
Virtual Disk Development
Kit Programming Guide
Update 2
VMware vSphere 6.7
Virtual Disk Development Kit 6.7.2

Virtual Disk Development Kit Programming Guide

VMware, Inc. 2

You can find the most up-to-date technical documentation on the VMware website at:

https://docs.vmware.com/

If you have comments about this documentation, submit your feedback to

docfeedback@vmware.com

Copyright © 2008–2019 VMware, Inc. All rights reserved. Copyright and trademark information.

VMware, Inc.
3401 Hillview Ave.
Palo Alto, CA 94304
www.vmware.com

https://docs.vmware.com/
mailto:docfeedback@vmware.com
http://pubs.vmware.com/copyright-trademark.html

Contents

About This Book 9

1 Introduction to the Virtual Disk API 11

About the Virtual Disk API 11

VDDK Components 12

Virtual Disk Library 12

Disk Mount Library 12

Virtual Disk Utilities 12

Backup and Restore on vSphere 12

Backup Design for vCloud Director 13

Use Cases for the Virtual Disk Library 13

Developing for VMware Platform Products 13

Managed Disk and Hosted Disk 14

Advanced Transports 15

VDDK and VADP Compared 15

Platform Product Compatibility 15

Redistributing VDDK Components 15

2 Installing the Development Kit 16

Prerequisites 16

Development Systems 16

Programming Environments 16

VMware Platform Products 17

Storage Device Support 17

Installing the VDDK Package 17

Repackaging VDDK Libraries 18

How to Find VADP Components 19

3 Virtual Disk Interfaces 20

VMDK File Location 20

Virtual Disk Types 20

Persistence Disk Modes 21

VMDK File Naming 21

Thin Provisioned Disk 22

Internationalization and Localization 22

Virtual Disk Internal Format 23

Grain Directories and Grain Tables 23

VMware, Inc. 3

Data Structures in Virtual Disk API 23

Credentials and Privileges for VMDK Access 24

Adapter Types 25

Virtual Disk Transport Methods 25

Local File Access 26

SAN Transport 26

HotAdd Transport 27

NBDSSL Transport 28

4 Virtual Disk API Functions 32

Virtual Disk Library Functions 32

Alphabetic Table of Functions 33

Start Up 34

Initialize the Library 34

Connect to a Workstation or Server 35

VMX Specification 35

Disk Operations 36

Create a New Hosted Disk 36

Open a Local or Remote Disk 36

Read Sectors From a Disk 37

Write Sectors To a Disk 37

Close a Local or Remote Disk 38

Get Information About a Disk 38

Free Memory from Get Information 38

Metadata Handling 38

Read Metadata Key from Disk 38

Get Metadata Table from Disk 38

Write Metadata Table to Disk 39

Check and Repair Sparse Disk Metadata 39

Disk Chaining and Redo Logs 39

Create Child from Parent Disk 40

Attach Child to Parent Disk 40

Opening in a Chain 42

Redo Logs and Linked Clone Backup 42

Cloning a Virtual Disk 42

Compute Space Needed for Clone 43

Clone a Disk by Copying Data 43

Error Handling 43

Return Error Description Text 43

Free Error Description Text 43

Administrative Disk Operations 44

Rename an Existing Disk 44

Virtual Disk Development Kit Programming Guide

VMware, Inc. 4

Grow an Existing Local Disk 44

Defragment an Existing Disk 44

Shrink an Existing Local Disk 44

Unlink Extents to Remove Disk 45

Shut Down 45

Disconnect from Server 45

Clean Up and Exit 45

Advanced Transport APIs 45

Initialize Virtual Disk API 45

Phone Home Support 48

Location of Log Files 48

List Available Transport Methods 49

Connect to VMware vSphere 49

Get Selected Transport Method 50

Prepare For Access and End Access 51

SAN Mode on Linux Uses Direct Mode 52

Clean Up After Disconnect 52

Ordering of Function Calls in Sequence 52

Updating Applications for Advanced Transport 52

Algorithm for vSphere Backup 53

Backup and Recovery Example 54

Multithreading Considerations 55

Multiple Threads and VixDiskLib 55

Capabilities of Library Calls 56

Support for Managed Disk 56

Support for Hosted Disk 56

5 Virtual Disk API Sample Code 57

Compiling the Sample Program 57

Visual C++ on Windows 57

C++ on Linux Systems 58

Library Files Required 58

Usage Message 59

Walk-Through of Sample Program 60

Include Files 60

Definitions and Structures 60

Dynamic Loading 61

Wrapper Classes 61

Command Functions 61

SSL Certificate Thumbprint 65

Virtual Disk Development Kit Programming Guide

VMware, Inc. 5

6 Practical Programming Tasks 66
Scan VMDK for Virus Signatures 66

Creating Virtual Disks 67

Create Local Disk 67

Create Remote Disk 68

Special Consideration for ESXi Hosts 69

VMDK File Versions 69

Working with Virtual Disk Data 69

Reading and Writing Local Disk 70

Reading and Writing Remote Disk 70

Deleting a Disk (Unlink) 70

Renaming a Disk 71

Managing Child Disks 71

Create Redo Logs 71

Virtual Disk in Snapshots 72

Windows 2000 Read-Only File System 72

RDM Disks and Virtual BIOS 72

Restore RDM Disks 73

Restore the Virtual BIOS or UEFI 73

Interfacing With VMware vSphere 74

The VIX API 74

Virus Scan all Hosted Disk 74

The vSphere Web Services API 75

Virus Scan All Managed Disk 75

Read and Write VMDK Using vSphere API 75

First Class Disk (FCD) Backup 76

7 Backing Up Virtual Disks in vSphere 80

Design and Implementation Overview 80

The Backup Process 80

Communicating With the Server 81

Information Containers as Managed Objects 82

Gathering Status and Configuration Information 83

Doing a Backup Operation 85

Restore a Virtual Machine 86

Doing a Restore Operation 87

Access Files on Virtual Disks 88

More VADP Details 89

Low Level Backup Procedures 89

Communicate with the Server 89

The PropertyCollector 90

Creating a Snapshot 96

Virtual Disk Development Kit Programming Guide

VMware, Inc. 6

Backing Up a Virtual Disk 97

Deleting a Snapshot 98

New Query Allocated Blocks Function 98

Changed Block Tracking on Virtual Disks 100

Low Level Restore Procedures 104

Restoring a Virtual Machine and Disk 104

Restore Incremental Backup Data 114

Restore with Direct Connection to ESXi Host 115

Tips and Best Practices 115

Best Practices for SAN Transport 116

Best Practices for HotAdd Transport 117

Best Practices for NBDSSL Transport 117

General Backup and Restore 118

Backup and Restore of Thin-Provisioned Disk 119

About Changed Block Tracking 119

HotAdd and SCSI Controller IDs 119

Encrypted VM Backup and Restore 120

Backup and Restore With vTPM 121

Windows Backup Implementations 123

Disable Automount in Windows Proxy 123

Security and Remote Desktop 124

Working with Microsoft Shadow Copy 124

Enable Virtual Machine Application Consistent Quiescing 126

Application-Consistent Backup and Restore 126

New VSS Support Added in vSphere 6.5 128

The VMware VSS Implementation 128

Linux Backup Implementation 129

8 Backing Up vApps in vCloud Director 130

Introduction to Tenant vApps 130

Prerequisites 131

Other Information 132

Conceptual Overview 132

The Backup Process 133

The Restore Process 133

Use Cases Overview 135

Managing Credentials 135

Finding a vApp 135

Protecting Specified vApps 135

Recovering an Older Version of a vApp 136

Recovering a Deleted vApp 136

Recovering a Single Virtual Machine 136

Virtual Disk Development Kit Programming Guide

VMware, Inc. 7

Backing Up vCloud Director 136

vCloud API Operations 136

Getting Access to vCloud Director 137

Inventory Access 137

Retrieving Catalog information 141

Retrieving vApp Configuration 143

Preventing Updates to a vApp During Backup or Restore 145

Associating vCloud Resources with vSphere Entities 145

Restoring vApps 148

Conclusion 149

9 Virtual Disk Mount API 151

The VixMntapi Library 151

Types and Structures 151

Function Calls 152

Programming with VixMntapi 158

File System Support 158

Diagnostic Logging for VixMntapi 158

Read-Only Mount on Linux 159

Sample VixMntapi Code 159

Restrictions on Virtual Disk Mount 160

10 Errors Codes and Open Source 161

Recent Changes 161

Finding Error Code Documentation 161

Association With VIX API Errors 161

Interpreting Errors Codes 162

Troubleshooting Dynamic Libraries 162

Open Source Components 163

Virtual Disk Development Kit Programming Guide

VMware, Inc. 8

About This Book

The VMware® Virtual Disk Development Kit Programming Guide introduces the Virtual Disk Development
Kit (VDDK) and the vSphere Storage APIs – Data Protection (VADP). For VDDK it describes how to
develop software using a virtual disk library that provides a set of system-call style interfaces for
managing virtual disks on ESXi hosts. For VADP it describes how to write backup and restore software
that can be managed by vCenter Server® for vSphere.

To view this version or previous versions of this book and other public VMware API and SDK
documentation, go to http://www.vmware.com/support/pubs/sdk_pubs.html.

Revision History
Table 1 summarizes the significant changes in each version of this guide.

Table 1. Revision History

Revision Description

2019-04-11 For vSphere 6.7 Update 2, minor corrections, Storage Spaces stop application quiescing.

2018-10-16 For vSphere 6.7 Update 1, enhancements to VixMntapi library on Linux, more OS support.

2018-04-17 For vSphere 6.7, async NBD, query allocated blocks, First Class Disk, vTPM, phone home.

2017-03-09 Added section to best practices about backing up and restoring encrypted virtual disks.

2017-01-11 Corrections regarding 2TB virtual disk limits, more about ESXi connections.

2016-11-15 Final version for VDDK 6.5. New support for encryption, NBDSSL compression, and VSS extensions.

2016-03-25 Removed statement that disks not associated with a virtual machine can be mounted.

2016-02-02 Fallback to NBDSSL, SCSI order for disk mount, no linked clone SAN restore, EUC non-support.

2015-07-13 Clarified connection port and RAID support, more whitelist details, added Linux freeze and thaw.

2015-05-05 Documented whitelist and blacklist for device path selection, corrected install procedures.

2014-12-26 Final version for VDDK 6.0. Virtual volumes support. SSL certificate checking now mandatory.

2014-04-08 VDDK 5.5.1 supports GPT. Snapshot quiesce and memory are incompatible. Describe VMDK version 3.

2013-11-08 Fixed several errors involving roles and licensing, physical or virtual proxy, and log level.

2013-10-14 Corrections regarding 32-bit Windows and PackageCode. Removed Reparent and Combine APIs.

2013-09-22 Final version for the vSphere 5.5 release, with new chapter on vApp backup for vCloud Director.

2012-12-21 Bug fix version of the vSphere 5.1 manual: numeric change ID policy, mount restrictions.

VMware, Inc. 9

http://www.vmware.com/support/pubs/sdk_pubs.html

Table 1. Revision History (Continued)

Revision Description

2012-10-05 Final version of this manual for the vSphere 5.1 release.

2011-11-18 Bug fix version for 4Q 2011 refresh of the VMware vSphere Documentation Center.

2011-08-22 Final version for the VDDK 5.0 release, subsuming Designing Backup Solutions technical note.

2010-10-12 Bug fix revision for the VDDK 1.2.1 release

2010-08-05 Version for vSphere 4.1 and the VDDK 1.2 public release.

2009-05-29 Final version for the VDDK 1.1 public release.

2008-04-11 Updated version for release 1.0 of the Virtual Disk Development Kit.

2008-01-31 Initial version of the Virtual Disk Development Kit for partner release.

Intended Audience
This guide is intended for developers who are creating applications that manage virtual storage,
especially backup and restore applications. It assumes knowledge of C and C++ programming. For VADP
development, this guide assumes knowledge of Java.

Supported Platform Products
You can develop VDDK programs using either Linux or Windows, and test them using VMware
Workstation or ESXi and vSphere. To develop and test VADP programs, you need a vCenter Server and
ESXi hosts, preferably with shared cluster storage.

Document Feedback
VMware welcomes your suggestions for improving our developer documentation. Send your feedback to
docfeedback@vmware.com.

VMware Technical Publications
VMware Technical Publications provides a glossary of terms that might be unfamiliar to you. For
definitions of terms as they are used in VMware technical documentation go to
http://www.vmware.com/support/pubs.

To access the current versions of VMware manuals, go to http://pubs.vmware.com/vsphere-50/index.jsp.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 10

mailto:docfeedback@vmware.com
http://www.vmware.com/support/pubs
http://pubs.vmware.com/vsphere-50/index.jsp

Introduction to the Virtual Disk
API 1
The virtual disk development kit (VDDK) is an SDK to help developers create applications that access
storage on virtual machines. The VDDK package is based on the virtual disk API, introduced in this
chapter.

The VMware Storage APIs – Data Protection (VADP) use the virtual disk API and a subset of vSphere
APIs to take snapshots of virtual machines running on ESXi, enabling full or incremental backup and
restore. VADP replaces VMware Consolidated Backup (VCB).

This chapter includes the following topics:

n About the Virtual Disk API

n VDDK Components

n Use Cases for the Virtual Disk Library

n Developing for VMware Platform Products

About the Virtual Disk API
The virtual disk API, or VixDiskLib, is a set of function calls to manipulate virtual disk files in VMDK format
(virtual machine disk). Function call semantics are patterned after C system calls for file I/O. Using the
virtual disk API, you can write programs to manage VMDK files directly from your software applications.

These library functions can manipulate virtual disks on VMware Workstation or similar products (hosted
disk) or virtual disks residing on file system volumes of an ESXi host managed by vCenter Server
(managed disk). Hosted is a term meaning that the virtualization platform and disk are hosted by a guest
operating system such as Windows or Linux.

