
CIM SMASH/Server
Management API
Programming Guide
17 APR 2018
VMware vSphere 6.7
VMware ESXi 6.7

CIM SMASH/Server Management API Programming Guide

VMware, Inc. 2

You can find the most up-to-date technical documentation on the VMware website at:

https://docs.vmware.com/

If you have comments about this documentation, submit your feedback to

docfeedback@vmware.com

Copyright © 2007–2018 VMware, Inc. All rights reserved. Copyright and trademark information.

VMware, Inc.
3401 Hillview Ave.
Palo Alto, CA 94304
www.vmware.com

https://docs.vmware.com/
mailto:docfeedback@vmware.com
http://pubs.vmware.com/copyright-trademark.html

Contents

About This Book 5

1 Introduction to the CIM SMASH/Server Management API 8

Platform Product Support for the CIM API 8

Supported Protocols and Versions for the CIM API 8

Installing CIM Provider VIBs 10

2 Developing Client Applications for the CIM API 13

CIM Server Ports 13

CIM Object Namespaces 14

WS-Management Resource URIs 16

Locating a Server with SLP 16

CIM Ticket Authentication 16

Active Directory Authentication on ESXi 17

Make a Connection to the CIMOM 17

Listing Registered Profiles in the CIM Implementation 19

List Registered CIM Profiles 19

Identifying the Base Server Scoping Instance 20

Identify the Base Server Scoping Instance 21

Mapping Integer Property Values to Strings 23

Using the Web Services for Management Perl Library 23

3 Using the CIM Object Space 27

Report Manufacturer, Model, and Serial Number 28

Report Manufacturer, Model, and Serial Number By Using Only the Implementation Namespace 30

Report the BIOS Version 32

Reporting Installed VIBs 34

Installing VIBs 37

Monitor VIB Installation 40

Monitor State of All Sensors 43

Monitor State of All Sensors By Using Only the Implementation Namespace 45

Report Fan Redundancy 47

Report CPU Cores and Threads 49

Report Empty Memory Slots By Using Only the Implementation Namespace 52

Report the PCI Device Hierarchy By Using Parent DeviceIDs 55

Report the Path to a PCI Device By Using PortGroups 58

Monitor RAID Controller State 62

Monitor State of RAID Connections 66

VMware, Inc. 3

Report Accessible Storage Extents 68

Report Storage Extents Without Third-Party Storage Provider 72

Work with the System Event Log 73

Subscribe to Indications 75

4 Troubleshooting CIM Connections 79

Connections from Client to CIM Server 79

Connections from CIM Server to Indication Consumer 81

5 Creating Offline Bundles 83

Create an Offline Bundle With VMware vSphere PowerCLI 83

CIM SMASH/Server Management API Programming Guide

VMware, Inc. 4

About This Book

The CIM SMASH/Server Management API Programming Guide provides information about developing
applications using the CIM SMASH/Server Management API.

VMware® provides many different APIs and SDKs for various applications and goals. This book provides
information about developing management clients that use industry-standard data models. The System
Management Architecture for Server Hardware (SMASH) is an industry standard for managing server
hardware. This book describes the SMASH profiles implemented by VMware and contains suggestions
for using the Common Information Model (CIM) classes to accomplish common use cases.

To view the current version of this book as well as all VMware API and SDK documentation, go to
http://www.vmware.com/support/pubs/sdk_pubs.html.

Revision History
This book is revised with each release of the product or when necessary. A revised version can contain
minor or major changes. The Revision History table summarizes the significant changes in each version
of this book.

Table 1. Revision History

Revision Description

20180417 Update for vSphere 6.7.

20161115 Update for vSphere 6.5. Removes support for CIM_SoftwareInstallationService.

20150312 Re-released for vSphere 6.0. No revisions.

20130912 Minor corrections only.

20120910 Updated to include information about adding CIM Provider VIBs.

Updated to include information about adjusting resource pool allocation.

20110824 Added PCI Device use cases.

Corrected Software Update use cases to match current design.

Updated product version numbers.

Corrected CIM profile version numbers.

Removed Host Hardware RAID Controller profile support from default configuration.

Revised Perl WS-Management section to bypass deprecated StubOps module.

Removed section about Rebooting the Managed Server (deprecated feature).

Revised sections about manufacturer, model, and serial number.

VMware, Inc. 5

http://www.vmware.com/support/pubs/sdk_pubs.html

Table 1. Revision History (Continued)

Revision Description

20100430 Added Active Directory Authentication.

Added WS-Management code sample.

Added Software Update use cases.

Corrected Software Inventory use case.

Updated version numbers for vSphere 4.1 release.

Added Software Inventory use case.

Corrected error in RAID controller illustration.

Added information on crossing namespace boundaries.

Corrected error in WS-Man Resource URI for VMware classes.

20090521 Updated product names for vSphere 4.0 release.

Added use cases for SEL, and physical memory slots.

Added namespace, ports, and XML schema information.

20080703 VMware ESX™ Server 3.5 Update 2 and ESX Server 3i version 3.5 Update 2 release.

Replaced instance diagrams with expanded versions.

Added use case for CPU core & threading model.

Added use case for fan redundancy.

Added use cases for Host Hardware RAID Controller profile.

Added appendix about troubleshooting connections.

Replaced Profile Reference appendix with a URL.

Listed indications supported.

Added ESX Server 3.5.

20080409 ESX Server 3i version 3.5 Update 1 release.

Changed title (formerly CIM SMASH API Programming Guide)

Updated URLs.

Removed List of Tables.
Added Physical Asset profile; listed properties for all profiles.

Updated ElementName of Base Server registered profile.

Added SMI-S RAID Controller profile.

Divided chapter 2 into 2 parts, and expanded introductory material.

Corrected typographical errors.

Added some illustrations.

20071210 ESX Server 3i version 3.5 release.

Intended Audience
This book is intended for software developers who create applications that need to manage VMware
vSphere® server hardware with interfaces based on CIM standards.

CIM SMASH/Server Management API Programming Guide

VMware, Inc. 6

VMware Technical Publications Glossary
VMware Technical Publications provides a glossary of terms that might be unfamiliar to you. For
definitions of terms as they are used in VMware technical documentation, go to
http://www.vmware.com/support/pubs.

Document Feedback
VMware welcomes your suggestions for improving our documentation. Send your feedback to
docfeedback@vmware.com.

Technical Support and Education Resources
The following sections describe the technical support resources available to you. To access the current
versions of other VMware books, go to http://www.vmware.com/support/pubs.

Online Support
To use online support to submit technical support requests, view your product and contract information,
and register your products, go to http://communities.vmware.com/community/developer.

Support Offerings
To find out how VMware support offerings can help meet your business needs, go to
http://www.vmware.com/support/services.

VMware Professional Services
VMware Education Services courses offer extensive hands-on labs, case study examples, and course
materials designed to be used as on-the-job reference tools. Courses are available onsite, in the
classroom, and live online. For onsite pilot programs and implementation best practices, VMware
Consulting Services provides offerings to help you assess, plan, build, and manage your virtual
environment. To access information about education classes, certification programs, and consulting
services, go to http://www.vmware.com/services.

CIM SMASH/Server Management API Programming Guide

VMware, Inc. 7

http://www.vmware.com/support/pubs
mailto:docfeedback@vmware.com
http://www.vmware.com/support/pubs
http://communities.vmware.com/community/developer
http://www.vmware.com/support/services
http://www.vmware.com/services/

Introduction to the CIM
SMASH/Server Management API 1
VMware ESXi includes a CIM Object Manager (CIMOM) that implements a set of server discovery and
monitoring features that are compatible with the SMASH standard. With the VMware
CIM SMASH/Server Management API, clients that use industry-standard protocols can do the following:
n Enumerate system resources

n Monitor system health data

n Upgrade installed software

The VMware implementation of the SMASH standard uses the open-source implementation of the
Open Management with CIM (OMC) project. OMC provides tools and software infrastructure for hardware
vendors and others who require a reliable implementation of the Distributed Management Task Force
(DMTF) management profiles.

This chapter includes the following topics:
n Platform Product Support for the CIM API

n Supported Protocols and Versions for the CIM API

n Installing CIM Provider VIBs

Platform Product Support for the CIM API
The VMware CIM SMASH/Server Management API is supported by ESXi. Hardware compatibility for
ESXi is documented in the hardware compatibility guides, available on the VMware Web site. See
http://www.vmware.com/support/pubs.

Supported Protocols and Versions for the CIM API
The VMware CIM SMASH/Server Management API supports the following protocols:

n CIM-XML over HTTP or HTTPS

n WS-Management over HTTP or HTTPS

n SLP

VMware, Inc. 8

http://www.vmware.com/support/pubs/

CIM Version
The CIM standard is an object model maintained by the DMTF, a consortium of leading hardware and
software vendors. ESXi 6.7 is compatible with version 2.26.0 Final of the CIM schema.

SMASH Version for the CIM API
The SMASH standard is maintained by the Server Management Working Group (SMWG) of the DMTF.
ESXi 6.7 is compatible with version 1.0.0 of the SMASH standard.

Supported Profiles for the CIM API
The VMware CIM SMASH/Server Management API supports a subset of the profiles defined by the
SMWG. These profiles have overlapping structures and can be used in combinations to manage a server.

This VMware CIM implementation also includes a profile from the SMI specification developed by the
Storage Networking Industry Association (SNIA). The implementation uses SMI-S version 1.3.

In some situations, the version of a profile supported by the CIMOM is important. The following table
shows the version of each profile that is implemented by the
VMware CIM SMASH/Server Management API for this release of ESXi.

Some profiles are only partially implemented by VMware. The implementation does not include all
mandatory elements specified in the profile. These profiles are listed with “N/A” in the Version column. For
information about which elements are implemented, see the
VMware CIM SMASH/Server Management API and Profile Reference at
http://pubs.vmware.com/vsphere-51/topic/com.vmware.cimsdk.smashref.doc/title_page.html.

Profile Version

Base Server 1.0.0

Battery 1.0.0

CLP Admin Domain N/A

CPU 1.0.0

Ethernet Port N/A

Fan 1.0.1

Host Discovered Resources N/A

Host LAN Port N/A

Indications N/A

IP Interface N/A

Job Control 1.3.0

PCI Device N/A

Physical Asset 1.0.2

Power State Management 1.0.1

CIM SMASH/Server Management API Programming Guide

VMware, Inc. 9

http://pubs.vmware.com/vsphere-51/topic/com.vmware.cimsdk.smashref.doc/title_page.html

Profile Version

Power Supply 1.0.1

Profile Registration 1.0.0

Record Log 1.0.0

Sensors 1.0.0

Software Inventory 1.0.0

Software Update 1.0.0

System Memory 1.0.0

The Job Control subprofile is specified by the SNIA, as part of the SMI-S. All other profiles are specified
by the DMTF.

The Software Update profile is not supported in the base installation. It requires a separate VIB
installation.

CIM and SMASH Resources Online
The following resources related to the CIM, SMASH, and SMI standards are available:

n http://www.dmtf.org (DMTF home page)

n http://www.dmtf.org/standards/cim (CIM standards)

n http://www.dmtf.org/standards/published_documents (DMTF publications)

n http://www.snia.org (SNIA home page)

n http://www.snia.org/tech_activities/standards/curr_standards/smi (SMI-S)

Installing CIM Provider VIBs
The 3.5 and 4.1 versions of vSphere included the LSI and HP RAID CIM providers in the default VIB for
the ESXi server.

In vSphere 5.0 and later, the LSI and HP provider VIBs are not included in the default VIBs. Therefore, if
you are using an LSI or HP RAID controller card on your host with vSphere 5.0 or later, you will need to
install an LSI or HP VIB before the associated RAID storage device will show up in your vCenter Server
Inventory.

Download CIM Provider VIBs
The following procedure gives you the general steps for downloading a VIB from a third-party website.
The instructions may be slightly different for each third-party site.

To download a CIM Provider VIB

CIM SMASH/Server Management API Programming Guide

VMware, Inc. 10

http://www.dmtf.org
http://www.dmtf.org/standards/cim
http://www.dmtf.org/standards/published_documents
http://www.snia.org/
http://www.snia.org/tech_activities/standards/curr_standards/smi/

Procedure

1 Go to the website of the CIM Provider, and look for the ‘Support’ or ‘Downloads’ section. For example,
on the HP website, the section is called, ‘HP Drivers and Support’. On the LSI Corporation website,
the section is called, ‘Support Downloads By Product‘ under the ‘Support’ tab.

2 Enter the hardware type for the VIB you want to download, or select the type from a list.

3 Choose the VIB bundle that contains the words ‘VMware’ and the VMware product, such as ‘ESXi’.

Add a CIM Provider VIB to your ESXi Image
You can add a CIM Provider VIB to your ESXi image using the vSphere ESXi Image Builder CLI. Install
VIBs from only one OEM vendor at a time.

Before you begin, install the VMware PowerCLI software.

Use the following steps to add a new VIB to your image:

Procedure

1 Run Add-EsxSoftwareDepot for each depot you want to work with.

Run Add-EsxSoftwareDepot -DepotUrl depot_url

or

Run Add-EsxSoftwareDepot -DepotUrl C:\file_path\offline-bundle.zip

The cmdlet returns one or more SoftwareDepot objects.

2 Run Get-EsxImageProfile to list all image profiles in all currently visible depots.

Get-EsxImageProfile

The cmdlet returns all available profiles. You can narrow your search by using the optional arguments
to filter the output.

3 Clone the profile and make changes to the clone if the image profile is read only.

New-EsxImageProfile -CloneProfile My_Profile -Name "Test Profile Name"

Image profiles published by VMware and its partners are read only.

4 Run Add-EsxSoftwarePackage to add a new package to one of the image profile.

Add-EsxSoftwarePackage -ImageProfile My_Profile -SoftwarePackage partner-package

The cmdlet runs the standard validation tests on the image profile. If validation succeeds, the cmdlet
returns a modified, validated image profile. If the VIB that you want to add depends on a different VIB,
the cmdlet displays that information and includes the VIB that would resolve the dependency. If the
acceptance level of the VIB that you want to add is lower than the image profile acceptance level, an
error results. Change the acceptance level of the image profile to add the VIB.

CIM SMASH/Server Management API Programming Guide

VMware, Inc. 11

Your image profile now includes the new VIB.

See the vSphere Installation and Setup guide for more information about how to add a VIB to an
image profile.

Adjust the Resource Pool Allocation for CIM Providers
When you install several CIM provider VIBs on an ESXi system, you might find that the providers as a
whole exceed the default capacity of the memory resource pool allocated for plug-ins. Therefore, if you
experience memory contention after adding more than one CIM plug-in, you may need to adjust the
memory pool on your ESXi server.

To adjust the resource pool using the vSphere client

Procedure

1 Navigate to the Host->Configuration->System Resource Allocation->Advanced page.

2 Select a resource pool, click the right mouse button, and select ‘Edit Settings’.

3 Use the slider mechanism or the up and down arrows to adjust the resource allocation for each pool.

CIM SMASH/Server Management API Programming Guide

VMware, Inc. 12

Developing Client Applications
for the CIM API 2
A basic CIM client that allows you to connect to a CIM server can be outlined as several steps that build
on prior steps. Each step is explained and illustrated with pseudocode. You can expand this outline to
create clients that allow you to manage the server.

The CIM client outline presented in this chapter shows a recommended general approach to accessing
the CIM objects from the Interop namespace. This approach assumes no advance knowledge of the
specifics of the CIM implementation. If your client is aware of items such as the Service URL and the
namespaces used in the VMware implementation, see Chapter 3 Using the CIM Object Space for more
information about accessing specific objects in the Implementation namespace.

