contain an icon. (default='')

size ModalSize no Width of the dialog box. (Height is fixed.)

closable boolean no Whether the dialog displays a close button. (default=true)

(ESC key is always available.) ?????

onClosed callbackFn(): void no Function runs when user closes the dialog.

secondaryTitle string no Optional subtitle for the dialog.

alertLevel AlertLevel no

modal.DynamicModalConfig type
Description Specifies values for some properties of a modal dialog box.

Name Type Required? Notes

title string no Dialog title. May not contain an icon.

(If not present, no change to dialog title.)

height number no Dialog height, specified in pixels. (If not present, no change to dialog height.)

modal.getCustomData() method
Signature modal.getCustomData():any

Description Returns the customData object provided when a modal dialog box was opened, or null if no customData object was
provided.

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 81

modal.ModalButton type
Description

Name Type Required? Notes

label string yes

type ButtonType no

style ButtonStyle no

callback callbackFn(): void no

modal.ModalConfig type
Description Specifies the properties of a modal dialog box.

Name Type Required? Notes

url string yes Location of HTML content for the dialog.

title string no Dialog title. May not contain an icon. (default='')

size (width:number, height:number) yes???? Specify in pixels.

closable boolean no Whether the dialog displays a close button. (default=true)

onClosed callbackFn(result:any): void no Function runs when the dialog closes. Value of result is the ID of
the dialog, or null if open() throws an exception.

?????

customData any no Data the calling module passes to the dialog.

contextObjects any[] no IDs of relevant objects the calling module passes to the dialog.

modal.ModalSize type
Description Width of a modal dialog box.

Name Type Required? Notes

width number yes Specified in pixels.

modal.open() method
Signature modal.open(configObj:ModalConfig):void

Description Opens a modal dialog box specified by the configObj parameter.

Parameter: configObj Specifies the properties of this modal dialog box.

modal.openConfirmationModal() method
Signature modal.openConfirmationModal(configObj:ConfirmationModalConfig):void

Description Opens a lightweight modal dialog box designed to present information and confirmation buttons.

Parameter: configObj Specifies the properties of this modal dialog box.

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 82

modal.setOptions() method
Signature modal.setOptions(configOptions:DynamicModalConfig):void

Description Called by the parent view to modify some properties for a modal dialog box in the parent iframe.

Parameter: configOptions Specifies values for some dialog box properties.

vSphere Client JavaScript API: Application Interface
The app interface provides context object information and helps your plug-in navigate and control the
vSphere Client user interface.

app.getApiEndpoints() method
Signature app.getApiEndpoints():UiApiEndpoint

Description Returns the URLs of the vsphere-ui service API endpoints available to plug-ins.

app.getContextObjects() method
Signature app.getContextObjects():any[]

Description Returns the current context objects.

Return value:
for global view

Returns empty array. Global views have no context.

for vSphere object

Returns a context item for the associated vSphere object.

for dialog opened by modal.open()

If dialog opened by htmlClientSdk.modal.open(configObj), returns value of configObj.contextObjects (or
empty array, if contextObjects undefined)

for dialog opened by plugin.json actions

If dialog opened by action defined in plugin.json, returns an array of context items.

A context item is a JavaScript object containing a single property, id:string. This is the ID of the associated
vSphere object.

app.navigateTo() method
Signature app.navigateTo(options:NavigationOptions):void

Description Navigates to a specified view, and optionally passes custom data to the view.

Parameter: options Specifies the destination view and custom data.

app.getNavigationData() method
Signature app.getNavigationData():any

Description Returns the custom data passed to the view by the navigateTo() method. (If no custom data passed, returns null.)

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 83

app.getClientInfo() method
Signature app.getClientInfo():ClientInfo

Description Returns type and version info for the vSphere Client.

app.getClientLocale() method
Signature app.getClientLocale():string

Description Returns the current locale of the vSphere Client.

app.getSessionInfo() method
Signature app.getSessionInfo(callback):void

Description Retrieves information about the client's authentication session.

The callback function must have the following signature:

function callback(sessionInfo:SessionInfo)

app.getTheme() method
Signature app.getTheme():PluginTheme

Description Retrieves information about the theme the plug-in should use.

app.ClientInfo type
Description Documents type and version of vSphere Client.

Name Type Required? Notes

type string info only The vSphere Client type (HTML or Flex)

version string info only The vSphere Client version string.

app.NavigationOptions type
Description Specifies a destination view and custom data for the view.

Name Type Required? Notes

targetViewId string yes Navigation ID of the destination view. (For a remote plug-in, this property must identify a
view created by the same plug-in.)

objectId string no ID of any object associated with the view. (For a global view, this field is not required.)

customData any no A custom data structure passed to the view.

app.PluginTheme type
Description Indicates the UI theme that is currently selected.

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 84

Name Type Required? Notes

name string info only Possible values: light or dark.

app.QueryParam type
Description Holds a single query parameter of a URL.

Name Type Required? Notes

name string info only Name of query parameter, as in ?name=value.

value string info only Value of query parameter, as in ?name=value.

app.SessionInfo type
Description Holds information about the current session of the vSphere Client.

Name Type Required? Notes

sessionToken string info only Identifier of the plug-in authentication session with vCenter Server.

app.UiApiEndpoint type
Description Holds the parsed elements of the plug-in URL.

Name Type Required? Notes

origin string info only <protocol>://<hostname><port>

pathname string info only

queryParams Array<QueryParam> info only <name>=<value>

fullUrl string info only <origin>/<pathname>?<queryParams>

vSphere Client JavaScript API: Event Interface
The event interface helps your plug-in with event management.

event.onGlobalRefresh() method
Signature event.onGlobalRefresh(pluginCallbackFunc:function):void

Description Registers a global refresh handler that the vSphere Client will call when the Global Refresh button is
clicked.

Parameter:
pluginCallbackFunc

A reference to a global refresh handler, with signature function callback():void

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 85

event.onThemeChanged() method
Signature event.onThemeChanged(themeCalbackFunc:function):void

Description Registers an event handler that the vSphere Client will call when the vSphere Client changes the
current theme.

Parameter:
themeCallbackFunc

A reference to a theme change handler, with signature function
themeCallbackFunc(theme:app.PluginTheme):void

Example Using the modal API
This example shows some basic features of the modal interface of the Client API.

modal.html

<html>

 <head>

 <script src="http://code.jquery.com/jquery-latest.min.js"

 type="text/javascript"></script>

 <script src="/api/ui/htmlClientSdk.js"

 type="text/javascript"></script>

 <script type='text/javascript'>

 function handler(event)

 {

 var choice = $('input[name=heads_or_tails]:checked').val();

 htmlClientSdk.modal.setOptions({title: choice});

 settimeout(function(){htmlClientSdk.modal.close(choice);}, 3000);

 }

 </script>

 </head>

 <body>

 <form name='flip' onSubmit='return handler()'>

 <p><input type='radio' name='heads_or_tails' value='HEADS' />HEADS</p>

 <p><input type='radio' name='heads_or_tails' value='TAILS' />TAILS</p>

 <input type='submit' name='submit' value='Submit' />

 </form>

 </body>

</html>

modal.js

flipper = function(){

 # Select correct answer.

 correct = ['heads', 'tails'][2*Math.random()-1];

 # Create callback function.

 checker = function(choice){

 var correct = htmlClientSdk.modal.getCustomData();

 if (choice === correct) {

 alert('You chose wisely.');

 } else {

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 86

 alert('Sorry, you lose.');

 }}

 # Configure modal dialog.

 var config ={

 url: "example/dialog.html",

 title: 'Choose!',

 size: { width: 490, height: 240 },

 onClosed: checker,

 customData: correct}

 # Open modal dialog.

 htmlClientSdk.modal.open(config);

}

Initialize Javascript API.

$(document).ready(htmlClientSdk.initialize(flipper));

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 87

Using Themes with vSphere
Client Plug-ins 10
The vSphere Client SDK provides the means for a plug-in to integrate with the themes supported by the
vSphere Client. Modifying a plug-in to support themes requires changes to the plug-in style sheets and
front-end code to switch style sheets whenever the user changes the theme in the vSphere Client.

To integrate with the vSphere Client themes, a plug-in uses these methods of the JavaScript API:

n app.getTheme()

n event.onThemeChanged(callback)

The following procedures assume that the plug-in's front-end code is built using Angular and Clarity
Design System. For other frameworks and build tools, the approach is similar but you will need to adapt
the approach to suit the chosen tools. The examples in this guide are based on the HTML Plug-in Sample
provided as part of the vSphere Client SDK.

This chapter includes the following topics:

n Using Style Variables in Plug-In CSS

n Building Output Style Sheets for vSphere Client Plug-Ins

n Configuring and Loading Theme Style Sheets in vSphere Client Local Plug-Ins

Using Style Variables in Plug-In CSS
If a plug-in uses custom styles that depend on the theme colors, the plug-in style sheets (CSS or SASS or
LESS) need to be parameterized. This enables the plug-in to adapt when the user switches themes in the
vSphere Client user interface.

In this procedure you copy any custom colors that depend on the current theme into variables in separate
style sheets that are specific to the light or dark theme. You replace the colors in the original style
sheets with instances of CSS variables. This is done to avoid style sheet duplication and to easily
integrate theming with any custom Angular components the plug-in has defined. For more information
about CSS variables, see https://developer.mozilla.org/en-US/docs/Web/CSS/Using_CSS_variables.

Prerequisites

Ensure that the plug-in's Clarity version supports the dark theme. The first Clarity version to support the
dark theme is 0.10.16.

VMware, Inc. 88

https://developer.mozilla.org/en-US/docs/Web/CSS/Using_CSS_variables

Procedure

1 Identify any theme-dependent colors or styles in your plug-in.

2 Factor out theme-dependent colors or styles into two new style sheets as CSS variables.

The SDK includes the following sample file at html-client-sdk/samples/html-sample/html-sample-
ui/src/styles-light.css.

:root {

 --border-color: rgb(204, 204, 204);

 --overlay-color: rgba(255, 255, 255, 0.2);

 --info-icon-color: darkblue;

 }

The SDK includes the following sample file at html-client-sdk/samples/html-sample/html-sample-
ui/src/styles-dark.css.

:root {

 --border-color: rgb(72, 87, 100);

 --overlay-color: rgba(0, 0, 0, 0.2);

 --info-icon-color: darkblue;

 }

3 Replace the theme-dependent colors or styles in the original style sheets with variable references.

The SDK includes the following code in the sample file at html-client-sdk/samples/html-sample/
html-sample-ui/src/app/views/list/list.component.scss.

.splitter {

 flex: 0 0 auto;

 width: 1px;

 margin: 0 20px;

 background-color: var(--border-color);

 }

4 For Internet Explorer 11, which does not include support for CSS variables, include a polyfill library to
provide support for CSS variables.

The vSphere Client SDK includes a remote plug-in sample that uses css-vars-ponyfill. The
following example is borrowed from html-client-sdk/samples/html-sample/html-sample-ui/src/
index.html.

<script type="text/javascript" src="scripts/css-vars-ponyfill.js"></script>

What to do next

Use the modified input style sheets to build nte output style sheets for your plug-in.

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 89

Building Output Style Sheets for vSphere Client Plug-Ins
After you isolate theme-dependent colors or styles as CSS variables, you can merge the resulting style
sheets with the standard Clarity styles to produce a set of output style sheets for optimized performance.

Angular applications which use webpack and angular-cli place the style sheet declarations inline by
default, when in development mode. Inline style declarations interfere with dynamic CSS loading. When
you build the output style sheets, always configure the build to output and use external CSS:

To build external style sheets, add the --extract-css parameter to the ng build command. The
vSphere Client SDK has examples of this usage in html-client-sdk/samples/html-sample/html-sample-
ui/package.json.

You must disable any output file name hashing in the development and production builds. Otherwise the
names of the style sheet files will change whenever the code changes, and the plug-in will not be able to
load them.

To disable file name hashing when you build style sheets, use this syntax:
ng build --prod --output-hashing none.

Prerequisites

Refactor the input style sheets for the plug-in so that they isolate theme-dependent colors and styles in
separate style sheets as CSS variables.

Procedure

1 Create a base output style sheet that is independent of the themes.

The base style sheet contains the Clarity icons style sheet and the base input style sheet for the plug-
in, which uses CSS variables. The vSphere Client SDK builds this output style sheet by using Angular
to compile the SCSS.

The following example comes from the vSphere Client SDK file html-client-sdk/samples/html-
sample/html-sample-ui/.angular-cli.json.

"styles": [

 {

 "input": "../node_modules/clarity-icons/clarity-icons.min.css",

 "output": "styles",

 "lazy": true

 },

 {

 "input": "styles.css",

 "output": "styles",

 "lazy": true

 }

 ...

]

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 90

This step combines the contents of html-client-sdk/samples/html-sample/html-sample-ui/
node_modules/clarity-icons/clarity-icons.min.css and html-client-sdk/samples/html-sample/
html-sample-ui/src/styles.css into html-client-sdk/samples/html-sample/html-sample-ui/
target/html-sample-ui/styles.bundle.css.

2 Create an output style sheet file for the light theme.

This style sheet includes the Clarity style sheet for the light theme and the plug-in style sheet for the
light theme, which contains the CSS variable definitions for the light theme.

The following example comes from the vSphere Client SDK file html-client-sdk/samples/html-
sample/html-sample-ui/.angular-cli.json.

"styles": [

 ...

 {

 "input": "../node_modules/clarity-ui/clarity-ui.min.css",

 "output": "theme-light",

 "lazy": true

 },

 {

 "input": "styles-light.css",

 "output": "theme-light",

 "lazy": true

 }

 ...

]

This step combines the contents of html-client-sdk/samples/html-sample/html-sample-ui/
node_modules/clarity-ui/clarity-ui.min.css and html-client-sdk/samples/html-sample/html-
sample-ui/src/styles-light.css into html-client-sdk/samples/html-sample/html-sample-ui/
target/html-sample-ui/theme-light.bundle.css.

3 Create an output style sheet file for the dark theme.

This style sheet includes the Clarity style sheet for the dark theme and the plug-in style sheet for the
dark theme, which contains the CSS variable definitions for the dark theme.

The following example comes from the vSphere Client SDK file html-client-sdk/samples/html-
sample/html-sample-ui/.angular-cli.json.

"styles": [

 ...

 {

 "input": "../node_modules/clarity-ui/clarity-ui.min.css",

 "output": "theme-dark",

 "lazy": true

 },

 {

 "input": "styles-dark.css",

 "output": "theme-dark",

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 91

 "lazy": true

 }

 ...

]

This step combines the contents of html-client-sdk/samples/html-sample/html-sample-ui/
node_modules/clarity-ui/clarity-ui.min.css and html-client-sdk/samples/html-sample/html-
sample-ui/src/styles-dark.css into html-client-sdk/samples/html-sample/html-sample-ui/
target/html-sample-ui/theme-dark.bundle.css.

What to do next

Write front-end code to load style sheets that match the theme selected by the user.

Configuring and Loading Theme Style Sheets in vSphere
Client Local Plug-Ins
After you compile the output style sheets for your plug-in user interface, you write front-end code to load
the style sheets that cause your plug-in to conform to the style selected in the vSphere Client.

Prerequisites

n Refactor the input style sheets for the plug-in so that they isolate theme-dependent colors and styles
in separate style sheets as CSS variables.

n Build output style sheets into a base style sheet and a style sheet for each theme.

Procedure

1 Load and configure polyfill libraries to provide CSS variable support in Internet Explorer 11.

If you use css-vars-ponyfill, consider whether to configure options to create a MutationObserver
and whether to remove CSS rulesets and declarations that do not reference a CSS custom property
value. For more information about configuring css-vars-ponyfill, see https://github.com/
jhildenbiddle/css-vars-ponyfill/tree/v1.17.1#optionswatch and https://github.com/jhildenbiddle/css-
vars-ponyfill/tree/v1.17.1#optionsonlyvars.

The vSphere Client SDK includes a remote plug-in sample that uses css-vars-ponyfill. The
following example is borrowed from the file html-client-sdk/samples/html-sample/html-
sample-ui/src/index.html.