The VDDK package installs on either Windows or Linux, so you can write VDDK and VADP applications
using either system. Applications can manipulate the virtual disks of any operating system that runs on a
supported VMware platform product. You may repackage VDDK binaries into your software application
after signing a redistribution agreement. See the VDDK Release Notes for a list of supported platform
products and development systems.

The VDDK and VADP enable you to develop applications that work effectively across multiple virtual disks
from a central location.

VMware, Inc. 11

VDDK Components
The virtual disk development kit includes the following components:

n The virtual disk library, a set of C function calls to manipulate VMDK files

n The disk mount library, a set of C function calls to remote mount VMDK file systems

n C++ code samples that can be compiled with Visual Studio or the GNU C compiler

n PDF manuals and online HTML reference

Virtual Disk Library
VixDiskLib is a standalone wrapper library to help you develop solutions that integrate into VMware
platform products. The virtual disk library has the following capabilities:

n It allows programs to create, convert, expand, defragment, shrink, and rename virtual disk files.

n It can create redo logs (parent-child disk chaining, or deltas) and it can delete VMDK files.

n It permits random read/write access to data anywhere in a VMDK file, and reads metadata.

n It can connect to remote vSphere storage using advanced transports, SAN or HotAdd.

For Windows, the virtual disk kernel-mode driver should be 64-bit. User libraries could be 32-bit because
Windows On Windows 64 can run 32-bit programs without alteration. VMware provides only 64-bit
libraries.

Disk Mount Library
The virtual disk mount library, vixMntapi, allows programmatic access of virtual disks as if they were
mounted disk partitions. For more information see Chapter 9 Virtual Disk Mount API. The vixMntapi library
is packaged in the VDDK with vixDiskLib.

Virtual Disk Utilities
The Virtual Disk Development Kit used to include two command-line utilities for managing virtual disk
files: disk mount and virtual disk manager. They were last delivered in the VDDK 5.0 release. For more
information see the old Disk Mount and Virtual Disk Manager User’s Guide, still available on the Web.

Backup and Restore on vSphere
The VMware Storage APIs – Data Protection (VADP) is a collection of APIs that are useful for developing
or extending backup software so it can protect virtual machines running on ESXi hosts in VMware based
datacenters. For more information see Chapter 7 Backing Up Virtual Disks in vSphere.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 12

Backup Design for vCloud Director
With VMware vCloud®, the self-service capabilities of vCloud Director provide three levels of data
protection. Backup providers can offer vApp protection at the system level, the tenant level, or the end-
user level. For information about vCloud data protection, see the technical note Backup Design for vCloud
Tenant vApps.

Use Cases for the Virtual Disk Library
The library provides access to virtual disks, enabling a range of use cases for application vendors
including:

n Back up a particular volume, or all volumes, associated with a virtual machine.

n Connect a backup proxy to vSphere and back up all virtual machines on a storage cluster.

n Read virtual disk and run off-line anti-virus scanning, or package analysis, of virtual machines.

n Write to virtual disk to perform off-line centralized patching of virtual machines.

n Manipulate virtual disks to defragment, expand, convert, rename, or shrink the file system image.

n Perform data recovery or virus cleaning on corrupt or infected off-line virtual machines.

Developing for VMware Platform Products
In a VMware based data center, commercial backup software is likely to access virtual disks remotely,
perhaps from a backup proxy. The proxy can be a virtual machine or a physical machine with backup-
restore software installed and access to alternate storage such as a tape autochanger or equivalent.

At a given point in time, during the backup window, backup software:

n Snapshots virtual machines in a cluster, one by one, or in parallel. Virtual machines run off the
snapshot.

n Copies the quiesced base disk, or (for incremental backup) only changed blocks, to backup media.

n Records the configuration of virtual machines.

n Reverts and deletes snapshots, so virtual machines retain any changes made during the backup
window.

In the above procedure, the virtual disk library is used in the second step only. The other steps use a
portion of the vSphere API (called VADP) to snapshot and save configuration of virtual machines. The
virtual disk in a cluster is “managed” by vSphere.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 13

http://www.vmware.com/files/pdf/techpaper/Backup-Design-for-vCloud-Tenant-vApps.pdf
http://www.vmware.com/files/pdf/techpaper/Backup-Design-for-vCloud-Tenant-vApps.pdf

Managed Disk and Hosted Disk
Analogous to a hard disk drive, virtual disk files represent the storage volumes of a virtual machine. Each
is named with .vmdk suffix. On a system running VMware Workstation, file systems of each guest OS are
kept in VMDK files hosted on the system’s physical disk. VMDK files can be accessed directly on the
host.

With the virtual machine file system (VMFS) on ESXi hosts, VMDK files again represent storage volumes
of virtual machines. They are on VMFS, which often resides on shared storage in a cluster. The vCenter
Server manages the cluster storage so it can migrate (vMotion) virtual machines from one ESXi host to
another without moving VMDK files. VMFS storage is therefore called managed disk.

VMFS disk can reside on a storage area network (SAN) attached to ESXi hosts by Fibre Channel, iSCSI,
or SAS connectors. It can also reside on network attached storage (NAS), or on directly attached disk.

Figure 1‑1 depicts the arrangement of managed disk, as VMDK files in a SAN based cluster. Figure 1‑2
depicts hosted disk on VMware Workstation, as VMDK files on physical disk.

Figure 1‑1. Managed Disk on vSphere

Figure 1‑2. Hosted Disk on Workstation

Virtual Disk Development Kit Programming Guide

VMware, Inc. 14

The VDDK supports both managed disk and hosted disk. Some functions are not supported for managed
disk, and others are not supported for hosted disk, as noted in documentation. Managed virtual disk files
larger than 2TB are supported by vSphere 5.5 and later.

Advanced Transports
With managed disk, VDDK applications can make use of advanced transports to perform many I/O
operations directly on the SAN, rather than over the LAN. This improves performance and saves network
bandwidth.

VDDK and VADP Compared
The Virtual Disk Development Kit (VDDK) includes a set of C library routines for manipulating virtual disk
(VixDiskLib) and for mounting virtual disk partitions (VixMntapi). The VDDK focuses on efficient access
and transfer of data on virtual disk storage.

The vSphere Storage APIs for Data Protection (VADP) is a marketing term for a subset of the vSphere
API that enables backup and restore applications. The snapshot-based VADP framework allows efficient,
off-host, centralized backup of virtual machine storage. After taking a snapshot to quiesce virtual disk,
software can then back up storage using VDDK library routines.

The vSphere API is an XML-based Web service that provides the interfaces for vCenter Server
management of virtual machines running on ESXi hosts.

Developers need both VDDK and VADP to write data protection software. VADP is presented in
Chapter 7 Backing Up Virtual Disks in vSphere.

Platform Product Compatibility
To support a new release of vSphere, in most cases you should update and recompile your software with
a corresponding new release of VDDK. This is because VDDK is continually updated to support new
features in vSphere. As of 5.0, the version number of VDDK matches the version number of vSphere.

Since its inception in 2008, VDDK has been backward compatible with virtual platform products such as
VMware Workstation, ESXi, and vCenter Server. VMware Fusion was never supported.

Redistributing VDDK Components
After you use the VDDK to develop software applications that run on VMware platform products, you
might need to repackage library components that are compiled into your software.

To qualify for VDDK redistribution, you must be in the VMware TAP program at Select level or above, and
sign a redistribution agreement. Contact your VMware alliance manager to request the VDDK
redistribution agreement. VMware would like to know how you use the VDDK, in what products you plan
to redistribute it, your company name, and your contact information.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 15

Installing the Development Kit 2
To develop virtual disk applications, install the VDDK as described in this chapter. For backup
applications, VADP development also requires the vSphere Web Services SDK.

This chapter includes the following topics:

n Prerequisites

n Installing the VDDK Package

Prerequisites
This section covers what you need to begin VDDK and VADP development.

Development Systems
The VDDK has been tested and is supported on the following systems:

n Windows 64-bit (x86-64) systems

n Linux 64-bit (x86-64) systems

See the VDDK Release Notes for specific versions, which change over time. Mac OS X is not supported.

Programming Environments
You can compile the sample program and develop vSphere applications in the following environments:

Visual Studio on Windows
On Windows, programmers can use the C++ compiler in Visual Studio 2005, Visual Studio 2008, and
later. Along with Visual Studio, you also need to install the 64-bit debugging tools.

C++ and C on Linux
On Linux, programmers can use the GNU C compiler, version 4 and higher. The sample program
compiles with the C++ compiler g++, but VDDK also works with the C compiler gcc.

VMware, Inc. 16

Java Development for VADP
When developing backup and restore software to run on vSphere, VMware recommends Eclipse with
Java, on both Windows and Linux. The vSphere Web Services SDK now includes both Axis and JAX-WS
bindings. You can call C or C++ code with wrapper classes, as in Java Native Interface (JNI).

VMware Platform Products
Software applications developed with the VDDK and VADP target the following platform products:

n vCenter Server managing ESXi hosts

n ESXi hosts directly connected

See the VDDK Release Notes for specific versions, which change over time.

Hosted products including VMware Workstation are neither tested nor supported.

Storage Device Support
VMware Consolidated Backup (VCB) had knowledge base article http://kb.vmware.com/kb/1007479
showing the support matrix for storage devices and multipathing. VMware does not provide a similar
support matrix for VDDK and VADP. Customers must get this information from you, their backup software
vendor.

Installing the VDDK Package
The VDDK is packaged as a compressed archive for Windows 64-bit and for Linux 64-bit. The VDDK
packages include the following components:

n Header files vixDiskLib.h and vm_basic_types.h in the include directory.

n Function library vixDiskLib.lib (Windows) or libvixDiskLib.so (Linux) in the lib directory.

n HTML reference documentation in the doc directory and sample program in doc/samples.

Note In the VDDK 5.5 release, VMware discontinued the Windows installer and 32-bit executables for
Windows and Linux. The VDDK is available for 64-bit systems only.

To install the package on Windows:

1 On the Download page, choose the .zip file for Windows and download it to your development
system.

2 Place the .zip file in a folder under Program Files – you can choose the name – and unpack it:

cd C:\Program Files\VMware\VDDK670

unzip VMware-vix-disklib-*.zip

Virtual Disk Development Kit Programming Guide

VMware, Inc. 17

3 Go to the bin subfolder, locate the vstor2install.bat script, and double-click to run it. The batch
script should be run in place so that the current directory for execution is the bin subfolder. By
running it, you implicitly accept the VMware license terms.

Note If vstor2 is already installed on a backup proxy, you should first uninstall it with
vstor2uninstall.bat (from its corresponding VDDK version) then run the new install script.

4 Edit the Windows registry with regedit and check for the following key. If this key exists from a
previous VDDK install, right-click to delete it. Add a registry entry with the following key:

HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\VMware, Inc.\VMware Virtual Disk

Development Kit

For convenience you might want to edit the Windows Path environment to include the VDDK
installation folder, C:\Program Files\VMware\VDDK550\bin in the example above.

To Install the package on Linux:

1 On the Download page, choose the binary tar.gz for 64-bit Linux.

2 Unpack the archive with tar to create the vmware-vix-disklib-distrib subdirectory.

$ tar xvzf VMware-vix-disklib-*.tar.gz

3 Change to the newly created directory to see its subdirectories:

$ cd vmware-vix-disklib-distrib; ls

bin64 doc FILES include lib32 lib64

The bin64 subdirectory contains a reporting program and virtual disk manager. License terms are in
the doc/EULA file. The sample program is under doc/samples. Header files in the include
subdirectory are for compiling your VDDK applications. Normally the lib64 components are installed
under /usr/lib, /usr/lib/vmware-vix-disklib/lib64 for instance.

4 Install components as needed. You might want to edit your LD_LIBRARY_PATH environment to include
the library installation path. Alternatively, you can add the library location to the list
in /etc/ld.so.conf and run ldconfig as the superuser.

Repackaging VDDK Libraries
After you develop an application based on VDDK, you might need the VDDK binaries to run your
application.

As described in Redistributing VDDK Components, partners can sign a license agreement to redistribute
VDDK binaries that support VADP applications.

To enable VDDK binaries on Windows virtual machines without VDDK installed

Virtual Disk Development Kit Programming Guide

VMware, Inc. 18

Procedure

1 Install the Microsoft Visual C++ (MSVC) redistributable, possibly as a merge module. The latest
MSVC runtime works as side-by-side component, so manually copying it might not work on Vista.
See details on the Microsoft Web site for the redistributable package, x86 processors or x64
processors. Side-by-side is also explained on the Microsoft Web site.

2 Install VMware executables and DLLs from the \bin and \lib folders of the installed VDDK, and the
vstor2-mntapi10.sys driver into the Windows\system\drivers folder or equivalent.

3 Create and install your application, compiled in a manner similar to the vixDiskLibSample.exe
code, discussed in Chapter 5 Virtual Disk API Sample Code.

How to Find VADP Components
ESXi hosts and vCenter Server similarly implement managed objects that support inventory traversal and
task requests. Before you write VADP software in Java, you need to download the vSphere Web Services
SDK. You can find documentation and ZIP file for download on the VMware Web site.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 19

Virtual Disk Interfaces 3
VMware offers many options for virtual disk layout, encapsulated in library data structures described here.

This chapter includes the following topics:

n VMDK File Location

n Virtual Disk Types

n Data Structures in Virtual Disk API

n Virtual Disk Transport Methods

VMDK File Location
On ESXi hosts, virtual machine disk (VMDK) files are usually located under one of the /vmfs/volumes,
perhaps on shared storage. Storage volumes are visible from the vSphere Client, in the inventory for
hosts and clusters. Typical names are datastore1 and datastore2. To see a VMDK file, click Summary
> Resources > Datastore, right-click Browse Datastore, and select a virtual machine.

On Workstation, VMDK files are stored in the same directory with virtual machine configuration (VMX)
files, for example /path/to/disk on Linux or C:\My Documents\My Virtual Machines on Windows.

VMDK files store data representing a virtual machine’s hard disk drive. Almost the entire portion of a
VMDK file is the virtual machine’s data, with a small portion allotted to overhead.