This chapter includes the following topics:

n CIM Server Ports

n CIM Object Namespaces

n WS-Management Resource URIs

n Locating a Server with SLP

n CIM Ticket Authentication

n Active Directory Authentication on ESXi

n Make a Connection to the CIMOM

n Listing Registered Profiles in the CIM Implementation

n List Registered CIM Profiles

n Identifying the Base Server Scoping Instance

n Identify the Base Server Scoping Instance

n Mapping Integer Property Values to Strings

n Using the Web Services for Management Perl Library

CIM Server Ports
CIM servers are available for both CIM-XML and WS-Management protocols, and for both secured and
non-secured HTTP connections. Select one of the ports that corresponds to the type of connection you
want to make. Table 2‑1 shows the default port numbers used by the CIM servers.

VMware, Inc. 13

Table 2‑1. Port Numbers for CIM Client Connections

Connection Type Port Number Active in the Default Configuration?

CIM-XML/HTTP 5988 No

CIM-XML/HTTPS 5989 Yes

WS-Man/HTTP 80 No

WS-Man/HTTPS 443 Yes

CIM Object Namespaces
To access a CIM object directly, you must know the namespace in which the object is stored. A managed
server can have several CIM namespaces. This guide uses the Interop namespace and the
Implementation namespace.

Most CIM objects are stored in the Implementation namespace. If you know the URL and the
Implementation namespace in advance, you can enumerate objects directly by connecting to that
namespace.

The Interop namespace contains a few CIM objects, particularly instances of CIM_RegisteredProfile.
One of these instances exists for each CIM profile that is fully implemented on the managed server.

CIM_RegisteredProfile acts as a repository of information that can be used to identify and access
objects in the Implementation namespace. For each registered CIM profile, the CIM server has an
association that you can follow to move from the Interop namespace to the Implementation namespace.

Some profiles in the VMware implementation are only partially implemented. The implementation does
not include all the mandatory properties and methods for those profiles. The Interop namespace does not
contain instances of CIM_RegisteredProfile for profiles that are only partially implemented. To access
unregistered profiles, you must know the Implementation namespace.

Crossing Between Namespaces
The ElementConformsToProfile association crosses the boundary between the Interop namespace and
the Implementation namespace. The association is instantiated in both namespaces, so you can
enumerate it in either namespace.

The endpoint references in any instance of the ElementConformsToProfile association include the
namespace for the endpoint. If you access the referenced endpoint, such as with a GetInstance()
method, the request is directed to the provider in the correct namespace.

CIM SMASH/Server Management API Programming Guide

VMware, Inc. 14

For example, if you enumerate the class OMC_ElementConformsToRecordLogProfile in the Interop
namespace, you get an object that associates an instance of OMC_RegisteredRecordLogProfile in
the Interop namespace with an instance of OMC_IpmiRecordLog in the Implementation namespace. The
endpoint references look similar to these:

ConformantStandard =

 root/interop:OMC_RegisteredRecordLogProfile.InstanceID=”IPMI:vmware-host SEL Log”

ManagedElement =

 root/cimv2:OMC_IpmiRecordLog.InstanceID=”IPMI:vmware-host SEL Log (Node 0)”

If you enumerate the class OMC_ElementConformsToRecordLogProfile in the Implementation
namespace, you get an object in the Implementation namespace that is otherwise identical to the object
in the Interop namespace.

Regardless of which namespace provides the ElementConformsToProfile instance, the endpoint
references work the same. If you do a GetInstance() for the ConformantStandard endpoint, the CIM
server returns an instance of OMC_RegisteredRecordLogProfile in the Interop namespace. If you do
a GetInstance() for the ManagedElement endpoint, the CIM server returns an instance of
OMC_IpmiRecordLog in the Implementation namespace.

To simplify the diagrams in this document, the ElementConformsToProfile association is pictured as a
single object on the boundary between namespaces, rather than as two objects, one in each namespace.
See Figure 2‑2 for an example diagram.

Determining the Namespaces in Your Installation
You can hard-code namespaces in the client, or specify them at run time, or you can obtain the
namespaces from a Service Location Protocol (SLP) Service Agent. Table 2-2 lists the namespaces used
by ESXi.

 Interop Namespace Implementation Namespace

ESXi root/interop root/cimv2

You can obtain both the Interop namespace and the Implementation namespace for your managed server
from SLP. You can identify the Interop namespace more conveniently than the Implementation
namespace in the SLP output.

The approach preferred in this document is to use SLP to obtain the Interop namespace and the URL to
enumerate CIM_RegisteredProfile, and then move to the Scoping Instance of the Base Server profile
in the Implementation namespace. The Scoping Instance represents the managed server and is
associated with many other objects in the Implementation namespace. The Scoping Instance provides a
reliable point from which to navigate to CIM objects that represent any part of the managed server.

CIM SMASH/Server Management API Programming Guide

VMware, Inc. 15

WS-Management Resource URIs
For WS-Management connections, the client must also specify a resource URI when accessing CIM
objects. The URI represents an XML namespace associated with the schema definition.

The choice of URI depends on the class name of the CIM object. The prefix of the class name determines
which URI the client must use. Table 2-3 shows which URI to use for each supported class name prefix.

Class Name Prefix Resource URI (Namespace only - link will not work in a browser)

VMware_ http://schemas.vmware.com/wbem/wscim/1/cim-schema/2/

OMC_ http://schema.omc-project.org/wbem/wscim/1/cim-schema/2/

CIM_ http://schemas.dmtf.org/wbem/wscim/1/cim-schema/2/

Note that the URIs given above do not resolve to a web page location. Although they look like a web
address, they just represent a section of the CIM XML schema that you need to specify.

Example:

xmlns="http://schemas.vmware.com/wbem/wscim/1/cim-schema/2/"

See http://www.w3schools.com/schema/schema_example.asp for more information about XML
namespaces.

Locating a Server with SLP
If you do not know the URL to access the WBEM service of the CIMOM on the ESXi machine, or if you do
not know the namespace, use SLP to discover the service and the namespace before your client makes a
connection to the CIMOM.

SLP-compliant services attached to the same subnet respond to a client SLP query with a Service URL
and a list of service attributes. The Service URL returned by the WBEM service begins with the service
type service:wbem:https:// and follows with the domain name and port number to connect to the CIMOM.

Among the attributes returned to the client is InteropSchemaNamespace. The value of this attribute is the
name of the Interop namespace.

For more information about SLP, see the following links:

n http://tools.ietf.org/html/rfc2608

n http://tools.ietf.org/html/rfc3059

CIM Ticket Authentication
A CIM client must authenticate before it can access data or perform operations on an ESXi host. The
client can authenticate in one of the following ways.

n Directly with the CIMOM on the managed host by supplying a valid user name and password for an
account that is defined on the managed host.

CIM SMASH/Server Management API Programming Guide

VMware, Inc. 16

http://www.w3schools.com/schema/schema_example.asp
http://tools.ietf.org/html/rfc2608
http://tools.ietf.org/html/rfc3059

n With a sessionId that the CIMOM accepts in place of the user name and password. The sessionId
(called a “ticket”) can be obtained by invoking the AcquireCimServicesTicket() method on
VMware vCenter™ Server.

As a best practice, use CIM ticket authentication for servers managed by vCenter. If the managed host is
operating in lockdown mode, the CIMOM does not accept new authentication requests from CIM clients.
However, the CIMOM does continue to accept a valid ticket obtained from vCenter Server.

The ticket must be obtained by using the credentials of any user that has administrative privileges on
vCenter Server. For more information about CIM ticket authentication, see the VMware technical note
CIM Authentication for Lockdown Mode.

Active Directory Authentication on ESXi
ESXi hosts implement the Pluggable Authentication Module (PAM) framework, which can be configured to
support authentication of Active Directory users. This feature is transparent to the CIM client. The client
uses Active Directory authentication by supplying a user name and password that were previously
entered into the Active Directory database.

System administrators can use the vSphere Client or the Web Services SDK to add an ESXi host to the
Active Directory domain and to grant access rights to specific users. Hosts configured to use Active
Directory authentication can also be configured to accept local users that have been granted access
rights.

Make a Connection to the CIMOM
Before you can enumerate classes, invoke methods, or examine properties of the managed server, you
must create a connection object in your client. The connection object manages the connection with the
CIM server, accepts CIM methods by proxy, and passes them to the CIM server. The following
pseudocode illustrates how to create a connection by using command-line parameters passed to the
client.

To make a connection to the CIMOM

Procedure

1 Collect the connection parameters from the environment.

use os

function parse_environment()

 ///Check if all parameters are set in the shell environment.///

 VI_SERVER = VI_USERNAME = VI_PASSWORD = VI_NAMESPACE=Null

 ///Any missing environment variable is cause to revert to command-line arguments.///

 try

 return { 'VI_SERVER':os.environ['VI_SERVER'], \

 'VI_USERNAME':os.environ['VI_USERNAME'], \

 'VI_PASSWORD':os.environ['VI_PASSWORD'], \

 'VI_NAMESPACE':os.environ['VI_NAMESPACE'] }

 catch

 return Null

CIM SMASH/Server Management API Programming Guide

VMware, Inc. 17

https://www.vmware.com/support/developer/cim-sdk/6.5/cim_smash_650_ticket_authentication.pdf

use sys

function get_params()

 ///Check if parameters are passed on the command line.///

 param_host = param_user = param_password = param_namespace = Null

 if len(sys.argv) == 5

 print 'Connect using command-line parameters.'

 param_host, param_user, param_password, param_namespace = sys.argv [1:5]

 return { 'host':param_host, \

 'user':param_user, \

 'password':param_password, \

 'namespace':param_namespace }

 env = parse_environment()

 if env

 print 'Connect using environment variables.'

 return { 'host':env['VI_SERVER'], \

 'user':env['VI_USERNAME'], \

 'password':env['VI_PASSWORD'], \

 'namespace':env['VI_NAMESPACE'] }

 else

 print 'Usage: ' + sys.argv[0] + ' <host> <user> <password> [<namespace>]'

 print ' or set environment variables: VI_SERVER, VI_USERNAME, VI_NAMESPACE'

 return Null

params = get_params()

if params is Null

 exit(-1)

2 Create the connection object in the client.

use wbemlib

connection = Null

function connect_to_host(params)

 ///Connect to the server.///

 connection = wbemlib.WBEMConnection('https://' + params['host'], \

 (params['user'], params['password']), \

 params['namespace'])

 return connection

if connect_to_host(params)

 print 'Connected to: ' + params['host'] + ' as user: ' + params['user']

else

 print 'Failed to connect to: ' + params['host'] + ' as user: ' + params['user']

With some client libraries, creating a connection object in the client does not send a request to the
CIMOM. A request is not sent until a method is called. To verify that such a client can connect to and
authenticate with the server, see another use case, such as Listing Registered Profiles in the CIM
Implementation.

CIM SMASH/Server Management API Programming Guide

VMware, Inc. 18

Listing Registered Profiles in the CIM Implementation
VMware recommends that CIM clients list the registered profiles before you use them for other purposes.
If a profile is not present in the registration list (CIM_RegisteredProfile), the profile is not implemented
or is incompletely implemented.

SMASH profiles are registered in the Interop namespace, even when they are implemented in the
Implementation namespace. A client exploring the CIM objects on the managed server can use the
associations to move from CIM_RegisteredProfile to the objects in the Implementation namespace.

The CIM_RegisteredProfile class is instantiated with subclasses that represent the profiles that are
registered in the Interop namespace. Each instance represents a profile that is fully implemented in the
Implementation namespace. Figure 2‑1 shows a few instances of CIM_RegisteredProfile subclasses.

Figure 2‑1. Registered Profile Subclasses in Interop Namespace

List Registered CIM Profiles
The following pseudocode shows one way to identify the profiles registered on the managed server. The
pseudocode in this topic depends on the pseudocode in Make a Connection to the CIMOM.

To list registered profiles

CIM SMASH/Server Management API Programming Guide

VMware, Inc. 19

Procedure

1 Connect to the server URL.

Specify the Interop namespace, supplied as a parameter, for the connection.

use wbemlib

use sys

use connection renamed cnx

connection = Null

params = cnx.get_params()

if params is Null

 sys.exit(-1)

interop_params = params

interop_params['namespace'] = 'root/interop'

connection = cnx.connect_to_host(interop_params)

if connection is Null

 print 'Failed to connect to: ' + params['host'] + ' as user: ' + params['user']

2 Enumerate instances of CIM_RegisteredProfile.

function get_registered_profile_names(connection)

 ///Get instances of RegisteredProfile.///

 instance_names = connection.EnumerateInstanceNames('CIM_RegisteredProfile')

 if instance_names is Null

 print 'Failed to enumerate RegisteredProfile.'

 return Null

 else

 return instance_names

instance_names = get_registered_profile_names(connection)

if instance_names is Null

 sys.exit(-1)

3 For each instance of CIM_RegisteredProfile, print the name and version of the profile.

function print_profile(instance)

 print '\n' + ' [' + instance.classname + '] ='

 for prop in ('RegisteredName', 'RegisteredVersion')

 print ' %30s = %s' % (prop, instance[prop])

for instance_name in instance_names

 instance = connection.GetInstance(instance_name)

 print_profile(instance)

Identifying the Base Server Scoping Instance
The Scoping Instance of CIM_ComputerSystem for the Base Server profile is an object that represents
the managed server. Various hardware and software components of the managed server are represented
by CIM objects associated with this Scoping Instance.

CIM SMASH/Server Management API Programming Guide

VMware, Inc. 20

A client can locate CIM objects by using one of the following ways:

n Enumerate instances in the Implementation namespace, and then filter the results by their property
values. This approach requires specific knowledge of the Implementation namespace and the
subclassing used by the SMASH implementation on the managed server.

n Locate the Base Server Scoping Instance that represents the managed server, and then traverse
selected association objects to find the desired components. This approach requires less knowledge
of the implementation details.

Figure 2‑2 shows the association between the profile registration instance in the Interop namespace and
the Base Server Scoping Instance in the Implementation namespace.

Figure 2‑2. Base Server Scoping Instance Associated with Profile Registration

Identify the Base Server Scoping Instance
The following pseudocode shows how to traverse the association to arrive at the Base Server Scoping
Instance. This pseudocode depends on the pseudocode in Make a Connection to the CIMOM.

To identify the Base Server Scoping Instance

Procedure

1 Connect to the server URL.

Specify the Interop namespace, supplied as a parameter, for the connection.

use wbemlib

use sys

use connection renamed cnx

connection = Null

params = cnx.get_params()

if params is Null

 sys.exit(-1)

interop_params = params

interop_params['namespace'] = 'root/interop'

connection = cnx.connect_to_host(interop_params)

if connection is Null

 print 'Failed to connect to: ' + params['host'] + ' as user: ' + params['user']

 sys.exit(-1)

CIM SMASH/Server Management API Programming Guide

VMware, Inc. 21

2 Enumerate instances of CIM_RegisteredProfile.

use registered_profiles renamed prof

profile_instance_names = prof.get_registered_profile_names(connection)

if profile_instance_names is Null

 print ‘No registered profiles found.’

 sys.exit(-1)

3 Select the instance that corresponds to the Base Server profile.

function isolate_base_server_registration(connection, instance_names)

 ///Isolate the Base Server registration.///

 for instance_name in instance_names

 instance = connection.GetInstance(instance_name)

 if instance['RegisteredName'] == 'Base Server'

 return instance_name

 return Null

profile_instance_name = isolate_base_server_registration(connection, \

 profile_instance_names)

if profile_instance_name is Null

 print 'Base Server profile is not registered in namespace ' + namespace

 sys.exit(-1)

4 Traverse the CIM_ElementConformsToProfile association to reach the Scoping Instance.

function associate_to_scoping_instance(connection, profile_name)

 ///Follow ElementConformsToProfile from RegisteredProfile to ComputerSystem.///

 instance_names = connection.AssociatorNames(profile_name, \

 AssocClass = 'CIM_ElementConformsToProfile', \

 ResultRole = 'ManagedElement')

 if len(instance_names) > 1

 print 'Error: %d Scoping Instances found.' % len(instance_names)

 sys.exit(-1)

 return instance_names.pop()

function print_instance(instance)

 print '\n' + ' [' + instance.classname + '] ='

 for prop in instance.keys()

 print ' %30s = %s' % (prop, instance[prop])

scoping_instance_name = associate_to_scoping_instance(connection, profile_instance_name)

if scoping_instance_name is Null

 print 'Failed to find Scoping Instance.'

 sys.exit(-1)

else

 print_instance(connection.GetInstance(scoping_instance_name)

CIM SMASH/Server Management API Programming Guide

VMware, Inc. 22

Mapping Integer Property Values to Strings
Many of the properties defined in CIM contain integer values that represent status or configuration
information. The qualifiers for those properties define a mapping to human-readable string values.