<script type="text/javascript" src="scripts/css-vars-ponyfill.js"></

script>

// Initialize CSS vars to configure polyfill.

cssVars({

 watch: true,

 onlyVars: true

});

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 92

https://github.com/jhildenbiddle/css-vars-ponyfill/tree/v1.17.1#optionswatch
https://github.com/jhildenbiddle/css-vars-ponyfill/tree/v1.17.1#optionswatch
https://github.com/jhildenbiddle/css-vars-ponyfill/tree/v1.17.1#optionsonlyvars
https://github.com/jhildenbiddle/css-vars-ponyfill/tree/v1.17.1#optionsonlyvars

The following example is borrowed from the file html-client-sdk/samples/html-sample/html-
sample-ui/.angular-cli.json.

 "assets": [

 "assets",

 {

 "glob":

 "css-vars-ponyfill.js",

 "input": "../node_modules/css-vars-ponyfill/dist/",

 "output": "scripts/

 },

 …

]

2 Load the base style sheet initially.

The following example is borrowed from html-client-sdk/samples/html-sample/html-sample-
ui/src/index.html.

<link rel="stylesheet" type="text/css" href="styles.bundle.css">

3 Load the style sheet for the current theme initially and whenever the style changes.

The following example is borrowed from html-client-sdk/samples/html-sample/html-sample-
ui/src/index.html.

function() {

 function loadTheme(isFirstLoad, theme) {

 var themeName = theme.name;

 var supportedThemeNames = ["light", "dark"];

 if (supportedThemeNames.indexOf(theme.name) === -1) {

 themeName = supportedThemeNames[0];

 }

 var themeStyleSheetLinkId = "theme-stylesheet-link";

 var themeUrl = "theme-" + themeName + ".bundle.css";

 var styleSheetLinkElement;

 if (isFirstLoad) {

 styleSheetLinkElement = document.createElement("link");

 styleSheetLinkElement.setAttribute("rel", "stylesheet");

 styleSheetLinkElement.setAttribute("type", "text/css");

 styleSheetLinkElement.setAttribute("id", themeStyleSheetLinkId);

 styleSheetLinkElement.setAttribute("href", themeUrl);

 document.write(styleSheetLinkElement.outerHTML);

 } else {

 styleSheetLinkElement = document.getElementById(themeStyleSheetLinkId);

 styleSheetLinkElement.setAttribute("href", themeUrl);

 }

 document.documentElement.setAttribute("data-theme", themeName);

 }

 var htmlClientSdk = window.frameElement.htmlClientSdk;

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 93

 if (htmlClientSdk.app.getTheme && htmlClientSdk.event.onThemeChanged) {

 loadTheme(true, htmlClientSdk.app.getTheme());

 htmlClientSdk.event.onThemeChanged(loadTheme.bind(this, false));

 } else {

 loadTheme(true, { name: 'light' });

 }

})();

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 94

Developing HTML-Based User
Interface Extensions 11
The vSphere Client is a Web browser-based application that provides an extensible plug-in architecture.
The user interface layer contains every visual component of the application, including data views, portlets,
and navigation controls.

You can add UI features by creating user interface extensions. A UI plug-in contains one or more
extensions, which add UI elements to the vSphere Client user interface.

This chapter includes the following topics:

n Overview

n Global View Extensions

n Extending the vCenter Object Workspace

n Creating Data View Extensions

n Creating Actions Extensions

n Handling Locales

n Guidelines for Creating Plug-Ins Compatible with the vSphere Client

Overview
The vSphere Client provides an extensible plug-in architecture which you can use to create custom
solutions for your environment. Use the vSphere Client SDK to develop HTML plug-ins that are
compatible with the vSphere Client.

The vSphere Client SDK provides the following features:

n You can use the JavaScript libraries of your choice to develop the user interface components of your
extensions.

n You can examine the sample HTML plug-in provided with the vSphere Client SDK. The sample
demonstrates how you can add different extensions to the vSphere Client.

n You can create extensions to the Java service layer by using Java APIs provided in the SDK.

VMware, Inc. 95

Accessing Data
Each global view extension is an independent HTML element that must communicate with the plug-in
back-end service or the vSphere environment to retrieve data, or send commands, that the view requires.
The vSphere Client SDK includes a JavaScript library that you can use when creating UI extensions. The
JavaScript API provides access to user interface data such as a list of objects selected in the UI, locale of
the vSphere Client, and navigation to a specified view.

The JavaScript code can use REST-based Ajax queries to retrieve data from the plug-in back-end service
to retrieve data that the plug-in displays in the UI view. Alternatively, a user interface plug-in can redirect
to another view by submitting HTML forms.

Global View Extensions
In the vSphere Client, you can create global view extensions to create custom solutions for the user
interface.

A global view extension can have nearly any function, including aggregating data about different types of
vSphere objects onto a single screen, or displaying data from sources outside the vSphere environment.
A global view can be a simple single-level data view that uses the entire vSphere Client main workspace,
or a complex nested view with its own internal navigation structure and organization. Creating a global
view extension has a few restrictions:

n Global views are displayed in the vSphere Client main workspace, but exist outside of the virtual
infrastructure hierarchy. The user selects a global view directly, either through a pointer in the object
navigator or a shortcut on the vSphere Client home screen.

n To create a global view extension, you must define the extension by using the XML elements in the
plug-in module manifest file, and create the HTML code that appears in the main workspace.

Use Cases
You can use global view extensions to create dashboard-style data views or console-style applications.

A dashboard aggregates data from different sources in the vSphere environment together in one unified
data view. For example, you can create a dashboard that brings together status information about
vSphere objects from different vCenter Servers.

Console-style applications are displayed in the vSphere Client main content area. For example, the
vSphere Client Task Console and Event Console are console-style applications.

Creating Global View Extensions
You create global view extensions by using the vise.global.views extension point. To define a global
view extension, you need only the view name and the content URL.

Since there is no context object for a global view extension, the global view document is opened with a
request that contains only the locale parameter.

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 96

Properties of the HtmlView Extension Object
The vSphere Client provides the com.vmware.vsphere.client.htmlbridge.HtmlView for creating object
views and global views for your HTML-based extensions. You must define the HtmlView object in the
plugin.xml manifest file of your HTML view extensions.

The following table describes the properties that you provide for the
com.vmware.vsphere.client.htmlbridge.HtmlView object class by using the <root> element inside the
<object> element of your extension definition.

Property Type Description

<url> string The relative URL path starting with your plug-in Web context path to the HTML view. If your
HTML-based extension displays external context, use an HTTPS URL to the context.

<showVCenterSelector> boolean The vCenter Server selector allows you to switch between all instances that are connected to
the vSphere Client. If an object view or a global view from your extension needs to display
data for a particular vCenter Server instance, include the selector by adding the
<showVCenterSelector> property with value set to true. The default value is false.

<dialogTitle> string The name of the view. The property is applicable only for portlet views that are displayed in a
separate dialog box.

<dialogSize> integer The size of the dialog box of a portlet view which is provided in pixels and the property value
must have the following format: <width>,<height>.

<scrollPolicy> string Indicates whether scrollbars are added to the view. You choose between the following values:
yes, no, and auto. You set auto as a value to the property to let the Web browser decide
whether scrollbars are needed for your views. The default value is no.

Example: Example HTML-Based Global View Extension
The following example extension definition adds the VM Summary view to the VM workspace.

<extension id="com.vmware.samples.vspherewssdk.vm.summary">

 <extendedPoint>vsphere.core.vm.summarySectionViews</extendedPoint>

 <object>

 <name>#{summaryView.title}</name>

 <componentClass className="com.vmware.vsphere.client.htmlbridge.HtmlView">

 <object>

 <root>

 <url>/vsphere-client/vspherewssdk/resources/vm-summary.html</url>

 <dialogTitle>WSSDK Summary Sample</dialogTitle>

 </root>

 </object>

 </componentClass>

 </object>

</extension>

Adding a vCenter Server Selector
You can display data for a particular vCenter Server instance for a global view extension by using the
vCenter Server selector feature of the HTMLView object class. The HTML sample shows this feature with
standard Javascript code.

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 97

Extending the vCenter Object Workspace
The vSphere Client displays a standard object workspace for each type of vSphere object. Your plug-ins
can extend the object navigator with new categories, such as Settings, Custom Objects List, and so on.

The object workspace is a collection of data views with a tabbed navigation structure and detailed views
with table of contents entries. The workspace for a given vSphere object appears in the vSphere Client
main workspace for a selected object from the virtual infrastructure.

Each vSphere object type has Summary, Monitor, Configure, and categorized object relations top-level
tabs , and may contain additional detailed views within each tab. You can add extensions to create your
own sub-views and detailed views within the Monitor and Configure tab views. You can also create new
object workspaces with the default top-level tab, sub-tabs and detailed views structure.

Use Cases
You can either add a new data view to the existing object workspace for any type of vSphere object, or
you can create an object workspace for a plug-in specific object navigator item or entry point.

In general, you add a data view extension to an existing object workspace to convey additional
information about a vSphere object that is not included in the standard workspace of the object.

To implement a new workspace, you add an object navigator item that links to a global view extension.
Within the global view extension, you have the freedom to implement any view structure you want,
including a view with tabs and nested views.

When you create an object workspace, use XML extension templates as demonstrated in the sample
code.

Extending an Existing Object Workspace
To add HTML extensions to the Monitor and Configure tabs in the vSphere Client, use the following
generic extension points. These extension points generate a subordinate view inside that tab.

n vsphere.core.${objectType}.monitorViews

n vsphere.core.${objectType}.manageViews

For example, if you define an extension that extends the vsphere.core.vm.manageViews extension point,
your extension appears as an entry in the table of contents under the Configure tab in the object
workspace for virtual machine objects.

For a complete list of object workspace extension points available for the vSphere Client, see Object
Workspace Extension Points.

Types of Data Views
A data view extension appears differently depending on the vSphere object that you specified with the
extension point. Data views can appear in the object workspace having one of the following structures.

n Table of contents entry - If you define an extension to a top-level tab, such as Monitor, or Configure,
a data view extension appears as an entry in the table of contents on the left in the object workspace.

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 98

n Portlet - If you define the portlet extension point, a data view extension appears as a portlet in the
object workspace.

Configure and Monitor Views Extensions
You can extend a vSphere object view under the Configure and Monitor tabs by using the generic
extension points vsphere.core.${objectType}.monitorViews and vsphere.core.$
{objectType}.manageViews to specify the generic HTML class that implements the new data view. You
must also specify the URL to the HTML source of the data view.

Example: Adding a Host Monitor View
Following is an example of how you can add an HTML view to the Monitor tab of host objects.

 <extension id="com.vmware.samples.vspherewssdk.host.monitor">

 <extendedPoint>vsphere.core.host.monitorViews</extendedPoint>

 <object>

 <name>#{monitorHtml.label}</name>

 <contentSpec>

 <url>/ui/plugin-name/monitor-view.html</url>

 </contentSpec>

 </object>

 </extension>

The value of the <url> property is a relative URL that starts with the Web context path of the plug-in, /
ui/. You must set the same URL without the first slash as a value to the Web-ContextPath manifest
header of the Web application MANIFEST.MF file.

To display content from another domain in the view, you can use HTTPS URLs. Note that the content is
not loaded the first time that the user open the view, unless the domain certificate is already verified. You
must not use HTTP URLs because the contemporary Web browsers are designed to block any insecure
content that you try to display inside the secure vSphere Client domain.

The monitor-view.html document view is opened with a REST request that contains the following
parameters:

n objectId - The context object ID of the view.

n objectType - The context object type.

n locale - The current locale of the Web browser.

Creating an Object Workspace for a Custom Object
If your vSphere environment contains a custom vSphere object, you can create the object workspace by
using the provided extension templates.

For more information about the extension templates, see Extension Templates.

Creating Extensions to the Summary Tab
To create vSphere object views, you add portlets to the Summary tab.

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 99

You can add a portlet to the Summary tab of a vSphere object by using the vsphere.core.
{objectType}.summarySectionViews.html HTML-specific extension point.

Adding Portlets to the Summary Tab
You create portlet views at the <namespace>.summarySectionViews.html extension point by using the
generic HtmlView component class.

Example: Adding Portlet Views to the Summary Tab
The following example creates a portlet in the Summary view of a host.

 <extension id="com.vmware.samples.vspherewssdk.host.summary2">

 <extendedPoint>vsphere.core.host.summarySectionViews.html</extendedPoint>

 <object>

 <name>#{summaryView.title}</name>

 <contentSpec>

 <url>/ui/vspherewssdk/resources/host-summary.html</url>

 <dialogTitle>WSSDK Summary Sample</dialogTitle>

 <dialogSize>440,400</dialogSize>

 </contentSpec>

 </object>

 </extension>

Creating Data View Extensions
When you create data view extensions for the vSphere Client user interface layer, follow these general
recommendations:

n You do not need to change the Data Adapter services running in the service layer.

n You can use the generic DataAccessController Java class provided with each generated plug-in
project to handle HTTP JSON GET data requests.

n You must access data through the vSphere Client server and avoid calling directly your back end
services or database.

Common Data Access Pattern
You can use the pattern demonstrated in the html-sample in the SDK to access data from the vCenter
Server system from your plug-ins:

n The Ajax GET request created in your JavaScript code has the following format:

/plugin_context_path/rest/data/properties/objectId?properties=properties-list

, where objectId is the object ID of the currently selected vSphere object, and properties-list is the
comma-separated list of properties that must be retrieved for that object.

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 100

n The web.xml deployment descriptor located in the WEB-INF folder of the UI bundle of your plug-in
contains the <servlet-mapping> element that defines the /rest/* URL pattern for invoking the
springServlet servlet.

 <servlet-mapping>

 <servlet-name>springServlet</servlet-name>

 <url-pattern>/rest/*</url-pattern>

 </servlet-mapping>

n The bundle-context.xml file located in the WEB-INF\spring folder declares the
dataAccessController bean for the DataAccessController class that is available in the Java service
bundle of your plug-in.

<bean name="dataAccessController"

 class="com.vmware.samples.vspherewssdk.mvc.DataAccessController" />

n The DataAccessController class included in the Java service bundle of your plug-in has the
@RequestMapping annotation set to process the HTTP JSON GET for the /data endpoint. The
getProperties() generic method has the @RequestMapping annotation set to the /properties/
{objectId} value to handle the Ajax GET requests created in your JavaScript code.

 ...

@Controller

@RequestMapping(value = "/data", method = RequestMethod.GET)

public class DataAccessController {

 ...

 @RequestMapping(value = "/properties/{objectId}")

 @ResponseBody

 public Map<String, Object> getProperties(

 @PathVariable("objectId") String encodedObjectId,

 @RequestParam(value = "properties", required = true) String properties)

 ...

n The getProperties() generic method uses the QueryUtil class to create a Data Service query for the
requested list of vSphere object properties. The query results are returned to the Web browser as
JSON data.

 ...

 Object ref = getDecodedReference(encodedObjectId);

 String objectId = _objectReferenceService.getUid(ref);

 String[] props = properties.split(",");

 PropertyValue[] pvs = QueryUtil.getProperties(_dataService, ref, props);

 Map<String, Object> propsMap = new HashMap<String, Object>();

 propsMap.put(OBJECT_ID, objectId);

 for (PropertyValue pv : pvs) {

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 101

 propsMap.put(pv.propertyName, pv.value);

 }

 return propsMap;

 }

n The JavaScript code can display the data returned by the Ajax GET request as needed.

Creating Actions Extensions
You can extend the vSphere Client by adding actions. You can add actions to existing vSphere objects, or
create actions associated with a new type of vSphere object.

In the vSphere Client, actions represent commands that the user can issue to manage, administer, or
otherwise manipulate the objects in the vSphere environment. Each action in the vSphere Client is
associated with one or more specific vSphere object types. For example, the user might perform an
action to change the power state of a selected Virtual Machine object, or to cause a Host object to enter
or exit maintenance mode.

When you add an action extension to the vSphere Client user interface layer, you must also extend the
vSphere Client service layer with a Java service. The Java service is responsible for performing the action
operation on the target vSphere object.

Use Cases
You can extend the vSphere Client by adding actions associated with an existing type of vSphere object,
or with a new type of vSphere object. You might add actions to an existing object type if you have created
a custom version of that vSphere object, such as a custom host.

In addition to creating the action extension in the user interface layer, you might need to add a Java
service to the vSphere Client service layer. This Java service is used to perform the action operation on
the target vSphere object.

Actions Framework Overview
The Actions Framework governs all available actions in the vSphere Client. All actions in the Actions
Framework are organized into groups called action sets. When you create action extensions to the
vSphere Client, you must define one or more action sets in the Actions Framework.