Virtual Disk Types
The following disk types are defined in the virtual disk library:

n VIXDISKLIB_DISK_MONOLITHIC_SPARSE – Growable virtual disk contained in a single virtual disk file.
This is the default type for hosted disk, and the only setting in the Chapter 5 Virtual Disk API Sample
Code sample program.

n VIXDISKLIB_DISK_MONOLITHIC_FLAT – Preallocated virtual disk contained in a single virtual disk
file. This takes time to create and occupies a lot of space, but might perform better than sparse.

n VIXDISKLIB_DISK_SPLIT_SPARSE – Growable virtual disk split into 2GB extents (s sequence).
These files can to 2GB, then continue growing in a new extent. This type works on older file systems.

VMware, Inc. 20

n VIXDISKLIB_DISK_SPLIT_FLAT – Preallocated virtual disk split into 2GB extents (f sequence).
These files start at 2GB, so they take a while to create, but available space can grow in 2GB
increments.

n VIXDISKLIB_DISK_VMFS_FLAT – Preallocated virtual disk compatible with ESX 3 and later. Also
known as thick disk. This managed disk type is discussed in Managed Disk and Hosted Disk.

n VIXDISKLIB_DISK_VMFS_SPARSE – Employs a copy-on-write (COW) mechanism to save storage
space.

n VIXDISKLIB_DISK_VMFS_THIN – Growable virtual disk that consumes only as much space as
needed, compatible with ESX 3 or later, supported by VDDK 1.1 or later, and highly recommended.

n VIXDISKLIB_DISK_STREAM_OPTIMIZED – Monolithic sparse format compressed for streaming.
Stream optimized format does not support random reads or writes.

Persistence Disk Modes
In persistent disk mode, changes are immediately and permanently written to the virtual disk, so that they
survive even through to the next power on.

In nonpersistent mode, changes to the virtual disk are discarded when the virtual machine powers off.
The VMDK files revert to their original state.

The virtual disk library does not encapsulate this distinction, which is a virtual machine setting.

VMDK File Naming
Table 3‑1 explains the different types of virtual disk. The first column corresponds to Virtual Disk Types
but without the VIXDISKLIB_DISK prefix. The third column gives the possible names of VMDK files as
implemented on Workstation and ESXi hosts.

Note When you open a VMDK file with the virtual disk library, always open the one that points to the
others, not the split or flat sectors. The file to open is most likely the one with the shortest name.

For information about other virtual machine files, see section “Files that Make Up a Virtual Machine” in the
VMware Workstation User’s Manual. On ESXi hosts, VMDK files are type VMFS_FLAT or VMFS_THIN.

Table 3‑1. VMDK Virtual Disk Files

Disk Type in API Virtual Disk Creation on VMware Host Filename on Host

MONOLITHIC_SPARSE
In Select A Disk Type, accepting the defaults by not checking any box
produces one VMDK file that can grow larger if more space is needed.
The <vmname> represents the name of a virtual machine.

On VMFS partitions, this is name of the disk descriptor file.

<vmname>.vmdk

MONOLITHIC_FLAT
or VMFS_FLAT
or VMFS_THIN

If you select only the Allocate all disk space now check box, space is
pre-allocated, so the virtual disk cannot grow. The first VMDK file is
small and points to a much larger one, whose filename says flat
without a sequence number.

Similarly on VMFS partitions, this is the virtual disk file that points to
virtual disk data files, either thick or thin provisioned.

<vnname>-flat.vmdk

Virtual Disk Development Kit Programming Guide

VMware, Inc. 21

Table 3‑1. VMDK Virtual Disk Files (Continued)

Disk Type in API Virtual Disk Creation on VMware Host Filename on Host

SPLIT_SPARSE If you select only the Split disk into 2GB files check box, virtual disk
can grow when more space is needed. The first VMDK file is small and
points to a sequence of other VMDK files, all of which have an s before
a sequence number, meaning sparse. The number of VMDK files
depends on the disk size requested. As data grows, more VMDK files
are added in sequence.

<vmname>-s<###>.vmdk

SPLIT_FLAT If you select the Allocate all disk space now and Split disk into 2GB
files check boxes, space is pre-allocated, so the virtual disk cannot
grow. The first VMDK file is small and points to a sequence of other
files, all of which have an f before the sequence number, meaning flat.
The number of files depends on the requested size.

<vnname>-f<###>.vmdk

MONOLITHIC_SPARSE

or SPLIT_SPARSE
snapshot

A redo log (or child disk or delta link) is created when a snapshot is
taken of a virtual machine, or with the virtual disk library. Snapshot file
numbers are in sequence, without an s or f prefix. The numbered
VMDK file stores changes made to the virtual disk <diskname> since
the original parent disk, or previously numbered redo log (in other
words the previous snapshot).

<diskname>-<###>.vmdk

SE_SPARSE Space-efficient sparse (seSparse) format. In vSphere 5.1 and later,
used by VMware View to optimize linked clone templates. In the
vSphere API, see data object SeSparseVirtualDiskSpec. Use of
seSparse as a base disk is neither documented nor supported.

n/a Snapshot of a virtual machine, which includes pointers to all its .vmdk
virtual disk files.

<vnname>Snapshot.vmsn

For lazy zeroed thick disk, all blocks are allocated, and data written to used blocks, however unused
blocks are left as-is, so they may contain data from previous use. Many storage systems will zero-out
unused blocks in the background. With eager zeroed thick disk, unused blocks are zeroed-out at
allocation time.

Thin Provisioned Disk
With thin provisioned disk, the vSphere Client may report that provisioned size is greater than disk
capacity.

Provisioned size for a thin disk is the maximum size the disk will occupy when fully allocated. Actual size
is the current size of the thin disk. Overcommit means that if all thin disks were fully provisioned, there
would not be enough space to accommodate all of the thin disks.

Internationalization and Localization
VDDK libraries are not localized, but backup partners can support any locale that uses UTF-8 encoding.
Other than Unicode, VDDK does not support multibyte character encodings such as Extended Unix Code
(EUC) for Chinese, Japanese, and Korean (ISO-2022).

Virtual Disk Development Kit Programming Guide

VMware, Inc. 22

The path name to a virtual machine and its VMDK can be expressed with any character set supported by
the host file system. As of vSphere 4 and Workstation 7, VMware supports Unicode UTF-8 path names,
although for portability to various locales, ASCII-only path names are recommended.

Windows 2000 systems (and later) use UTF-16 for localized path names. For example, in locale FR
(Français) the VDDK sample code might mount disk at C:\Windows\Temp\vmware-Système, where è is
encoded as UTF-16 so the VixMntapi library cannot recognize it. In this case, a workaround is to set the
tmpDirectory configuration key with an ASCII-only path before program start-up; see Initialize the
Library.

For programs opening arbitrary path names, Unicode offers a GNU library with C functions
iconv_open() to initialize codeset conversion, and iconv() to convert UTF-8 to UTF-16, or UTF-16 to
UTF-8.

Virtual Disk Internal Format
The Virtual Disk Format 5.0 technical note provides possibly useful information about the VMDK format,
and is available at this URL:

http://www.vmware.com/support/developer/vddk/vmdk_50_technote.pdf

Grain Directories and Grain Tables
SPARSE type virtual disks use a hierarchical representation to organize sectors. See Virtual Disk Format
5.0 referenced in Virtual Disk Internal Format. In this context, grain means granular unit of data, larger
than a sector. The hierarchy includes:

n Grain directory (and redundant grain directory) whose entries point to grain tables.

n Grain tables (and redundant grain tables) whose entries point to grains.

n Each grain is a block of sectors containing virtual disk data. Default size is 128 sectors or
64KB.

Data Structures in Virtual Disk API
Here are important data structure objects with brief descriptions:

n VixError – Error code of type uint64.

n VixDiskLibConnectParams – Public types designate the virtual machine credentials vmxSpec
(possibly through vCenter Server), the name of its host, and the credential type for authentication. For
details, see VMX Specification. The credType can be VIXDISKLIB_CRED_UID (user name /
password, most common), VIXDISKLIB_CRED_SESSIONID (the HTTP session ID),
VIXDISKLIB_CRED_TICKETID (vSphere ticket ID), or VIXDISKLIB_CRED_SSPI (Windows only,
current thread credentials).

typedef char * vmxSpec

typedef char * serverName

typedef VixDiskLibCredType credType

Virtual Disk Development Kit Programming Guide

VMware, Inc. 23

n VDDK 6.7 has a new union in the VixDiskLibConnectParams structure; see First Class Disk (FCD)
Backup.

n VixDiskLibConnectParams::VixDiskLibCreds – Credentials for either user ID or session ID.

VixDiskLibConnectParams::VixDiskLibCreds::VixDiskLibUidPasswdCreds – String data
fields represent user name and password for authentication.

VixDiskLibConnectParams::VixDiskLibCreds::VixDiskLibSessionIdCreds – String data
fields represent the session cookie, user name, and encrypted session key.

VixDiskLibConnectParams::VixDiskLibCredsb::VixDiskLibSSPICreds – String data fields for
security support provider interface (SSPI) authentication. User name and password are null.

n VixDiskLibCreateParams – Types represent the virtual disk (see Virtual Disk Types), the disk
adapter (see Adapter Types), VMware version, and capacity of the disk sector.

typedef VixDiskLibDiskType diskType

typedef VixDiskLibAdapterType adapterType

typedef uint hwVersion

typedef VixDiskLibSectorType capacity

n VixDiskLibDiskInfo – Types represent the geometry in the BIOS and physical disk, the capacity of
the disk sector, the disk adapter (see Adapter Types), the number of child-disk links (redo logs), and a
string to help locate the parent disk (state before redo logs).

VixDiskLibGeometry biosGeo

VixDiskLibGeometry physGeo

VixDiskLibSectorType capacity

VixDiskLibAdapterType adapterType

int numLinks

char * parentFileNameHint

n VixDiskLibGeometry – Types specify virtual disk geometry, not necessarily the same as physical
disk geometry.

typedef uint32 cylinders

typedef uint32 heads

typedef uint32 sectors

Credentials and Privileges for VMDK Access
Local operations are supported by local VMDK. Access to ESXi hosts is authenticated by login
credentials, so with proper credentials VixDiskLib can reach any VMDK on an ESXi host. VMware
vSphere has its own set of privileges, so with the proper privileges (see below) and login credentials,
VixDiskLib can reach any VMDK on an ESXi host managed by vCenter Server. VixDiskLib supports the
following:

n Both read-only and read/write modes

n Read-only access to disk associated with any snapshot of online virtual machines

Virtual Disk Development Kit Programming Guide

VMware, Inc. 24

n Access to VMDK files of offline virtual machines (vCenter restricted to registered virtual machines)

n Reading of Microsoft Virtual Hard Disk (VHD) format

With vCenter Server, the Role of the backup appliance when saving data must have these privileges for
all the virtual machines being backed up:

n VirtualMachine > Configuration > Disk change tracking

n VirtualMachine > Provisioning > Allow read-only disk access and Allow VM download

n VirtualMachine > State > Create snapshot and Remove snapshot

On the backup appliance, the user must have the following privileges:

n Datastore > Allocate space

n VirtualMachine > Configuration > Add new disk and Remove disk

n VirtualMachine > Configuration > Change resource and Settings

The user must have this privilege for vCenter Server and all ESXi hosts involved in backup:

n Global > DisableMethods and EnableMethods

If privileges are not applied at the vCenter Server level, the returned error message is somewhat
misleading: “The host is not licensed for this feature.”

Adapter Types
The library can select the following adapters:

n VIXDISKLIB_ADAPTER_IDE – Virtual disk acts like ATA, ATAPI, PATA, SATA, and so on. You might
select this adapter type when it is specifically required by legacy software.

n VIXDISKLIB_ADAPTER_SCSI_BUSLOGIC – Virtual SCSI disk with Buslogic adapter. This is the default
on some platforms and is usually recommended over IDE due to higher performance.

n VIXDISKLIB_ADAPTER_SCSI_LSILOGIC – Virtual SCSI disk with LSI Logic adapter. Windows Server
2003 and most Linux virtual machines use this type by default. Performance is about the same as
Buslogic.

Virtual Disk Transport Methods
VMware supports file-based or image-level backups of virtual machines hosted on an ESXi host with SAN
or NAS storage. Virtual machines read data directly from a shared VMFS LUN, so backups are efficient
and do not put significant load on production ESXi hosts or the virtual network.

VMware offers interfaces for integration of storage-aware applications, including backup, with efficient
access to storage clusters. Developers can use VDDK advanced transports, which provide efficient I/O
methods to maximize backup performance. VMware supports four access methods: local file, NBD
(network block device) over LAN, NBD with SSL encryption (NBDSSL), SAN, and SCSI HotAdd.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 25

Local File Access
The virtual disk library can read virtual disk data from /vmfs/volumes on ESXi hosts, or from the local
file system on hosted products. This file access method is built into VixDiskLib, so it is always available on
local storage. However it is not a network transport method, and is seldom used for vSphere backup.

SAN Transport
SAN mode requires applications to run on a backup server with access to SAN storage (Fibre Channel,
iSCSI, or SAS connected) containing the virtual disks to be accessed. As shown in the figure below, this
method is efficient because no data needs to be transferred through the production ESXi host. A SAN
backup proxy must be a physical machine. If it has optical media or tape drive connected, backups can
be made entirely LAN-free.

Figure 3‑1. SAN transport mode for backup

Fibre Channel/
iSCSI storage

VMFS

LAN

Cluster Storage

ESXi host

VMware
Tools

Virtual machine

Backup server

Application

Virtual Disk
API

Virtual disk

In SAN transport mode, the virtual disk library obtains information from an ESXi host about the layout of
VMFS LUNs, and using this information, reads data directly from the storage LUN where a virtual disk
resides. This is the fastest transport method for software deployed on SAN-connected ESXi hosts.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 26

In general, SAN transport works with any storage device that appears at the driver level as a LUN (as
opposed to a file system such as NTFS or EXT). SAN mode must be able to access the LUN as a raw
device. The real key is whether the device behaves like a direct raw connection to the underlying LUN.
SAN transport is supported in Fibre Channel, iSCSI, and SAS based storage arrays (SAS means serial
attached SCSI). SAN storage devices can contain SATA drives, but currently there are no SATA
connected SAN devices on the VMware hardware compatibility list.