This example shows a general-purpose routine for converting an integer value to the corresponding string
value. The example assumes that the client library you are using has support for introspecting class
property information available in the qualifiers.

The following function expects three parameters:

n A connection object that you have previously created, as described in Make a Connection to the
CIMOM

n An instance of the class that you have retrieved from the CIMOM

n A string value containing the name of a property of that instance, to be mapped to its string descriptor

use wbemlib

use connection

function map_instance_property_to_string(connection, instance, prop)

 class_info = connection.GetClass(instance.classname, includeQualifiers=True)

 qualifiers = class_info.properties[prop].qualifiers

 if qualifiers.key(‘ValueMap’) and qualifiers.key(‘Values’)

 strings = qualifiers[‘Values’]

 nums = qualifiers[‘ValueMap’]

 prop_val = instance[prop]

 for (i=0; len(nums) - 1; i++)

 if str(nums[i]) == str(prop_val)

 return strings[i]

 return Null

Using the Web Services for Management Perl Library
VMware ESXi supports the WS-Management protocol in addition to the CIM-XML protocol for passing
CIM information between client and server. VMware provides WS-Management client libraries as part of
the vSphere SDK for Perl.

In the VMware Web Services for Management Perl Library there are two API layers recommended for
Perl clients:

n WSMan::WSBasic implements serialization and deserialization of objects transported with the SOAP
protocol.

n WSMan::GenericOps implements a wrapper interface for WSMan::WSBasic. WSMan::GenericOps
provides CIM objects in the form of Perl hashes.

Note The StubOps API layer, which provided a wrapper for WSMan::GenericOps, was deprecated
in ESXi 5.0. You can use the GenericOps API layer to get the same results.

CIM SMASH/Server Management API Programming Guide

VMware, Inc. 23

Using the WSMan::GenericOps layer of the SDK is similar to using a CIM-XML client library. The client
creates a connection object, enumerates instances, and traverses associations in the same general way
as described in Make a Connection to the CIMOM, Listing Registered Profiles in the CIM Implementation,
and Identifying the Base Server Scoping Instance. For more information about the vSphere SDK for Perl,
see the vSphere SDK for Perl Programming Guide.

The following code example shows how you can make a connection to the CIM server, enumerate
registered profiles, and follow the ElementConformsToProfile association to the Base Server Scoping
Instance of ComputerSystem.

#!/usr/bin/perl

use strict;

use warnings;

use VMware::VIRuntime;

use WSMan::GenericOps;

use VMware::VILib;

$Util::script_version = "1.0";

=pod

 USAGE:: perl central_server.pl --server myserver.example.com --username abc

 --password xxxx [--namespace xxx/xxx] [--timeout numsecs]

=cut

my %opts = (

 namespace => {

 type => '=s',

 help => 'Namespace for queries. Default is root/interop for profile registration.',

 required => 0,

 default => 'root/interop',

 },

 timeout => {

 type => '=s',

 help => 'Default http timeout for all the queries. Default is 120',

 required => 0,

 default => '120'

 },

);

Opts::add_options(%opts);

Opts::parse();

Opts::validate();

Opts::set_option('protocol', 'http');

Opts::set_option('servicepath', '/wsman');

Opts::set_option('portnumber', '80');

sub create_connection_object

{

 my %args = (

 path => Opts::get_option('servicepath'),

 username => Opts::get_option('username'),

 password => Opts::get_option('password'),

 port => Opts::get_option ('portnumber'),

 address => Opts::get_option ('server'),

 namespace => Opts::get_option('namespace'),

 timeout => Opts::get_option('timeout')

CIM SMASH/Server Management API Programming Guide

VMware, Inc. 24

);

 my $client = WSMan::GenericOps->new(%args);

 if (not defined $client) {

 print "Failed to create connection object.\n";

 return undef;

 }

 # Add resource URIs for derived classes:

 $client->register_class_ns(OMC => 'http://schema.omc-project.org/wbem/wscim/1/cim-schema/2',

 VMware => 'http://schemas.vmware.com/wbem/wscim/1/cim-schema/2',

);

 return $client;

}

sub get_registered_profiles

{

 my ($client) = @_;

 my @instances = ();

 eval {

 @instances = $client->EnumerateInstances(

 class_name => 'CIM_RegisteredProfile');

 };

 if ($@) {

 print "Failed EnumerateInstances() on CIM_RegisteredProfile.\n";

 die $@;

 }

 return @instances;

}

sub isolate_base_server_registration

{

 my ($client, @instances) = @_;

 foreach my $instance (@instances) {

 my $class_name = (keys %$instance)[0];

 my $profile = $instance->{ $class_name };

 if ($profile->{'RegisteredName'}

 && $profile->{'RegisteredName'} eq 'Base Server') {

 return $instance;

 }

 }

 return undef;

}

sub associate_to_scoping_instance

{

 my ($client, $instance) = @_;

 my $class_name = (keys %$instance)[0];

 my $profile = $instance->{ $class_name };

 my @instances = ();

 eval {

 @instances = $client->EnumerateAssociatedInstances(

 class_name => $class_name,

 selectors => $profile,

 associationclassname => 'CIM_ElementConformsToProfile',

 resultrole => 'ManagedElement');

 };

CIM SMASH/Server Management API Programming Guide

VMware, Inc. 25

 if ($@) {

 print "Failed EnumerateAssociatedInstances() for Base Server profile registration.\n";

 die $@;

 }

 if (scalar(@instances) > 1) {

 print "Error: " . scalar(@instances) . " Scoping Instances found.\n";

 return undef;

 }

 pop @instances;

}

Create client connection object for ESX host:

my $client = create_connection_object();

if (not defined $client) {

 die "Aborting.\n";

}

my @profile_instances = get_registered_profiles($client);

if (scalar(@profile_instances) == 0) {

 die('No registered profile instances found on '

 . Opts::get_option('server') . ':'

 . Opts::get_option('namespace') . "\n"

);

}

my $profile_instance = isolate_base_server_registration($client, @profile_instances);

if (not defined $profile_instance) {

 die("Base Server profile is not registered in namespace.\n");

}

my $scoping_instance = associate_to_scoping_instance($client, $profile_instance);

if (not defined $scoping_instance) {

 die("No managed element found for base server.\n");

}

print "Base Server profile Scoping Instance properties:\n";

my $class_name = (keys %$scoping_instance)[0];

my $base_server = $scoping_instance->{ $class_name };

for my $property (keys %$base_server) {

 my $value = 'undefined';

 if (defined $base_server->{$property}) {

 $value = $base_server->{$property}

 }

 print ' ', $property, ': ', $value, "\n";

}

CIM SMASH/Server Management API Programming Guide

VMware, Inc. 26

Using the CIM Object Space 3
You can learn how to use the CIM object space to get information and manage a server that runs
VMware ESXi by studying these examples. Each example describes a goal to accomplish, steps to
accomplish the goal, and a few lines of pseudocode to demonstrate the steps used in the client. These
examples are chosen primarily to explain features of the VMware implementation of the profiles, and
secondarily to demonstrate common operations.

Many of the examples build on the basic steps described in Chapter 2 Developing Client Applications for
the CIM API.

This chapter includes the following topics:

n Report Manufacturer, Model, and Serial Number

n Report Manufacturer, Model, and Serial Number By Using Only the Implementation Namespace

n Report the BIOS Version

n Reporting Installed VIBs

n Installing VIBs

n Monitor VIB Installation

n Monitor State of All Sensors

n Monitor State of All Sensors By Using Only the Implementation Namespace

n Report Fan Redundancy

n Report CPU Cores and Threads

n Report Empty Memory Slots By Using Only the Implementation Namespace

n Report the PCI Device Hierarchy By Using Parent DeviceIDs

n Report the Path to a PCI Device By Using PortGroups

n Monitor RAID Controller State

n Monitor State of RAID Connections

n Report Accessible Storage Extents

n Report Storage Extents Without Third-Party Storage Provider

n Work with the System Event Log

VMware, Inc. 27

n Subscribe to Indications

Report Manufacturer, Model, and Serial Number
Taking an inventory of systems in your datacenter can be a first step to monitoring the status of the
servers. You can store the inventory data for future use when you monitor configuration changes.

This example shows how to get physical identifying information from the Interop namespace by traversing
associations to the CIM_Chassis for the Scoping Instance. Figure 3‑1 shows the relationships of the
CIM objects involved.

If you know the Implementation namespace in advance, you can bypass the Interop namespace. For
information about getting physical identifying information by using only the Implementation namespace,
see Report Manufacturer, Model, and Serial Number By Using Only the Implementation Namespace.

Figure 3‑1. Locating Chassis Information from the Base Server Scoping Instance

This pseudocode depends on the pseudocode in Make a Connection to the CIMOM and Identifying the
Base Server Scoping Instance.

To report manufacturer, model, and serial number

CIM SMASH/Server Management API Programming Guide

VMware, Inc. 28

Procedure

1 Connect to the server URL.

Specify the Interop namespace, supplied as a parameter, for the connection.

use wbemlib

use sys

use connection renamed cnx

connection = Null

params = cnx.get_params()

if params is Null

 sys.exit(-1)

interop_params = params

interop_params['namespace'] = 'root/interop'

connection = cnx.connect_to_host(interop_params)

if connection is Null

 print 'Failed to connect to: ' + params['host'] + ' as user: ' + params['user']

 sys.exit(-1)

2 Locate the Base Server Scoping Instance of CIM_ComputerSystem.

use scoping_instance renamed si

scoping_instance_name = si.get_scoping_instance_name(connection)

if scoping_instance_name is Null

 print 'Failed to find Scoping Instance.'

 sys.exit(-1)

3 Traverse the CIM_ComputerSystemPackage association to reach the CIM_Chassis instance that
corresponds to the managed server.

instance_names = connection.AssociatorNames(scoping_instance_name, \

 AssocClass = 'CIM_ComputerSystemPackage', \

 ResultClass = 'CIM_Chassis')

if len(instance_names) > 1

 print 'Error: %d Chassis instances found for Scoping Instance.' \

 % len (instance_names)

 sys.exit(-1)

4 Print the Manufacturer, Model, and SerialNumber properties.

This example prints additional properties to help identify physical components.

instance_name = instance_names.pop()

instance = connection.GetInstance(instance_name)

print ’\n’ + ’CIM_Chassis [’ + instance.classname + ’] =’

for property_name in [’ElementName’, ’Tag’, \

 ’Manufacturer’, ’Model’, ’SerialNumber’]

 if instance.key(property_name)

 value = instance[property_name]

 else

CIM SMASH/Server Management API Programming Guide

VMware, Inc. 29

 value = ’(not available)’

 print ’ %30s : %s’ % (property_name, value)

A sample of the output looks like the following:

CIM_Chassis [OMC_Chassis] =

 ElementName : Chassis

 Tag : 23.0

 Manufacturer : Cirrostratus Systems

 Model : 20KF6KM

 SerialNumber : 67940851

Report Manufacturer, Model, and Serial Number By Using
Only the Implementation Namespace
Taking an inventory of systems in your datacenter can be a first step to monitoring the status of the
servers. You can store the inventory data for future use in monitoring configuration changes.

This example shows how to get the physical identifying information from the Implementation namespace
by enumerating CIM_Chassis for the managed server. This approach is convenient when the
namespace is known in advance. For information about getting physical identifying information by using
the Interop namespace, see Report Manufacturer, Model, and Serial Number.

You might see more than one instance of CIM_Chassis if the managed server is a blade system.
Figure 3‑2 shows an example of a server with two instances of CIM_Chassis, one for a blade and the
other for the blade enclosure.

Figure 3‑2. Locating Chassis Information in a Blade Server

CIM SMASH/Server Management API Programming Guide

VMware, Inc. 30

This pseudocode depends on the pseudocode in Make a Connection to the CIMOM, Identifying the Base
Server Scoping Instance, and Mapping Integer Property Values to Strings.

To report Manufacturer, Model, and Serial Number by using only the Implementation namespace

Procedure

1 Connect to the server URL.

Specify the Implementation namespace, supplied as a parameter, for the connection.

The actual namespace you will use depends on your installation.

use wbemlib

use sys

use connection renamed cnx

connection = Null

params = cnx.get_params()

if params is Null

 sys.exit(-1)

connection = cnx.connect_to_host(params)

if connection is Null

 print 'Failed to connect to: ' + params['host'] + ' as user: ' + params['user']

 sys.exit(-1)

2 Use the EnumerateInstances method to get all the CIM_Chassis instances on the server.

chassis_instance_names = connection.EnumerateInstanceNames('CIM_Chassis')

if len(chassis_instance_names) is 0

 print 'No %s instances were found.' % ('CIM_Chassis')

 sys.exit(0)

3 Print the Manufacturer, Model, and SerialNumber properties of the Chassis instances.

This example prints additional properties to help identify physical components.

use value_mapper renamed mapper

for instance_name in chassis_instance_names

 print_chassis(connection, instance_name)

function print_chassis(connection, instance_name)

 instance = connection.GetInstance(instance_name)

print '\n' + 'CIM_Chassis [' + instance.classname + '] ='

for property_name in ['ElementName', 'Tag', 'Manufacturer', \

 'Model', 'SerialNumber']

 if instance.key(property_name)

 value = instance[property_name]

 else

 value = '(not available)'

CIM SMASH/Server Management API Programming Guide

VMware, Inc. 31

 print ' %30s : %s' % (property_name, value)

 for property_name in [’PackageType’, 'ChassisPackageType']

 if instance.key(property_name)

 value = mapper.map_instance_property_to_string(connection,

 instance,

 property_name)

 if value is Null

 value = ’’

 else

 value = '(not available)'

 print ' %30s : %s' % (property_name, value)

A sample of the output looks like the following:

CIM_Chassis [OMC_Chassis] =

 ElementName : Chassis

 Tag : 23.0

 Manufacturer : Cirrostratus Systems

 Model : 20KF6KM-02

 SerialNumber : 67940851

 PackageType : Blade

 ChassisPackageType : None

CIM_Chassis [OMC_Chassis] =

 ElementName : Chassis

 Tag : 23.1

 Manufacturer : Cirrostratus Systems

 Model : 20KF6KM-W

 SerialNumber : 439-41902

 PackageType : Chassis/Frame

 ChassisPackageType : Blade Enclosure

Report the BIOS Version
System administrators can query the BIOS version of the managed server as part of routine maintenance.

This example shows how to get the BIOS version string by traversing the
CIM_InstalledSoftwareIdentity association from the server Scoping Instance. The VMware
implementation of the Software Inventory profile uses CIM_InstalledSoftwareIdentity to associate
firmware and hypervisor instances of CIM_SoftwareIdentity to the server Scoping Instance. VMware
does not implement the CIM_ElementSoftwareIdentity association for firmware and hypervisor
instances, so you must use CIM_InstalledSoftwareIdentity to locate the system BIOS instance of
CIM_SoftwareIdentity.

Figure 3‑3 shows the relationships of the CIM objects involved.

CIM SMASH/Server Management API Programming Guide

VMware, Inc. 32

Figure 3‑3. Locating the BIOS Version from the Base Server Scoping Instance

The VMware implementation of CIM_SoftwareIdentity makes the version available in the
VersionString property rather than in the MajorVersion and MinorVersion properties.

This pseudocode depends on the pseudocode in Make a Connection to the CIMOM and Identifying the
Base Server Scoping Instance.