Each action in the Actions Framework is associated with one or more specific types of objects in the
vSphere environment. Actions associated with virtual machines, for example, are available only when the
user has selected a virtual machine object. Available actions are displayed in the actions drop-down
menu at the top of the main workspace, or in a context menu when the user right-clicks on an object in
the object navigator.

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 102

Action Controllers for HTML Extensions
In the plug-in module that contains your action extension, you must create a Java actions controller. The
controller runs on the application server and acts as a dispatcher for commands. The HTML UI
component sends commands to the actions controller using a REST API, and the controller routes the
commands to services that implement the actions.

Defining an Action Set
An extension that adds one or more actions to the vSphere Client must define an action set. You add
each action set extension to a specific extension point in the vSphere Client user interface layer, named
vise.actions.sets.

Your extension definition must define an action set and the individual actions within that action set. An
action set is a data object of type com.vmware.actionsfw.ActionSetSpec. The ActionSetSpec object
contains an <actions> property, which is an array of action data objects. You specify each individual
action in the set inside the <actions> property, using a separate data object for each.

You associate each action set extension with a particular type of vSphere object. A best practice is to use
the vSphere Client extension filtering mechanism to ensure that the actions are only visible when the user
selects the relevant type of vSphere object. See Filtering Extensions.

Note If you omit the <metadata> element for extension filtering in your action set extension definition,
your action is shown for all vSphere objects. Use the <metadata> element to ensure that your actions
appear only for the correct type of vSphere custom objects.

Defining Individual Actions for HTML-Based Action Extensions
HTML-based extensions do not use the <command> property of the ActionSpec object. Instead they contain
a <delegate> object.

The <delegate> object requires a <className> property and an <object> element that contains only an
embedded <root> element. The <className> property specifies one of the following, depending on
whether the action is modal or headless:

n com.vmware.vsphere.client.HtmlPluginHeadlessAction for a headless action

n com.vmware.vsphere.client.HtmlPluginModalAction for a modal (UI) action

The following table lists the properties that you can use in the <root> element.

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 103

Property Type Description

<actionURL> string Identifies the HTML resource to be
displayed. The value can be an absolute
HTTPS URL or a bundle context path. If
the value is a bundle context path, the
relative URL must end with the .html
extension to enable session
authentication. For absolute URLs, the
framework does not use session
authentication.

<dialogTitle> string Specifies the title of the dialog box. Add
this property to the <root> element, or the
action is treated as headless. Can be
localized.

<dialogSize> string Indicates the width and height of the
dialog box, in pixels, separated by
commas.

<dialogIcon> string Specifies an optional icon resource for the
dialog.

<closable> boolean Hides the top right close button for the
dialog. The default value of this property is
true.

There are two types of HTML-based action extensions. One type, known as a UI action, displays a modal
dialog box for user input or confirmation before submitting a service request. The other type, known as a
headless action, initiates a request to a service without additional user input. An extension definition for a
UI action specifies the size and title of the dialog box, while a headless action definition omits the dialog
box properties.

Invoking Headless HTML Actions
Your HTML-based action extension can invoke headless actions on its own initiative by specifying
com.vmware.vsphere.client.HtmlPluginHeadlessAction as the delegate class name. of the action
extension point.

n The value of the actionUrl parameter has the following form.

/ui/html-sample/rest/vm-headless-ction

n The value of the jsonData parameter is a JSON map of parameters passed to the actions controller,
or null if no parameters are needed.

Example: HTML-Based Headless Action Extension Definition
The following example shows an extension definition for an HTML-based headless action extension.

<!-- Plugin Action set -->

<extension id="com.vmware.samples.htmlsample.vm.actionSet">

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 104

 <extendedPoint>vise.actions.sets</extendedPoint>

 <object>

 <actions>

...

 <!-- Plugin Headless Action -->

 <com.vmware.actionsfw.ActionSpec>

 <uid>com.vmware.samples.htmlsample.vm.headless.action</uid>

 <label>#{vmHeadlessActionLabel}</label>

 <delegate>

 <className>com.vmware.vsphere.client.HtmlPluginHeadlessAction</className>

 <object><root>

 <actionUrl>/ui/html-sample/rest/vm-headless-action</actionUrl>

 </root></object>

 </delegate>

 </com.vmware.actionsfw.ActionSpec>

...

 </actions>

 </object>

 <metadata>

 <objectType>VirtualMachine</objectType>

 </metadata>

</extension>

When the headless action is invoked the JavaScript API makes a POST request to the actions controller on
the Tomcat server, using the actionUrl property. The following parameters are added to the URL.

n actionUid - The <uid> of the ActionSpec object defined in the plugin.xml file

n targets - A comma-separated list of objectIds

By default, the targets parameter takes only one objectId. To specify more than one objectId, set the
flag acceptsMultipleTargets to true.

In this example, the full URL takes the following form.

/vsphere-client/chassis/rest/actions.html?

actionUid=com.vmware.samples.chassis.deleteChassis&targets=objectId

UI Actions
You can implement a UI action that displays a modal dialog in response to a menu click or a toolbar
button. You can implement also other types of pop-up dialogs that are specific to an object view or a
global view.

When you define a UI action, you can supply an additional property for the <delegate> class to specify
whether the dialog displays an X button to close the dialog. The default is to display an X button. To
suppress the X button, add the closable property with a value of false.

Example: HTML-Based UI Action Extension Definition
The following example shows an extension definition for an HTML-based UI action extension.

<!-- Plugin Action set -->

<extension id="com.vmware.samples.htmlsample.vm.actionSet">

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 105

 <extendedPoint>vise.actions.sets</extendedPoint>

 <object>

 <actions>

...

 <!-- Plugin UI Action -->

 <com.vmware.actionsfw.ActionSpec>

 <uid>com.vmware.samples.htmlsample.vm.modal.action</uid>

 <label>#{vmUiActionLabel}</label>

 <delegate>

 <className>com.vmware.vsphere.client.HtmlPluginModalAction</className>

 <object><root>

 <actionUrl>/ui/html-sample/index.html?view=vm-modal-action</actionUrl>

 <dialogTitle>#{vmActionModalTitle}</dialogTitle>

 <dialogSize>600.250</dialogSize}

 <closable>false</closable>

 </root></object>

 </delegate>

 </com.vmware.actionsfw.ActionSpec>

...

 </actions>

 </object>

 <metadata>

 <objectType>VirtualMachine</objectType>

 </metadata>

</extension>

When the action is invoked the platform opens a modal dialog containing the HTML document specified in
the actionUrl property. The following table contains the parameters that are added to the URL.

n locale - The current locale that is used.

After the dialog form is submitted or the operation is canceled, the code calls modal.close(data).

Handling Actions for HTML-Based Action Extensions
When you create an HTML-based action extension to the vSphere Client, you must create an actions
controller class on the Tomcat server to respond to the REST API requests from the client code.

A best practice is to implement the controller class as a simple dispatcher that maps the action UIDs to
Java services. You can invoke custom services or translate REST API requests to Data Manager
requests.

Example: Example Java Actions Controller Class

...

/**

 * Perform headless action on a VirtualMachine vSphere object.

 */

 @RequestMapping(value="vm-headless-action",

 method = RequestMethod.POST)

 @ResponseBody

public void vmHeadlessAction() {

 // Implement your logic here to trigger an action on a virtual machine.

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 106

 }

...

Handling Locales
The default locale is the locale that is set by the Web browser of the user, or the English (United States)
locale if the vSphere Client does not support the set locale.

In the vSphere Client locales are usually handled on the user interface layer. In some cases, the HTML
plug-in must return text from the Java service layer such as the properties of a vSphere object adm error
messages.

Handling Resources in the plugin.xml Manifest File
The localized resources for your plug-in are located in the locales directory of the WAR file. The
plugin.xml manifest file contains the <resources> element that you must use to specify the location of
plug-in resources such as images and localization data. The defaultBundle attribute of the <plugin>
element specifies the name of the main .properties file of the plug-in and is added automatically by the
Ant build scripts.

To instruct the vSphere Client to use the locale that your Web browser specifies at runtime, set {locale}
as a value to the locale attribute of the <resource> element in the plugin.xml manifest file. You must
avoid hard-coding a specific locale as a value to the locale attribute.

The plugin.xml manifest file contains the names of views, dialogs, action menus, icons, and other
localizable objects. These strings and icons must be localized and not hard-coded in a particular
language. If the string or icon is defined in the main properties file specified with the defaultBundle
attribute, you must use the #{RESOURCE_KEY} syntax for the element and attribute values. If the string or
icon is defined in a different .properties file, use the #{BUNDLE_NAME:RESOURCE_KEY} syntax for the
element and attribute values.

Example: Localizing Strings and Icons in the plugin.xml Manifest
File
The following code snippet demonstrates how you can specify the values for strings and icons that must
be localized in the vSphere Client depending on the settings of the Web browser. The main properties file
of the plug-in is locale/en_US/com_vmware_samples_chassisa.properties which is reflected with
the value of the defaultBundle attribute.

<plugin id="com.vmware.samples.chassisa"

 defaultBundle="com_vmware_samples_chassisa">

 <resources>

 <resource locale="{locale}">

 <module uri="locales/chassisa-{locale}.swf"/>

 </resource>

 </resources>

 ...

 <templateInstance id="com.vmware.samples.lists.allChassis">

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 107

 <templateId>vsphere.core.inventorylist.objectCollectionTemplate</templateId>

 <variable name="namespace" value="com.vmware.samples.chassisa_collection"/>

 <variable name="title" value="#{chassisLabel}"/>

 <variable name="icon" value="#{chassis}"/>

 ...

The English locales for the chassisLabel string and the chassis icon are defined in the
com_vmware_samples_chassisa.properties file in the following way:

------- String properties --------

chassisLabel = ChassisA

summary.title = Chassis main info

...

------------- Images -------------

chassis = Embed("../../assets/images/chassis.png")

localizedImage.url = assets/images/localizedImage-en_US.png

...

Handling Resources in the HTML and JavaScript Code
You can retrieve the current client locale by using the app.getClientLocale() method from the JavaScript
API. You can use the locale information to localize your plug-in UI with a framework of your choice. For an
example of localizing a plug-in UI, see the HTML sample plug-in included with the SDK.

Handling Resources at the Service Layer
In some cases your plug-in might return strings from the service layer that must be displayed in the
vSphere Client. For example, the service layer can return the properties of a vSphere object that must be
displayed in a human-readable format, or an error message that comes from the back end. You must
retrieve the current locale of the user and return the translated text for that locale in your Java code.

In case of error messages, your back end server might have the messages localized. In other cases, you
can use the standard Java localization APIs and add .properties files inside your JAR files. These
properties files are used to load the correct strings based on the locale.

Following is an example of how to use the UserSession class to access the locale of the current client
session.

 // see the vsphere-wssdk-service sample for injecting _userSessionService in your class

 UserSession userSession = _userSessionService.getUserSession();

 String locale = userSession.locale;

 ...

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 108

Guidelines for Creating Plug-Ins Compatible with the
vSphere Client
You can use the plug-in generation scripts provided with the vSphere Client SDK to create a plug-in that
is compatible with both Web browser-based applications.

To develop an HTML plug-in, you must first create a plug-in project that has the required by the plug-in
resources and directory structure. Use one of the generation scripts that are available in the tools
\Plugin generation scripts folder under html-client-sdk.

After you create the HTML plug-in project, follow these guidelines to ensure that your plug-in is
compatible with the vSphere Client:

n Use relative URLs to set the location to the resources inside your plug-in inside your HTML and
JavaScript code. For example, you must avoid adding the /ui root path to the URLs.

n Use the ui root path only inside the MANIFEST.MF and plugin.xml files.

n Add Cascading Style Sheets (CSS) classes to the plugin-icons.css file for the icons that are
displayed outside the views, such as Home screen shortcut icons, menu icons, and vSphere objects
list icons. See Handling Icons Outside the HTML Views.

n When you add an extension to an existing object menu or a custom object menu, you must define a
custom menu extension referencing the vsphere.core.menus.solutionMenus extension point in
addition to the actions referencing the vise.actions.sets extension point. See Defining Menus and
Sub-Menus.

Using the Web Context Path in HTML Plug-Ins
Each HTML plug-in is a separate Web application that has a specific context path defined in the
MANIFEST.MF file of the WAR bundle. The context path of your application specifies where the Web
content is hosted and which requests must be handled by your application. For example, the Web context
path for the HTML sample plug-in is defined in the manifest file as follows:

Web-ContextPath: ui/html-sample

The root path for resources and data requests for the vSphere Client starts with ui.

Handling Icons Outside the HTML Views
External icons are the icons displayed outside the HTML views and handled directly by the vSphere
Client. Examples of such icons are the Home view shortcut icons, menu icons, and the vSphere object list
icons. If you use the generation scripts or the wizard provided with the vSphere Client Tools Eclipse plug-
in to generate your HTML plug-in, the plugin-icons.css CSS file is added to the plug-in project. The
example CSS file contains the definitions of two external icons.

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 109

To declare that your plug-in depends on external icons, in the plugin.xml manifest file add the
<dependency> element inside the <dependencies> element. The following attributes of the <dependency>
element contain information about the external icons:

n type - The resource type such as css.

n uri - The URI of the CSS file that contains the external icon declarations.

Following is an example of dependency declaration in the plugin.xml file:

 <dependencies>

 <!-- Allow HTML Client to display icons in menus, shortcuts, lists -->

 <dependency type="css" uri="myplugin/assets/css/plugin-icons.css" />

 </dependencies>

Defining Menus and Sub-Menus
When you add a custom vSphere object menu or extend an existing object menu, you must define each
individual action and add a custom solution menu under the existing menu which might include sub-
menus and separators. Use the vise.actions.sets extension point to define each action, and the
vsphere.core.menus.solutionMenus extension point to add the custom solution menu.

The following example demonstrates how you can define custom actions for VirtualMachine objects and
then add custom solution menus under the existing VirtualMachine menu.

 <extension id="com.vmware.samples.vspherewssdk.vmActionSet">

 <extendedPoint>vise.actions.sets</extendedPoint>

 <object>

 <actions>

 <com.vmware.actionsfw.ActionSpec>

 <!-- UI action: show dialog -->

 <uid>com.vmware.samples.vspherewssdk.myVmAction1</uid>

 <label>#{action1.label}</label>

 <delegate>

<className>com.vmware.vsphere.client.htmlbridge.HtmlActionDelegate</className>

 <object><root>

 <!-- execute the action on client-side (html view in a modal dialog) -->

 <actionUrl>/vsphere-client/vspherewssdk/resources/vm-action-dialog.html</

actionUrl>

 <dialogTitle>#{action1.label}</dialogTitle>

 <dialogSize>500,250</dialogSize>

 </root></object>

 </delegate>

 </com.vmware.actionsfw.ActionSpec>

 </object>

 <metadata>

 <!-- Filter this extension only for VirtualMachine objects -->

 <objectType>VirtualMachine</objectType>

 </metadata>

 </extension>

 ...

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 110

 <extension id="com.vmware.samples.vspherewssdk.vmMenu">

 <extendedPoint>vsphere.core.menus.solutionMenus</extendedPoint>

 <object>

 <!-- <label> is required here because it is an extension to an existing menu -->

 <label>#{solution.label}</label>

 <children>

 <Array>

 <com.vmware.actionsfw.ActionMenuItemSpec>

 <!-- UI action example -->

 <type>action</type>

 <uid>com.vmware.samples.vspherewssdk.myVmAction1</uid>

 </com.vmware.actionsfw.ActionMenuItemSpec>

 ...

 </object>

 <metadata>

 <!-- Filter creates this extension only for VirtualMachine objects -->

 <objectType>VirtualMachine</objectType>

 </metadata>

 </extension>

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 111

Developing for the vSphere
Client Service Layer 12
User interface elements in the vSphere Client interact with Java services that run in the application
server. The Java services on the application server communicate with vCenter Server, ESXi hosts, and
other data sources within and outside of the vSphere environment.

This chapter includes the following topics:

n Developing Extensions to the Service Layer

Developing Extensions to the Service Layer
The principal Java service included in the service layer is the Data Service. The Data Service provides
data on objects that vCenter Server manages, using a query-based information model. Components in
the and user interface layer, such as HTML data views, send queries to the Data Service for specific
objects or attributes. The Data Service processes each query and returns responses.