SAN transport is not supported for backup or restore of virtual machines residing on VVol datastores.

VMware vSAN, a network based storage solution with direct attached disks, does not support SAN
transport. Because vSAN uses modes that are incompatible with SAN transport, if the virtual disk library
detects the presence of vSAN, it disables SAN mode. Other advanced transports do work.

HotAdd Transport
HotAdd is a VMware feature where devices can be added “hot” while a virtual machine is running.
Besides SCSI disk, virtual machines can add additional CPUs and memory capacity.

HotAdd is a good way to get virtual disk data from a virtual machine to a backup appliance (or backup
proxy) for sending to the media server. The attached HotAdd disk is shown in the figure below.

Figure 3‑2. HotAdd transport mode for backup

Shared storage

VMFS

LAN

Shared storage
network

ESXi host

VMware
Tools

Virtual machine

ESXi host

VMware
Tools

Virtual machine

Backup proxy
Virtual appliance

Application

Virtual disk
API

Virtual disk

SCSI HotAdd

VMFS

Virtual disk

Virtual Disk Development Kit Programming Guide

VMware, Inc. 27

Running the backup proxy as a virtual machine has two advantages: it is easy to move a virtual machine
to a new media server, and it can back up local storage without using the LAN, although this incurs more
overhead on the physical ESXi host than when using SAN transport mode.

If backup software runs in a virtual appliance, it can take a snapshot and create a linked clone of the
target virtual machine, then attach and read the linked clone’s virtual disks for backup. This involves a
SCSI HotAdd on the ESXi host where the target VM and backup proxy are running. Virtual disks of the
linked clone are HotAdded to the backup proxy. The target virtual machine continues to run during
backup.

VixTransport handles the temporary linked clone and hot attachment of virtual disks. VixDiskLib opens
and reads the HotAdded disks as a “whole disk” VMDK (virtual disk on the local host). This strategy works
only on virtual machines with SCSI disks and is not supported for backing up virtual IDE disks. HotAdd
transport also works with virtual machines stored on NFS partitions.

About the HotAdd Proxy
The HotAdd backup proxy must be a virtual machine. HotAdd involves attaching a virtual disk to the
backup proxy, like attaching disk to a virtual machine. In typical implementations, a HotAdd proxy backs
up either Windows or Linux virtual machines, but not both. For parallel backup, sites can deploy multiple
proxies.

The HotAdd proxy must have access to the same datastore as the target virtual machine, and the VMFS
version and data block sizes for the target VM must be the same as the datastore where the HotAdd
proxy resides.

If the HotAdd proxy is a virtual machine that resides on a VMFS-3 volume, choose a volume with block
size appropriate for the maximum virtual disk size of virtual machines that customers want to back up, as
shown in Table 3‑2. This caveat does not apply to VMFS-5 volumes, which always have 1MB file block
size. As of vSphere 6.7, VMFS-3 is no longer supported.

Table 3‑2. VMFS-3 Block Size for HotAdd Backup Proxy

VMFS-3 Block Size Maximum Target Disk Size

1MB (also for VMFS-5) 256GB (as of vSphere 5.5, 62TB)

2MB 512GB

4MB 1024GB

8MB 2048GB

NBDSSL Transport
When no other transport is available, networked storage applications can use LAN transport for data
access, with NBD (network block device) protocol, optionally with SSL encryption, called NBDSSL. NBD
is a Linux-style kernel module that treats storage on a remote host as a block device. NBDSSL is a
VMware variant that uses SSL to encrypt all data passed over the TCP connection. The NBDSSL
transport method is built into the virtual disk library, so it is always available, and is the fall-back when no
other transport method is available.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 28

VMware libraries often fall back to NBDSSL when other transports are not available. Backup applications
can select NBD for higher throughput.

Figure 3‑3. NBDSSL transport mode for backup

Local storage

VMFS

LAN

ESXi host

VMware
Tools

Virtual machine

Backup server

Application

Virtual disk
API

Virtual disk

In this mode, the ESXi host reads data from storage and sends it across a network to the backup server.
With LAN transport, large virtual disks can take a long time to transmit. This transport mode adds traffic to
the LAN, unlike SAN and HotAdd transport, but NBDSSL transport offers the following advantages:

n The ESXi host can use any storage device, including local storage or remote-mounted NAS.

n The backup proxy can be a virtual machine, so customers can use vSphere resource pools to
minimize the performance impact of backup. For example, the backup proxy can be in a lower-priority
resource pool than the production ESXi hosts.

When VDDK opens a non-snapshot disk for NBDSSL transfer (read-only or read/write) it selects the ESXi
host where the disk’s virtual machine currently resides.

However when VDDK opens a snapshot for NBDSSL transfer, the common backup case, VDDK passes
the datastore to vCenter Server, which consults its list of ESXi hosts with access to the datastore; vCenter
picks the first host with read/write access. The list of hosts is unordered, so the host chosen for NBDSSL
transfer of the snapshot is not necessarily the ESXi host where the snapshot’s virtual machine resides.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 29

NBDSSL Performance
When reading disk data using NBDSSL transport, VDDK makes synchronous calls. That is, VDDK
requests a block of data and waits for a response. The block is read from disk and copied into a buffer on
the server side, then sent over the network. Meanwhile, no data gets copied over the network, adding to
wait time. To some extent, you can overcome this limitation by using multiple streams to simultaneously
read from a single disk or multiple disks, taking advantage of parallelism.

As of vSphere 6.5, NBDSSL performance can be significantly improved using data compression. Three
types are available – zlib, fastlz, and skipz – specified as flags when opening virtual disks with the
extended VixDiskLib_Open() call. See Open a Local or Remote Disk.

Asynchronous Mode NBDSSL
As of vSphere 6.7, asynchronous I/O for NBDSSL transport mode is available. Performance of NBDSSL
mode data transfer can be improved with this option.

To implement asynchronous NBDSSL, use the new functions VixDiskLib_ReadAsync and
VixDiskLib_WriteAsync in a callback, followed by VixDiskLib_Wait, to replace the VixDiskLib read
and write functions. In the development kit, see vixDiskLibSample.cpp for code examples, following
logic for the -readasyncbench and -writeasyncbench options.

VDDK has had non-public asynchronous APIs since VDDK 6.0, but behavior is different in earlier
releases. File transport mode is synchronous in all releases.

Table 3‑3. Asynchronous read and write

VDDK 6.0 VDDK 6.5 6.7

VixDiskLib_ReadAsync Always synchronous. Same as 6.0. For HotAdd and SAN modes,
same as 6.0 and 6.5.

NBDSSL mode is
asynchronous if the ESXi host
supports asynchronous NBD.

VixDiskLib_WriteAsync For HotAdd and NBDSSL
modes, always synchronous.

For SAN mode, the API is
asynchronous. A thread
handles writes one by one in
the back-end, so outstanding
I/O is always 1.

Same as 6.0. For HotAdd and SAN modes,
same as 6.0 and 6.5.

NBDSSL mode is
asynchronous if the ESXi host
supports asynchronous NBD,
as does ESXi 6.7.

NFC Session Limits and Timeouts
NBDSSL employs the network file copy (NFC) protocol. Table 3‑4 shows limits on the number of
connections for various host types. These are host limits, not per process limits. Additionally vCenter
Server imposes a limit of 52 connections. VixDiskLib_Open() uses one connection for every virtual disk
that it accesses on an ESXi host. Clone with VixDiskLib_Clone() also requires a connection. It is not
possible to share a connection across physical disks. These NFC session limits do not apply to SAN or
HotAdd transport.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 30

Table 3‑4. NFC Session Connection Limits

Host Platform When Connecting Limits You To About

vSphere 3.5 to an ESX host 9 connections directly, 27 connections through vCenter Server

vSphere 4.x to an ESXi host 11 connections directly, 23 connections through vCenter Server

vSphere 5.x to an ESXi host or
vCenter Server

Limited by a transfer buffer for all NFC connections, enforced by the host; the sum of
all NFC connection buffers to an ESXi host cannot exceed 32MB.

52 connections through vCenter Server, including the above per-host limit.

vSphere 6.x to an ESXi host or
vCenter Server

The sum of all NFC connection buffers cannot exceed 48MB by default. ESXi hostd
limit can be changed with config.xml but vCenter is not configurable.

With 1MB buffers per I/O stream, 48 requests can be concurrent.

The InitEx configuration file parameter vixDiskLib.nfc.ReadTimeoutMs indicates the preferred
connection timeout for backup and restore operations, and has the effect of influencing TCP keep-alive
time when no reads occur, which they do not during prolonged restores. If the ReadTimeoutMs value is
set higher than the TCP keep-alive time on the network, then a connection timeout could occur.

For example, if the configuration file sets ReadTimeoutMs flag to 3600000 milliseconds (60 minutes)
instead of accepting the default (varies from 6 to 45 seconds) then a TCP keep-alive packet transmits
only after 60 minutes. If restoring a virtual disk takes longer, leaving network read activity idle for 60
minutes, the connection could break so subsequent restores fail.

SSL Certificates and Security
The VDDK 5.1 release and later were security hardened, with virtual machines set to check SSL
certificates.

On Windows VDDK 5.1 and 5.5 required the VerifySSLCertificates and InstallPath registry keys under
HKEY_LOCAL_MACHINE\SOFTWARE to check SSL certificates. On Linux VDDK 5.1 and 5.5 required adding
a line to the VixDiskLib_InitEx configuration file to set linuxSSL.verifyCertificates = 1.

As of VDDK 6.0 both SSL certificate verification and SSL thumbprint checking are mandatory and cannot
be disabled. The Windows registry and Linux SSL setting are no longer checked, so neither has any
effect.

Specifically VDDK 6.0 and later use X.509 certificates with TLS cryptography, replacing SSLv3.

The following library functions enforce SSL certificate checking: InitEx, PrepareForAccess,
EndAccess, GetNfcTicket, and the GetRpcConnection interface that is used by all advanced
transports. SSL verification may use thumbprints to check if two certificates are the same. The vSphere
thumbprint is a cryptographic hash of a certificate obtained from a trusted source such as vCenter Server,
and passed in the SSLVerifyParam structure of the NFC ticket.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 31

Virtual Disk API Functions 4
This chapter provides an overview of functions in the Virtual Disk API and includes the following sections:

After a presentation of Virtual Disk API functions in alphabetic order, sections focus on what the functions
do, in the normal order they would appear in a program, except advanced transport functions (SAN and
HotAdd) appear after the shutdown functions.

This chapter includes the following topics:
n Virtual Disk Library Functions

n Start Up

n Disk Operations

n Metadata Handling

n Disk Chaining and Redo Logs

n Cloning a Virtual Disk

n Error Handling

n Administrative Disk Operations

n Shut Down

n Advanced Transport APIs

n Ordering of Function Calls in Sequence

n Updating Applications for Advanced Transport

n Multithreading Considerations

n Capabilities of Library Calls

Virtual Disk Library Functions
You can find the VixDiskLib API Reference by using a Web browser to open the doc/index.html file in
the VDDK software distribution. As in most reference manuals, functions are organized alphabetically,
whereas in this chapter, functions are ordered by how they might be called.

When the API reference says that a function supports “only hosted disks,” it means virtual disk images
hosted by VMware Workstation or similar products. Virtual disk stored on VMFS partitions managed by
ESXi or vCenter Server is called “managed disk.”

VMware, Inc. 32

The functions described in this chapter are based on concepts and employ data structures documented in
Chapter 3 Virtual Disk Interfaces.

If the library accesses virtual disk on VMFS, I/O by default goes through the ESXi host, which manages
physical disk storage. To use function calls that provide direct access to SAN storage, start your program
by calling the VixDiskLib_ConnectEx() function, as described in Advanced Transport APIs.

Alphabetic Table of Functions
Function calls in the Virtual Disk API are listed alphabetically in Table 4‑1.

Table 4‑1. Virtual Disk API Functions

Function Description

VixDiskLib_Attach Attach the child disk chain to the parent disk chain.

VixDiskLib_Cleanup Remove leftover transports. See Clean Up After Disconnect.

VixDiskLib_Clone Copy virtual disk to some destination, converting formats as appropriate.

VixDiskLib_Close Close an open virtual disk. See Close a Local or Remote Disk.

VixDiskLib_Connect Connect to the virtual disk library to obtain services. See also ConnectEx.

VixDiskLib_ConnectEx Connect to optimum transport. See Connect to VMware vSphere

VixDiskLib_Create Create a virtual disk according to specified parameters.

VixDiskLib_CreateChild Create a child disk (redo log or delta link) for a hosted virtual disk.

VixDiskLib_Defragment Defragment the sectors of a virtual disk.

VixDiskLib_Disconnect Disconnect from the library. See Disconnect from Server.

VixDiskLib_EndAccess Notify a host that it may again relocate a virtual machine. See Prepare For Access and End
Access.

VixDiskLib_Exit Release all resources held by the library. See Clean Up and Exit.

VixDiskLib_Flush Flush asynchronous write data to disk. Replaced by Wait function.

VixDiskLib_FreeErrorText Free the message buffer allocated by GetErrorText.

VixDiskLib_FreeInfo Free the memory allocated by GetInfo.

VixDiskLib_GetErrorText Return the text description of a library error code.

VixDiskLib_GetInfo Retrieve information about a virtual disk.

VixDiskLib_GetMetadataKeys Retrieve all keys in the metadata of a virtual disk.

VixDiskLib_GetTransportMode Get the current transport mode. See Get Selected Transport Method.

VixDiskLib_Grow Increase size of an existing virtual disk.

VixDiskLib_Init Initialize the old virtual disk library. Replaced by InitEx function.

VixDiskLib_InitEx Initialize new virtual disk library. See Initialize Virtual Disk API.

VixDiskLib_ListTransportMod

es

Available transport modes. See List Available Transport Methods.