To report the BIOS version

Procedure

1 Connect to the server URL.

Specify the Interop namespace, supplied as a parameter, for the connection.

use wbemlib

use sys

use connection renamed cnx

connection = Null

params = cnx.get_params()

if params is Null

 sys.exit(-1)

interop_params = params

interop_params['namespace'] = 'root/interop'

connection = cnx.connect_to_host(interop_params)

if connection is Null

 print 'Failed to connect to: ' + params['host'] + ' as user: ' + params['user']

 sys.exit(-1)

CIM SMASH/Server Management API Programming Guide

VMware, Inc. 33

2 Locate the Base Server Scoping Instance that represents the managed server.

use scoping_instance renamed si

scoping_instance_name = si.get_scoping_instance_name(connection)

if scoping_instance_name is Null

 print 'Failed to find server Scoping Instance.'

 sys.exit(-1)

3 Traverse the CIM_InstalledSoftwareIdentity association to reach the CIM_SoftwareIdentity
instances that correspond to the software on the managed server.

instance_names = connection.Associators(scoping_instance_name, \

 AssocClass = 'CIM_InstalledSoftwareIdentity', \

 ResultRole = 'InstalledSoftware')

4 Select the CIM_SoftwareIdentity instance that represents the BIOS of the managed server, and
print the Manufacturer and VersionString properties.

function print_info(connection, instance_name)

 instance = connection.GetInstance(instance_name)

 print '\n' + ’CIM_SoftwareIdentity’ + ' [' + instance.classname + '] ->'

 for prop in ['Manufacturer', 'VersionString']

 print ' %30s = %s' % (prop, instance[prop])

for instance_name in instance_names

 instance = connection.GetInstance(instance_name)

 if instance['Name'] == 'System BIOS'

 print_info(connection, instance_name)

Reporting Installed VIBs
System administrators can use a CIM client application to query the name and version information for the
vSphere Installation Bundles (VIBs) that are installed on the managed server. This information is valuable
for diagnosing software problems.

Note The Software Update profile is not supported in the base installation. It requires a separate VIB
installation.

This example shows how to get the name and software version string by traversing the
CIM_ElementSoftwareIdentity association from the server Scoping Instance. The VMware
implementation of the Software Inventory profile uses CIM_InstalledSoftwareIdentity to associate
only firmware and hypervisor instances of CIM_SoftwareIdentity to the server Scoping Instance. For
VIBs, VMware implements the CIM_ElementSoftwareIdentity association. The
ElementSoftwareStatus property of the CIM_ElementSoftwareIdentity association contains the
value 6 (Installed).

Figure 3‑4 shows the relationships of the CIM objects involved. VIBs are modeled with instances of
VMware_ComponentSoftwareIdentity.

CIM SMASH/Server Management API Programming Guide

VMware, Inc. 34

The CIM_InstalledSoftwareIdentity association that leads to the instance of
VMware_HypervisorSoftwareIdentity is included in the illustration for comparison only.

Figure 3‑4. Locating the Installed Software Versions from the Base Server Scoping Instance

The VMware implementation of CIM_SoftwareIdentity for VIBs makes the version available in the
VersionString property rather than in the MajorVersion and MinorVersion properties.

This pseudocode depends on the pseudocode in Make a Connection to the CIMOM and Identifying the
Base Server Scoping Instance.

To report the VIB versions

Procedure

1 Connect to the server URL.

Specify the Interop namespace, supplied as a parameter, for the connection.

use wbemlib

use sys

use connection renamed cnx

use registered_profiles renamed prof

connection = Null

params = cnx.get_params()

if params is Null

 sys.exit(-1)

CIM SMASH/Server Management API Programming Guide

VMware, Inc. 35

interop_params = params

interop_params['namespace'] = 'root/interop'

connection = cnx.connect_to_host(interop_params)

if connection is Null

 print 'Failed to connect to: ' + params['host'] + ' as user: ' + params['user']

 sys.exit(-1)

2 Locate the Base Server Scoping Instance that represents the managed server.

use scoping_instance renamed si

scoping_instance_name = si.get_scoping_instance_name(connection)

if scoping_instance_name is Null

 print 'Failed to find server Scoping Instance.'

 sys.exit(-1)

3 Use the CIM_ElementSoftwareIdentity association to identify the CIM_SoftwareIdentity
instances that correspond to the software on the managed server.

element_softwares = connection.References(scoping_instance_name, \

 ResultClass = 'VMware_ElementSoftwareIdentity')

if len(element_softwares) < 1

 print 'No software was found for the server Scoping Instance.'

 sys.exit(-1)

4 Select only those instances for which the ElementSoftwareStatus property of the
CIM_ElementSoftwareIdentity association has a value of 6 (Installed).

Print the ElementName and VersionString properties of the CIM_SoftwareIdentity instances.

function print_info(instance)

 print ' Software = %s' % (instance['ElementName'])

 print ' (Version %s)' % (instance['VersionString'])

print 'Installed software:'

count = 0

for software in element_softwares

 if software['ElementSoftwareStatus'] == [6L]

 print_instance(connection.GetInstance(software['Antecedent']))

 count = count + 1

if not count

 print ' None'

CIM SMASH/Server Management API Programming Guide

VMware, Inc. 36

Installing VIBs
The VMware implementation of the DMTF Software Update profile allows system administrators to update
ESXi software by using CIM client applications. The CIM software installation service applies an offline
bundle file to update the software on the managed server. To identify the current software version, see
Reporting Installed VIBs.

Note The Software Update profile is not supported in the base installation. It requires a separate VIB
installation.

This example shows how to locate the CIM_SoftwareInstallationService by traversing the
CIM_HostedService association from the server Scoping Instance. The InstallFromURI() method
starts the update process on the managed server and returns a CIM_ConcreteJob instance that you
can use to monitor completion of the installation.

The VMware implementation of the Software Update profile does not include a
CIM_ServiceAffectsElement association between the instance of
CIM_SoftwareInstallationService and the instance of CIM_SoftwareIdentity that represents a
VIB. As a result, you cannot use the InstallFromSoftwareIdentity() method that is described in the
Software Update profile specification.

To use the InstallFromURI() method, you must know the location of the offline bundle in a local file
system. You supply the path to the offline bundle in the form of a URI when you invoke the method. For
example, you might pass "file:///vmfs/Storage1/bundle.zip" as the value of the URI parameter.

Note You cannot use an online depot in the URI that you pass to the InstallFromURI() method. For
instructions to create an offline bundle from a set of VIBs in an online depot, see Chapter 5 Creating
Offline Bundles.

Figure 3‑5 shows the relationships of the CIM objects involved in the installation of VIBs by using CIM.
The CIM_SoftwareInstallationService instance in Figure 3‑5 represents the CIM provider that
starts the software installation.

CIM SMASH/Server Management API Programming Guide

VMware, Inc. 37

Figure 3‑5. Starting an Update of ESXi Software

The CIM_SoftwareInstallationServiceCapabilities instance advertises the InstallFromURI
action and the supported URI schemes that it supports. Figure 3‑5 includes the instance for
completeness. The pseudocode example does not use it.

This pseudocode depends on the pseudocode in Make a Connection to the CIMOM and Identifying the
Base Server Scoping Instance.

To install VIBs

Procedure

1 Connect to the server URL.

Specify the Interop namespace, supplied as a parameter, for the connection.

use wbemlib

use sys

use connection renamed cnx

connection = Null

CIM SMASH/Server Management API Programming Guide

VMware, Inc. 38

params = cnx.get_params()

if params is Null

 sys.exit(-1)

interop_params = params

interop_params['namespace'] = 'root/interop'

connection = cnx.connect_to_host(interop_params)

if connection is Null

 print 'Failed to connect to: ' + params['host'] + ' as user: ' + params['user']

 sys.exit(-1)

2 Locate the Base Server Scoping Instance that represents the managed server.

use scoping_instance renamed si

scoping_instance_name = si.get_scoping_instance_name(connection)

if scoping_instance_name is Null

 print 'Failed to find server Scoping Instance.'

 sys.exit(-1)

3 Use the CIM_HostedService association to identify the CIM_SoftwareInstallationService
instance that represents the Software Update provider on the managed server.

installation_services = connection.AssociatorNames(scoping_instance_name, \

 AssocClass = ’CIM_HostedService’, \

 ResultClass = 'CIM_SoftwareInstallationService')

if len(installation_services) != 1

 print 'Failed to find the software installation service for the scoping computer system.'

 sys.exit(-1)

installation_service = installation_services.pop()

4 On the CIM_SoftwareInstallationService instance, invoke the InstallFromURI() method
with the following parameters.

n A URI that identifies the offline bundle file containing the VIBs that you choose to install.

n A reference to the CIM_ComputerSystem instance that represents the managed server.

n An empty list for the InstallOptions parameter. The CIM provider ignores any install options
that you specify.

The method returns a single output parameter, which is a reference to an instance of
CIM_ConcreteJob. You can use the instance to monitor completion of the software installation.

function launch_installation(service, \

 bundle_file, \

 server, \

 cli_options)

 metadata_uri = ’file://%s’ % bundle_file

 method_params = { ’URI’ : metadata_uri, \

 ’Target’ : server, \

 ’InstallOptions’ : cli_options }

 (error_return, output) = connection.InvokeMethod('InstallFromURI', \

 service, \

CIM SMASH/Server Management API Programming Guide

VMware, Inc. 39

 **method_params)

 if error_return == 4096

 print ’Software installation in progress...’

 job_ref = output[’Job’]

 return job_ref

 else

 print ’Invalid method parameters; error = %s’ % error_return

 sys.exit(-1)

vib = params[’extra_params’][0]

cli_options = []

job_ref = launch_installation(installation_service, \

 vib, \

 scoping_instance_name, \

 cli_options)

If there is an error in the method parameters, such as a mismatch in the option lists, the
InstallFromURI() method returns immediately.

If the method returns the value 4096, the provider has accepted the method parameters and will
start the update process. You can monitor the installation by using the instance of
CIM_ConcreteJob that is returned by the method. See Monitor VIB Installation.

Monitor VIB Installation
The VMware implementation of the DMTF Software Update profile allows system administrators to use
CIM client applications to update ESXi software. See Installing VIBs. The update can take several
minutes to complete. For a CIM client, this is an asynchronous operation because the CIM server returns
before the update is complete.

Note The Software Update profile is not supported in the base installation. It requires a separate VIB
installation.

You can monitor the status of the update operation in one of two ways:

n You can poll for status of the operation by using the CIM_ConcreteJob class.

n You can subscribe to any of the supported indications that report changes in the status of the update
operation. The supported indications are shown in Table 3-1.

Condition CQL Expression

Any job creation SELECT * from CIM_InstCreation WHERE SourceInstance ISA CIM_ConcreteJob

Any job change SELECT * from CIM_InstModification WHERE SourceInstance ISA CIM_ConcreteJob

Any job deletion SELECT * from CIM_InstDeletion WHERE SourceInstance ISA CIM_ConcreteJob

This example shows how to monitor the update and report completion status by polling an instance of
CIM_ConcreteJob.

Figure 3‑6 shows the relationships of the CIM objects involved.

CIM SMASH/Server Management API Programming Guide

VMware, Inc. 40

Figure 3‑6. Monitoring an Update of ESXi Software

Figure 3‑6 shows some classes, such as CIM_Error, that you can use to provide detail on status of the
software update operation, but their use is not shown here. This example pseudocode relies only on the
properties available in the CIM_ConcreteJob instance that represents the status of an operation in
progress. The CIM_ConcreteJob instance remains in existence for a few minutes after the job
completes.

This pseudocode depends on the pseudocode in Make a Connection to the CIMOM and Identifying the
Base Server Scoping Instance.

To monitor VIB installation

CIM SMASH/Server Management API Programming Guide

VMware, Inc. 41

Procedure

1 After invoking the InstallFromURI() method, save the object reference returned in the Job
output parameter.

The output parameter is a reference to an instance of CIM_ConcreteJob that you can use to
monitor progress of the software update operation.

(error_return, output) = connection.InvokeMethod('InstallFromURI', \

 service, \

 **method_params)

...

job_ref = output[’Job’]

...

2 Retrieve the referenced instance of CIM_ConcreteJob and test the value of the PercentComplete
property.

Repeat this step until the PercentComplete property has the value 100.

function check_job_done(job_ref)

 job = connection.GetInstance(job_ref)

 print ’ percent complete %3d’ % job[’PercentComplete’]

 print ’ job status: %s’ % job[’JobStatus’]

 if job[’PercentComplete’] == 100

 return 1

 else

 return 0

use time

ticks = 0

while not check_job_done(job_ref)

 print ’Job time elapsed: %d seconds’ % ticks

 print

 time.sleep(10)

 ticks = ticks + 10

print ’ error code: %s’ % job[’ErrorCode’]

print ’ description: %s’ % job[’ErrorDescription’]

print ’Time elapsed: %d seconds’ % ticks

While the software update operation is in progress, the property has an arbitrary value less than 100.
After the operation completes, the PercentComplete property takes the value 100 and the CIM
server no longer updates the CIM_ConcreteJob instance.

A sample of the output looks like the following:

Software installation in progress...

 percent complete 10

 job status: Scanning URI for installable packages

Time elapsed: 0 seconds

 percent complete 10

 job status: Scanning URI for installable packages

CIM SMASH/Server Management API Programming Guide

VMware, Inc. 42

Time elapsed: 10 seconds

 percent complete 10

 job status: Scanning URI for installable packages

Time elapsed: 20 seconds

 percent complete 30

 job status: Scan of URI Complete and installable packages found. Starting Update.

Time elapsed: 30 seconds

 percent complete 30

 job status: Scan of URI Complete and installable packages found. Starting Update.

Time elapsed: 40 seconds

...

 percent complete 100

 job status: The update completed successfully, but the system needs to be rebooted for the

changes to be effective.

 error code: None

 description: None

Time elapsed: 1000 seconds

Monitor State of All Sensors
This information is useful to system administrators who need to monitor system health. This example
shows how to locate system sensors, report their current states, and flag any sensors that have abnormal
states.

The example uses only CIM_NumericSensor instances for simplicity. You can also query discrete sensors
by substituting CIM_Sensor for CIM_NumericSensor. Determining which values constitute normal sensor
state is hardware-dependent.

This example shows how to get the sensor states by starting from the Interop namespace and traversing
associations from the managed server Scoping Instance. Figure 3‑7 shows the relationships of the CIM
objects involved. For information about getting sensor states by using only the Implementation
namespace, see Monitor State of All Sensors By Using Only the Implementation Namespace.

CIM SMASH/Server Management API Programming Guide

VMware, Inc. 43

Figure 3‑7. Locating Sensor State from the Base Server Scoping Instance

This pseudocode depends on the pseudocode in Make a Connection to the CIMOM and Identifying the
Base Server Scoping Instance.

To report state for all sensors

Procedure

1 Connect to the server URL.

Specify the Interop namespace, supplied as a parameter, for the connection.

use wbemlib

use sys

use connection renamed cnx

connection = Null

params = cnx.get_params()

if params is Null

 sys.exit(-1)

interop_params = params

interop_params['namespace'] = 'root/interop'

connection = cnx.connect_to_host(interop_params)

if connection is Null

 print 'Failed to connect to: ' + params['host'] + ' as user: ' + params['user']

 sys.exit(-1)

CIM SMASH/Server Management API Programming Guide

VMware, Inc. 44

2 Locate the Base Server profile Scoping Instance of CIM_ComputerSystem.

use scoping_instance renamed si

scoping_instance_name = si.get_scoping_instance_name(connection)

if scoping_instance_name is Null

 print 'Failed to find server Scoping Instance.'

 sys.exit(-1)

3 Traverse the CIM_SystemDevice association to reach the CIM_NumericSensor instances on the
managed server.

instances = connection.Associators(scoping_instance_name, \

 AssocClass = 'CIM_SystemDevice', \

 ResultClass = 'CIM_NumericSensor')

if len(instances) is 0

 print 'Error: No sensors associated with server Scoping Instance.'

 sys.exit(-1)

4 For each sensor instance, print the ElementName and CurrentState properties.

You can flag any abnormal values you find. Abnormal values depend on the sensor type and its
PossibleStates property.

function print_info(instance, base_class)

 print '\n' + base_class + ' [' + instance.classname + '] ='

 if instance['CurrentState'] != 'Normal'

 print '********* SENSOR STATE WARNING *********\n'

 for prop in ['ElementName', 'CurrentState']

 print ' %30s = %s' % (prop, instance[prop])

for instance in instances

 print_info(instance, 'CIM_NumericSensor')

A sample of the output looks like the following:

CIM_NumericSensor [OMC_NumericSensor] =

 ElementName = FAN 1 RPM for System Board 1

 CurrentState = Normal

CIM_NumericSensor [OMC_NumericSensor] =

 ElementName = Ambient Temp for System Board 1

 CurrentState = Normal

Monitor State of All Sensors By Using Only the
Implementation Namespace
This information is useful to system administrators who need to monitor system health. This example
shows how to locate system sensors, report their current states, and flag any sensors with abnormal
states.