When you create an extension in the user interface layer that requires data not provided by the Data
Service, you must extend the service layer with new providers for the data. This chapter explains how to
create Data Service extensions, how to create a custom Java service, how to access data using the
vSphere Web Services API or the Data Services interface, and how to import services in a user interface
module.

For more information about the relationships between the components in the different layers, see
Understanding the vSphere Client Architecture.

Understanding the vSphere Client Data Service
The default Data Service provides a stateless, query-based interface to retrieve information about
vSphere objects, as defined by the vSphere Web Client API.

The default Data Service interface can access data from vCenter Server. The Data Service accesses
various services on vCenter Server, including the Inventory and Property Collector services.

User interface components, such as Flex data views, act as Data Service clients. These clients retrieve
information by creating Data Service queries. The Data Service processes each query and returns a set
of result objects.

VMware, Inc. 112

If your vSphere Web Client or vSphere Client extensions require data from a different source, either within
vCenter Server or outside vCenter Server, you can extend the Data Service by creating a Data Service
Adapter. A Data Service Adapter provides a way for you to use Data Service queries to retrieve a data
from custom objects or to extend VMware managed objects.

Extending the Service Layer with Custom Components
The Web Client SDK provides several ways to extend the service layer. Each kind of extension is best
suited for certain functions.

n To manage back-end operations in the service layer, you create custom Java plug-ins, which can be
of two kinds:

n Plug-ins that implement REST services that act on behalf of user interface plug-ins written in
HTML.

n Plug-ins that implement custom RPC interfaces on behalf of Flex proxy components.

n To retrieve data from vCenter Server or from external sources, you create custom data adapters in
Java. Your data adapters can be of two kinds:

n Property Provider Adapters can retrieve data from vSphere managed objects.

n Data Provider Adapters can retrieve data from external sources as well as vSphere managed
objects.

3rd party
Flex plug-in

Main UI with
core plug-ins

vCenter Server 1.. N

3rd party
HTML plug-in

3rd party back end
database or server

UI Flex Platform
HTML
Bridge

User Interface
Layer

HTML plug-in compatible
with the vSphere Web
Client and the vSphere Client

REST calls to
get/post data
with controllers

vSphere Web
Client Platform

Legend

VMware

Partners

Any
remote API

vSphere Web
Services SDK

secure AMF channel

• Container,
 common views
• Actions, Data Manager

Java Platform
Java controllers

Java services

Data adapters

Service
Layer

Back End Layer

• Extension Service
• Data Service
• Mutation Service

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 113

Custom Component Types
The following types of custom components belong to or communicate with the service layer.

HTML UI components

HTML components display the visual components of the vSphere Client interface. You can create
custom HTML components to add new features to the user interface.

Flex UI components

Flex user interface components display the visual components of the vSphere Web Client interface.
You can create custom Flex components to add new features to the user interface.

Data Service Adapters

Data Service Adapters implement query service interfaces designed by VMware for data requests
from user interface components. Property Provider Adapters and Data Provider Adapters are the two
kinds of Data Service Adapters.

Data Provider Adapters

Data Provider Adapters implement the DataProviderAdapter interface. They respond to requests for
data from custom vSphere objects or from objects that are not managed by vSphere.

Property Provider Adapters

Property Provider Adapters implement the PropertyProviderAdapter interface. They respond to
requests for properties of vSphere objects. Property Provider Adapters cannot provide properties for
custom objects.

Custom Java services

Custom Java services provide operations on vSphere managed objects or external data sources.
Custom services usually dispatch requests to vCenter Server or to external processes that perform
extensive operations.

Interfaces to the Service Layer
Components communicating in the service layer can use the following types of interfaces:

Data Service

The Data Service is an interface accessible to the Data Access Manager or to controller services
used by HTML UI components.

Data Access Manager

The Data Access Manager is a Flex library provided by VMware to simplify communications between
Flex UI components and the service layer.

PropertyProviderAdapter

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 114

Property Provider Adapters implement the PropertyProviderAdapter interface of the Data Service.
This interface is designed to provide properties of VMware managed objects.

DataProviderAdapter

Data Provider Adapters implement the DataProviderAdapter interface of the Data Service. This
interface is designed to provide properties of custom objects.

Web Services API

The Web Services API is supported by vCenter Server and ESXi systems. It provides access to
vSphere managed objects using an XML SOAP protocol.

Custom Service Interfaces

You can design your own service interfaces to use in custom Java services.

Communications with the Service Layer
The service layer contains several providers from VMware and you can extend it with custom providers
that you create in Java. Custom providers collect and package data used either by custom user interface
components or by existing user interface components.

HTML components in the vSphere Client user interface layer communicate with a controller service in the
service layer by using REST APIs. The controller service can use the Data Service or the vSphere Web
Services API to access data about vSphere objects, or extend the Data Service to access objects outside
vSphere. The controller service can also use other custom or third-party services to access objects
outside vSphere.

You can extend the Data Service to process queries for new data sources. The new data can come from
other sources inside the vSphere environment, such as specific ESXi hosts, or from external data
sources. When you extend the Data Service, your extensions in the user interface layer can communicate
with new data sources by using the existing methods and libraries, such as the Data Access Manager.

You extend the Data Service by creating a Java service called a Data Service Adapter. A Data Service
Adapter can either retrieve new properties for existing vSphere objects, or it can retrieve information from
new custom objects. You must create different types of Data Service Adapters, depending on whether
your environment adds new data to existing vSphere objects, or adds custom objects to the virtual
infrastructure.

You can create custom Java services to work with your UI components. These custom Java services are
typically used for performing action operations that make changes to the vSphere environment. Custom
Java services are generally used as pass-throughs to back-end processes or external data sources.

Note A best practice is to limit your Java service to dispatching requests from the vSphere Client,
without passing on requests to other services. You can implement extensive or resource-intensive logic
on your own external server.

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 115

Overview of Data Service Queries
Data Service is an API used to query data in the application server. You can use the Data Service either
from user interface components or from providers in the service layer.

When To Use Data Service Queries
The Data Service is primarily intended for queries from user interface components. However, your service
providers also have access to the Data Service.

You can initiate Data Service queries in the Java code of your service providers to fetch data from
vCenter Server or from custom service providers. A best practice is to use the vSphere Web Services API
to fetch data from vCenter Server, because it is more efficient than Data Services. However, you must use
Data Services in the following cases:

n You need to join data from more than one vCenter Server.

n Your query includes properties that are available only from a custom provider.

n Your query includes data objects (complex properties) from vCenter Server, and the client is a UI
component from VMware that understands data object encoding.

RequestSpec Data Structure in Data Service Queries
A Data Services client sends a request in the form of a RequestSpec object, which contains a list of
QuerySpec objects.

QuerySpec Structure

The name field of a QuerySpec is optional. You can assign a name of your choosing, to help you identify the
corresponding results. The name field is also useful to troubleshoot custom data providers.

A QuerySpec also contains a ResourceSpec and a ResultSpec.

ResourceSpec

The ResourceSpec specifies what properties and what objects are to be returned. It contains a list of
PropertySpec objects and a tree of Constraint objects. The PropertySpec objects select resources and
their properties, while the Constraint objects enable you to construct Boolean combinations of conditions
to filter the set of resources from which properties are returned.

ResultSpec

The ResultSpec, which is optional, enables you to sort the results and to specify a chunk length and a
starting index for the ResultSet.

The OrderingCriteria is a list of OrderingPropertySpec. Each list entry specifies the name of a sortable
property and whether to sort the values in ascending or descending order.

OrderingPropertySpec is a subclass of PropertySpec. The subclass adds a SortType field.

Note Sorting on custom properties can degrade performance in the client.

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 116

PropertySpec

A PropertySpec object is used to identify the properties to return in the ResultSet, or the properties used
for sorting the results. In the latter usage, you can specify an optional sort order for the property by
supplying an instance of OrderingPropertySpec, which is a subclass of PropertySpec. A PropertySpec is
required in the ResourceSpec, but OrderingPropertySpec is optional.

A PropertySpec begins with a type field which contains the name of a resource type. This is typically the
URI of a custom resource type, or the name of a managed object type in the case of a query that joins
data across vCenter Servers. For example, to request properties of a VirtualMachine managed object,
you must set the type field of a PropertySpec object to "VirtualMachine".

A PropertySpec contains an array of strings identifying properties to be returned in the ResultSet. To
identify nested properties, such as properties of nested data objects, use a period as delimiter. For
example, the name of a virtual machine config file is a property of the files data object, which is a
property of the config data object, which is a property of the VirtualMachine managed object, so you
identify the chosen property with the string "config.files.vmPathName".

To access properties of related resources or managed objects, such as the name of the host on which a
virtual machine is currently running, use a Constraint object to do a join operation between the two
managed object types.

Note The relation field and the ParameterSpec array contained in the propertySpec object are reserved
for internal use.

Constraint

Constraint objects enable you to specify arbitrary Boolean expressions that filter the results of your
query. You can limit the results by placing conditions on property values and object identities. Your query
must include a Constraint object.

Constraint is an abstract class with four subclasses. You can supply a simple constraint of object identity
or property value by using an ObjectIdentityConstraint object or a PropertyConstraint object. You can
use a RelationalConstraint object to join data across resource types.

You can use a CompositeConstraint wherever a Constraint object is allowed. A CompositeConstraint
enables you to combine a list of other constraint objects, joined by a Boolean operator. You can nest a
CompositeConstraint within another CompositeConstraint, which enables you to create arbitrarily
complex Boolean expressions.

A query can contain the following types of constraints, each of which is a subclass of the base Constraint
class.

n ObjectIdentityConstraint - Queries based on this constraint retrieve the properties of a known
target object. For example, a query might retrieve the powered-on state of a given virtual machine.
The object identifier can be a managed object type or any custom type that implements the
IResourceReference interface. The identifier in this constraint includes the server GUID.

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 117

n PropertyConstraint - Queries based on this constraint retrieve all objects with a given property
value. For example, a query might retrieve all virtual machine objects with a power state of on. This
constraint accepts the property name and comparator as strings, and the property value as an
Object. This constraint is not bound to a specific server, and can be used to retrieve results from all
vCenter Servers known to the client.

n RelationalConstraint - Queries based on this constraint retrieve all objects that match the specified
relationship with a given object. For example, a query might retrieve all virtual machine objects
related to a given host object. The identifier in this constraint includes the server GUID.

n CompositeConstraint - Composite queries allow the combination of multiple constraints using the and
or or operator, passed as a string. The combined subconstraints in CompositeConstraint are
contained in an array of Constraint objects.

Each constraint operates relative to a resource type that you specify in its targetType field. For instance,
if you want to query the names of all virtual machines running on a given host, one way is to create a
PropertyConstraint that specifies a targetType of "HostSystem" and a value for the name property, then
nest that PropertyConstraint in the Constraint field of a RelationalConstraint that specifies a
targetType of "VirtualMachine" and a relation field of "runtime.host".

ResultSet Data Structure in Data Service Queries
The response to a RequestSpec is a list of ResultSet objects. Each ResultSet corresponds to a QuerySpec
object in the RequestSpec, with a one-to-one mapping.

The queryName field of a ResultSet is used to identify the QuerySpec that corresponds to the ResultSet. If
you assigned a name to a query in the RequestSpec, the Response contains a ResultSet with a matching
value in its queryName field. If you submitted a QuerySpec without a name, the corresponding ResultSet
has an empty string in the queryName field. A best practice is to assign a unique name to each QuerySpec
whenever you submit a request that contains more than one query.

When you process a ResultSet, first check the error field. If the error is non-empty, the query failed, and
the queryName field has a valid value but other fields have indeterminate values. If the error is empty, the
other fields are meaningful.

The totalMatchedObjectCount tells you the number of items the query can return. If the query did not
specify a chunk size in the maxResultCount field, then totalMatchedObjectCount is the size of the
ResultSet.items list. If the query did specify a chunk size, then the items list size is the minimum of
QuerySpec.maxResultCount and ResultSet.totalMatchedObjectCount - QuerySpec.offset.

The data payload is ResultSet.items, which is a list of ResourceItem objects. Each ResourceItem object
contains a single resourceObject field, which holds the identifier of the resource whose properties are
returned in this ResourceItem. The ResultItem.properties field contains a list of name-value pairs for
properties requested by the QuerySpec.

Extending the Data Service with a Data Service Adapter
You extend the Data Service by creating a Data Service Adapter to provide data to the components in
your user interface extensions that require data that is not available through the Data Service.

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 118

A Data Service Adapter is a Java service that integrates with the Data Service, and gives the Data
Service the ability to process and respond to Data Service queries for new object types or properties.
Data Service Adapters can access data sources within vSphere, or outside data sources.

A Data Service Adapter must implement the same interface and information model as the Data Service.
When you create a Data Service Adapter, it must handle Data Service queries and return information as a
result set consisting of objects with associated properties.

Advantages of Providing a Data Service Adapter
Extending the Data Service by creating a Data Service Adapter has several advantages.

n The Data Service routes queries to the appropriate Data Service Adapters. This mechanism removes
any distinction between data sources inside or outside of vSphere, and your extension components
can access multiple data sources in a single call.

n The Flex components in your user interface extensions can use the Data Access Manager interface
to access the new data. The Data Access Manager provides a consistent data access model
throughout the component, easing maintenance and improving code consistency and re-use.

n Centralizing data access through the Data Service lets your extension components take advantage of
services such as logging and error handling.

Designing a Data Service Adapter
To create a Data Service Adapter, you must create a Java service that implements one of the adapter
interfaces published by the Data Service. The Data Service publishes interfaces for Property Provider
Adapters and Data Provider Adapters. The type of Data Service Adapter you must create depends on the
information you want to make available through the Data Service.

Property Provider Adapters

You create a Property Provider Adapter to allow the Data Service to access new properties for existing
vSphere objects, such as virtual machines or hosts. For example, your vSphere environment might
contain custom virtual machines or hosts that provide extra properties not normally available through the
Data Service. You can create a Property Provider Adapter to extend the Data Service to fetch these
additional properties.

Data Provider Adapters

You can use a Data Provider Adapter to extend the Data Service to fetch data that is not associated with
an existing vSphere object. Typically, you create a Data Provider Adapter for one of the following
purposes.

n To retrieve information about a new type of object that you have added to the vSphere environment

n To retrieve information from a source outside the vSphere environment

For example, you might create a Data Provider Adapter to handle queries for a new type of vSphere
object called Chassis. You might also use a Data Provider Adapter to display data in the vSphere Web
Client or the vSphere Client from an external Web source separate from vCenter Server.

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 119

Implementing an Adapter

To implement one of the adapter interfaces, your Java service must import the
com.vmware.vise.data.query package.

After you create the adapter service, you must add the adapter service to the Tomcat server framework
and register the adapter with the Data Service. You register an adapter by using the
DataServiceExtensionRegistry service, typically within your adapter constructor method. See Registering
a Property Provider Adapter and Registering a Data Provider Adapter.

The registration process declares what types of objects and properties the Data Service Adapter can
provide. When the Data Service receives a query for one of the registered object or property types, the
Data Service routes the query to the proper Data Service Adapter.

Processing Data Service Queries

Data Service queries are passed to your Data Service Adapter through the
com.vmware.data.query.RequestSpec object parameter.

A RequestSpec object consists of an array of objects of type com.vmware.data.query.QuerySpec, each of
which represents an individual query. Each QuerySpec object defines the query target, the query
constraints, and the expected formatting for the query results.

Query Target

A query target is a resource type for which your getData() method must retrieve properties. A QuerySpec
can specify a number of targets within its ResourceSpec, by including an array of objects of type
com.vmware.data.query.PropertySpec. Each target type is represented as a string in the field
ResourceSpec.PropertySpec[x].type.

Your getData() method can determine what information it must retrieve by using the values in the
PropertySpec objects. If the target is a VMware managed object, the value of the string is the name of the
managed object type. For custom objects, see Resolving a Custom Target Object.

Handling Constraints

Within the QuerySpec object, the query constraints are represented as an object of type
com.vmware.data.query.Constraint. A query can specify the following types of constraints, each of
which is a subclass of the base Constraint class.

n ObjectIdentityConstraint - Queries based on this constraint retrieve the properties of a known
target object. For example, a query might retrieve the powered-on state of a given virtual machine.
The object identifier can be a managed object type or any custom type that implements the
IResourceReference interface. The identifier in this constraint includes the server GUID.

n PropertyConstraint - Queries based on this constraint retrieve all objects with a given property
value. For example, a query might retrieve all virtual machine objects with a power state of on. This
constraint accepts the property name and comparator as strings, and the property value as an
Object. This constraint is not bound to a specific server, and can be used to retrieve results from all
vCenter Servers known to the client.