VixDiskLib_Open Open a virtual disk. See Open a Local or Remote Disk.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 33

Table 4‑1. Virtual Disk API Functions (Continued)

Function Description

VixDiskLib_PrepareForAccess Notify a host to refrain from relocating a virtual machine. See Prepare For Access and End
Access.

VixDiskLib_Read Read from an open virtual disk. See Read Sectors From a Disk.

VixDiskLib_ReadAsync Asynchronously read a range of sectors.

VixDiskLib_ReadMetadata Retrieve the value of a given key from disk metadata.

VixDiskLib_Rename Change the name of a virtual disk.

VixDiskLib_Shrink Reclaim blocks of zeroes from the virtual disk.

VixDiskLib_SpaceNeededForCl

one

Compute the space required to clone a virtual disk, in bytes.

VixDiskLib_Unlink Delete the specified virtual disk.

VixDiskLib_Wait Wait for all asynchronous operations to complete.

VixDiskLib_Write Write to an open virtual disk. See Write Sectors To a Disk.

VixDiskLib_WriteAsync Asynchronously write a range of sectors.

VixDiskLib_WriteMetadata Update virtual disk metadata with the given key/value pair.

Start Up
The VixDiskLib_Init() and VixDiskLib_Connect() functions must appear in all virtual disk
programs.

VixDiskLib_Init() has been superseded by VixDiskLib_InitEx(). See Initialize Virtual Disk API.

Initialize the Library
VixDiskLib_Init() initializes the old virtual disk library. The arguments majorVersion and
minorVersion represent the VDDK library’s release number and dot-release number. The optional third,
fourth, and fifth arguments specify log, warning, and panic handlers. DLLs and shared objects may be
located in libDir.

VixError vixError = VixDiskLib_Init(majorVer, minorVer, &logFunc, &warnFunc, &panicFunc, libDir);

You should call VixDiskLib_Init() only once per process because of internationalization restrictions, at
the beginning of your program. You should call VixDiskLib_Exit() at the end of your program for
cleanup. For multithreaded programs you should write your own logFunc because the default function is
not thread safe.

In most cases you should replace VixDiskLib_Init() with VixDiskLib_InitEx(), which allows you to
specify a configuration file. For information about InitEx, see Initialize Virtual Disk API.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 34

Connect to a Workstation or Server
VixDiskLib_Connect() connects the library to either a local VMware host or a remote server. For
hosted disk on the local system, provide null values for most connection parameters. For managed disk
on vSphere, specify virtual machine name, vCenter Server or ESXi host, user name, password, and port
number.

vixError = VixDiskLib_Connect(&cnxParams, &srcConnection)

Always call VixDiskLib_Disconnect() before the end of your program.

Calling vixDiskLib_Disconnect() invalidates any open file handles, so if you use the VixMntapi library,
call VixMntApi_CloseDiskSet() before calling disconnect.

You can opt to use the VixDiskLibSSPICreds connection parameter to enable Security Support Provider
Interface (SSPI) authentication. SSPI has the advantage of not storing plain text passwords in
configuration files or in the registry. In order to be able to use SSPI, the following conditions must be met:

n Connections must be made directly to a vCenter Server instance.

n Applications and their connections must employ one of two user account arrangements. The
connection must be established either using the same user context with the same user name and
password credentials on both the proxy and the vSphere Server, or using a domain user. Attempts by
applications to establish connections using the Local System account context will fail.

n User contexts must have administrator privileges on the proxy and have VCB Backup User role
assigned in vSphere (by the vCenter Server).

If your setup meets all these conditions, you can enable SSPI authentication by setting USERNAME to
__sspi__. For SSPI, the password must be set, but it is ignored. It can be set to "" (null string).

VMX Specification
On VMware platform products, .vmx is a text file (usually located in the same directory as virtual disk
files) specifying virtual machine configuration. The Virtual Machine eXecutable (VMX) process is the user-
space component (or “world”) of a virtual machine. The virtual disk library connects to virtual machine
storage through the VMX process.

When specifying connection parameters (see Data Structures in Virtual Disk API) the preferred syntax for
vmxSpec is as follows:

n Managed object reference of the virtual machine, an opaque object that you obtain programmatically
using the PropertyCollector managed object:

moRef=<moref-of-vm>

Virtual Disk Development Kit Programming Guide

VMware, Inc. 35

The moRef of a virtual machine or disk snapshot on an ESXi host is likely different than the moRef of
the same virtual machine or disk snapshot as managed by vCenter Server. Here are two example
moRef specifications, one for ESXi and one for vCenter Server, both referring to the same snapshot:

moref=153

moref=271

Disk Operations
These functions create, open, read, write, query, and close virtual disk.

Create a New Hosted Disk
VixDiskLib_Create() locally creates a new virtual disk, after being connected to the host. In
createParams, you must specify the disk type, adapter, hardware version, and capacity as a number of
sectors. This function supports hosted disk. For managed disk, first create a hosted type virtual disk, then
use VixDiskLib_Clone() to convert the virtual disk to managed disk.

vixError =

VixDiskLib_Create(appGlobals.connection, appGlobals.diskPath, &createParams, NULL, NULL);

Currently VixDiskLib_Create() enforces a 4GB limit for virtual disks on FAT32 and FAT file systems, a
16TB - 54KB (hex FFFFFFF0000) limit on NTFS file systems, and a 2^64 - 1 limit (more than an exabyte)
on ReFS and exFAT file systems. Hosted virtual disk > 2TB is not supported.

POSIX based file systems including NFS version 3 no longer have a 2GB file size limit. Although various
checks are done to avoid creating impossibly large files, it becomes the customer’s responsibility to cope
with 2GB limits on NFS version 2 or Linux kernel 2.4 (EFS).

Open a Local or Remote Disk
After the library connects to a workstation or server, VixDiskLib_Open() opens a virtual disk. With SAN
or HotAdd transport, opening a remote disk for writing requires a pre-existing snapshot.

vixError =

VixDiskLib_Open(appGlobals.connection, appGlobals.diskPath, appGlobals.openFlags, &srcHandle);

The following flags modify the open instruction:

n VIXDISKLIB_FLAG_OPEN_UNBUFFERED – Disable host disk caching.

n VIXDISKLIB_FLAG_OPEN_SINGLE_LINK – Open the current link, not the entire chain (hosted disk
only).

n VIXDISKLIB_FLAG_OPEN_READ_ONLY – Open the virtual disk read-only.

As of vSphere 6.5, the following additional flags are available:

n VIXDISKLIB_FLAG_OPEN_COMPRESSION_ZLIB – Open for NBDSSL transport, zlib compression.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 36

n VIXDISKLIB_FLAG_OPEN_COMPRESSION_FASTLZ – Open for NBDSSL transport, fastlz
compression.

n VIXDISKLIB_FLAG_OPEN_COMPRESSION_SKIPZ – Open for NBDSSL transport, skipz compression.

Read Sectors From a Disk
VixDiskLib_Read() reads a range of sectors from an open virtual disk. You specify the beginning sector
and the number of sectors. Sector size could vary, but is defined in <vixDiskLib.h> as 512 bytes
because VMDK files have that sector size.

vixError = VixDiskLib_Read(srcHandle, i, j, buf);

In vSphere 6.7 and later, you can improve performance of NBD transport with asynchronous reads.
Asynchronous calls may be used for all transport modes, because they fall back to synchronous as
needed.

// customized callback for complete notification

void myDiskLibCompletion(void *cbData, VixError result);

// a loop for multiple read requests

for (...)

 vixError = VixDiskLib_ReadAsync(srcHandle, i, j, buf, myDiskLibCompletion, cbData);

 if (vixError != VIX_ASYNC) {

 // handle error

 }

}

VixDiskLib_Wait(srcHandle); // wait ror all async read to complete

Write Sectors To a Disk
VixDiskLib_Write() writes one or more sectors to an open virtual disk. This function expects the fourth
parameter buf to be VIXDISKLIB_SECTOR_SIZE bytes long.

vixError = VixDiskLib_Write(newDisk.Handle(), i, j, buf);

In vSphere 6.7 and later, you can improve performance of NBD transport with asynchronous writes. Your
program VixDiskLib_WriteAsync in a loop, then calls VixDiskLib_Wait to let all asynchronous writes
complete.

// customized callback for complete notification

void myDiskLibCompletion(void *cbData, VixError result);

// a loop for multiple write requests

for (...)

 vixError = VixDiskLib_WriteAsync(newDisk.Handle(), i, j, buf, myDiskLibCompletion, cbData);

 if (vixError != VIX_ASYNC) {

 // handle error

 }

}

VixDiskLib_Wait(newDisk.Handle()); // wait for async write to complete

Virtual Disk Development Kit Programming Guide

VMware, Inc. 37

Close a Local or Remote Disk
VixDiskLib_Close() closes an open virtual disk.

VixDiskLib_Close(srcHandle);

VixDiskLib_Close() returns VIX_OK if successful, otherwise a suitable error code. To obtain a list of
possible return codes, see Finding Error Code Documentation.

If a program has worker threads called from a master process, errors might occur in the threads after the
master process calls VixDiskLib_Close(). Always wait for worker threads to end before calling close.

Get Information About a Disk

vixError = VixDiskLib_GetInfo(srcHandle, diskInfo);

VixDiskLib_GetInfo() gets data about an open virtual disk, allocating a filled-in VixDiskLibDiskInfo
structure. Some of this information overlaps with metadata (see Metadata Handling).

Free Memory from Get Information
This function deallocates memory allocated by VixDiskLib_GetInfo(). Call it to avoid a memory leak.

vixError = VixDiskLib_FreeInfo(diskInfo);

Metadata Handling
VMware provides mechanisms for reading, writing, and repairing virtual disk metadata.

Read Metadata Key from Disk

vixError = VixDiskLib_ReadMetadata(disk.Handle(), appGlobals.metaKey, &val[0], requiredLen, NULL);

Retrieves the value of a given key from disk metadata. The metadata for a hosted VMDK is not as
extensive as for managed disk on an ESXi host. Held in a mapping file, VMFS metadata might also
contain information such as disk label, LUN or partition layout, number of links, file attributes, locks, and
so forth. Metadata also describes encapsulation of raw disk mapping (RDM) storage, if applicable.

Get Metadata Table from Disk
VixDiskLib_GetMetadataKeys() retrieves all existing keys from the metadata of a virtual disk, but not
the key values. Use this in conjunction with VixDiskLib_ReadMetadata().

vixError = VixDiskLib_GetMetadataKeys(disk.Handle(), &buf[0], requiredLen, NULL);

Virtual Disk Development Kit Programming Guide

VMware, Inc. 38

Here is an example of a simple metadata table. Uuid is the universally unique identifier for the virtual disk.

adapterType = buslogic

geometry.sectors = 32

geometry.heads = 64

geometry.cylinders = 100

uuid = 60 00 C2 93 7b a0 3a 03-9f 22 56 c5 29 93 b7 27

Write Metadata Table to Disk
VixDiskLib_WriteMetadata() updates virtual disk metadata with the given key-value pair. If the key-
value pair is new, it gets added. If the key already exists, its value is updated. A key can be zeroed but
not deleted.

vixError = VixDiskLib_WriteMetadata(disk.Handle(), appGlobals.metaKey, appGlobals.metaVal);

Check and Repair Sparse Disk Metadata
VixDiskLib_CheckRepair() checks the metadata of a sparse disk, specified as a file on a connection,
and optionally repairs the metadata if necessary. Sparse disks occupy space on a datastore only when a
portion of the disk is used; the metadata tracks which portions are allocated.

vixError = VixDiskLib_CheckRepair(appGlobals.connection, appGlobals.diskPath, TRUE);

Disk Chaining and Redo Logs
In VMDK terminology, all the following are synonyms: child disk, redo log, and delta link. From the original
parent disk, each child constitutes a redo log pointing back from the present state of the virtual disk, one
step at a time, to the original. This pseudo equation represents the relative complexity of backups and
snapshots:

backup image < child disk = redo log = delta link < snapshot

A backup image is less than a child disk because a backup image is merely a data stream. A snapshot is
more than a child disk because it contains virtual machine state, with pointers to associated file states on
VMDK.

There exist other types of redo logs, such as those that perform progressive protection in vSphere
Replication (VR). For disk chaining, the “redo” terminology is especially appropriate for the snapshot
revert operation, when changed blocks in the redo log are applied to the base disk, before deleting the
redo log. Afterwards the base disk contains a “redo” of all changes that the virtual machine made while
the snapshot was active.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 39

Create Child from Parent Disk
Usually you create the first child disk from the parent and create successive children from the latest one
in the chain. The disk tracks, in SPARSE format, any disk sectors changed since inception, as illustrated
below.

Figure 4‑1. Child disks created from parent

Changed Sector Only

Virtual Machine Writes Here

Child3

Child2

Child1

vm.vmdk

vm-001.vmdk

vm-001.vmdk

vm-002.vmdk

Parent

vm.vmdk

vm.vmdk

vm.vmdk

vm.vmdk

Physical Disk

VixDiskLib_CreateChild() creates a child disk (or redo log) for a hosted virtual disk. After you create
a child, it is generally not necessary to open the parent, or earlier children in the disk chain. The children’s
vm.vmdk files point to redo logs, not to the parent disk, vm-flat.vmdk in this example. To access the
original parent, or earlier children in the chain, you can use VixDiskLib_Attach() on hosted disk.

vixError = VixDiskLib_CreateChild(parent.Handle(), appGlobals.diskPath,

 VIXDISKLIB_DISK_MONOLITHIC_SPARSE, NULL, NULL);

Attach Child to Parent Disk
VixDiskLib_Attach() attaches the child disk into its parent disk chain. Afterwards, the parent handle is
invalid and the child handle represents the combined disk chain of redo logs. On failure (vixError !=
VIX_OK) the parent handle is also invalid, so do not close it.

vixError = VixDiskLib_Attach(parent.Handle(), child.Handle());

For example, suppose you want to access the older disk image recorded by Child1. Attach the handle of
new Child1a to Child1, which provides Child1a’s parent handle, as shown below. It is now permissible to
open, read, and write the Child1a virtual disk.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 40

The parent-child disk chain is efficient in terms of storage space, because the child VMDK records only
the sectors that changed since the last VixDiskLib_CreateChild(). The parent-child disk chain also
provides a redo mechanism, permitting programmatic access to any generation with
VixDiskLib_Attach().