CIM SMASH/Server Management API Programming Guide

VMware, Inc. 45

The example uses only CIM_NumericSensor instances for simplicity. You can also query discrete
sensors by substituting CIM_Sensor for CIM_NumericSensor. Determining which values constitute
normal sensor state is hardware-dependent.

This example shows how to get the sensor states from the Implementation namespace, assuming you
already know its name. For information about getting sensor state by using the standard Interop
namespace, seeMonitor State of All Sensors.

This pseudocode depends on the pseudocode in Make a Connection to the CIMOM.

To report state of all sensors by using only the Implementation namespace

Procedure

1 Connect to the server URL.

Specify the Implementation namespace, supplied as a parameter, for the connection.

The actual namespace you will use depends on your installation.

use wbemlib

use sys

use connection renamed cnx

connection = Null

params = cnx.get_params()

if params is Null

 sys.exit(-1)

connection = cnx.connect_to_host(params)

if connection is Null

 print 'Failed to connect to: ' + params['host'] + ' as user: ' + params['user']

 sys.exit(-1)

2 Enumerate instances of CIM_NumericSensor.

instances = connection.EnumerateInstances(’CIM_NumericSensor’)

if len(instances) is 0

 print 'Error: No sensors found on managed server.'

 sys.exit(-1)

3 Iterate over the sensor instances, printing the properties ElementName and CurrentState.

function print_info(instance)

 print '\n' + 'CIM_NumericSensor [' + instance.classname + '] ='

 if instance['CurrentState'] != 'Normal'

 print '********* SENSOR STATE WARNING *********\n'

 for prop in ['ElementName', 'CurrentState']

 print ' %30s = %s' % (prop, instance[prop])

for instance in instances

 print_info(instance)

A sample of the output looks like the following:

CIM_NumericSensor [OMC_NumericSensor] =

 ElementName = FAN 1 RPM for System Board 1

CIM SMASH/Server Management API Programming Guide

VMware, Inc. 46

 CurrentState = Normal

CIM_NumericSensor [OMC_NumericSensor] =

 ElementName = Ambient Temp for System Board 1

 CurrentState = Normal

Report Fan Redundancy
Fan redundancy information is useful to system administrators who need to monitor system health.
This example shows how to locate system fans and query the CIMOM for redundant fan relationships.

This example shows how to enumerate the fans by starting from the Interop namespace and traversing
associations from the managed server Scoping Instance. Figure 3‑8 shows the relationships of the CIM
objects involved. If the managed server provides redundant cooling, the redundancy is modeled in the
CIMOM by an instance of CIM_RedundancySet that is associated with two (or more) redundant fans.

Figure 3‑8. Locating Redundant Fans

This pseudocode depends on the pseudocode in Make a Connection to the CIMOM and Identifying the
Base Server Scoping Instance.

To report fan redundancy

CIM SMASH/Server Management API Programming Guide

VMware, Inc. 47

Procedure

1 Connect to the server URL.

Specify the Interop namespace, supplied as a parameter, for the connection.

use wbemlib

use sys

use connection renamed cnx

connection = Null

params = cnx.get_params()

if params is Null

 sys.exit(-1)

interop_params = params

interop_params['namespace'] = 'root/interop'

connection = cnx.connect_to_host(interop_params)

if connection is Null

 print 'Failed to connect to: ' + params['host'] + ' as user: ' + params['user']

 sys.exit(-1)

2 Locate the Base Server Scoping Instance of CIM_ComputerSystem.

use scoping_instance renamed si

scoping_instance_name = si.get_scoping_instance_name(connection)

if scoping_instance_name is Null

 print 'Failed to find server Scoping Instance.'

 sys.exit(-1)

3 Traverse the CIM_SystemDevice association to reach the CIM_Fan instances on the managed
server.

fan_instances = connection.Associators(scoping_instance_name, \

 AssocClass = 'CIM_SystemDevice', \

 ResultClass = ’CIM_Fan’)

if len(fan_instances) is 0

 print 'Error: No fans associated with server Scoping Instance.'

 sys.exit(-1)

4 For each fan instance, print the ElementName and DeviceID properties.

function print_info(instance)

 print '\n' + ’CIM_Fan [' + instance.classname + '] ='

 for prop in ['ElementName', 'DeviceID']

 print ' %30s = %s' % (prop, instance[prop])

for fan_instance in fan_instances

 print_info(fan_instance)

CIM SMASH/Server Management API Programming Guide

VMware, Inc. 48

5 For each fan instance, traverse the CIM_MemberOfCollection association to reach any instances
of CIM_RedundancySet.

set_instances = connection.Associators(scoping_instance_name, \

 AssocClass = 'CIM_MemberOfCollection', \

 ResultClass = ’CIM_RedundancySet’)

6 For each fan instance, print the redundancy status. If the fan is not a member of a redundancy set,
the redundancy status is not applicable.

if len(set_instances) is 0

 print ' Redundancy status: N/A'

else

 for instance in set_instances

 name = instance[’Name’]

 status = instance[’RedundancyStatus’]

 print ’ redundancy set (%s) status = %s’ %

 (instance[’Name’], (status==2 ? ’Fully Redundant’ : ’unknown or degraded’)

A sample of the output looks like the following:

CIM_Fan [OMC_Fan] =

 ElementName = FAN 1 RPM

 DeviceID = 48.0.32.99

 redundancy set (117.0.32.0) status = Fully Redundant

CIM_Fan [OMC_Fan] =

 ElementName = FAN 2 RPM

 DeviceID = 49.0.32.99

 redundancy set (117.0.32.0) status = Fully Redundant

Report CPU Cores and Threads
This information is useful to system administrators who need to monitor system health. This example
shows how to enumerate the processor cores and hardware threads in a managed server.

The VMware implementation does not include instances of CIM_ProcessorCapabilities, but cores
and hardware threads are modeled with individual instances of CIM_ProcessorCore and
CIM_HardwareThread.

This example shows how to locate information about the CPU cores and threads by starting from the
Interop namespace and traversing associations from the managed server Scoping Instance. A managed
server has one or more processors, each of which has one or more cores with one or more threads.
Figure 3‑9 shows the relationships of the CIM objects involved. For simplicity, the diagram shows only a
single processor with one core and one hardware thread.

CIM SMASH/Server Management API Programming Guide

VMware, Inc. 49

Figure 3‑9. Locating CPU Cores and Hardware Threads

This pseudocode depends on the pseudocode in Make a Connection to the CIMOM and Identifying the
Base Server Scoping Instance.

To report CPU cores and threads

Procedure

1 Connect to the server URL.

Specify the Interop namespace, supplied as a parameter, for the connection.

use wbemlib

use sys

use connection renamed cnx

connection = Null

params = cnx.get_params()

if params is Null

 sys.exit(-1)

interop_params = params

CIM SMASH/Server Management API Programming Guide

VMware, Inc. 50

interop_params['namespace'] = 'root/interop'

connection = cnx.connect_to_host(interop_params)

if connection is Null

 print 'Failed to connect to: ' + params['host'] + ' as user: ' + params['user']

 sys.exit(-1)

2 Locate the Base Server Scoping Instance of CIM_ComputerSystem.

use scoping_instance renamed si

scoping_instance_name = si.get_scoping_instance_name(connection)

if scoping_instance_name is Null

 print 'Failed to find server Scoping Instance.'

 sys.exit(-1)

3 Traverse the CIM_SystemDevice association to reach the CIM_Processor instances on the
managed server.

proc_instance_names = connection.AssociatorNames(scoping_instance_name, \

 AssocClass = 'CIM_SystemDevice', \

 ResultClass = ’CIM_Processor’)

if len(proc_instance_names) is 0

 print 'Error: No processors associated with server Scoping Instance.'

 sys.exit(-1)

4 For each CIM_Processor instance, print the ElementName, Family, and CurrentClockSpeed
properties.

for proc_instance_name in proc_instance_names

 instance = connection.GetInstance(proc_instance_name)

 print ‘ %s (Family: %s) (%sMHz)’ %

 (instance[‘ElementName’], instance[‘Family’], instance[‘CurrentClockSpeed’])

5 For each CIM_Processor instance, traverse the CIM_ConcreteComponent association to reach
the CIM_ProcessorCore instances on the managed server.

core_instance_names = connection.AssociatorNames(proc_instance_name, \

 AssocClass = 'CIM_ConcreteComponent', \

 ResultClass = ’CIM_ProcessorCore’)

if len(core_instance_names) is 0

 print 'No processor cores associated with this CPU.’

 sys.exit(-1)

CIM SMASH/Server Management API Programming Guide

VMware, Inc. 51

6 For each CIM_ProcessorCore instance, print the ElementName and CoreEnabledState
properties.

for core_instance_name in core_instance_names

 instance = connection.GetInstance(core_instance_name)

 print ’ %s (%s)’ % \

 (instance[‘ElementName’], \

 (instance[‘CoreEnabledState’]==’Enabled’)?’Enabled’:’Disabled’)

7 For each CIM_ProcessorCore instance, traverse the CIM_ConcreteComponent association to
reach the CIM_HardwareThread instances on the managed server.

thread_instance_names = connection.AssociatorNames(core_instance_name, \

 AssocClass = 'CIM_ConcreteComponent', \

 ResultClass = ’CIM_HardwareThread’)

if len(thread_instance_names) is 0

 print 'No hardware threads associated with this CPU core.’

 sys.exit(-1)

8 For each CIM_HardwareThread instance, print the ElementName property.

for thread_instance_name in thread_instance_names

 instance = connection.GetInstance(thread_instance_name)

 print ‘ %s’ % instance[‘ElementName’]

A sample of the output looks like the following:

CPU1 (Family: 179) (2667MHz)

 CPU1 Core 1 (Enabled)

 CPU1 Core 1 Thread 1

 CPU1 Core 2 (Enabled)

 CPU1 Core 2 Thread 1

CPU2 (Family: 179) (2667MHz)

 CPU2 Core 1 (Enabled)

 CPU1 Core 1 Thread 1

 CPU2 Core 2 (Enabled)

 CPU1 Core 2 Thread 1

Report Empty Memory Slots By Using Only the
Implementation Namespace
This example describes how to determine the empty slots available for new memory cards. This
information is useful to system administrators who want to upgrade the capacity of a managed server.

This example shows how to locate information about the installed memory and available slots by using
only the objects in the Implementation namespace. Figure 3‑10 shows the CIM objects involved.

CIM SMASH/Server Management API Programming Guide

VMware, Inc. 52

You can locate used memory slots by enumerating physical memory instances. To locate unused slots,
you also enumerate the OMC_MemorySlot instances and compare the results. The set of unused slots
comprises all those OMC_MemorySlot instances whose ElementName property does not match any of
the instances of OMC_PhysicalMemory.

Note This example assumes that the managed server is a single-node system.

Figure 3‑10. Locating Physical Memory Slots

This pseudocode depends on the pseudocode in Make a Connection to the CIMOM.

To report empty memory slots

This pseudocode depends on the pseudocode in Make a Connection to the CIMOM and Identifying the
Base Server Scoping Instance.

To report CPU cores and threads

Procedure

1 Connect to the server URL.

Specify the Implementation namespace, supplied as a parameter, for the connection.

The actual namespace you will use depends on your implementation.

use wbemlib

use sys

use connection renamed cnx

connection = Null

params = cnx.get_params()

if params is Null

 sys.exit(-1)

CIM SMASH/Server Management API Programming Guide

VMware, Inc. 53

connection = cnx.connect_to_host(params)

if connection is Null

 print 'Failed to connect to: ' + params['host'] + ' as user: ' + params['user']

 sys.exit(-1)

2 Enumerate the OMC_PhysicalMemory instances.

chip_instances = connection.EnumerateInstances(’OMC_PhysicalMemory’)

if len(chip_instances) is 0

 print 'Error: No physical memory instances were found.'

 sys.exit(-1)

3 Enumerate the OMC_MemorySlot instances.

slot_instances = connection.EnumerateInstances(’OMC_MemorySlot’)

if len(slot_instances) is 0

 print 'Error: No memory slot instances were found.'

 sys.exit(-1)

4 For each OMC_MemorySlot instance, compare the ElementName property with the set of
OMC_PhysicalMemory instances, and discard the instances that have matching ElementName
properties.

For other instances, print the ElementName property.

function slot_filled(slot, chips)

 for chip in chips

 if slot['ElementName'] == chip['ElementName']

 return True

 return False

empty_slots = []

for slot_instance in slot_instances

 if not slot_filled(slot_instance, chip_instances)

 empty_slots.append(slot_instance)

print ' %s empty memory slots found.' % len(empty_slots)

for slot_instance in empty_slots

 print slot_instance['ElementName']

A sample of the output looks like the following:

 4 empty memory slots found.

DIMM 3C

DIMM 4D

DIMM 7C

DIMM 8D

CIM SMASH/Server Management API Programming Guide

VMware, Inc. 54

Report the PCI Device Hierarchy By Using Parent
DeviceIDs
This example describes a simple way to enumerate the PCI devices present in the managed server. This
information is useful to system administrators who want to troubleshoot device problems or upgrade the
hardware in a managed server.

The PCI Device profile specification allows flexibility in how the profile is implemented. Designers can
apply one of three approaches to modeling PCI device connections, or they can combine these
approaches for a more complete implementation. Device connections can be modeled with a combination
of the following approaches.

n DeviceConnection associations

n PCIPortGroup instances that express relationships between PCI ports

n Primary and secondary bus numbers that relate PCI devices to bridges and switches

The VMware implementation supports the first two modeling approaches. For an example that uses the
second approach to relating PCI devices, see Report the Path to a PCI Device By Using PortGroups.

For convenience, the VMware implementation also provides a fourth way to model device connections:
ParentDeviceID.

The ParentDeviceID property relates a PCI device directly to the bridge or switch through which the
device accesses the CPU. The value of the property is the value of the DeviceID property of that bridge
or switch, which can be called its parent device. A CIM client that is aware of the ParentDeviceID
property can map the hierarchy of PCI devices by using only that property to determine the relationships
between devices.

This example shows how you can map the PCI device hierarchy by using the ParentDeviceID property.
For illustration, this example enumerates PCI device instances by their VMware-specific class names,
rather than by a parent class. Alternatively, you could enumerate the CIM_PCIDevice class, because all
three of the VMware classes derive, directly or indirectly, from that class, as shown in Figure 3‑11.

CIM SMASH/Server Management API Programming Guide

VMware, Inc. 55

Figure 3‑11. Inheritance Relationships of PCI Device Classes

This pseudocode depends on the pseudocode in Make a Connection to the CIMOM.

To report the PCI device hierarchy

Procedure

1 Connect to the server URL.

Specify the Implementation namespace, supplied as a parameter, for the connection.