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 120

n RelationalConstraint - Queries based on this constraint retrieve all objects that match the specified
relationship with a given object. For example, a query might retrieve all virtual machine objects
related to a given host object. The identifier in this constraint includes the server GUID.

n CompositeConstraint - Composite queries allow the combination of multiple constraints using the and
or or operator, passed as a string. The combined subconstraints in CompositeConstraint are
contained in an array of Constraint objects.

When processing constraints, a best practice is to read the entire set of constraints and then determine
the most efficient processing order. For example, you can process relational constraints first to retrieve a
smaller number of objects that meet any included property constraints.

Specifying Result Sets

In the QuerySpec object, the expected formatting for the query results are included in an object of type
com.vmware.data.query.ResultSpec. The properties of the ResultSpec object specify a maximum number
of results for the query to return, provide an offset into the returned results, and set ordering for the
returned results. Your getData() method must use the values of the ResultSpec properties to format the
information it has retrieved.

Note When a Data Service query requests a vSphere data object as a whole, rather than its properties,
the response contains the data object in an unsupported format that VMware user interface elements
understand. If your provider needs to use the Data Service to request a data object on behalf of a client,
your provider should copy the data object from its query results into the result set that your provider is
building in response to the client, without doing any kind of processing on the data object portion of the
results.

Property Provider Adapters
Queries to a Property Provider Adapter accept one or more specific vSphere objects, and return one or
more properties for those objects. A Property Provider Adapter registers with the Data Service to
advertise which types of properties it can return. When the Data Service receives a query for one of the
registered property types, the Data Service routes the query to the appropriate Property Provider Adapter
for processing.

Note You may not register a provider for an existing VMware property or object type. For example, if
your solution needs to identify a host by an alternate name, you may create an adapter to implement a
property such as alt_name, but it may not modify the original name property.

PropertyProviderAdapter Interface

A Property Provider Adapter must implement the PropertyProviderAdapter interface of the
com.vmware.vise.data.query package. The PropertyProviderAdapter interface publishes a single
method named getProperties(). Your Property Provider Adapter service must provide an implementation
of this method. The Data Service calls the getProperties() method of your adapter in response to an
appropriate query for the properties your adapter is registered to provide.

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 121

The method implementation in your service must accept as its parameter an object of type
com.vmware.vise.data.query.PropertyRequestSpec, and must return an object of type
com.vmware.vise.data.query.ResultSet.

public ResultSet getProperties(PropertyRequestSpec propertyRequest)

Your service implementation of the getProperties() method can retrieve and format data in any way you
choose. However, your implementation must return the results as a ResultSet object. You use the
PropertyRequestSpec object to obtain the query list of target vSphere objects and desired properties. The
PropertyRequestSpec object contains an objects array and a properties array, which respectively contain
the target vSphere objects and requested properties.

For additional information on ResultSet, PropertyRequestSpec, and other features in the
com.vmware.vise.data.query package, see the Java API reference included in the SDK.

Registering a Property Provider Adapter

You must register your Property Provider Adapter for the adapter to work with the Data Service. You
register your Property Provider Adapter with the Data Service by using the
DataServiceExtensionRegistry service. The DataServiceExtensionRegistry service contains a method
named registerDataAdapter() that you must call to register your Property Provider Adapter.

A best practice for registering your adapter is to pass DataServiceExtensionRegistry as a parameter to
your Property Provider Adapter class constructor, and call registerDataAdapter() from that constructor.

Example: Property Provider Adapter

The following example shows a Property Provider Adapter class. The class constructor method registers
the adapter with the Data Service.

The class constructor method MyAdapter() constructs an array of property types that the adapter can
supply to the Data Service in the array named providerTypes. The constructor then calls the Data Service
Extension Registry method named registerDataAdapter to register the Property Provider Adapter with
the Data Service. The Data Service calls the override method getProperties() when the Data Service
receives a query for the kinds of properties that were specified at registration. The getProperties()
method must retrieve the necessary properties, format them as a ResultSet object, and return that
ResultSet.

package com.myAdapter.PropertyProvider;

import com.vmware.vise.data.query;

import com.vmware.vise.data.query.PropertyProviderAdapter;

import com.vmware.vise.data.query.ResultSet;

import com.vmware.vise.data.query.type;

public class MyAdapter implements PropertyProviderAdapter {

 public MyAdapter(DataServiceExtensionRegistry extensionRegistry) {

 TypeInfo vmTypeInfo = new TypeInfo();

 vmTypeInfo.type = "VirtualMachine";

 vmTypeInfo.properties = new String[] { "myVMdata" };

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 122

 TypeInfo[] providerTypes = new TypeInfo[] {vmTypeInfo};

 extensionRegistry.registerDataAdapter(this, providerTypes);

 }

 @Override

 public ResultSet getProperties(PropertyRequestSpec propertyRequest) {

 // Logic to retrieve properties and return as result set

 ...

 }

}

Data Provider Adapters
You can use a Data Provider Adapter to retrieve almost any data, including data agnostic to vSphere,
provided that you can format it as a set of objects and related properties.

A Data Provider Adapter is responsible for all aspects of data retrieval, including parsing a query,
computing the results of access operations, finding the matching objects or properties, and formatting
results as responses compatible with the Data Service.

Typically, you use a Data Provider Adapter to retrieve data on custom objects that you added to your
vSphere environment. The specific implementation of the Data Provider Adapter’s data access depends
on the data source for your custom object. Your Data Provider Adapter might query a database for
configuration data, or retrieve operational data directly from a particular device.

Note You may not register a provider for an existing VMware property or object type. For example, if
your solution needs to identify a host by an alternate name, you may create an adapter to implement a
property such as alt_name, but it may not modify the original name property.

When designing a Data Provider Adapter, consider the following constraints:

n You must be able to represent the external data by using the same object and property model as the
Data Service.

n The Java service that you create to act as the Data Provider Adapter must perform all necessary data
fetching operations from your remote data source.

n The service you create must process Data Service queries and return Data Service result sets.

n In general, you should not use a Data Provider Adapter to add properties to an existing resource. if
you register a Data Provider Adapter to service a request for any properties of the resource, your
provider must be able to provide all properties for the resource. A best practice is to use a Property
Provider Adapter to add properties to an existing resource.

DataProviderAdapter Interface

A Data Provider Adapter must implement the DataProviderAdapter interface in the
com.vmware.vise.data.query Java SDK package.

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 123

The DataProviderAdapter interface publishes a single method named getData(). Your Data Provider
Adapter service must provide an implementation of this method. The Data Service calls the getData()
method of your adapter in response to the queries your adapter is registered to process.

Your implementation of the getData() method must accept an object of type
com.vmware.vise.data.query.RequestSpec as a parameter, and must return an object of type
com.vmware.vise.data.query.Response.

public Response getData(RequestSpec request)

The RequestSpec object parameter to the getData() method contains an array of Data Service query
objects. Each query contains a target object and one or more constraints that define the information that
the client requests, as well as the expected format for results.

Your getData() method determines what information it must fetch by processing each Data Service query
and handling the included constraints. The getData() method must then retrieve that information, through
whatever means your data source provides, such as a database query or a remote device method.

Your getData() method must format the retrieved information as a specific result type for each query, and
then return those results as an array, packaged in a Response object.

Resolving a Custom Target Object

A custom target object for a query is identified by a Uniform Resource Identifiers (URI) string, which is a
unique identifier for a specific custom object type. In your Data Provider Adapter, you must resolve the
URI for a query target object to the correct custom object type.

Implementing a Resource Type Resolver

A best practice is to use a Resource Type Resolver to resolve a URI to the correct custom object type. To
use a Resource Type Resolver, you must create a Java class that implements the interface
com.vmware.vise.data.uri.ResourceTypeResolver.

The class you create to implement ResourceTypeResolver must support the following methods.

n String getResourceType(URI uri) - The getResourceType() method must parse a URI and return a
String containing the type of custom object to which the URI pertains. For example, for a URI that
referred to a custom Chassis object, the getResourceType() method must return the String
samples:Chassis.

n String getServerGuid(URI uri) - The getServerGuid() method must parse a URI and return a
String containing the server global unique identifier for the URI target object. For example, for the URI
string urn:cr:samples:Chassis:server1/ch-2, the getServerGuid() method must return the string
server1.

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 124

Registering a Resource Type Resolver

To use your Resource Type Resolver, you must register the resolver with the Data Service. You typically
register the Resource Type Resolver in your Data Provider Adapter class constructor by using the
Resource Type Resolver Registry service, an OSGi service included within the service layer of the
vSphere Web Client and vSphere Client. You must use the Spring framework to pass the Resource Type
Resolver Registry OSGi service as an argument to your class constructor method. See Passing
Arguments to Your Class Constructor.

Data Provider Adapter Example shows an example of how to register a Resource Type Resolver.

Registering a Data Provider Adapter

You must register your Data Provider Adapter for the adapter to work with the Data Service. You can
register an adapter implicitly by declaring the Java service as an OSGi bundle, or you can register an
adapter explicitly by using the Data Service Extension Registry service.

Registering Implicitly

You can register your Data Provider Adapter implicitly when you add the adapter to the application server
framework. To use implicit registration, you must declare the Java service that implements your Data
Provider Adapter as an OSGi bundle when you add the service to the application server framework. The
vSphere Web Client and the vSphere Client detect new OSGi bundles as they are added and register the
Data Provider Adapters with the Data Service. You must also annotate the adapter class with the object
types that the adapter supports.

Declaring the Service as an OSGi Bundle

To declare the service as an OSGi bundle, you must define Java service of your adapter as a Java Bean
in the bundle-context.xml file. You can find the bundle-context.xml file in the src/main/
resources/META-INF/spring folder of your plug-in module.

To define the Java Bean, you must add the following XML element to the bundle-context.xml file.

<bean name="MyDataProviderImpl" class="com.example.MyDataProviderAdapter"> </bean>

The name attribute is an identifier that you choose for the Java Bean. You must set the value of the class
attribute to the fully qualified class name of the Java class you have created that implements the
DataProviderAdapter interface.

After you define your Data Provider Adapter as a Java Bean, you must modify the bundle-context-
osgi.xml file to include the Java Bean as an OSGi service. The bundle-context-osgi.xml file is in the
src/main/resources/META-INF/spring folder of your plug-in module.

You must add the following XML element to the bundle-context-osgi.xml file.

<osgi:service id="MyDataProvider" ref="MyDataProviderImpl"

 interface="com.vmware.vise.data.query.DataProviderAdapter" />

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 125

The id attribute is an identifier that you choose for the Data Provider Adapter. You must set the value of
the ref attribute to the same value as the name attribute that you defined when declaring your Java Bean.
The interface attribute must be set to the fully qualified class name of the DataProviderAdapter
interface.

You must update the src/main/resources/META-INF/MANIFEST.MF file to reflect any Java packages
from the SDK that your Data Provider Adapter imports. You add the imported packages to the Import-
Package manifest header of the MANIFEST.MF file.

In Data Provider Adapter Example, the example Data Provider Adapter imports the packages
com.vmware.vise.data.uri and com.vmware.data.query. The packages are listed by using the Import-
Package OSGi manifest header in the MANIFEST.MF file.

Import-Package: org.apache.commons.logging,

com.vmware.vise.data,

com.vmware.vise.data.query,

com.vmware.vise.data.uri

Annotating the Adapter Class

You must annotate your Data Provider Adapter class with the object types for which the adapter
processes queries. The vSphere Web Client and the vSphere Client use these annotations to route
queries for the specific types to the correct adapters. You use the @type annotation to define the vSphere
object type for which the adapter processes queries.

For example, if you have a custom object of type WhatsIt, you annotate the class in the following way.

@type("samples:WhatsIt") // declares the supported object types

public class MyAdapter implements DataProviderAdapter {

...

Passing Arguments to Your Class Constructor

Most Data Provider Adapters use other OSGi services that the SDK provides. These services include the
base Data Service, the Resource Type Resolver Registry, and the vSphere Object Reference Service.
You can pass these OSGi services to your Data Provider Adapter as arguments to the Data Provider
Adapter class constructor method.

All Data Provider Adapters can include the Data Service. To include the Data Service as an argument to
your Data Provider Adapter class constructor, you add the following element to the bundle-context-
osgi.xml file of your service.

<osgi:reference id="dataService" interface="com.vmware.vise.data.query.DataService" />

Note Making Data Service queries from within a Data Service provider can impact the performance of
your provider. A best practice is to use the vSphere Web Services API to fetch data from vCenter Server,
because it is more efficient than Data Services.

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 126

If your Data Provider Adapter handles queries for multiple custom object types, you must include the
Resource Type Resolver Registry OSGi service and register a Resource Type Resolver. To include the
Resource Type Resolver Registry OSGi service as an argument to your Data Provider Adapter class
constructor, you add the following element to the bundle-context-osgi.xml file of your service.

<osgi:reference id="uriRefTypeAdapter"

interface="com.vmware.vise.data.uri.ResourceTypeResolverRegistry" />

If your Data Provider Adapter handles queries for built-in vSphere object types, such as Hosts or Virtual
Machines, you can include the vSphere Object Reference Service. To pass the vSphere Object
Reference Service as an argument to your Data Provider Adapter class constructor, you add the following
element to the bundle-context-osgi.xml file of your service.

<osgi:reference id="vimObjectReferenceService"

interface="com.vmware.vise.vim.data.VimObjectReferenceService" />

Your Data Provider Adapter can use the User Session Service to get information about the current user
session. To pass the User Session Service as an argument to your Data Provider Adapter class
constructor, you add the following element to the bundle-context-osgi.xml file of your service.

<osgi: reference id="userSessionService" interface="com.vmware.vise.usersession.UserSessionService" />

If you pass OSGi services to your Data Provider Adapter class constructor, you must include those
constructor arguments when you declare your Data Provider Adapter as a Java Bean in the bundle-
context.xml file. See Declaring the Service as an OSGi Bundle.

For each service your Data Provider Adapter includes, you must add a <constructor-arg> element to the
Bean definition of your adapter. In each <constructor-arg> element, you set the ref attribute to the same
value as the id attribute in the <osgi:reference> element in the bundle-context-osgi.xml file.

If your Data Provider Adapter uses the Data Service, vSphere Object Reference Service, Resource Type
Resolver Registry, and User Session Service, the Bean definition might appear as follows.

<bean name="MyDataProviderImpl" class="com.example.MyDataProviderAdapter">

 <constructor-arg ref="dataService"/>

 <constructor-arg ref="uriRefTypeAdapter"/>

 <constructor-arg ref="vimObjectReferenceService"/>

 <constructor-arg ref="userSessionService"/>

</bean>

Registering Explicitly

You can register your Data Provider Adapter with the Data Service by using the
DataServiceExtensionRegistry service. DataServiceExtensionRegistry contains a
registerDataAdapter() method that you must call to register your Data Provider Adapter.

A common way to register your adapter is to pass DataServiceExtensionRegistry as a parameter to your
Data Provider Adapter class constructor, and call registerDataAdapter() from within that constructor.

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 127

Data Provider Adapter Example

The following example presents an example of a Data Provider Adapter class that supports hypothetical
WhatsIt objects. In the example, the class constructor method initializes the class member variables for
the Data Service and registers a Resource Type Resolver. The example assumes that the Data Provider
Adapter is registered implicitly by registering the service as an OSGi bundle. The Data Service and
Resource Type Resolver Registry services are passed as arguments to the class constructor.

As a best practice, you can initialize the other services that your Data Provider Adapter requires in your
Data Provider Adapter class constructor. These might include the Data Service, the Resource Type
Resolver Registry if your adapter handles multiple custom object types, and the vSphere Object
Reference Service if your adapter requires data from regular vSphere objects.

For more complete examples of Data Provider Adapters, see the sample extensions included in the SDK.