Figure 4‑2. Child disk attached to disk chain

Virtual Machine Writes Here

Child3

Child2

Child1

Child1a.vmdk

vm.vmdk

vm-001.vmdk

vm-001.vmdk

vm-002.vmdk

Attach

Parent

vm.vmdk

vm.vmdk

vm.vmdk

vm.vmdk

Physical Disk

Before VDDK 6.7.1 it was an error to close parentHandle after VixDiskLib_Attach succeeds. The
VDDK library now marks parentHandle internally to prevent closure and ensure cleanup. Here is the
calling sequence for open and attach:

1 Open the disk for attach.

2 Create a local connection.

3 With backed-up disk (referred to as the parent disk) still open, create child disk with a unique name.

4 Open uniquely named tmp.vmdk (referred to as the redo log).

5 Attach the redo log to its parent disk.

VixDiskLib_Open(remoteConnection, virtualDiskPath, flags, &parentHandle);

VixDiskLib_Connect(NULL, &localConnection);

VixDiskLib_CreateChild(parentHandle, "C:\tmp.vmdk", VIXDISKLIB_DISK_MONOLITHIC_SPARSE, NULL, NULL);

VixDiskLib_Open(localConnection, "C:\tmp.vmdk", VIXDISKLIB_FLAG_OPEN_SINGLE_LINK, &redoHandle);

VixDiskLib_Attach(parentHandle, redoHandle);

Here is the calling sequence for close:

1 Close the redo log. Whether to close the parent disk handle is release dependent.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 41

2 Unlink the redo log to detach it from the parent disk.

VixDiskLib_Close(redoHandle);

if (VIXDISKLIB_VERSION_MAJOR > 7) {

 VixDiskLib_Close(parentHandle); // to avoid memory leaks

}

VixDiskLib_Unlink(localConnection, "C:\tmp.vmdk");

Opening in a Chain
With (parent) base disk B and children C0, C1, and C2, opening C2 gives you the contents of B + C0 +
C1 + C2 (not really addition linked data sectors), while opening C1 gives you the contents of B + C0 + C1.

A better solution than recording base disks and which children are descended from which is changed
block tracking, QueryChangedDiskAreas in the vSphere API. See Algorithm for vSphere Backup.

Redo Logs and Linked Clone Backup
For managed virtual disk on vSphere, snapshots are used primarily for saving system state and for
backup, while linked clones create duplicate images for provisioning of View desktops. A snapshot is
usually a single redo log in a parent-child chain, while linked clones are usually multiple redo logs based
on the same parent.

In the vSphere 5.5 release and later, handling of linked clone hierarchies was changed to improve the
efficiency of backup and restore. The disk object now contain a “disk backing” that contains one or more
parent backing objects until the base disk is reached. This allows access anywhere in the parent-child
disk chain. With a clean never-used base virtual machine, the linked clone hierarchy or snapshot chain
always has the proper number of parent backing objects for the nodes in the chain.

VDDK does not contain any convenience interfaces for backing up and restoring the linked clone
hierarchy (or the snapshot chain). Backup applications are responsible for discovering and saving the
hierarchy if they want to support this as a feature. Linked clones cannot be restored using SAN transport.

In VMware View (VDI) environments, linked clone backup might not be necessary or advisable, especially
for nonpersistent desktops that revert to default after use.

When the base disk or a child disk has an extra snapshot, when redo logs used to create linked clones
were never deleted, or when any parent or child in the chain needs disk consolidation or is in a bad
snapshot state, it is possible to have extra (too many) parent backing objects. Consequently, restore
applications should never assume the correct number of parent backing objects. They must recursively
query until the base parent backing object is reached, and make sure when restoring leaf nodes that the
correct parent backing object matches the node being restored.

Cloning a Virtual Disk
On ESXi hosts in vSphere, programs cannot create managed disk, but they can call
vixDiskLib_Clone() to convert hosted disk to managed disk.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 42

Compute Space Needed for Clone
This function computes the space required (in bytes) to clone a virtual disk, after possible format
conversion.

vixError = VixDiskLib_SpaceNeededForClone(child.Handle(), VIXDISKLIB_DISK_VMFS_FLAT, &spaceReq);

Caution VixDiskLib_SpaceNeededForClone() might not give accurate results, or could return
VIX_E_INVALID_ARG, when used with thin provisioned disk type VIXDISKLIB_DISK_VMFS_THIN.

Clone a Disk by Copying Data
This function copies data from one virtual disk to another, converting (disk type, size, hardware) as
specified.

vixError = VixDiskLib_Clone(appGlobals.connection, appGlobals.diskPath, srcConnection,

 appGlobals.srcPath, &createParams, CloneProgressFunc, NULL, TRUE);

Due to a vSphere 6.5 security enhancement, VixDiskLib_Clone() can no longer clone local disks to
remote disks that do not belong to any VM. Previous releases allowed use of a retained username and
password, but now enhanced security verification is required. The procedure for VixDiskLib_Clone() to
make a remote connection is first to get an NFC ticket from the ESXi host based on the MoRef of the VM
that manages the cloned-to disks. Then build an authenticated NFC connection to the host using that
ticket. The MoRef of the VM must be specified in vmxSpec of the remote connection parameter passed to
VixDiskLib_Clone(). The VM must be powered off, and the target disks must already exist before
cloning, not necessarily with the same names. Afterwards the VM may be removed from the inventory
with UnregisterVM, but it must remain on the datastore with its cloned virtual disks.

Error Handling
These functions enhance the usefulness of error messages.

Return Error Description Text
VixDiskLib_GetErrorText() returns the textual description of a numeric error code.

char* msg = VixDiskLib_GetErrorText(errCode, NULL);

Free Error Description Text
VixDiskLib_FreeErrorText() deallocates space associated with the error description text.

VixDiskLib_FreeErrorText(msg);

Virtual Disk Development Kit Programming Guide

VMware, Inc. 43

Administrative Disk Operations
These functions rename, grow, defragment, shrink, and remove virtual disk.

Rename an Existing Disk
VixDiskLib_Rename() changes the name of a virtual disk. Use this function only when the virtual
machine is powered off.

vixError = VixDiskLib_Rename(oldGlobals.diskPath, newGlobals.diskPath);

Grow an Existing Local Disk
VixDiskLib_Grow() extends an existing virtual disk by adding sectors. This function supports hosted
disk, but not managed disk.

vixError =

VixDiskLib_Grow(appGlobals.connection, appGlobals.diskPath, size, FALSE, GrowProgressFunc, NULL);

Defragment an Existing Disk
VixDiskLib_Defragment() defragments an existing virtual disk. Defragmentation is effective with
SPARSE type files, but might not do anything with FLAT type. In either case, the function returns VIX_OK.
This function supports hosted disk, but not managed disk.

vixError = VixDiskLib_Defragment(disk.Handle(), DefragProgressFunc, NULL);

Defragment consolidates data in the 2GB extents, moving data to lower-numbered extents, and is
independent of defragmentation tools in the guest OS, such as Disk > Properties > Tools >
Defragmentation in Windows, or the defrag command for the Linux Ext2 file system.

VMware recommends defragmentation from the inside out: first within the virtual machine, then using this
function or a VMware defragmentation tool, and finally within the host operating system.

Shrink an Existing Local Disk
VixDiskLib_Shrink() reclaims unused space in an existing virtual disk, unused space being
recognized as blocks of zeroes. This is more effective (gains more space) with SPARSE type files than with
pre-allocated FLAT type. On success, the function returns VIX_OK. This function supports hosted disk, but
not managed disk.

vixError = VixDiskLib_Shrink(disk.Handle(), ShrinkProgressFunc, NULL);

In VMware system utilities, “prepare” zeros out unused blocks in the VMDK so “shrink” can reclaim them.
In the API, use VixDiskLib_Write() to zero out unused blocks, and VixDiskLib_Shrink() to reclaim
space. Shrink does not change the virtual disk capacity, but it makes more space available.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 44

Unlink Extents to Remove Disk
VixDiskLib_Unlink() deletes all extents of the specified virtual disk, which unlinks (removes) the disk
data. This is similar to the remove or erase command in a command tool.

vixError = VixDiskLib_Unlink(appGlobals.connection, appGlobals.diskPath);

Shut Down
All Virtual Disk API applications should call these functions at end of program.

Disconnect from Server
VixDiskLib_Disconnect() breaks an existing connection.

VixDiskLib_Disconnect(srcConnection);

Clean Up and Exit
VixDiskLib_Exit() cleans up the library before exit.

VixDiskLib_Exit();

Advanced Transport APIs
For managed disk, the first release of VDDK required network access ESXi host (LAN or NBDSSL
transport). With VDDK 1.1 programs can access virtual disks directly on a storage device, LAN-free.
Direct SAN access increases I/O performance. To select the most efficient transport method, a set of APIs
is available, including:

n VixDiskLib_InitEx() – Initializes the advanced transport library. You must specify the library
location. Replaces VixDiskLib_Init() in your application.

n VixDiskLib_ListTransportModes() – Lists transport modes that the virtual disk library supports.

n VixDiskLib_ConnectEx() – Establishes a connection using the best transport mode available, or
one you select, to access a given machine’s virtual disk. Currently it does not check validity of
transport type. Replaces VixDiskLib_Connect() in your application.

Initialize Virtual Disk API
VixDiskLib_InitEx() replaces VixDiskLib_Init() to initialize new releases of the library.
Parameters are similar, except you should specify an actual libDir, and the configFile parameter is
new. For multithreaded programming, you should write your own logFunc, because the default logging
function is not thread-safe. VixDiskLib loads many libraries (DLLs or shared objects) at start time using

Virtual Disk Development Kit Programming Guide

VMware, Inc. 45

the Path or LD_LIBRARY_PATH environment. At run time, libDir specifies were to load advanced
transport modes, whitelist, and blacklist. On Windows, *libDir could be C:\Program
Files\VMware\VMware Virtual Disk Development Kit. On Linux, *libDir could
be /usr/lib/vmware-vix-disklib.

VixError vixErr = VixDiskLib_InitEx(majorVersion, minorVersion, &logFunc, &warnFunc, &panicFunc,

*libDir, *configFile);

Logged messages appear by default in a temporary folder or log directory, for VDDK and for many other
VMware products. See Location of Log Files.

The currently supported entries in the configFile are listed below. The correct way to specify a
configuration is name=value. See below for a sample configuration file.

n tmpDirectory = "<TempDirectoryForLogging>"

n vixDiskLib.transport.LogLevel – Overrides default logging for vixDiskLib advanced transport
functions, not including NFC (see nfc.LogLevel below). The default value is 3, indicating audit.
Each level includes all of the messages generated by lower numbered levels. Here are the levels:

n 0 = Panic (failure only)

n 1 = Error

n 2 = Warning

n 3 = Audit

n 4 = Info

n 5 = Verbose

n 6 = Trivia

n vixDiskLib.transport.san.blacklist – Specifies a device node path, or a comma separated list
of device node paths, that VDDK uses as a list of LUNs on which not to attempt VMFS file system
discovery. This has the effect of making fewer device nodes available to SAN transport, and avoids
I/O on specific device node paths. The special string all indicates that VDDK should use only the
device node paths specified by vixDiskLib.transport.san.whitelist.

n vixDiskLib.transport.san.whitelist – Specifies a device node path, or a comma separated list
of device node paths, that VDDK uses as a list of LUNs on which to attempt VMFS file system
discovery. This has the effect of making more device nodes available to SAN transport, encouraging
I/O on specific device node paths. Backup applications may create a special device node and
whitelist this device node for use in addition to those found by VDDK’s device node scanner. Backup
applications can also blacklist specific devices found by VDDK’s device node scanner to prevent use
by SAN transport. Combining whitelist and blacklist, applications can establish a preferred device
policy for backup I/O.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 46

n vixDiskLib.disklib.EnableCache – Caching by vixDiskLib is off (0) by default. Setting 1 turns it
on. Caching increases performance when information is read repeatedly, or accessed randomly. In
backup applications, information is usually accessed sequentially, and caching can actually reduce
performance. Moreover with caching, backup applications risk getting stale information if a disk sector
is rewritten (by another application) before the cache is refreshed.

n vixDiskLib.linuxSSL.verifyCertificates – Whether to check SSL certificates and thumbprints
when connecting to a virtual machine. The only possible value is 1 for On, which is the default.