The actual namespace you will use depends on your implementation.

use wbemlib

use sys

use connection renamed cnx

connection = Null

params = cnx.get_params()

if params is Null

 sys.exit(-1)

connection = cnx.connect_to_host(params)

if connection is Null

 print 'Failed to connect to: ' + params['host'] + ' as user: ' + params['user']

 sys.exit(-1)

CIM SMASH/Server Management API Programming Guide

VMware, Inc. 56

2 Enumerate the VMware_PCIDevice, VMware_PCIBridge, and VMware_PCIeSwitch instances.

Save each instance in an associative array, keyed by its parent’s DeviceID, or "none" if it has no
parent. This example saves the children of each parent device as a nested associative array of
instances indexed by the device’s own ID.

dev_entries = {}

enum_devs(’VMware_PCIDevice’)

enum_devs(’VMware_PCIBridge’)

enum_devs(’VMware_PCIeSwitch’)

function enum_devs(class_name)

 dev_instances = connection.EnumerateInstances(class_name)

 for dev in dev_instances

 parent = dev[’ParentDeviceID’]

 if not parent

 parent = ’none’

 id = dev[’DeviceID’]

 if not dev_entries.key(parent)

 dev_entries[parent] = {}

 dev_entries[parent][id] = dev

3 Starting with the value "none" for devices that have no parent, access the children of each parent.

For each child, print the DeviceID, the BusNumber, DeviceNumber, and FunctionNumber, and
the ElementName properties. Recursively do the same for the children of each child device.

parent = ’none’

print_children(’’, parent)

function print_children(indent, id)

 if dev_entries.key(id)

 dev_list = dev_entries[id]

 for key in dev_list.keys()

 dev = dev_list[key]

 print indent, print_dev(dev)

 print_children(indent + ’ ’, dev[’DeviceID’])

function print_dev(dev)

 dev_summary = ’ID=%s B/D/F=%s/%s/%s (%s)’ % \

 (dev[’DeviceID], dev[’BusNumber’], dev[’DeviceNumber’], \

 dev[’FunctionNumber’], dev[’ElementName’])

 return dev_summary

This pseudocode displays an indented representation of the hierarchy of PCI devices. A sample of
the output looks like the following:

 ID=PCI 0:0:1:0 B/D/F=0/1/0 (Plutonic Devices PD-631 PCI-X Bridge)

 ID=PCI 0:2:1:0 B/D/F=2/1/0 (Trans-Oort Networks E-1500 Terabit Ethernet Adapter)

 ID=PCI 0:2:1:1 B/D/F=2/1/1 (Trans-Oort Networks E-1500 Terabit Ethernet Adapter)

 ID=PCI 0:0:2:0 B/D/F=0/2/0 (Plutonic Devices PD-631 PCI-X Bridge)

 ID=PCI 0:3:1:0 B/D/F=3/1/0 (Haumea HINA-15K Block Storage Adapter)

 ID=PCI 0:3:1:1 B/D/F=3/1/1 (Haumea HINA-15K Block Storage Adapter)

CIM SMASH/Server Management API Programming Guide

VMware, Inc. 57

 ID=PCI 0:3:2:0 B/D/F=3/2/0 (Haumea HINA-15K Block Storage Adapter)

 ID=PCI 0:3:2:1 B/D/F=3/2/1 (Haumea HINA-15K Block Storage Adapter)

 ID=PCI 0:3:3:0 B/D/F=3/3/0 (Plutonic Devices PD-631 PCI-X Bridge)

 ID=PCI 0:4:1:0 B/D/F=4/1/0 (Mercuricity Generic USB OHCI Hub)

 ID=PCI 0:4:1:1 B/D/F=4/1/1 (Mercuricity Generic USB OHCI Hub)

 ID=PCI 0:4:1:2 B/D/F=4/1/2 (Mercuricity Generic USB OHCI Hub)

 ID=PCI 0:0:3:0 B/D/F=0/3/0 (Albedo-Kuiper Grafix Super X-Treme Duo)

 ID=PCI 0:0:3:1 B/D/F=0/3/1 (Albedo-Kuiper Grafix Super X-Treme Duo)

 ID=PCI 0:0:4:0 B/D/F=0/4/0 (vAndromeda FCoW Adapter)

Report the Path to a PCI Device By Using PortGroups
This example describes a way to discover the path to a PCI device in the managed server by using the
portgroup connections. This information is useful to system administrators who want to troubleshoot
device problems or upgrade the hardware in a managed server.

The PCI Device profile specification allows flexibility in how the profile is implemented. Designers can
apply one of three approaches to modeling PCI device connections, or they can combine these
approaches for a more complete implementation. Device connections can be modeled with a combination
of the following approaches.

n DeviceConnection associations

n PCIPortGroup instances that express relationships between PCI ports

n Primary and secondary bus numbers that relate PCI devices to bridges and switches

The VMware implementation supports the first two modeling approaches.

For convenience, the VMware implementation also provides a fourth way to model device connections:
ParentDeviceID. For an example that uses the ParentDeviceID property, see Figure 3‑12. The
ParentDeviceID property is specific to VMware classes, so it cannot be used in vendor-independent
object traversal algorithms.

This example shows how you can trace the path to a PCI device by using the PCIPortGroup
associations. This way of relating PCI devices depends only on the properties defined in the CIM schema,
so it is vendor-independent. Figure 3‑12 shows the relationships of the CIM objects involved.

Given a PCI device identified by bus, device, and function numbers (<bus>:<device>:<function>), this
example identifies and displays all ports, bridges, and switches between the chosen device and the CPU.
The PCI Device profile specifies how to model associations between devices and their ports, and
between ports and the logical port groups that represent all ports on the same PCI bus.

In Figure 3‑12, the SystemDevice association to the managed server is included for reference, but is not
used in this example.

CIM SMASH/Server Management API Programming Guide

VMware, Inc. 58

Figure 3‑12. Tracing the Path to a PCI Device By Using PortGroups

This pseudocode depends on the pseudocode in Make a Connection to the CIMOM.

To trace the path to a PCI device

Procedure

1 Connect to the server URL.

Specify the Implementation namespace, supplied as a parameter, for the connection.

The actual namespace you will use depends on your implementation.

use wbemlib

use sys

use connection renamed cnx

connection = Null

params = cnx.get_params()

if params is Null

CIM SMASH/Server Management API Programming Guide

VMware, Inc. 59

 sys.exit(-1)

connection = cnx.connect_to_host(params)

if connection is Null

 print 'Failed to connect to: ' + params['host'] + ' as user: ' + params['user']

 sys.exit(-1)

2 Enumerate the names of all CIM_PCIDevice instances and save each instance name in an array.

dev_instance_names = connection.EnumerateInstances(’CIM_PCIDevice’)

if len(dev_instance_names) is 0

 print ’Error: No CIM_PCIDevice instances were found.’

 sys.exit(-1)

3 Search the array of PCI devices for one that matches the bus number, device number, and function
number selected by the command-line parameters.

param_bus, param_device, param_function = params[’extra_params’][0].split(’:’)

chosen_name = Null

for dev_name in dev_instance_names

 dev = connection.GetInstance(dev_name)

 if (dev[’BusNumber’], dev[’DeviceNumber’], dev[’FunctionNumber’]) == \

 (param_bus, param_device, param_function)

 chosen_name = dev_name

 break

if chosen_name is Null

 print ’Error: Chosen device (%s:%s:%s) not found on the managed system.’ % \

 (param_bus, param_device, param_function)

 exit(-1)

4 Print the DeviceID, the BusNumber, DeviceNumber, and FunctionNumber, the
PhysicalSlot, and the ElementName properties of the chosen device.

print ’Chosen device:’

print_dev(dev)

function print_dev(dev)

 print ’ID=%s B/D/F=%s/%s/%s Slot=%s Type=%s (%s)’ % \

 (dev[’DeviceID’], dev[’BusNumber’], dev[’DeviceNumber’], dev[’FunctionNumber’], \

 dev[’PhysicalSlot’], dev[’ElementName’])

5 Traverse the CIM_ControlledBy association to get instance names of the class CIM_PCIPort,
selecting the instance that has the same BusNumber as the chosen instance of CIM_PCIDevice.

Print the PortType property of the CIM_PCIPort instance. This example maps the PortType
property to the corresponding string value in its Values qualifier.

port_name = connected_port_on_bus(dev_name, dev[’BusNumber’]

if port_name is Null

 print ’No upstream port found.’

 break

port = connection.GetInstance(port_name)

print_port(port)

CIM SMASH/Server Management API Programming Guide

VMware, Inc. 60

function connected_port_on_bus(dev_name, bus_number)

 port_instance_names = connection.AssociatorNames(dev_name, \

 AssocClass = ’CIM_ControlledBy’, \

 ResultClass = ’CIM_PCIPort’)

 for port_instance_name in port_instance_names

 port = connection.GetInstance(port_instance_name, \

 PropertyList = [’BusNumber’, ’PortType’])

 if port[’BusNumber’] == bus_number

 return port_instance_name

 return Null

use value_mapper renamed mapper

function print_port(port)

 port_type = mapper.map_property_value_to_string(port, ’PortType’)

 print ’ (%s port on bus %s)’ % (port_type, port[’BusNumber’])

6 Traverse the CIM_MemberOfCollection association to the class CIM_PCIPortGroup.

A port can only belong to one portgroup, so the result is a list with one member. Print the
ElementName property of the portgroup. If this portgroup has BusNumber 0, stop looping because
bus 0 connects to the CPU.

portgroup = portgroup_of_port(port_name)

print_portgroup(portgroup)

if (portgroup[’BusNumber’] == 0

 break

function portgroup_of_port(port_name)

 portgroup_instance_names = connection.AssociatorNames(\

 port_name, \

 AssocClass = ’CIM_MemberOfCollection’, \

 ResultClass = ’CIM_PCIPortGroup’)

 portgroup_instance_name = portgroup_instance_names[0]

 return connection.GetInstance(portgroup_instance_name, \

 PropertyList = [’BusNumber’, ’ElementName’]

function print_portgroup(portgroup)

 print ’ ’, portgroup[’ElementName’]

7 Enumerate instances of the CIM_PCIBridge and find one that has the same SecondaryBusNumber
as the BusNumber of the instance of CIM_PCIPortGroup.

If no instance of CIM_PCIBridge is found, search for an instance of CIM_PCIeSwitch that has a
SecondaryBusNumbers property containing the same BusNumber as the instance of
CIM_PCIPortGroup.

dev_name = upstream_bridge_or_switch(portgroup[’BusNumber’], ’CIM_PCIBridge’)

if dev_name is Null

 dev_name = upstream_bridge_or_switch(portgroup[’BusNumber’], ’CIM_PCIeSwitch’)

 if dev_name is Null

 print ’No upstream PCI device found.’

 break

CIM SMASH/Server Management API Programming Guide

VMware, Inc. 61

function upstream_bridge_or_switch(bus_number, class_name)

 names = connection.EnumerateInstanceNames(class_name)

 for name in names

 instance = connection.GetInstance(name)

 if class_name == ’CIM_PCIBridge’ and instance[’SecondaryBusNumber’] == bus_number \

 or class_name == ’CIM_PCIeSwitch’ and bus_number in instance[’SecondaryBusNumbers’]

 return name

 return Null

8 Working backwards from the bridge or switch, traverse the CIM_ControlledBy association to the
class CIM_PCIPort, selecting the instance that has the same BusNumber as the portgroup.

port_name = connected_port_on_bus(dev_name, portgroup[’BusNumber’])

if port_name is Null

 print ’Error: Missing port on downstream side of upstream device.’

 sys.exit(-1)

9 Print the PortType property of the CIM_PCIPort.

port = connection.GetInstance(port_name)

print_port(port)

10 Print the DeviceID, the BusNumber, DeviceNumber, and FunctionNumber, the
PhysicalSlot, and the ElementName properties of the upstream bridge or switch.

dev = connection.GetInstance(dev_name)

print_dev(dev)

11 Repeat from step 4.

A sample of the output looks like the following:

Chosen device:

 ID=PCI 0:4:1:0 B/D/F=4/1/0 Slot=0 (Mercuricity Generic USB OHCI Hub)

 (PCI-X port on bus 4)

 PCI port group for bus number 4

 (PCI-X port on bus 4)

 ID=PCI 0:3:3:0 B/D/F=3/3/0 Slot=2 (Plutonic Devices PD-631 PCI-X Bridge)

 (PCI-X port on bus 3)

 PCI port group for bus number 3

 (PCI-X port on bus 3)

 ID=PCI 0:0:1:0 B/D/F=0/1/0 Slot=0 (Plutonic Devices PD-631 PCI-X Bridge)

 (PCI port on bus 0)

Monitor RAID Controller State
RAID controller state is useful to system administrators who need to monitor system health. This example
shows how you can report the health state of RAID controllers on the managed server.

CIM SMASH/Server Management API Programming Guide

VMware, Inc. 62

This example assumes you have installed a VIB that contains an implementation of the Host Hardware
RAID profile, defined by the SNIA. VMware does not implement this profile, but prominent hardware
vendors provide implementations for their storage controllers.

You can enumerate the controllers by starting from the Interop namespace and traversing associations
from the Scoping Instance of the profile. Figure 3‑13 shows the relationships of the CIM objects involved.
Figure 3‑13 uses a fictitious namespace and class names that begin with the prefix ACME_.

Note This example is consistent with versions of SMI-S prior to version 1.4. It is not consistent with
version 1.5 or later. Early releases of SMI-S 1.4 are also consistent.

The CIM_PortController instance is logically identical to an instance of CIM_ComputerSystem
subclassed as ACME_HBA. The ACME_HBA instance is the logical entity that is associated with the
controller port objects.

Figure 3‑13. Locating RAID Controllers

This pseudocode depends on the pseudocode in Make a Connection to the CIMOM and Mapping Integer
Property Values to Strings.

To locate RAID controllers

CIM SMASH/Server Management API Programming Guide

VMware, Inc. 63

Procedure

1 Connect to the server URL.

Specify the Interop namespace, supplied as a parameter, for the connection.

use wbemlib

use sys

use connection renamed cnx

connection = Null

params = cnx.get_params()

if params is Null

 sys.exit(-1)

interop_params = params

interop_params['namespace'] = 'root/interop'

connection = cnx.connect_to_host(interop_params)

if connection is Null

 print 'Failed to connect to: ' + params['host'] + ' as user: ' + params['user']

 sys.exit(-1)

2 Locate the CIM_RegisteredProfile instance for the Host Hardware RAID Controller profile.

use registered_profiles renamed prof

profile_instance_name = prof.get_registered_profile_names(connection)

hhrc_instance_name = Null

for instance_name in profile_instance_names

 instance = connection.GetInstance(instance_name)

 if instance[’RegisteredName’] == ’Host Hardware RAID Controller’

 hhrc_instance_name = instance_name

 break

if hhrc_instance_name is Null

 print 'Host Hardware RAID Controller profile not registered.'

 sys.exit(-1)

3 Traverse the CIM_ElementConformsToProfile association to reach the CIM_PortController
instances for the Host Hardware RAID Controller profile on the managed server.

pc_instance_names = connection.AssociatorNames(hhrc_instance_name, \

 AssocClass = 'CIM_ElementConformsToProfile', \

 ResultClass = ’CIM_PortController’)

if len(pc_instance_names) is 0

 print 'Error: No RAID port controllers found.'

 sys.exit(-1)

CIM SMASH/Server Management API Programming Guide

VMware, Inc. 64

4 For each port controller instance, traverse the CIM_LogicalIdentity association to reach the
matching instance of CIM_ComputerSystem representing the RAID controller.

for pc_instance_name in pc_instance_names

 controller_instance_names = connection.AssociatorNames(pc_instance_name, \

 AssocClass = 'CIM_LogicalIdentity', \

 ResultClass = ’CIM_ComputerSystem’)

 cs_instance_name = controller_instance_names[0]

5 For the resulting controller instance, print the ElementName, Name, EnabledState, HealthState,
and OperationalStatus properties.