Example: Example Data Provider Adapter Class

The getData() method is called by the Data Service when it receives a query for one of the objects or
properties specified at registration. In the getData() method, your Data Provider Adapter must parse the
query, compute the results, and return that result data as a Response object. For a more complete
example, see the ChassisDataAdapter class in the SDK.

package com.MyAdapter.DataProvider;

import java.net.URI;

import com.vmware.vise.data.uri.ResourceTypeResolverRegistry;

import com.vmware.vise.data.query.DataProviderAdapter;

import com.vmware.vise.data.query.QuerySpec;

import com.vmware.vise.data.query.RequestSpec;

import com.vmware.vise.data.query.Response;

import com.vmware.vise.data.query.type;

@type("samples:WhatsIt") // type that the adapter supports

public class MyAdapter implements DataProviderAdapter {

 private final DataService _dataService;

 // Resource resolver, used to resolve the URIs of objects serviced by this adapter

 private static final ModelObjectUriResolver RESOURCE_RESOLVER = new ModelObjectUriResolver();

 // constructor method

 public MyAdapter(DataService dataService,

 ResourceTypeResolverRegistry typeResolverRegistry)

 {

 if (dataService == null || typeResolverRegistry == null) {

 throw new IllegalArgumentException("MyAdapter constructor arguments must be non-null.");

 }

 _dataService = dataService;

 try {

 // Register the Resource Type resolver for multiple custom object types

 typeResolverRegistry.registerSchemeResolver(ModelObjectUriResolver.SCHEME,

 RESOURCE_RESOLVER);

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 128

 } catch (UnsupportedOperationException e) {

 _logger.warn("ModelObjectUriResolver registration failed.", e);

 }

 }

 @Override

 // All query requests for the types supported by this adapter are routed here by the vSphere

 // Web Client Data Service; this method is the starting point for processing constraints,

 // discovering objects and properties, and returning results

 public Response getData(RequestSpec request) {

 QuerySpec[] querySpecs = request.querySpec;

 List<ResultSet> results = new ArrayList<ResultSet>(querySpecs.length);

 for (QuerySpec qs : querySpecs) {

 // Call your logic for query processing, constraint processing, object discovery:

 ResultSet rs = processQuery(qs);

 results.add(rs);

 }

 Response response = new Response();

 response.resultSet = results.toArray(new ResultSet[]{});

 return response;

 }

}

Creating a Custom Java Service
You can extend the Java service layer with your own Java services.

Typically, you create a Java service if your user interface extensions adds an action to the vSphere Web
Client or the vSphere Client, where the Java service performs the action operation on the virtual
infrastructure. You can also add a Java service to perform a complex calculation, retrieve data from an
external source, or perform other miscellaneous tasks.

To add a Java service, you must provide a Java Archive (JAR) bundle. Inside the JAR bundle, you must
add an XML configuration file that declares all of the Java objects that the service adds to the application
server framework. The application server uses Spring as the application server framework.

Make Java Services Available to the UI Components in the vSphere Web
Client and the vSphere Client
To make a custom Java service available to your extension components in the vSphere Web Client and
the vSphere Client, complete the following tasks.

Procedure

1 Create a Java interface for the service.

2 Create a Java class that implements the interface in Step 1.

3 Add the service to the application server framework.

You must export and expose the service to the framework by adding it as a bean in the Spring
configuration application server.

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 129

4 Import the service where your extension references it.

n For Flex-based extensions, import the service into the user interface plug-in module that contains
your Flex components.

n For HTML-based extensions, import the service in the controller module that services your
extension data requests.

5 Establish a communication between your service and the user interface layer.

n For Flex-based extensions, use ActionScript to create a proxy class in your Flex component. The
proxy class is used to communicate between the user interface plug-in module and the service.

n HTML-based extensions access the service by using a REST API that communicates with the
controller module on the application server.

Creating the Java Interface and Classes
To integrate with the application server Spring framework, the Java service you create must provide
separate interface and implementation classes.

The following example shows a basic interface class and an implementation class.

package com.vmware.myService;

public interface MyService {

 String echo (String message);

}

public class MyServiceImpl implements MyService {

 public String echo (String message) {

 return message;

 }

}

Persisting Data from Your Plug-Ins to the vCenter Server Appliance and the
vCenter Server System
You can store persistently small data files such as configuration changes on the vCenter Server
Appliance and the vCenter Server system.

You can use the default data directory on the vCenter Server Appliance and the vCenter Server on
Windows for storing small files. If the data you want to persist is complex or requires more storage space,
you must use a separate back end server or database.

For more information, you can refer to the GlobalServiceImpl.getGlobalViewDataFolder() method from
the Global View sample. The sample code demonstrates how you can use your Java services to create
folders for storing the data persistently on the vCenter Server Appliance and vCenter Server instances.

Note Make sure that the directories that you use for storing your data are accessible by the processes
running on the Tomcat server.

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 130

Packaging and Exposing the Service
To make your Java service available for use with the vSphere Web Client and the vSphere Client, you
must export the service and add it to the Spring configuration on the application server. Spring uses the
OSGi model to share Java libraries.

Exporting the Service

You must locate the /src/main/resources/META-INF/MANIFEST.MF file in your service JAR bundle
and ensure that the Java service package is exported. To export the package, the following line must
appear in the MANIFEST.MF file:

Export-Package: com.vmware.myService

In the example line, com.vmware.myService is the name of the service package you created.

Adding the Service to the Spring Configuration

You add your service to the Spring configuration on the application server by creating a <bean> element in
the Spring configuration file. In the JAR bundle, locate the /src/main/resources/META-INF/spring/
bundle-context.xml file. The file contains a <beans> XML element containing services in the
configuration. Add your service as a new <bean> as shown in the following example.

<bean name="myServiceImpl" class="com.vmware.myService.MyServiceImpl"/>

The name attribute is the name of your service implementation, and the class attribute contains the class
you created that implements the service interface.

You must also expose the service interface as an OSGi bundle in the Spring framework. In the JAR
bundle, locate the /src/main/resources/META-INF/spring/bundle-context-osgi.xml file. This file
also contains a <beans> XML element. Add your service by using the following line.

<osgi:service id="myService" ref="myServiceImpl" interface="com.vmware.myService.MyService"/>

The id attribute is the name of your service, the ref element specifies the service implementation you
added to the bundle-context.xml file, and the interface element contains the class that defines the
service interface.

Importing a Service in a User Interface Plug-In Module
To use a Java service you created and exposed in the service layer, a user interface plug-in module must
import the service. You import the service by updating two metadata configuration files within your user
interface plug-in module Web Archive (WAR) bundle.

In your user interface plug-in module WAR bundle, locate the /war/src/main/webapp/META-INF/
MANIFEST.MF file and add the following lines.

Import-Package: com.vmware.myService

com.vmware.myService is the name of the service package you created.

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 131

Creating and Deploying Plug-In
Packages 13
Each plug-in package contains both user interface plug-in modules and service plug-in modules, and
manages the deployment of those modules. The vSphere Web Client and the vSphere Client extensibility
frameworks can perform live hot deployment of the plug-in modules in a package.

This chapter includes the following topics:

n Plug-In Package Overview

n XML Elements of the Plug-In Package Manifest File

n Deploying a Plug-In Package

Plug-In Package Overview
A plug-in package is a ZIP archive file that contains all of the plug-in modules in your solution along with a
package manifest.

The package manifest describes deployment information for each plug-in module using XML metadata.
The vSphere Client Extension Manager uses this metadata to install and deploy each plug-in module in
the plug-in package.

To create a plug-in package, you must create a ZIP archive file with the following structure:

n At the root level, add a plugin-package.xml file to the root folder.

n At the root level, add a plugins folder.

n Inside the plugins folder, add one WAR files containing the plug-in UI modules.

n Inside the plugins folder, add zero or more JAR files, one for each Java service component created
for your plug-in.

n Inside the plugins folder, add zero or more JAR files, one for each third party Java library used by
your plug-in.

You can use any text or XML editor to create the plugin-package.xml file.

Note Each WAR file or JAR file must contain an OSGi-compliant META-INF/MANIFEST.MF file that
describes the bundle.

VMware, Inc. 132

XML Elements of the Plug-In Package Manifest File
The plug-in package manifest file specifies general information about the plug-in package, the
deployment order for the plug-in modules in the package, and any dependencies for the plug-in package.

XML Elements in the Manifest File
The metadata in the manifest file follows a specific XML schema. The <pluginPackage> root element
encapsulates the entire plug-in package manifest. The <pluginPackage> element can contain the
<dependencies> element and the <bundlesOrder> element.

The following example shows an example of a plugin-package.xml manifest file. The source code that
corresponds with this manifest file is available in the HTML sample in the SDK, at html-client-sdk/
vsphere-ui/plugin-packages/.

<pluginPackage id = "com.MyCompany.myPackage"

version="1.0.0"

type="html"

name="My Plugin Name"

description="Demo package version 1"

vendor="My Company"

iconUri="assets/packageIcon.png">

<dependencies>

<pluginPackage id = "com.vmware.vsphere.client" version="6.7.0" />

<pluginPackage id = "com.vmware.vsphere.client.html" version="6.7.0" />

</dependencies>

<bundlesOrder>

<bundle id="com.mySolution.myUI" />

<bundle id="com.mySolution.myService" />

</bundlesOrder>

</pluginPackage>

<pluginPackage> Element
The <pluginPackage> element is the root element of any plug-in package manifest file. The following
attributes of the <pluginPackage> contain information about the entire plug-in package.

Attribute Name Description

id The unique package identifier that you define. A best practice is to use namespace notation, such as
com.myCompany.MyPluginID. Must match the vCenter Server extension key.

version A dot-separated string containing the plug-in version number, such as 1.0.0. Must match the vCenter Server
extension version.

type Must be html.

description A short description of the plug-in.

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 133

Attribute Name Description

vendor The name of the plug-in vendor.

iconUri The URI of an icon to represent the package. The location is specified relative to the manifest file.

<dependencies> Element
The <dependencies> element defines any dependencies upon other packages. In the <dependencies>
element, you specify each specific package dependency with a <pluginPackage> element. Each
<pluginPackage> element in the <dependencies> element must have the following attributes.

Attribute Name Description

id The unique identifier of the package that your package depends on.

version The version number of the package that your package depends on.

match The version matching policy. Possible values are equal, greaterThan, lessThan, greaterOrEqual, or lessOrEqual.
The match attribute is optional and defaults to greaterOrEqual if omitted.

Important If your vSphere Client plug-in depends on packages with specific versions and might not be
compatible with later versions of these packages, make sure that you define correctly the dependencies
by using the match parameter. Otherwise, your plug-in package will not work and might cause errors.

For example, you can use the following lines in the manifest file of your plug-in package to define the
minimum and maximum supported versions of the vSphere Client:

...

<dependencies>

 <pluginPackage id="com.vmware.vsphere.client"

 version="6.7.0" match=“greaterOrEqual" />

 <pluginPackage id="com.vmware.vsphere.client.html"

 version=“6.7.0" match=“greaterOrEqual" />

</dependencies>

...

If your plug-in package is only compatible with a specific version of the vSphere Client, you must use the
equal value of the match attribute to specify the version. This ensures that when the vSphere Client is
upgraded, your plug-in package will not be deployed, and will not cause any compatibility errors for your
users.

<bundlesOrder> Element
The <bundlesOrder> element specifies the order in which locally hosted plug-in modules are deployed to
the vSphere Client. A best practice is to deploy the service plug-in modules first, because the user
interface plug-in modules might import those services.

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 134

You specify each plug-in module using a <bundle> element inside the <bundlesOrder> element. The id
attribute of the <bundle> element contains the unique identifier of the plug-in module. The value of the id
attribute must match the Bundle-SymbolicName specified in the plug-in module MANIFEST.MF file included
in the WAR bundle.

Note Plug-in modules in the package that are not explicitly specified in the <bundlesOrder> list are still
deployed, but in an undefined order.

Deploying a Plug-In Package
You deploy a plug-in package to the vSphere Client by registering the package as an extension on
vCenter Server. When you register your plug-in as an extension on vCenter Server, your plug-in becomes
available to any vSphere Client that connects to your vCenter Server.

You must register your plug-in on every vCenter Server where you need to use it. When a vSphere Client
connects to a vCenter Server where your plug-in is not registered, the plug-in is not visible to the vSphere
Client.

When a vSphere Client establishes a user session to a vCenter Server instance, the vSphere Client
application server queries vCenter Server for a list of all available plug-in packages that are registered as
vCenter Server extensions. Plug-in packages that are not present on the vSphere Client application
server are downloaded and deployed.

The vSphere Client application server can run only one version of each plug-in package. If a plug-in
package is present on the application server, but has an older version number than the registered
vCenter Server extension, the registered vCenter Server extension replaces the older plug-in package
with the newer version.

When vCenter Server instances operate in linked mode, a user login can cause the vSphere Client to
upgrade to the latest version of a plug-in. The vSphere Client queries the vCenter Server instance for a
list of registered plug-ins, and the vCenter Server in turn queries all other instances in the link group to
compare versions of registered plug-ins. The vCenter Server instance then upgrades all its registered
plug-ins to the highest version registered within the link group, and presents that version in the user
interface. This assures a consistent behavior for plug-ins, regardless of which vCenter Server instance
the browser connects to.

Note When a user views a managed object, the visibility of plug-in object extensions depends on
whether the vCenter Server instance that owns the object has an applicable plug-in registered. If so, the
vSphere Client always displays the latest version of the plug-in. If not, the vSphere Client does not display
the plug-in at all.

Plug-In Caching
When the vSphere Client installs a plug-in, it downloads the plug-in manifest and caches it. The cached
copy is re-used whenever the vsphere-ui process restarts.

After a plug-in has been unregistered, the vsphere-ui service detects the change during its next restart. At
that time, the cached copy of the plug-in manifest is deleted from the cache.

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 135

When a plug-in is upgraded, the vsphere-ui service detects the change during the next restart or user
login. At that time, the old plug-in version is undeployed, its cached copy is removed, and the new plug-in
version is deployed.

Note While the process of uninstallation takes place, the vSphere Client UI does not wait for the process
to complete. You might need to refresh the browser window after enough time has elapsed to complete
the uninstallation. The vSphere Client currently does not display notifications after uninstalling remote
plug-ins.

Deploying a Plug-In Package From a Remote Server
The plug-in package ZIP file that represents a vSphere Client plug-in is typically hosted on a remote Web
server. A vCenter Server extension can reference a remotely hosted plug-in package by specifying the
Web sever URL in the vCenter Server extension definition. When you register a plug-in as an extension
with a vCenter Server instance, the plug-in package ZIP file is downloaded from the remote URL.

The vSphere Client establishes a secure HTTPS connection with the remote Web server that hosts the
plug-in packages. Starting with vSphere 6.0 Update 2, you can configure the TLS protocol versions for
the vCenter Server Service, VMware vSphere Client Service, VMware Directory Service, Security Token
Service and Syslog Collector Service. The TLS protocol versions that you configure for the vCenter
Server service must be the same as the protocol versions for all other services.

For more information about supported TLS versions and configurations, see https://kb.vmware.com/s/
article/2145796.

Note Make sure that the Web server that hosts your vSphere Client plug-ins supports the same TLS
protocol versions that are configured for the vSphere services. If this requirement is not met, the vSphere
Client fails to download the extension plug-ins.

Register a Plug-In Package as a vCenter Server Extension
To register your plug-in package as an extension with vCenter Server, you must create an Extension data
object and register this data object with the vCenter Server ExtensionManager.

You can create and register an Extension data object in the following ways:

n Use a utility application or script to create the Extension data object programmatically, and register
that data object using the vSphere API. You can use the ExtensionManager.registerExtension()
method to register the data object. For more information about the vCenter Server plug-in registration
tool, see Register Your Local vSphere Client with the vCenter Server Instance.

n Use the Managed Object Browser (MOB) application for your vCenter Server system. For more
information about how to use the MOB to register your extension, see the procedure bellow.

Procedure

1 Create the vim.Extension data object in an XML file, and place that file in a file system available to
the vSphere Client.

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 136

https://kb.vmware.com/s/article/2145796
https://kb.vmware.com/s/article/2145796

2 In a Web browser, navigate to the Managed Object Browser of your vCenter Server.

https://<vcenter_server_ip_address_or_fqdn>/mob/?moid=ExtensionManager

3 Log in with your vCenter Server credentials.

4 On the ManagedObjectReference:ExtensionManager page, under Methods, click
RegisterExtension.

5 On the void RegisterExtension page, in the text box inside the Value column, enter the XML data
of your vSphere Client plug-in.

6 Click Invoke Method to register the plug-in as a vCenter Server extension.

Example

For an example about how to define your Extension data object, see Creating the vCenter Server
Extension Data Object.