The following NFC related options override the default numbers provided to the various NFC functions.
The NFC timeouts shown in the example (below LogLevel) correspond to default values on ESXi 5.x
hosts.

n vixDiskLib.nfc.AcceptTimeoutMs – Overrides default value (3 minutes) for NFC accept
operations.

n vixDiskLib.nfc.RequestTimeoutMs – Overrides default value (3 minutes) for NFC request
operations.

n vixDiskLib.nfc.ReadTimeoutMs – Overrides default value (one minute) for NFC read operations.
Similar to TCP keep-alive interval. See NFC Session Limits and Timeouts.

n vixDiskLib.nfc.WriteTimeoutMs – Overrides default value (ten minutes) for NFC write operations.

n vixDiskLib.nfcFssrvr.TimeoutMs – Overrides the default value (default is 0, indefinite waiting) for
NFC file system operations. If you specify a value, then a timeout occurs if the file system is idle for
the indicated period of time. The hazard of using the default value is that in the rare case of a
catastrophic communications failure, the file system will remain locked.

n vixDiskLib.nfcFssrvrWrite.TimeoutMs – Overrides the default value (default is no timeout) for
NFC file system write operations. The timeout is specified in milliseconds. If you specify a value, it will
time out when a write operation fails to complete in the specified time interval.

n vixDiskLib.nfc.LogLevel – Overrides the default logging level for NFC operations. The default
value is 1, indicating error messages only. The meaning of values is listed here. Each level includes
all of the messages generated by lower numbered levels. This is the final NFC setting.

n 0 = Quiet (minimal logging)

n 1 = Error

n 2 = Warning

n 3 = Info

n 4 = Debug

Here is a sample InitEx configuration file:

temporary directory for logs etc.

tmpDirectory="/usr/local/vendorapp/var/vmware/temp"

log level 0 to 6 for quiet ranging to verbose

vixDiskLib.transport.LogLevel=2

disable caching to disk

Virtual Disk Development Kit Programming Guide

VMware, Inc. 47

vixDiskLib.disklib.EnableCache=0

whether to check SSL thumbprint on Linux - has no effect

vixDiskLib.linuxSSL.verifyCertificates=1

network file copy options

vixDiskLib.nfc.AcceptTimeoutMs=180000

vixDiskLib.nfc.RequestTimeoutMs=180000

vixDiskLib.nfc.ReadTimeoutsMs=60000

vixDiskLib.nfc.WriteTimeoutsMs=600000

vixDiskLib.nfcFssrvr.TimeoutMs=0

vixDiskLib.nfcFssrvrWrite.TimeoutMs=0

nfc.LogLevel (0 = Quiet, 1 = Error, 2 = Warning, 3 = Info, 4 = Debug)

vixDiskLib.nfc.LogLevel=2

Timeout values are stored in a 32-bit field, so the maximum timeout you may specify is 2G
(2,147,483,648). Timeouts are specified in milliseconds and apply to each disk handle. NFC settings
apply to NBD and NBDSSL, but not to SAN or HotAdd.

Phone Home Support
The Customer Experience Improvement Program (CEIP) is a way for VMware products to send telemetry
data from on-premise and cloud-based products back to VMware.

Partners can ask VMware to share analytics so they can make data-driven decisions for their products.
Developers can enable phone-home by adding the following line to the VDDK configuration file.
Customers can disable phone-home by removing the line or setting the value to zero:

vixDiskLib.phoneHome.EnablePhoneHome = 1

VMware requests that developers add two subsequent lines for identification purposes:

vixDiskLib.phoneHome.ProductName = vendorName or ApplicationName

vixDiskLib.phoneHome.ProductVersion = versionNumber

Using the vSphere Web Client, customers can exit CEIP by clicking Menu > Administration > Customer
Experience Improvement Program > Leave. This disables phone-home for all products. When
customers leave CEIP, partner telemetry is disabled also, even if enabled in the VDDK configuration file.

Location of Log Files
On Linux, log messages appear under /var/log by default. On Windows, they appear in a temporary
folder, whose location can change from time to time. Early Windows systems used C:\Windows\Temp.
Windows XP and Server 2003 use C:\Documents and Settings\<user>\Local
Settings\Temp\vmware-<user>. Vista, Windows 7, and Server 2008 use
C:\Users\<user>AppData\Local\Temp\vmware-<user>.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 48

On all versions of Windows the user’s TEMP environment setting overrides the default Temp folder
location. Temporary is something of a misnomer because files are never deleted from the Temp folder,
unless the user or an application deletes them. If the TEMP or Windows default Temp folder is not found,
VDDK (and other VMware software) have a fallback to <localAppDir>\Temp.

Alternatively, your software can set a custom temporary directory, as shown in the sample InitEx file.

List Available Transport Methods
The VixDiskLib_ListTransportModes() function returns the currently supported transport methods as
a colon-separated string value, currently “file:san:hotadd:nbdssl” where nbdssl indicates LAN
transport. The default transport priority over the network is san:hotadd:nbdssl assuming all are
available.

printf("Transport methods: %s\n", VixDiskLib_ListTransportModes());

Connect to VMware vSphere
VixDiskLib_ConnectEx() connects the library to managed disk on a remote ESXi host or through
VMware vCenter Server. For hosted disk on the local system, it works the same as
VixDiskLib_Connect(). VixDiskLib_ConnectEx() takes three additional parameters:

n Boolean indicating TRUE for read-only access, often faster, or FALSE for read/write access. If
connecting read-only, later calls to VixDiskLib_Open() are always read-only regardless of the
openFlags setting.

n Managed object reference (MoRef) of the snapshot to access using this connection. This is required
for most transport methods (SAN, HotAdd, NBDSSL) and to access a powered-on virtual machine.
You must also specify the associated vmxSpec property in connectParams. When connecting to an
ESXi host, provide the ESXi MoRef. When connecting by vCenter Server, pass the vSphere MoRef,
which differs.

n Preferred transport method, or NULL to accept the defaults. If you specify any advanced transport
mode as the only method, and that method is not available, the VixDiskLib_ConnectEx() call does
not fail, but the subsequent VixDiskLib_Open() call will fall back to NBDSSL mode.

VixDiskLibConnectParams cnxParams = {0};

if (appGlobals.isRemote) {

 cnxParams.vmName = vmxSpec;

 cnxParams.serverName = hostName;

 cnxParams.credType = VIXDISKLIB_CRED_UID;

 cnxParams.creds.uid.userName = userName;

 cnxParams.creds.uid.password = password;

 cnxParams.port = port;

}

VixError vixError = VixDiskLib_ConnectEx(&cnxParams, TRUE, "snapshot-47", NULL, &connection);

Virtual Disk Development Kit Programming Guide

VMware, Inc. 49

When a program calls VixDiskLib_ConnectEx() with NULL parameter to accept default transport
mode, SAN is selected as the preferred mode, if SAN storage is available from the ESXi host. Then if the
program opens a virtual disk on local storage, subsequent writes will fail. In this case, the program should
explicitly pass nbdssl as the preferred transport mode.

The port is where vCenter Server listens for API queries. Specifying null allows the library to select the
port, usually 443 (HTTPS). By default VADP uses the same port for virtual machine operations as other
SOAP-based Web Services. By default VDDK uses port 902 (VIX automation) for NBDSSL data
transport.

Connect to ESXi hosts
In the connection parameters cnxParams, the vmxSpec managed object reference would be different on
an ESXi host than on the vCenter Server, as shown below. ESXi hosts offer no prepare-for and end
access protection. Otherwise ESXi host connections are similar to vCenter Server connections.

vmxSpec = "moid=23498";

vmxSpec = "moid=898273";

Reuse a vCenter Server session
As of vSphere 6.5, you can recycle a vCenter Server session to avoid connection overflow. Set the
credential type to VIXDISKLIB_CRED_SESSIONID and supply the value of vmware_soap_session from a
still-live vCenter Server session.

if (appGlobals.isRemote) {

 cnxParams.vmName = vmxSpec;

 cnxParams.serverName = hostName;

 cnxParams.credType = VIXDISKLIB_CRED_SESSIONID;

 cnxParams.creds.sessionId.cookie = cookie;

 cnxParams.creds.sessionId.userName = userName;

 cnxParams.creds.sessionId.key = password;

 cnxParams.port = port;

}

Get Selected Transport Method
The VixDiskLib_GetTransportMode() function returns the transport method selected for diskHandle.

printf("Selected transport method: %s\n", VixDiskLib_GetTransportMode(diskHandle));

Virtual Disk Development Kit Programming Guide

VMware, Inc. 50

Prepare For Access and End Access
The VixDiskLib_PrepareForAccess() function notifies a vCenter-managed host that a virtual
machine’s disks are being opened, probably for backup, so the host should postpone virtual machine
operations that might interfere with virtual disk access. Call this function before creating a snapshot on a
virtual machine. Internally, this function disables the vSphere API method RelocateVM_Task.

vixError = VixDiskLib_PrepareForAccess(&cnxParams, "vmName");

The connection parameters must indicate one virtual machine only. When opening a managed disk,
provide valid credentials for the vCenter Server that manages the ESXi host with the disk. The second
parameter is currently just for identity tracking purposes, and is limited to 50 characters. It could be the
virtual machine name or the name of your application. If you run VixDiskLib_PrepareForAccess()
directly on an ESXi host, the system throws an error saying “VDDK: HostAgent is not a vCenter, cannot
disable svmotion.”

Every VixDiskLib_PrepareForAccess() call should have a matching VixDiskLib_EndAccess() call.

The VixDiskLib_EndAccess() function notifies the host that a virtual machine’s disks have been closed,
so operations that rely on the virtual disks to be closed, such as vMotion, can now be allowed. Call this
function after closing all the virtual disks, and after deleting the virtual machine snapshot. Normally this
function is called after previously calling VixDiskLib_PrepareForAccess, but you can call it to clean up
after a crash. Internally, this function re-enables the vSphere API method RelocateVM_Task.

vixError = VixDiskLib_EndAccess(&cnxParams, "vmName");

Here is a code snippet showing use of PrepareForAccess in a backup program that waits up to 10
minutes for Storage vMotion to finish. Regular vMotion would finish much faster than that.

/* New sample code accounts for VMODL_TYPE_VIM_FAULT_METHOD_ALREADY_DISABLED_FAULT */

if (appGlobals.vmxSpec != NULL) {

 for (int i = 0; i < 10; i++) {

 vixError = VixDiskLib_PrepareForAccess(&cnxParams, "Sample");

 if (vixError == VIX_OK) {

 break;

 } else {

 Sleep(60000);

 }

 }

}

Virtual Disk Development Kit Programming Guide

VMware, Inc. 51

SAN Mode on Linux Uses Direct Mode
With SAN transport on Linux, read and write operations are performed in “direct” mode (O_DIRECT),
meaning that no read or write buffering is done. Direct mode prevents other processes from accessing the
latest data, and avoids loss of information if the process dies before committing its write buffers. In direct
mode, the most time efficient performance can be achieved if applications follow these guidelines when
performing reads and writes. These guidelines are applicable to Windows also.

n The buffer used for data transfer should be aligned on a page boundary.

n The transfer length should be an even multiple of the page size.

Clean Up After Disconnect
If virtual machine state was not cleaned up correctly after connection shut down,
VixDiskLib_Cleanup() removes extra state for each virtual machine. Its three parameters specify
connection, and pass back the number of virtual machines cleaned up, and the number remaining to be
cleaned up.

int numCleanedUp, numRemaining;

VixError vixError = VixDiskLib_Cleanup(&cnxParams, &numCleanedUp, &numRemaining);

Ordering of Function Calls in Sequence
The code block below shows the suggested ordering of VixDiskLib function calls in sequence, including
older function calls in combination with newer ones (Ex and Access).

For backup, the open, read, and close calls are made on virtual machine snapshots.

VixDiskLib_InitEx()

VixDiskLib_PrepareForAccess()

VixDiskLib_ConnectEx()

VixDiskLib_Open()

VixDiskLib_Read()

VixDiskLib_Close()

VixDiskLib_Disconnect()

VixDiskLib_EndAccess()

VixDiskLib_CleanUp()

VixDiskLib_Exit()

Updating Applications for Advanced Transport
To update your applications for advanced transport with managed disk, follow these steps:

Virtual Disk Development Kit Programming Guide

VMware, Inc. 52

Procedure

1 Find all instances of VixDiskLib_Connect() and change them to VixDiskLib_ConnectEx().

The vixDiskLib sample program was extended to use VixDiskLib_ConnectEx() with the -mod
option.

2 Likewise, change VixDiskLib_Init() to VixDiskLib_InitEx() and be sure to call it only once.

3 Disable virtual machine relocation with the VixDiskLib_PrepareForAccess() call.

4 Add parameters in the middle:

n TRUE for high performance read-only access, FALSE for read/write access.

n Snapshot moRef, if applicable.

n NULL to accept transport method defaults (recommended).

5 Re-enable virtual machine relocation with the VixDiskLib_EndAccess() call.

6 Find VixDiskLib_Disconnect() near the end of program, and for safety add a
VixDiskLib_Cleanup() call immediately afterwards.

7 Compile with the new flexible-transport-enabled version of VixDiskLib.

The advanced transport functions are useful for backing up or restoring data on virtual disks managed
by VMware vSphere. Backup is based on the snapshot mechanism, which provides a data view at a
certain point in time, and allows access to quiescent data on the parent disk while the child disk
continues changing.

Algorithm for vSphere Backup
A typical backup application follows this algorithm:

n Preferably through vCenter Server, contact the ESXi host and discover the target virtual machine.

n Ask the ESXi host to take a snapshot of the target virtual machine.

n Using the vSphere API (PropertyCollector), capture configuration (VirtualMachineConfigInfo)
and changed block information (with queryChangedDiskAreas). Save these for later.

n Using advanced transport functions and VixDiskLib, access the snapshot and save the data in it.
If Changed Block Tracking is enabled, the snapshot contains only incremental backup data.

n Ask the ESXi host to delete the backup snapshot.

A typical back-in-time disaster recovery or file-based restore follows this algorithm:

n Preferably through VMware vCenter, contact the ESXi host containing the target virtual machine.

n Ask the ESXi host to halt and power off the target virtual machine.

n Using advanced transport functions, restore a snapshot from saved backup data.

n For disaster recovery to a previous point in time, have the virtual machine revert to the restored
snapshot. For file-based restore, mount the snapshot and restore requested files.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 53

Chapter 7 Backing Up Virtual Disks in vSphere presents these algorithms in more detail and includes
code samples. For best practices in backup and restore, see Tips and Best Practices.

Backup and Recovery Example
The VMware vSphere API method queryChangedDiskArea returns a list of disk sectors that changed
between an existing snapshot, and some previous time identified by a change ID.

The queryChangedDiskAreas method takes four arguments, including a snapshot reference and a
change ID. It returns a list of disk sectors that changed between the time indicated by the change ID and
the time of the snapshot. This is useful for incremental backup. Before a full backup, you can call
VixDiskLib_QueryAllocatedBlocks to get a list of in-use disk sectors so your backup can skip
unallocated sectors.

Suppose that you create an initial backup at time T1. Later at time T2 you take an incremental backup,
and another incremental backup at time T3. (You could use differential backups instead of incremental
backups, which would trade off greater backup time and bandwidth for shorter restore time.)