This pseudocode provides default values for the properties. VMware cannot guarantee that your
hardware vendor has implemented all the properties used in this example.

use value_mapper renamed map

 instance = connection.GetInstance(cs_instance_name)

 if instance.key(’ElementName’)

 element_name = instance[’ElementName’]

 else

 element_name = ’ElementName not available’

 if instance.key(’Name’)

 name = instance[’Name’]

 else

 name = ’Name not available’

 if instance.key(’EnabledState’)

 enabled_state = map.map_instance_property_to_string(connection, \

 instance, \

 ’EnabledState’)

 if not enabled_state

 enabled_state = ’not available’

 if instance.key(’HealthState’)

 health_state = map.map_instance_property_to_string(connection, \

 instance, \

 ’HealthState’)

 if not health_state

 health_state = ’not available’

 if instance.key(’OperationalStatus’)

 operational_status = map.map_instance_property_to_string(connection, \

 instance, \

 ’OperationalStatus’)

 if not operational_status

 operational_status = ’not available’

 print "%s (%s)’ % (element_name, name)

 print ’ EnabledState: ’ + enabled_state

 print ’ HealthState: ’ + health_state

 print ’ OperationalStatus: ’ + operational_status

CIM SMASH/Server Management API Programming Guide

VMware, Inc. 65

A sample of the output looks like the following:

Controller 0 SAS/SATA (1F7D708944192F00)

 EnabledState: Enabled

 HealthState: Minor failure

 OperationalStatus: Degraded

Monitor State of RAID Connections
This example shows how to report the connections of RAID controller initiators to targets on the managed
server. RAID connection information is useful to system administrators who need to monitor system
health.

This example assumes you have installed a VIB that contains an implementation of the Host Hardware
RAID profile, defined by the SNIA. VMware does not implement this profile, but prominent hardware
vendors provide implementations for their storage controllers.

This example assumes an implementation that models serial-attached SCSI connections to drives that
belong to pooled RAID configurations. This model is similar to the SMI-S Host Hardware RAID Controller
profile published by the SNIA. The model might or might not correspond to your hardware vendor’s
implementation.

Figure 3‑14 shows the relationships of the CIM objects involved. Figure 3‑14 uses a fictitious namespace
and class names that begin with the prefix ACME_.

This example enumerates the connections of a controller by starting from the instance of
CIM_ComputerSystem subclassed as ACME_HBA that represents the RAID controller. You must do this
procedure for each disk controller that you monitor on the managed server. See Monitor RAID Controller
State for information about locating the RAID controllers attached to a managed system.

From the ACME_HBA instance, you traverse the CIM_SystemDevice association to the
CIM_LogicalPort instances, then traverse the CIM_DeviceSAPImplementation association to the
CIM_SCSIProtocolEndpoint instances.

The SMI-S specifies two different ways to model connections between targets and initiators. This example
shows the simpler but less detailed choice.

Your hardware vendor’s implementation might not follow this approach. Contact the hardware vendor for
more information about the implementation.

This example traverses the CIM_MemberOfCollection association from the
CIM_SCSIProtocolEndpoint to the CIM_ConnectivityCollection instance that represents a
connection to a SCSI target. If your vendor’s hardware implementation models the connection with the
CIM_SCSIInitiatortargetLogicalUnitPath association, you can find connection status in that
association instead of in the CIM_ConnectivityCollection instance.

CIM SMASH/Server Management API Programming Guide

VMware, Inc. 66

Figure 3‑14. Locating Connections Between HBA Initiators and Targets

This pseudocode depends on the pseudocode in Make a Connection to the CIMOM and Mapping Integer
Property Values to Strings.

To report state of RAID connections

Procedure

1 From a given instance of CIM_ComputerSystem that represents a SCSI controller, traverse the
CIM_SystemDevice association to reach the CIM_LogicalPort instances on the managed server.

port_instance_names = connection.AssociatorNames(controller_instance_name, \

 AssocClass = 'CIM_SystemDevice', \

 ResultClass = ’CIM_LogicalPort’)

if len(port_instance_names) is 0

 print 'Error: No ports associated with controller.'

 sys.exit(-1)

CIM SMASH/Server Management API Programming Guide

VMware, Inc. 67

2 For each logical port instance, traverse the CIM_DeviceSAPImplementation association to reach
the matching instance of CIM_SCSIProtocolEndpoint.

for port_instance_name in port_instance_names

 init_instance_names = connection.AssociatorNames(port_instance_name, \

 AssocClass = 'CIM_DeviceSAPImplementation', \

 ResultClass = ’CIM_SCSIProtocolEndpoint’)

3 From the instance of CIM_SCSIProtocolEndpoint, traverse the CIM_MemberOfCollection
association to reach the instance of CIM_ConnectivityCollection that represents the connection
between initiator and target.

 for init_instance_name in init_instance_names

 conn_instance_names = connection.AssociatorNames(init_instance_name, \

 AssocClass = 'CIM_MemberOfCollection', \

 ResultClass = ’CIM_ConnectivityCollection’)

4 For the resulting instance of CIM_ConnectivityCollection, print the InstanceID and
ConnectivityStatus properties.

 for instance_name in conn_instance_names

 print_scsi_connection_instance(connection, instance_name)

use value_mapper renamed map

function print_scsi_connection_instance(connection, instance_name

 health_state = connectivity_status = ’’

 instance = connection.GetInstance(instance_name)

 if instance.key(’InstanceID’)

 instance_id = instance[’InstanceID’]

 else

 instance_id = ’InstanceID not available’

 if instance.key(’ConnectivityStatus’)

 connectivity_status = map.map_instance_property_to_string(connection, \

 instance, \

 ’ConnectivityStatus’)

 if not connectivity_status

 connectivity_status = ’not available’

 print ’ Port connection ’ + instance_id

 print ’ ConnectivityStatus: ’ + connectivity status

Report Accessible Storage Extents
This example shows how to report the disk storage extents that are accessible to a given SCSI controller.
The information can be useful for configuring the managed servers in a datacenter.

This example assumes you have already located an instance of CIM_ComputerSystem subclassed as
ACME_Controller that represents the RAID controller. See Monitor RAID Controller State for information
about locating the RAID controllers attached to a managed system.

CIM SMASH/Server Management API Programming Guide

VMware, Inc. 68

This example is based on the assumption that you have already installed a VIB that contains an
implementation of the Host Hardware RAID profile, defined by the SNIA. VMware does not implement this
profile, but prominent hardware vendors provide implementations for their storage controllers.

This example is based on the assumption that the implementation on the managed server models serial-
attached SCSI connections to drives that belong to pooled RAID configurations. This model is similar to
the SMI-S Host Hardware RAID Controller profile published by the SNIA.

The model might or might not correspond to your hardware vendor’s implementation. Contact the
hardware vendor for more information about the implementation.

Figure 3‑15 shows the relationships of the CIM objects involved. Figure 3‑15 uses a fictitious namespace
and class names that begin with the prefix ACME_.

The SMI-S specifies two different ways to model connections between targets and initiators. If your
hardware vendor’s implementation uses the CIM_SCSIInitiatortargetLogicalUnitPath
association, you can follow the LogicalUnit reference of that association to get to the LUN directly.

Another way to locate disk storage extents is to start from each instance of
CIM_ConnectivityCollection connected to the controller and to follow a series of associations to the
disk media attached to the target endpoint. This procedure begins with the reverse of the last step in
Monitor State of RAID Connections, except that you need to filter on the value of the Role property to
retrieve only targets, not initiators.

This example bypasses the issue of implementation choice by going from the SCSI controller to the target
endpoints in one step by using the CIM_HostedAccessPort association. With this approach, the
hardware vendor’s choice of SMI-S implementation does not matter.

CIM SMASH/Server Management API Programming Guide

VMware, Inc. 69

Figure 3‑15. Locating Storage Extents Attached to SCSI Targets

This pseudocode depends on the pseudocode in Make a Connection to the CIMOM and Mapping Integer
Property Values to Strings.

To report available storage extents

Procedure

1 From a given instance of CIM_ComputerSystem subclassed as ACME_HBA, traverse the
CIM_HostedAccessPoint association to reach the CIM_SCSIProtocolEndpoint instances on the
managed server.

Use the value of the Role property to distinguish the target endpoints from the initiator endpoints.
Values of 3 or 4 indicate that the endpoint functions as a target.

targ_instance_names = connection.AssociatorNames(controller_instance_name, \

 AssocClass = 'CIM_HostedAccessPoint', \

 ResultClass = ’CIM_SCSIProtocolEndpoint’)

if len(targ_instance_names) is 0

 print 'Error: No targets associated with SCSI controller instance.'

 sys.exit(-1)

CIM SMASH/Server Management API Programming Guide

VMware, Inc. 70

for instance_name in targ_instance_names

 instance = connection.GetInstance(instance_name)

 if (not (instance[’Role’] in [3, 4]))

 targ_instance_names.delete(instance_name)

2 For each target instance, traverse the CIM_SAPAvailableForElement association to reach the disk
drive for the target.

for targ_instance_name in targ_instance_names

 disk_instance_names = connection.AssociatorNames(targ_instance_name, \

 AssocClass = 'CIM_SAPAvailableForElement', \

 ResultClass = ’CIM_DiskDrive’)

3 From CIM_DiskDrive, traverse the CIM_MediaPresent association to reach the storage extents
that belong to that drive.

 for disk_instance_name in disk_instance_names

 ext_instance_names = connection.AssociatorNames(disk_instance_name, \

 AssocClass = 'CIM_MediaPresent', \

 ResultClass = ’CIM_StorageExtent’)

4 For each instance of CIM_StorageExtent, print the DeviceID and OperationalStatus
properties. Also print the computed extent size (BlockSize * NumberOfBlocks), if those properties
are available.

 for ext_instance_name in ext_instance_names

 print_extent(connection, ext_instance_name)

use value_mapper renamed mapper

function print_extent(connection, instance_name)

 instance = connection.GetInstance(instance_name)

 device_id = instance[’DeviceID’]

 operational_status = ’’

 status_codes = instance[’OperationalStatus’]

 for status_code in status_codes

 value = mapper.map_instance_property_to_string(connection, \

 instance, \

 ’OperationalStatus’)

 operational_status = operational_status + ’ ’ + value

 if instance.key(’BlockSize’)

 block_size = instance[’BlockSize’]

 else

 block_size = 0

 if instance.key(’NumberOfBlocks’)

 num_blocks = instance[’NumberOfBlocks’]

 else

 num_blocks = 0

 print ’Disk extent: ’ + device_id

CIM SMASH/Server Management API Programming Guide

VMware, Inc. 71

 print ’ Operational status: ’ + operational_status

 size = num_blocks * block_size

 if size

 print ’ Size: " + size

Report Storage Extents Without Third-Party Storage
Provider
This example shows how to report the disk storage extents that are available to a managed server, in the
absence of a dedicated storage provider supplied by a storage vendor. Information about the storage
extents is limited when a dedicated storage provider is not installed. The limited information can still be
useful for configuring the managed servers in a datacenter.

You can locate disk storage extents by enumerating instances of VMware_HypervisorStorageExtent
in the Implementation namespace. The pseudocode in this topic depends on the pseudocode in Make a
Connection to the CIMOM.

To report storage extents

Procedure

1 Connect to the server URL.

Specify the Implementation namespace, supplied as a parameter, for the connection.

The actual namespace you will use depends on your installation.

use wbemlib

use sys

use connection renamed cnx

connection = Null

params = cnx.get_params()

if params is Null

 sys.exit(-1)

connection = cnx.connect_to_host(params)

if connection is Null

 print 'Failed to connect to: ' + params['host'] + ' as user: ' + params['user']

 sys.exit(-1)

2 Enumerate instance names of VMware_HypervisorStorageExtent.

Select the instances where the OtherIdentifyingInfo property begins with ’/vmfs/devices/disks’.
For each such instance, print the ElementName, OtherIdentifyingInfo, and
OperationalStatus properties.

use value_mapper renamed mapper

instances = connection.EnumerateInstances(’VMware_HypervisorStorageExtent’)

for instance in instances

 if instance[’OtherIdentifyingInfo’][0] begins ’/vmfs/devices/disks’

 status = mapper.map_instance_property_to_string(connection, \

 instance, \

CIM SMASH/Server Management API Programming Guide

VMware, Inc. 72

 ’OperationalStatus’)

 print ’ Storage Extent = ’ + instance[’ElementName’]

 print ’ Other Info: ’ + instance[’OtherIdentifyingInfo’]

 print ’ OperationalStatus: ’ + status

A sample of the output looks like the following:

Storage Extent = Local Disk (naa.7001e4e041d08f00119991caf9fd2aaf)

 Other Info: /vmfs/devices/disks/naa.7001e4e041d08f00119991caf9fd2aaf

 OperationalStatus: OK

Work with the System Event Log
This example shows how to list the records in the system event log (SEL) of a managed server. This
example also shows how to clear the records from the SEL. Clearing the log entries can save on disk
space and reduce clutter from old records in the SEL.

You can locate the instance of CIM_RecordLog that represents the SEL by enumerating all instances of
CIM_RecordLog and filtering out other logs by name. The log records are associated to the
CIM_RecordLog instance. Figure 3‑16 shows the relationships of the CIM objects involved.

Note This discussion assumes that the managed server is a single-node system.

Figure 3‑16. Listing Records of the System Event Log

This example shows how to get the log entries from the Implementation namespace, assuming you
already know its name. The pseudocode in this topic depends on the pseudocode in Make a Connection
to the CIMOM.

To list and clear the System Event Log

Procedure

1 Connect to the server URL.

Specify the Implementation namespace, supplied as a parameter, for the connection.

CIM SMASH/Server Management API Programming Guide

VMware, Inc. 73

The actual namespace you will use depends on your installation.

use wbemlib

use sys

use connection renamed cnx

connection = Null

params = cnx.get_params()

if params is Null

 sys.exit(-1)

connection = cnx.connect_to_host(params)

if connection is Null

 print 'Failed to connect to: ' + params['host'] + ' as user: ' + params['user']

 sys.exit(-1)

2 Enumerate instance names of CIM_RecordLog.

instance_names = connection.EnumerateInstanceNames(’CIM_RecordLog’)

if len(instance_names) is 0

 print 'Error: No logs found on managed server.'

 sys.exit(-1)

3 Iterate over the log instances, rejecting all log instances that are not named "IPMI SEL".

for instance_name in instance_names

 instance = connection.GetInstance(instance_name)

 if instance[’ElementName’] is ’IPMI SEL’

 print_log_entries(instance_name)

 clear_log_entries(instance_name)

4 From the log instance that represents the SEL, traverse the CIM_LogManagesRecord association to
reach the entries that belong to the log.

function print_log_entries(instance_name)

 instances = connection.Associators(instance_name,

 AssocClass = ’CIM_LogManagesRecord’)

 for instance in instances

 for prop in [’MessageTimestamp’, ’RecordData’]

 print ’ %28s %s’ % (prop, instance[prop])

5 On the log instance that represents the SEL, invoke the ClearLog() method with no parameters.

function clear_log_entries(instance_name)

 method_params = { }

 (error_return, output) = connection.InvokeMethod('ClearLog', \

 instance_name, \

 **method_params)

 if error_return is 0

 print ’Log entries cleared.’

 else

 print ’Failed to clear log entries; error = %s’ % error_return

A sample of the output looks like the following:

CIM SMASH/Server Management API Programming Guide

VMware, Inc. 74

Log contains 5 entries:

 MessageTimestamp 20090408014645.000000+000

 RecordData *81.0.32*1 0*2*5 2 220 73*32 0*4*16*81*false*111*2*255*255*1*

 MessageTimestamp 20090408014807.000000+000

 RecordData *3.0.32*2 0*2*87 2 220 73*32 0*4*1*3*false*1*87*149*129*1*

 MessageTimestamp 20090408015617.000000+000

 RecordData *3.0.32*3 0*2*65 4 220 73*32 0*4*1*3*false*1*89*149*129*1*

 MessageTimestamp 20090408020052.000000+000

 RecordData *3.0.32*4 0*2*84 5 220 73*32 0*4*1*3*false*1*89*149*129*1*

 MessageTimestamp 20090408020807.000000+000

 RecordData *3.0.32*5 0*2*7 7 220 73*32 0*4*1*3*false*1*89*150*129*1*

Log entries cleared.