What to do next

Check whether your extension is registered successfully with the vCenter Server instance by using one of
the following approaches:

n Log in to the vSphere Client, go to Administration, and under Solutions, select Client Plug-Ins.

n Log out and log in again to the vSphere Client. The vSphere Client checks for new plug-ins for each
new user session.

Note If you try to upgrade an existing plug-in with a new version and you do not follow the best
practices and recommendations for developing vSphere Client plug-ins, you might need to restart the
vSphere Client service to see your plug-in. This additional step is required in the following two cases:

n The new version of your plug-in has a different plug-in ID.

n The plugin-package.xml manifest file and the vCenter Server extension data object have
different plug-in IDs or versions specified.

For more information about verifying the deployment of your plug-in package, see Verifying Your Plug-In
Package Deployment.

Creating the vCenter Server Extension Data Object
Regardless of the registration method you choose, you must set the properties of the Extension data
object.

You use the following properties to define the Extension data object.

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 137

Property
Name Description

<key> The plug-in package ID that you defined in your plug-in package manifest file, plugin-package.xml file.

<client> This property must contain one ExtensionClientInfo data object, with the following properties.

Property Name Description

<version> The dot-separated version number of the plug-in package that is defined in plugin-
package.xml.

<type> Must be set to vsphere-client-serenity.

<url> The location of the plug-in package ZIP file that is accessible on a Web server.

<server> Optional. If the URL uses HTTPS, you must define a <server> property in your extension data
object. The <server> property must contain the SHA1 thumbprint for the server where your
plug-in package ZIP file is stored. For information about the <server> property, see the
following example.

Example: Example vim.Extension XML Definition
The following example shows an example Extension object defined in an XML file.

<extension>

 <description>

 <label>My plugin</label>

 <summary>My first vSphere Client plugin</summary>

 </description>

 <key>com.mycompany.myPlugin.MyPlugin</key>

 <company>MyCompany</company>

 <version>1.0.0</version>

 <client>

 <version>1.0.0</version>

 <description>

 <label>My plugin</label>

 <summary>My first vSphere Client plugin</summary>

 </description>

 <company>MyCompany</company>

 <type>vsphere-client-serenity</type>

 <url>http://a-web-server-path/mypluginPackage.zip</url>

 </client>

</extension>

Using a Secure URL for the Plug-In Location
A best practice is to use a secure URL (HTTPS) for your plug-in package ZIP file location. If you use an
HTTPS URL, you must include a <server> property in your vim.Extension data object. The <server>
property contains the SHA1 thumbprint for the server that corresponds to the URL.

The following example shows an example <server> property.

<extension>

...

 <server>

 <url>https://myhost/helloworld-plugin.zip</url>

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 138

 <description>

 <label>Helloworld</label>

 <summary>Helloworld sample plugin</summary>

 </description>

 <company>MyCompany</company>

 <!-- SHA1 Thumbprint of the server hosting the .zip file -->

 <serverThumbprint>

 3D:E7:9A:85:01:A9:76:DD:AC:5D:83:1C:0E:E0:3C:F6:E6:2F:A9:97

 </serverThumbprint>

 <type>HTTPS</type>

 <adminEmail>your-email</adminEmail>

 </server>

</extension>

Verifying Your Plug-In Package Deployment
Once you register your plug-in package extension, the plug-in is downloaded and deployed on vSphere
Client. You can verify that the deployment procedure is successful by using the log files of the Tomcat
server, which are available at /var/log/vmware/vsphere-ui.

You can verify that your plug-in package is deployed correctly by searching the log file of the vSphere
Client application server for your plug-in package ID. If the package is deployed correctly, the plug-in
package ID is included in a message about a successful package deployment.

On startup, the vSphere Client caches the downloaded plug-in package in /etc/vmware/vsphere-
ui/vc-packages/vsphere-client-serenity/* .

Note If you want to update the content of a plug-in package, you must register the plug-in with a new
version or remove the plug-in package from the cache.

Unregister a Plug-In Package
You can unregister a plug-in package that you previously registered with a vCenter Server instance.

You can unregister the extension in the following ways:

n Use the vSphere API and invoke the unregisterExtension() method of the ExtensionManager
managed object to unregister your extension programmatically.

n Use the vCenter Managed Object Browser (MOB) interface in your Web browser to delete the
extension manually. For more information about how to use the MOB to unregister your extension,
see the procedure below.

Procedure

1 In a Web browser, navigate to the Managed Object Browser of your vCenter Server.

https://<vcenter_server_ip_address_or_fqdn>/mob/?moid=ExtensionManager

2 Log in with your vCenter Server credentials.

3 On the ManagedObjectReference:ExtensionManager page, under Methods, click
UnregisterExtension

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 139

4 On the void UnregisterExtension page, in the text box inside the Value column, enter the value
for the key property of the Extension data object of your vSphere Client extension.

5 Click Invoke Method to unregister the extension.

Results

Unregistering a plug-in package on vCenter Server causes the vSphere Client to delete the plug-in from
the environment at the next restart of the vSphere Client.

Note In the current release of vSphere, any Java services you added are still active after you unregister
a plug-in package, and the plug-in might still appear in the vSphere Client Plug-In Management view. This
behavior is a known issue, and a workaround is to restart the Tomcat server.

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 140

Best Practices for Developing
Extensions for the vSphere
Client 14
You can improve your extension solutions by understanding the process of extending the user interface
layer and service layer of the vSphere Client, and packaging and deploying your extension solutions.
Follow best practices to ensure optimal performance and scalability, and to improve the security of your
vSphere Client extensions.

This chapter includes the following topics:

n Best Practices for Creating Plug-In Packages

n Best Practices for Plug-In Modules Implementation

n Best Practices for Developing HTML-Based Extensions

n Best Practices for Extending the User Interface Layer

n Best Practices for Extending the Service Layer

n Best Practices for Deploying and Testing Your vSphere Client Extensions

Best Practices for Creating Plug-In Packages
To meet the requirements of your virtual environment, you must extend the capabilities of the vSphere
Client by creating plug-in modules. Depending on your extension solution, you can extend the user
interface layer and the service layer of the vSphere Client.

Incorrect structure of the plug-in package leads to deployment errors. To avoid these errors, consider the
following best practices when creating your plug-in packages.

n Use the generation tools provided with the vSphere Client SDK to develop your vSphere Client
extensions and create plug-in packages.

n Verify that the structure of the plug-in package is as follows:

n plugin-package.xml - The file describes general information about the plug-in package, the
deployment order of the plug-in modules, and any dependencies upon other plug-in packages.

n plugins folder - The folder contains one or more JAR and WAR files that represent the user
interface and Java services components. Limit the number of third-party libraries that you add to
this folder.

VMware, Inc. 141

n To avoid installation errors, make sure that all third-party libraries that you use are added inside the
JAR and WAR files of the plug-in package and not inside the plugins folder. If you add third-party
libraries to the plugins folder, the bundles must be OSGi-compliant. Because the vSphere Client
resides on the Tomcat Web Server, which is based on the SpringSource dm Server and is built on top
of the Equinox OSGi framework, third-party libraries must be packaged as OSGi bundles. OSGi
bundles must include an OSGi manifest file that contains correct and thorough OSGi metadata.

n To avoid deployment errors generated by the Tomcat server, make sure that you do not include third-
party libraries that are already available on the server. You can navigate to the html-client-sdk/
server/webapps/h5-bridge-webapp.war/WEB-INF/eclipse/plugins directory to view the
available libraries.

n If your plug-in package contains both user interface and Java service components, place the Java
service components before the user interface components in the plug-in package manifest file. Use
the <bundlesOrder> element to specify the order in which the bundles are deployed to the vSphere
Client.

n For best performance, when designing your vSphere Client extension, limit the number of files
included in the plugins folder of your plug-in package. Ideally, your plug-in package must contain
only one WAR file, which contains the user interface plug-in modules, and one JAR file, which
contains the Java service plug-in modules. Fragmenting your code into many bundles might
significantly increase the deployment time and memory consumption.

n To avoid compatibility issues in case your plug-in package depends on other plug-in packages with
specific versions, make sure that you define correctly the plug-in dependencies by using the match
parameter of the dependencies element in your plugin-package.xml manifest file. Otherwise, after
the vSphere Client deploys your plug-in package, the plug-in will not work because the plug-in
dependencies cannot be resolved and may cause errors in the vSphere Client.

For example, you can use the following lines in the manifest file of your plug-in package to define the
minimum supported version of the vSphere Client:

 ...

 <dependencies>

 <pluginPackage id="com.vmware.vsphere.client"

 version="5.5.0" match=“greaterOrEqual" />

 </dependencies>

 ...

Note If your plug-in package is only compatible with a specific version of the vSphere Client, you
must use the equal value of the match attribute to specify the version. In this way, you ensure that
when you upgrade the vSphere Client, your plug-in package is not deployed, and does not cause any
errors.

Note If the match attribute is not provided, the default value is greaterOrEqual.

n To avoid deployment failures, you must create a ZIP archive file for your vSphere Client extension.
Moreover, if you want to complete successfully the certification for your vSphere Client plug-in, know
that the plug-in signing tool signs only plug-ins that have the ZIP file format.

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 142

Best Practices for Plug-In Modules Implementation
Following general design and development recommendations is the first step in creating high-
performance and secure vSphere Web Client extensions. You can then move on to special areas, such
as developing HTML-based extension solutions.

n Your plug-in package must be OS agnostic. You must avoid reading and writing on the file system
from the vSphere Client service layer. In case you need to temporarily store files, you must use the
browser cache or your own back-end server.

n To provide a consistent end-user experience in case your vSphere Client extension migrates server
workloads, make sure that your extension migrates only to vSphere environments that are hosted by
a VMware vCloud Air Network Service Provider. For more information about the available service
providers, see http://vcloudproviders.vmware.com/find-a-provider.

n Avoid using deprecated or private APIs and extension points. Using deprecated APIs in your vSphere
Client extensions will prevent them from working with future versions of the vSphere Client.

n To prevent performance problems in the vSphere Client and vCenter Server instances, use your Java
services only for communication between the vCenter Server instances, or other remote data
sources, and the user interface layer. You must not create thread pools in your Java services.
Consider implementing any complex business logic in your own backend servers.

n Avoid caching data in the Java service layer. Make sure that the vSphere Client remains stateless. To
ensure the scalability of the vSphere Client, you must use your backend server to cache data.

n To increase the security of your extensions, you must limit the access to your plug-ins to specific
users. Use the plugin.xml extension definition to control the user access to your extensions based
on their privileges. For example, you can make your extensions available only to users who have
privileges to create or delete Datastore objects.

n To achieve optimal scalability and performance for your vSphere Client plug-ins, your Java services
must not require any significant heap allocation.

Best Practices for Developing HTML-Based Extensions
You can use the vSphere Web Client SDK and the vSphere Client development kit to create HTML-based
extensions.

Starting with vSphere 5.5 Update 1, an HTML Bridge infrastructure is added to the vSphere Web Client
that provides support for HTML-based extensions. The vSphere Web Client SDK provides APIs, tools,
and samples that can help you extend the vSphere Web Client.

Starting with vSphere 6.5, you can use the vSphere Client to connect to vCenter Server systems and
manage vSphere inventory objects. The vSphere Client development kit is provided to developers that
want to create HTML5-based extensions for both Web browser applications. For backward compatibility,
the vSphere Client development kit contains the same APIs as the HTML Bridge.

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 143

http://vcloudproviders.vmware.com/find-a-provider

Follow these best practices when you create your HTML-based solutions.

n Make sure that your HTML and JavaScript code is fully functional on different Web browsers and
provides the same user experience.

n You must not send calls to the topmost browser window window.top or to the parent object of your
current window window.parent.

n You must include in your HTML-based extensions the latest version of the web-platform.js
JavaScript file provided with the vSphere Web Client SDK and added to each extension during
generation. If you use an older version of this file, your HTML-based extensions might not work in the
vSphere Web Client and might cause other HTML-based extensions to stop working.

n To minimize future maintenance work and prevent incompatibility problems, do not change the web-
platform.js JavaScript file on your own initiative. The file depends on the vSphere Web Client
version and is updated with each major release of the SDK. If the file changes between major
releases, you must see whether the release notes contain any instructions for manual changes that
you must apply to the file before generating your plug-in packages.

n To ensure the integrity of future versions of the vSphere Web Client running HTML-based extensions,
do not modify the WEB_PLATFORM object. All HTML-based extensions use this global variable to access
the vSphere Web Client platform APIs. For example, if you change this variable, other HTML-based
extensions that use the WEB_PLATFORM = self.parent.document.getElementById("container_app")
variable initialization might stop working.

Best Practices for Extending the User Interface Layer
When developing extensions for the user interface layer of the vSphere Client, follow these best
practices.

n Create pointer node extensions on the Object Navigator home page only for major applications and
solutions. This approach provides consistent and meaningful user experience for the customized
vSphere Client.

n When you create action set extensions for a particular type of vSphere object, you must use the
extensions filtering mechanism. The defined action sets must be visible only when the user selects
the relevant vSphere object type.

n Use the REST API for retrieving data from the service layer. Use proxies only for adding, editing, and
deleting issued data requests.

n For better performance, avoid making proxy calls that require more than several seconds to return a
response. A best practice is to design your extensions to submit a task that returns immediately, and
to track the task progress.

n If you use proxies for data requests, verify that you receive the request response before sending
another request through the proxy.

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 144

n If you use localization data for your plug-in package, follow these recommendations:

n Set the locale attribute in the <resource> element of the plugin.xml manifest file to the value
{locale}. Using the {locale} value instructs the vSphere Client to display the plug-in by using
the current vSphere Client locale.

The following XML fragment shows how the <resource> element can be used in the plug-in
module manifest file.

<plugin id="com.vmware.samples.htmlsample"

 defaultBundle="com_vmware_samples_htmlsample">

 <resources baseUrl="locales/">

 <resource>com_vmware_samples_htmlsample</resource>

 </resources>

....

</plugin>

n To avoid collisions with other localized plug-in packages, set a unique resource bundle name to
the defaultBundle attribute of the <plugin> element in the plug-in manifest file. Use your
company name and product name as part of the resource bundle name to make it unique.

n Make sure that the filenames of your resource files end with _en_US instead of -en_US

Best Practices for Extending the Service Layer
Following these recommendations and best practices for creating extensions of the vSphere Web Client
service layer, can help you improve the security, scalability, and performance of your extension solutions.

n To avoid deployment errors, add your services to the Spring configuration by using the bundle-
context.xml Spring configuration file. Do not create alternative Spring contexts.

n To increase the deployment speed of your extensions, make sure that you optimize your Spring
context initialization. You must use as little source code as possible in the constructor and the
initialization method of your Spring beans.

n Avoid using timers for pooling data from the vSphere environment. In case there is no other way to
retrieve the required data, you must make sure that data queries are not overlapping.

n If you use a tool to automatically generate the manifest file of your service layer extension, make sure
that no third-party packages are added to the Package-Export manifest header.

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 145

OSGi-Specific Recommendations
Following these OSGi-specific recommendations, helps you improve the performance and scalability of
your Java service layer extensions.

n To avoid deployment errors in case your plug-in depends on a third-party library with a different
version than the ones available on the application server, you can embed the library inside your
bundle. You must also specify the library in your bundle manifest file by using the Bundle-Classpath
manifest header. In this way, the bundle class loader looks for required classes among the classes
from your plug-in and also from the embedded third-party library.

For example, if your bundle uses classes from the thirdPartyLibrary.jar, add the JAR to the root
of the bundle and add the following line to the bundle manifest file:

Bundle-Classpath: .,thirdPartyLibrary.jar

As a result, when you deploy your plug-in on the application server, your bundle dependencies are
resolved using the embedded third-party library and not the one that is already on the server.

n To avoid future compatibility issues, make sure that you follow the recommendations of the OSGi
Alliance for wiring bundles. Use the Import-Package manifest header to declare your package
dependencies and not the Require-Bundle header.

n To avoid deployment failures in case your bundle imports packages that are exported from
vim25.jar, remove any packages exported by the vim25.jar bundle from the package imports of
your MANIFEST.MF file. You must add the following line to your MANIFEST.MF file:

Require-Bundle: com.vmware.vim25;bundle-version=1.0.0

You might have deployment issues, if your environment has a plug-in package that contains the
vijava-osgi.jar bundle.

n To improve the future maintenance of your bundles, you must export as few packages as possible.
Remember that every exported package is considered a public API that must be versioned and
maintained. If you export packages that contain implementation classes, your specific implementation
becomes harder to evolve and to be maintained in the future. Ideally, you must export APIs by using a
dedicated API bundles. Other bundles must import the APIs and provide implementation classes that
use and publish services. The implementation classes must not export packages.

n To avoid deployment errors, you must not export packages that do not belong to your own code. If
you include a third-party bundle in your bundle, do not export any classes from the third-party bundle.

n To avoid future compatibility issues in case you import a package from the vSphere Client bundles,
set the package version to 0 in the MANIFEST.MF file. When you update the vSphere Client platform,
your bundle might stop working if you specified a concrete package version that is not available after
the update. If you do not specify a version, the OSGi validation utility logs a warning message in the
plugin-medic.log file.

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 146

For example, if you import the com.vmware.vise.data and com.vmware.vise.data.query packages,
you must add the following line to your MANIFEST.MF file:

Import-Package: com.vmware.vise.data;version="0", com.vmware.vise.data.query;version="0"

n To improve the performance of your plug-in package, avoid using the DynamicImport-Package
manifest header unless necessary. If you use the DynamicImport-Package header in your bundle and
the packages you want to import are not known in advance, the application framework switches to
searching mode for a publicly available package that satisfies the requirement. The use of wildcards
is discouraged.

n To improve the deployment time of your plug-in packages, you must add as few bundles as possible
to the <bundlesOrder> element of your plugin-package.xml manifest file. All bundles that are not
included in the ordered bundles list are deployed in parallel.

For example, you can deploy the OSGi bundles from your plug-in package in a parallel manner. This
deployment is achieved, if you move all APIs exported by bundle A and imported by bundle B to a
separate my_api.jar bundle. Include the my_api.jar bundle to the ordered bundles list of your
plug-in package. In this way, the dependencies of bundle A and B are satisfied in advance and these
bundles can start in parallel.

n To improve the deployment time of your plug-in package, do not perform Spring bean initialization in
the bundles from the ordered bundles list. The deployment of bundles is blocked until the Spring bean
initialization is completed for each bundle that is part of the ordered bundles list. This behavior slows
down the startup of the application server. You must use the bundles from the ordered bundles list
only to export APIs and data transfer objects, if possible. For more information, see the previous
recommendation.

n To speed up the deployment of your plug-in package, you must use as few Web application ARchive
(WAR) files as possible, ideally only one WAR file per plug-in package. WAR files are deployed
slower that the other bundles, especially when the Web application has OSGi dependencies. For
example, the deployment process can be slowed down when the Web application registers a
message broker.

n To avoid runtime errors, you can specify the versions of the packages that you import and export for
your OSGi bundle.

n Starting with vSphere 6.7U2, the Tomcat application server logs OSGi, dependency, and deployment
errors to equinox.log. The equinox.log file is a recommended starting point for troubleshooting
deployment failures.

n Starting with vSphere 6.5, an OSGi validation utility is added to the vSphere Client which ensures that
the deployed plug-ins follow the OSGi-specific best practices. The results from the validation checks
are logged to the plugin-medic.log file which is located in the same folder as the Tomcat server log
file, vsphere_client_virgo.log. For more information about the location of the Tomcat server log
files, see the Table 14-1. Log Files Location table.

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 147

Once the deployment of all plug-ins completes, the validation for the whole set of OSGi bad practices
begins. Any issues detected are logged as INFO and WARN messages to the plugin-medic.log file.
For example, following are some of the warning messages that can be seen in the log file after you
deploy your plug-ins:

n DynamicImport-Package should be avoided - To prevent performance issues during plug-in
deployment, you must avoid using the DynamicImport-Package manifest header to declare
packages that must be looked up at runtime. Using dynamic imports might cause instability
issues with the vSphere Client. To complete successfully the certification of your plug-in, use
wildcards with caution and avoid using declarations such as the following: DynamicImport-
Package: com.vmware.*.

n Don't use 'com.vmware' prefix for bundle symbolic names and packages - The warning
message is logged when a third-party bundle exports packages with the com.vmware prefix and
the bundle's symbolic name starts with a different prefix.

n Conflicting package exports - The warning message is logged when two or more plug-ins
contain bundles that export the same package. This violation of the recommendations of the
OSGi Alliance leads to ClassNotFoundExceptions at runtime that are difficult to troubleshoot. For
example, in production environments, this warning message is logged in case two plug-ins
contain bundles that export Hibernate or another third-party library with the same version number.

DataService-Specific Best Practices
Following these recommendations and best practices for writing Data Service queries, helps you improve
the performance and scalability of your extensions.

n To increase the performance of your extension, you must avoid creating constraints, such as
ObjectIdentityConstraints, PropertyConstraints, and RelationalConstraints, and defining
OrderingPropertySpec objects that have multi-valued properties such as collections and arrays.

For example, when you create a PropertyConstraint object that filters all VirtualMachine objects
based on their network property, the filtering process is slowed down. This situation occurs because
the back end Data Provider does not support such requests. In such cases, the Data Service fetches
the entire data set and then filters the received data.

n To improve the performance of your extension, you must avoid creating constraints and defining
OrderingPropertySpec objects by using the length of multi-valued properties such as collections and
arrays.

For example, when you create a PropertyConstraint object that filters query results by using the
property network._length for all VirtualMachine objects, the filtering process is slowed down. This
situation occurs because the back end Data Provider does not support such requests or does not
maintain a separate index for property length. In such cases, the Data Service fetches the entire data
set and then proceeds with filtering the received data.

n To improve the performance of your extensions, you can use QuerySpec.resultSpec.maxResultCount
field to limit the returned result set.

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 148

n To improve the performance of your extensions in case you use PropertyConstraints, you must use
the com.vmware.vise.data.query.Comparator.EQUALS comparator instead of a text-matching
comparator such as com.vmware.vise.data.query.Comparator.CONTAINS and
com.vmware.vise.data.query.Comparator.TEXTUALLY_MATCHES for the PropertyConstraint queries.
Text-matching operations require a specific database indexing which only a few properties, such as
name, have. If you need to use a text-matching comparator, you can use CONTAINS instead of
TEXTUALLY_MATCHES, because TEXTUALLY_MATCHES requires more complex processing.

n To improve the performance of your extensions, you can set a value to the targetType field of each
com.vmware.vise.data.PropertySpec and com.vmware.vise.data.query.OrderingPropertySpec
object. The Data Service uses the targetType field to optimize the execution of the queries.

n To avoid future compatibility issues with your extension, you must avoid using multi-valued properties,
such as collections and arrays, as the middle nodes in the property paths.

For example, you must not use the property path configurationEx.drsVmConfig.key for
ClusterComputeResource objects because the drsVmConfig property of the vim.cluster.ConfigInfoEx
data object is a collection. In this case, you must request the whole vim.cluster.ConfigInfoEx data
object.

n To avoid future compatibility issues with your extension, you must not use any custom properties
defined by the vSphere Client modules. These properties are prone to change in the future. You must
use only the properties defined in the vSphere Web Services API for the managed objects and data
objects.

n To avoid future compatibility issues with your extension, you must avoid using the
com.vmware.vise.data.query.Conjoiner.EXCEPT operator in your CompositeConstraints. Instead you
must use negation and De Morgan's laws.

n To avoid future incompatibility, avoid using the relation field of the
com.vmware.vise.data.PropertySpec objects.

n To avoid future incompatibility, avoid using the facets field of the
com.vmware.vise.data.query.ResultSpec objects.

n The Data Service uses the value of the targetType field to optimize query execution. To improve the
performance of your extensions, set the targetType field on every constraint except for the following
cases:

n com.vmware.vise.data.query.ObjectIdentityConstraint - You must not specify the targetType
field because the type is already present in the object reference. You can set the type by using
the target field of the ObjectIdentityConstraint class.

n com.vmware.vise.data.query.RelationalConstraint with hasInverseRelation field set to true -
The targetType field is ignored for such constraints.

n To avoid performance issues with your extension in case you use constraints, you must use a specific
managed object type as a value for the targetType field. For example, if you use an abstract base
type such as the ManagedEntity managed object type, the execution of the query is slowed down.

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 149

n To ease the future optimization of your extensions, you must limit the size of each
CompositeConstraint by limiting the number of child constraints in the nestedConstraints field of the
CompositeConstraint class, and you must avoid also nesting multiple CompositeConstraint.

n Make sure that your Data Provider Adapter takes less than 3 seconds to process a query. If your
adapter takes too long to process a request, the Data Service cuts the adapter from the result.

Best Practices for Deploying and Testing Your vSphere
Client Extensions
After you develop your vSphere Client extension, you can follow these recommendations to ensure that
your extension is successfully deployed to the vSphere Client.

n To improve the performance of your plug-in package, the initial download and deployment time after
the first time the user logs into the vSphere Client, must be less than a minute.

n To ease the testing and debugging of your plug-in package, you must include the build number in the
dot-separated version number of the plug-in package when you register the plug-in as a vSphere
Client extension.

n To prevent deployment issues when you try to deploy a new version of a registered plug-in package,
make sure that you modify the version property of your plug-in package in the plugin-package.xml
manifest file.

n To prevent deployment issues when you try to deploy a plug-in package with the same version, make
sure that you unregister the plug-in package by removing the plug-in as a vCenter Server extension.
You must also manually delete the cached files of the plug-in package that are stored on the Virgo
server in one of the following locations:

Virgo Server
Environment Location of Cached Packages

vCenter Server Appliance /etc/vmware/vsphere-ui/vc-packages/vsphere-client-serenity/

Windows OS local
development environment

%PROGRAMDATA%\VMware\vCenterServer\cfg\vsphere-client\vc-packages\vsphere-client-
serenity\

Mac OS local development
environment

/var/lib/vmware/vsphere-client/vsphere-client/vc-packages/vsphere-client-serenity/

n To avoid performance issues, make sure that your plug-in package has only one version registered
with the vCenter Server. You must not change the value of the key property of the vCenter Server
Extension data object between releases.

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 150

n To verify easily the deployment of your plug-in package and monitor for any issues related to your
plug-in, you must know how to work with the Virgo server log files. You can find these log files in one
of the following locations:

Table 14-1. Log Files Location

Environment Virgo Log Files Location

vSphere Client development environment

(Windows or Mac OS)

html-client-sdk/vsphere-ui/server/logs/

vsphere_client_virgo.log

vCenter Server Appliance 6.5 installation

vSphere Client

/var/log/vmware/vsphere-ui/logs/

The vsphere_client_virgo.log file contains the log information that the Virgo server generates.
Problems usually start with the [ERROR] tag. Use your plug-in package name or the bundle symbolic
name to detect errors caused by your plug-in.

n To log information about your plug-in package, you must use the default logging mechanisms of the
vSphere Client. Use the Apache Log4j logging framework to provide debugging information for your
plug-in package. The Virgo server uses the Simple Logging Facade for Java (SLF4J) logging API.

Developing Local Plug-ins with the vSphere Client SDK

VMware, Inc. 151

	Developing Local Plug-ins with the vSphere Client SDK
	Contents
	About This Book
	Revision History
	About the vSphere Client
	Understanding the vSphere Client Architecture
	Overview of the User Interface Layer Components
	Understanding Extensibility in the vSphere Client
	Extending the User Interface Layer
	Concepts for Extending the User Interface Layer in the vSphere Client

	Extending the Java Service Layer

	About the vSphere Client
	Knowledge Requirements for Using the vSphere Client SDK
	SDK Versions and Compatibility
	vSphere Client SDK Contents
	vSphere Web Client Compatibility

	vSphere Client SDK Setup
	Software Requirements
	Development Environment Requirements Overview
	Setting Up for HTML-Based Plug-In Development
	Set Up for Java Development
	Automate the Plug-In Build Process
	Download the vSphere Client SDK
	Set Up the Eclipse Integrated Development Environment (optional)
	Install the vSphere Client Tools Eclipse Plug-In (optional)
	Register Your Local vSphere Client with the vCenter Server Instance
	Manual Registration of Local vSphere Client
	Automated Registration of Local vSphere Client

	Configure the Tomcat Server in Your Eclipse IDE

	Using the vSphere Client SDK Samples
	Location of Sample Plug-in in the vSphere Client SDK
	vSphere HTML SDK Sample
	Build and Deploy the vSphere HTML SDK Sample Plug-in
	Running the vSphere HTML SDK Sample

	Creating a vSphere Client SDK Solution
	Before Creating an HTML Plug-In
	Creating an HTML Plug-In Project
	Generate an HTML Plug-In Project with a Script
	Create an HTML Plug-In Project with Eclipse
	Contents of the HTML Plug-In Project Template
	Building a Plug-In Package from the Project Template
	Testing the Generated Plug-Ins
	Deploy the Plug-In on a Local vSphere Client
	Deploying Your Plug-In on a Remote vSphere Client

	Extension Points in the vSphere Client
	Global Extension Points
	Object Navigator Extension Points
	Object Workspace Extension Points
	Actions Extension Points
	Extension Templates
	Custom Object Extension Points
	Ordering Extensions
	Filtering Extensions

	vSphere Client SDK Extension Points
	Global View Extension Point for the vSphere Client
	Navigation Extension Point for the vSphere Client
	vSphere Objects Extension Points for the vSphere ClientvSphere Client
	Actions Extension Point for the vSphere Client

	Using the vSphere Client JavaScript API
	vSphere Client JavaScript API: Modal Interface
	vSphere Client JavaScript API: Application Interface
	vSphere Client JavaScript API: Event Interface
	Example Using the modal API

	Using Themes with vSphere Client Plug-ins
	Using Style Variables in Plug-In CSS
	Building Output Style Sheets for vSphere Client Plug-Ins
	Configuring and Loading Theme Style Sheets in vSphere Client Local Plug-Ins

	Developing HTML-Based User Interface Extensions
	Overview
	Global View Extensions
	Properties of the HtmlView Extension Object
	Adding a vCenter Server Selector

	Extending the vCenter Object Workspace
	Extending an Existing Object Workspace
	Creating an Object Workspace for a Custom Object
	Creating Extensions to the Summary Tab

	Creating Data View Extensions
	Creating Actions Extensions
	Actions Framework Overview
	Defining an Action Set
	Defining Individual Actions for HTML-Based Action Extensions
	Handling Actions for HTML-Based Action Extensions

	Handling Locales
	Guidelines for Creating Plug-Ins Compatible with the vSphere Client

	Developing for the vSphere Client Service Layer
	Developing Extensions to the Service Layer
	Understanding the vSphere Client Data Service
	Extending the Service Layer with Custom Components
	Custom Component Types
	Interfaces to the Service Layer
	Communications with the Service Layer

	Overview of Data Service Queries
	When To Use Data Service Queries
	RequestSpec Data Structure in Data Service Queries
	ResultSet Data Structure in Data Service Queries

	Extending the Data Service with a Data Service Adapter
	Advantages of Providing a Data Service Adapter
	Designing a Data Service Adapter
	Processing Data Service Queries

	Property Provider Adapters
	Data Provider Adapters
	DataProviderAdapter Interface
	Resolving a Custom Target Object
	Registering a Data Provider Adapter
	Data Provider Adapter Example

	Creating a Custom Java Service
	Make Java Services Available to the UI Components in the vSphere Web Client and the vSphere Client
	Creating the Java Interface and Classes
	Persisting Data from Your Plug-Ins to the vCenter Server Appliance and the vCenter Server System
	Packaging and Exposing the Service

	Importing a Service in a User Interface Plug-In Module

	Creating and Deploying Plug-In Packages
	Plug-In Package Overview
	XML Elements of the Plug-In Package Manifest File
	Deploying a Plug-In Package
	Plug-In Caching
	Deploying a Plug-In Package From a Remote Server
	Register a Plug-In Package as a vCenter Server Extension
	Creating the vCenter Server Extension Data Object
	Verifying Your Plug-In Package Deployment
	Unregister a Plug-In Package

	Best Practices for Developing Extensions for the vSphere Client
	Best Practices for Creating Plug-In Packages
	Best Practices for Plug-In Modules Implementation
	Best Practices for Developing HTML-Based Extensions
	Best Practices for Extending the User Interface Layer
	Best Practices for Extending the Service Layer
	OSGi-Specific Recommendations
	DataService-Specific Best Practices

	Best Practices for Deploying and Testing Your vSphere Client Extensions