Subscribe to Indications
ESXi 5.5 supports the following types of indications.

Table 3‑1. Indications Supported by ESXi

Indication Description

OMC_IpmiAlertIndication Sent whenever entries are added to the IPMI System Event Log, and whenever a
sensor’s HealthState property becomes less healthy than previously seen.

OMC_BatteryIpmiAlertIndication Specializes OMC_IpmiAlertIndication.

OMC_BIOSIpmiAlertIndication Specializes OMC_IpmiAlertIndication.

OMC_ChassisIpmiAlertIndication Specializes OMC_IpmiAlertIndication.

OMC_CoolingUnitIpmiAlertIndication Specializes OMC_IpmiAlertIndication.

OMC_DiskIpmiAlertIndication Specializes OMC_IpmiAlertIndication.

OMC_MemoryIpmiAlertIndication Specializes OMC_IpmiAlertIndication.

OMC_PowerIpmiAlertIndication Specializes OMC_IpmiAlertIndication.

OMC_ProcessorIpmiAlertIndication Specializes OMC_IpmiAlertIndication.

VMware_ConcreteJobCreation Notifies a listener when a new VMware_ConcreteJob has been created to
monitor an asynchronous operation initiated by an extrinsic method.

VMware_ConcreteJobModification Reports when the status of a VMware_ConcreteJob has changed. A change to
a job indicates progress or completion, or that an error occurred during the
asynchronous operation.

VMware_ConcreteJobDeletion Notifies a listener when a VMware_ConcreteJob has been deleted by the
provider for that job.

VMware_KernelIPChangedIndication This indication is sent whenever the ESXi kernel IP address for the host has
changed.

CIM SMASH/Server Management API Programming Guide

VMware, Inc. 75

To receive CIM indications, you must have a running process that accepts indication messages and logs
them or otherwise acts on them, depending on your application. You can use a commercial CIM indication
consumer to do this. If you choose to implement your own indication consumer, see the following
documents:

n DMTF's CIM Event Model White Paper at
http://www.dmtf.org/standards/documents/CIM/DSP0107.pdf

n DMTF's Indications Profile specification at
http://www.dmtf.org/standards/published_documents/DSP1054.pdf

n CIM indication specifications from your server supplier that are specific to the server model

The indication consumer must operate with a known URL. This URL is used when instantiating the
IndicationHandler object.

Similarly, you must know which indication class to monitor. This information is used when instantiating the
IndicationFilter object.

This example shows how to instantiate the objects needed to register for indications.

This pseudocode depends on the pseudocode in Make a Connection to the CIMOM.

To subscribe to indications

Procedure

1 Connect to the server URL.

Specify the Interop namespace for the connection.

use wbemlib

use sys

use connection renamed cnx

connection = Null

params = cnx.get_params()

if params is Null

 exit(-1)

interop_params = params

interop_params['namespace'] = 'root/interop'

connection = cnx.connect_to_host(interop_params)

if connection is Null

 print 'Failed to connect to: ' + params['host'] + ' as user: ' + params['user']

2 Build the URL for the indication consumer.

destination = 'http://' + params['consumer_host'] \

 + ':' + params['consumerPort'] + '/indications'

CIM SMASH/Server Management API Programming Guide

VMware, Inc. 76

http://www.dmtf.org/standards/documents/CIM/DSP0107.pdf
http://www.dmtf.org/standards/published_documents/DSP1054.pdf

3 Create the IndicationHandler instance to represent the consumer.

handlerBindings = { \

 'SystemCreationClassName' : 'OMC_UnitaryComputerSystem', \

 'SystemName' : clientHost, \

 'Name': 'Org:Local', \

 'CreationClassName' : 'CIM_IndicationHandlerCIMXML' \

 }

handlerName = wbemlib.CIMInstanceName(\

 'CIM_IndicationHandlerCIMXML', \

 keybindings=handlerBindings, \

 namespace='root/interop')

handlerInst = wbemlib.CIMInstance(\

 'CIM_IndicationHandlerCIMXML', \

 properties = handlerBindings, \

 path = handlerName)

handlerInst['Destination'] = destination

chandlerName = connection.CreateInstance(handlerInst)

Use a globally unique organization identifier in place of Org, and use an organizationally unique
identifier in place of Local.

4 Create the IndicationFilter instance to specify the indication class (such as CIM_AlertIndication).

The SourceNamespace property of the filter must match the Implementation namespace of the
indication provider. In this pseudocode, the namespace is root/cimv2 but a third-party indication
provider might use a different namespace.

filterBindings = { \

 'SystemCreationClassName' : 'OMC_UnitaryComputerSystem', \

 'SystemName' : clientHost, \

 'Name': 'Org:Local', \

 'CreationClassName' : 'CIM_IndicationFilter' \

 }

filterName = wbemlib.CIMInstanceName(\

 'CIM_IndicationFilter', \

 keybindings=filterBindings, \

 namespace='root/interop')

filterInst = wbemlib.CIMInstance(\

 'CIM_IndicationFilter', \

 properties = filterBindings, \

 path = filterName)

 filterInst['SourceNamespace'] = 'root/cimv2'

 filterInst['Query'] = 'SELECT * FROM ' + params['className']

 filterInst['QueryLanguage'] = 'WQL'

 cfilterName = connection.CreateInstance(filterInst)

CIM SMASH/Server Management API Programming Guide

VMware, Inc. 77

5 Create the IndicationSubscription association to link the filter with the handler.

subBindings = { 'Filter': cfilterName, \

 'Handler' : chandlerName }

 subName = wbemlib.CIMInstanceName(\

 'CIM_IndicationSubscription', \

 keybindings = subBindings, \

 namespace = 'root/interop')

 subInst = wbemlib.CIMInstance('CIM_IndicationSubscription', \

 path = subName)

 subInst['Filter'] = cfilterName

 subInst['Handler'] = chandlerName

 rsubName = connection.CreateInstance(subInst)

CIM SMASH/Server Management API Programming Guide

VMware, Inc. 78

Troubleshooting CIM
Connections 4
If you have trouble with connections between a CIM client and a CIM server, or between a CIM server
and a process that consumes indications, you can try to diagnose and correct the trouble using this
information.

This material is organized into two sections. One section applies to connections initiated by the client. The
other section applies to connections initiated by the server when delivering indications.

n See Connections from Client to CIM Server if your CIM client is unable to connect to the CIM server.

n See Connections from CIM Server to Indication Consumer if your CIM client is able to connect to the
CIM server and subscribe to indications, but the indications are not delivered.

This chapter includes the following topics:
n Connections from Client to CIM Server

n Connections from CIM Server to Indication Consumer

Connections from Client to CIM Server
If your client fails to complete a connection to a CIM server, use these suggestions to help verify the
connection parameters and the health of the CIM server.

Using SLP
Check the connection parameters using an SLP client (available on the Web). Run the SLP client on the
same subnetwork as the managed server. Verify that the managed server advertises the expected CIM
service and the correct URL.

Using a Web Browser
To verify that you can reach the CIM service at the advertised location, connect to the managed server
with a Web browser. Use a URL of the form https://<cim-server.mydomain.com>:5989/ (substituting the
name of the actual server), and verify that the server is responding on the expected port. Port 5989 is the
default port for CIM-XML connections, but your installation might be different.

VMware, Inc. 79

Using a Command-Line Interface
Using a command-line interface allows you to bypass any issues related to the correct invocation of the
interface functions in a programmatic client.

For convenient interactive access to a CIM server, install wbemcli, available from
http://sourceforge.net/project/showfiles.php?group_id=128809. Using wbemcli, you can invoke CIM
operations from a shell.

To access a CIM server using the WS-Management protocol, install the wsmancli package, available
from http://sourceforge.net/projects/openwsman/. Using the wsman command-line interface, you can
invoke CIM operations from a shell.

Verifying User Authentication Credentials
If you are certain that the connection parameters are correct, verify the authentication parameters. To
complete a connection, you must authenticate as a user that is known to the managed server.

Connect to the managed server through the console and check that your root password is correct. Then
use that password to authenticate as the root user from your client.

Note If the managed server is in lockdown mode, you must authenticate using a CIM ticket obtained
from vCenter Server. See CIM Authentication for Lockdown Mode for more information about using a CIM
ticket to authenticate.

Rebooting the Server
If all your connection parameters are correct and you are certain of your authentication credentials but
you still cannot complete a connection, reboot the managed server or restart the management agents on
the server.

Using Correct Client Samples
If you are using sample clients supplied by VMware, check the documentation to be sure that the samples
are intended to work with the CIM server to which you are trying to connect. The samples might hard-
code parameters, such as the port and namespace, that affect the connection.

For example, the C++ code in the CIM Storage Management API Programming Guide connects to the
CIM server included with ESX Server 3.0, but does not connect to the CIM server included with ESX 4 or
later.

Using Other CIM Client Libraries
VMware does not test all available CIM client libraries with ESXi. If your CIM client cannot connect to the
CIM server, try writing a test client for a different library. For example, http://.sourceforge.net has a
number of CIM client libraries available.

CIM SMASH/Server Management API Programming Guide

VMware, Inc. 80

http://sourceforge.net/project/showfiles.php?group_id=128809
http://sourceforge.net/projects/openwsman/
http://www.vmware.com/support/developer/cim-sdk/4.0/smash/cim_smash_400_ticket_authentication.pdf
http://sourceforge.net

Using the WS-Management Library
If you are unable to find a satisfactory client library to make a WBEM connection, use WS-Management.
ESXi includes a WS-Man server to support CIM operations.

VMware recommends using the Web Services for Management Perl Library for WS-Man clients. This
library is included with the VMware vSphere SDK for Perl version 1.6 or higher. See
http://www.vmware.com/support/pubs/sdk_pubs.html for more information about the vSphere SDK for
Perl.

Connections from CIM Server to Indication Consumer
If your client can connect to a CIM server and subscribe to indications, but cannot receive indications, use
these suggestions to try to resolve the problem.

Firewall Configuration
ESXi ships with a software firewall that is configured by default to block outgoing connection requests.
When an indication is triggered, the producer cannot open a connection to the consumer unless the target
port is opened in the firewall.

When you create an indication subscription, the CIMOM opens the corresponding port in the firewall for
you. To check the firewall configuration, use these commands:

n esxcli network firewall get

tells you whether the firewall is enabled.

n esxcli network firewall ruleset list

tells you which specific services are enabled.

To disable or enable the firewall, use these commands:

n esxcli network firewall set -e false

disables the firewall.

n esxcli network firewall set -e true

enables the firewall.

It is also possible to create rulesets to open or close firewall ports manually. For information about manual
firewall configuration for ESXi, see the vSphere Security Guide.

For information about the esxcli command set, see the manual Getting Started with vSphere
Command-Line Interfaces.

CIM SMASH/Server Management API Programming Guide

VMware, Inc. 81

http://www.vmware.com/support/pubs/sdk_pubs.html

System Event Log
Alert indications for a managed server rely primarily on the contents of the System Event Log (SEL). If the
SEL is disabled, or if it is full and cannot accept new log entries, you will not receive most alert indications
for new events.

If the SEL is full, system status is shown correctly in response to CIM queries, regardless of indication
delivery. To receive indications when the SEL is not accepting new entries, you have the following
options.

n Consult your hardware vendor’s system documentation for instructions to clear the SEL.

n You can clear the SEL from a vSphere Client connected to vCenter Server. On the Hardware tab,
choose System Event Log from the View menu and click Reset event log.

CIM SMASH/Server Management API Programming Guide

VMware, Inc. 82

Creating Offline Bundles 5
Offline bundles contain a combination of VIBs and metadata used to update ESXi host software. Offline
bundles are similar to depots, with the difference that offline bundles are available from a local file system
rather than from a web server.

You can create an offline bundle from a depot using VMware vSphere PowerCLI.

Create an Offline Bundle With VMware vSphere PowerCLI
Before you can create an offline bundle, you must install the PowerCLI software. vSphere PowerCLI 5.0
requires:

n .NET 2.0 Service Pack 1

n Windows PowerShell 1.0 or Windows PowerShell 2.0 RTM

You can download vSphere PowerCLI 5.0 from the VMware vSphere 5.0 web site.

To create an offline bundle using vSphere PowerCLI

Procedure

1 Run vSphere PowerCLI.

Choose Start > Programs > VMware > VMware vSphere PowerCLI > VMware vSphere
PowerCLI.

2 Select a software depot from which to create an offline bundle.

Add-ESXSoftwareDepot http://depot-server/build-123456/ESX

Note If you previously added a different software depot during this session, first remove it from the
array of default software depots. Repeat the following commands until the
$DefaultSoftwareDepots array is empty. Then select a software depot using the Add-
ESXSoftwareDepot command.

Remove-ESXSoftwareDepot $DefaultSoftwareDepots[0]

$DefaultSoftwareDepots

VMware, Inc. 83

3 Display a list of the array image profiles in the depot.

$profiles=Get-ESXImageProfile

$profiles

4 Find the array index of the Standard image profile and export it to an offline bundle.

Export-ESXImageProfile -ImageProfile $profiles[index] ‘

 -ExportToBundle -FilePath “C:\ESX_bundle.zip”

For information about using the offline bundle to upgrade ESXi host software, see Create an Offline
Bundle With VMware vSphere PowerCLI.

For more information about using vSphere PowerCLI with image profiles, see vSphere Installation
and Setup.

CIM SMASH/Server Management API Programming Guide

VMware, Inc. 84

	CIM SMASH/Server Management API Programming Guide
	Contents
	About This Book
	Introduction to the CIM SMASH/Server Management API
	Platform Product Support for the CIM API
	Supported Protocols and Versions for the CIM API
	CIM Version
	SMASH Version for the CIM API
	Supported Profiles for the CIM API
	CIM and SMASH Resources Online

	Installing CIM Provider VIBs
	Download CIM Provider VIBs
	Add a CIM Provider VIB to your ESXi Image
	Adjust the Resource Pool Allocation for CIM Providers

	Developing Client Applications for the CIM API
	CIM Server Ports
	CIM Object Namespaces
	Crossing Between Namespaces
	Determining the Namespaces in Your Installation

	WS-Management Resource URIs
	Locating a Server with SLP
	CIM Ticket Authentication
	Active Directory Authentication on ESXi
	Make a Connection to the CIMOM
	Listing Registered Profiles in the CIM Implementation
	List Registered CIM Profiles
	Identifying the Base Server Scoping Instance
	Identify the Base Server Scoping Instance
	Mapping Integer Property Values to Strings
	Using the Web Services for Management Perl Library

	Using the CIM Object Space
	Report Manufacturer, Model, and Serial Number
	Report Manufacturer, Model, and Serial Number By Using Only the Implementation Namespace
	Report the BIOS Version
	Reporting Installed VIBs
	Installing VIBs
	Monitor VIB Installation
	Monitor State of All Sensors
	Monitor State of All Sensors By Using Only the Implementation Namespace
	Report Fan Redundancy
	Report CPU Cores and Threads
	Report Empty Memory Slots By Using Only the Implementation Namespace
	Report the PCI Device Hierarchy By Using Parent DeviceIDs
	Report the Path to a PCI Device By Using PortGroups
	Monitor RAID Controller State
	Monitor State of RAID Connections
	Report Accessible Storage Extents
	Report Storage Extents Without Third-Party Storage Provider
	Work with the System Event Log
	Subscribe to Indications

	Troubleshooting CIM Connections
	Connections from Client to CIM Server
	Using SLP
	Using a Web Browser
	Using a Command-Line Interface
	Verifying User Authentication Credentials
	Rebooting the Server
	Using Correct Client Samples
	Using Other CIM Client Libraries
	Using the WS-Management Library

	Connections from CIM Server to Indication Consumer
	Firewall Configuration
	System Event Log

	Creating Offline Bundles
	Create an Offline Bundle With VMware vSphere PowerCLI