For the full backup at time T1:

1 Keep a record of the virtual machine configuration, VirtualMachineConfigInfo.

2 Create a snapshot of the virtual machine, naming it snapshot_T1.

3 Obtain the change ID for each virtual disk in the snapshot, changeId_T1 (per VMDK).

4 Back up the sectors returned by VixDiskLib_QueryAllocatedBlocks, avoiding unallocated disk.

5 Delete snapshot_T1, keeping a record of changeId_T1 along with lots of backed-up data.

For the incremental backup at time T2:

1 Create a snapshot of the virtual machine, naming it snapshot_T2.

2 Obtain the change ID for each virtual disk in the snapshot, changeId_T2 (per VMDK).

3 Back up the sectors returned by queryChangedDiskAreas(snapshot_T2,... changeId_T1).

4 Delete snapshot_T2, keeping a record of changeId_T2 along with backed-up data.

For the incremental backup at time T3:

1 Create a snapshot of the virtual machine, naming it snapshot_T3.

At time T3 you can no longer obtain a list of changes between T1 and T2.

2 Obtain the change ID for each virtual disk in the snapshot, changeId_T3 (per VMDK).

3 Back up the sectors returned by queryChangedDiskAreas(snapshot_T3,... changeId_T2).

A differential backup could be done with queryChangedDiskAreas(snapshot_T3,... changeId_T1).

4 Delete snapshot_T3, keeping a record of changeId_T3 along with backed-up data.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 54

For a disaster recovery at time T4:

1 Create a new virtual machine with no guest operating system installed, using configuration
parameters you previously saved from VirtualMachineConfigInfo. You do not need to format the
virtual disks, because restored data includes formatting information.

2 Restore data from the backup at time T3. Keep track of which disk sectors you restore.

3 Restore data from the incremental backup at time T2, skipping any sectors already recovered.

With differential backup, you can skip copying the T2 backup.

4 Restore data from the full backup at time T1, skipping any sectors already recovered. The reason for
working backwards is to get the newest data while avoiding unnecessary data copying.

5 Power on the recovered virtual machine.

When programs open remote disk with SAN transport mode, they can write to the base disk, but they
cannot write to a snapshot (redo log). Opening and writing snapshots is supported only for hosted disk.

Multithreading Considerations
In multithreaded programs, disk requests should be serialized by the client program. Disk handles are not
bound to a thread and may be used across threads. You can open a disk in one thread and use its handle
in another thread, provided you serialize disk access. Alternatively you can use a designated open-close
thread, as shown in the workaround below.

Multiple Threads and VixDiskLib
VDDK supports concurrent I/O to multiple virtual disks, with certain limitations:

n VixDiskLib_InitEx() or VixDiskLib_Init() should be called once per process, from the main
thread.

n In the VixDiskLib_InitEx() or VixDiskLib_Init() function call, do not specify logging callbacks
as NULL. This causes VixDiskLib to provide its default logging functions, which are not thread safe. If
you are using VDDK in a multithreaded environment, you must provide your own thread-safe log
functions.

n When you call VixDiskLib_Open() and VixDiskLib_Close(), VDDK initializes and uninitializes a
number of libraries, some of which do not work if called from multiple threads. For example, this fails:

Thread 1: VixDiskLib_Open VixDiskLib_Close

Thread 2: VixDiskLib_Open VixDiskLib_Close

Virtual Disk Development Kit Programming Guide

VMware, Inc. 55

The workaround is to use one designated thread to do all opens and closes, and to have other worker
threads doing reads and writes. This diagram shows concurrent reads on two separate disk handles.
Concurrent reads on the same disk handles are not allowed.

Open/Close Thread:

VixDiskLib_Open VixDiskLib_Open VixDiskLib_Close VixDiskLib_Close

(handle1) (handle2) (handle1) (handle2)

I/O Thread 1:

(owns handle1) VixDiskLib_Read ... VixDiskLib_Read ...

I/O Thread 2:

(owns handle2) VixDiskLib_Read ... VixDiskLib_Read ...

Capabilities of Library Calls
This section describes limitations, if any.

Support for Managed Disk
Some operations are not supported:

n For VixDiskLib_Connect() to open a managed disk connection, you must provide valid vSphere
access credentials. On ESXi hosts, VixDiskLib_Open() cannot open a single link in a disk chain.

n For VixDiskLib_Create() to create a managed disk on an ESXi host, first create a hosted type
disk, then use VixDiskLib_Clone() to convert the hosted virtual disk to managed virtual disk.

n VixDiskLib_Defragment() can defragment hosted disks only.

n VixDiskLib_Grow() can grow hosted disks only.

n VixDiskLib_Unlink() can delete hosted disks only.

n Until ESXi 5.1, the HotAdd transport was available only with vSphere Enterprise Edition and higher.

Support for Hosted Disk
Most everything (except advanced transport) is supported, except:

n The VixDiskLib_ConnectEx() extended connect function.

n SAN and HotAdd advanced transports.

n VixDiskLib_PrepareForAccess() and VixDiskLib_EndAccess() to delay Storage VMotion.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 56

Virtual Disk API Sample Code 5
This chapter discusses the VDDK sample program, in the following sections:

This chapter includes the following topics:

n Compiling the Sample Program

n Usage Message

n Walk-Through of Sample Program

Compiling the Sample Program
The sample program is written in C++, although the Virtual Disk API also supports C. For compilation to
succeed, the correct DLLs or shared objects must be loaded. You can ensure the success of dynamic
loading in a variety of ways.

n Set the path inside the VDDK program.

n Set the path for the shell being used in Linux or in Visual Studio for Windows.

For a default installation, the Linux path is /usr/share/doc/vmware-vix-disklib/sample.

n In Windows, set the Path element in the System Variables.

To do this in Windows XP, right-click Computer > Properties > Advanced > Environment
Variables, select Path in the System Variables lower list, click Edit, and add the path of the VDDK bin
directory.

In Windows 7, right-click Computer > Properties > Advanced System Settings > Environment
Variables, select Path in the System Variables list, click Edit, and add the path of the VDDK bin
directory.

C:\Program Files\VMware\VMware Virtual Disk Development Kit\doc\sample\ is the default
path.

Note that VDDK loads DLLs by relative path rather than absolute path, so conflicting versions of the DLLs
could cause problems.

Visual C++ on Windows
To compile the program, find the sample source vixDiskLibSample.cpp at this location:

VMware, Inc. 57

C:\Program Files\VMware\VMware Virtual Disk Development Kit\doc\sample\

For VDDK 5.5 and later, make sure that you have the 64-bit debugging tools installed along with Visual
Studio. Double-click the vcproj file, possibly convert format to a newer version, and choose Build > Build
Solution.

To execute the compiled program, choose Debug > Start Without Debugging, or type this in a command
prompt after changing to the doc\sample location given above:

Debug\vixdisklibsample.exe

SLN and VCPROJ Files
The Visual Studio solution file vixDiskLibSample.sln and project file vixDiskLibSample.vcproj are
included in the sample directory.

C++ on Linux Systems
Find the sample source in this directory:

/usr/share/doc/vmware-vix-disklib/samples/diskLib

You can copy vixDiskLibSample.cpp and its Makefile to a directory where you have write permission,
or switch user to root. On some Linux systems you need to add #include statements for <stdio.h> and
<string.h> after the #else clause on line 15. Type the make command to compile. Run the application:

make

./vix-disklib-sample

Note If this fails, edit /etc/ld.so.conf and run ldconfig as root or change your LD_LIBRARY_PATH
environment to include the library installation path, /usr/lib/vmware-vix-disklib/lib64.

Makefile
The Makefile fetches any packages that are required for compilation but are not installed.

Library Files Required
The virtual disk library comes with dynamic libraries, or shared objects on Linux, to simplify the delivery of
third-party and open source components.

Windows requires the lib/vixDiskLib.lib file for linking, and the bin/*.dll files at runtime.

Linux uses .so files for both linking and running.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 58

Usage Message
Running the sample application without arguments produces the following usage message:

Usage: vixdisklibsample command [options] diskPath

commands:

 -create : creates a sparse virtual disk with capacity specified by -cap

 -redo parentPath : creates a redo log 'diskPath' for base disk 'parentPath'

 -info : displays information for specified virtual disk

 -dump : dumps the contents of specified range of sectors in hexadecimal

 -fill : fills specified range of sectors with byte value specified by -val

 -wmeta key value : writes (key,value) entry into disk's metadata table

 -rmeta key : displays the value of the specified metada entry

 -meta : dumps all entries of the disk's metadata

 -clone sourcePath : clone source vmdk possibly to a remote site

 -readbench blocksize: do read benchmark on a disk using the specified I/O block size in sectors

 -writebench blocksize: do write benchmark on disk using the specified I/O block size in sectors

options:

 -adapter [ide|scsi] : bus adapter type for 'create' option (default='scsi')

 -start n : start sector for 'dump/fill' options (default=0)

 -count n : number of sectors for 'dump/fill' options (default=1)

 -val byte : byte value to fill with for 'write' option (default=255)

 -cap megabytes : capacity in MB for -create option (default=100)

 -single : open file as single disk link (default=open entire chain)

 -multithread n: start n threads and copy the file to n new files

 -host hostname : hostname / IP addresss (ESXi or vCenter)

 -user userid : user name on host (default = root)

 -password password : password on host

 -port port : port to use to connect to host (default = 443)

 -vm vmPath=/path/to/vm : inventory path to vm that owns the virtual disk

 -libdir dir : Directory containing vixDiskLibPlugin library

 -initex configfile : Use VixDiskLib_InitEx

 -ssmoref moref : Managed object reference of VM snapshot

 -mode mode : Mode string to pass into VixDiskLib_ConnectEx

 -thumb string : Provides a SSL thumbprint string for validation

The -thumb option is a new security-related feature in the VDDK 5.1 release. See SSL Certificate
Thumbprint.

The sample program’s -single option, which opens a single link instead of the entire disk chain, is
supported for (local) hosted disk, but not for (remote) managed disk.

To connect to an ESXi host with the sample program, you must specify the options -host, -user, -
password, and provide a diskPath on the ESXi host’s datastore. For example:

vix-diskLib-sample -info -host esx5 -user root -password secret "[datastore1] <VM>/<VM>.vmdk"

Virtual Disk Development Kit Programming Guide

VMware, Inc. 59

To connect to vCenter Server, you must also specify the options -libdir and -vm. Programs need
libdir so the DiskLibPlugin can connect with vCenter Server, which must locate the VM. For example:

vix-diskLib-sample -info -host vc5 -user Administrator -password secret

 -libdir <pluginDir> -vm vmPath=<path/to/VM> "[<partition>] <VM>/<VM>.vmdk"

The vmPath is formulated in vSphere Client by starting at vCenter and inserting /vm/ before the VM
name. The diskPath is ascertained by clicking Edit Settings > Hard Disk and copying the Disk File
name.

vix-disklib-sample -info -host vc5 -user Administrator -password secret

 -libdir /usr/lib/vmware-vix-disklib/lib64 -vm vmPath=Datacenter/vm/RHEL5

 "[datastore1] RHEL5/RHEL5.vmdk"

To connect using an advanced transport, for example to virtual machine disk on SAN storage, you must
also specify the options -mode and -ssmoref. The transport mode and managed object reference (of a
snapshot) are required for VixDiskLib_ConnectEx(). To find the ssmoref, log in to the managed object
browser for the vCenter Server, and click content > rootFolder > Datacenter > datastore > vm >
snapshot. A snapshot must exist, because it is a bad idea to open the base disk of a powered-on VM.

vix-disklib-sample -info -host vc5 -user Administrator -password secret -mode san

 -libdir /usr/lib/vmware-vix-disklib/lib64 -vm vmPath=Datacenter/vm/RHEL5

 -ssmoref snapshot-72 "[datastore1] RHEL5/RHEL5.vmdk"

On Windows, the VDDK package installs diskLibPlugin.dll in the \bin folder, not the \lib folder, so
change <pluginDir> accordingly.

Walk-Through of Sample Program
The sample program is the same for Windows as for Linux, with #ifdef blocks for Win32.

Include Files
Windows dynamic link library (DLL) declarations are in process.h, while Linux shared object (.so)
declarations are in dlfcn.h. Windows offers the tchar.h extension for Unicode generic text mappings,
not readily available in Linux.

Definitions and Structures
The sample program uses twelve bitwise shift operations (1 << 11) to track its available commands and
the multithread option. The Virtual Disk API has about 30 library functions, some for initialization and
cleanup. The following library functions are not demonstrated in the sample program:

n VixDiskLib_Rename()

n VixDiskLib_Defragment()

n VixDiskLib_Grow()

Virtual Disk Development Kit Programming Guide

VMware, Inc. 60

n VixDiskLib_Shrink()

n VixDiskLib_Unlink()

n VixDiskLib_Attach()

The sample program transmits state in the appGlobals structure.

Dynamic Loading
The #ifdef DYNAMIC_LOADING block is long, starting on line 97 and ending at line 339. This block
contains function definitions for dynamic loading. It also contains the LoadOneFunc() procedure to obtain
any requested function from the dynamic library and the DynLoadDiskLib() procedure to bind it. This
demonstration feature could also be called “runtime loading” to distinguish it from dynamic linking.

To try the program with runtime loading enabled on Linux, add -DDYNAMIC_LOADING after g++ in the
Makefile and recompile. On Windows, define DYNAMIC_LOADING in the project.

Wrapper Classes
Below the dynamic loading block are two wrapper classes, one for error codes and descriptive text, and
the other for the connection handle to disk.

The error wrapper appears in catch and throw statements to simplify error handling across functions.

Wrapper class VixDisk is a clean way to open and close connections to disk. The only time that library
functions VixDiskLib_Open() and VixDiskLib_Close() appear elsewhere, aside from dynamic
loading, is in the CopyThread() function near the end of the sample program.

Command Functions
The print-usage message appears next, with output partially shown in Usage Message.

Next comes the main() function, which sets defaults and parses command-line arguments to determine
the operation and possibly set options to change defaults. Dynamic loading occurs, if defined. Notice the
all-zero initialization of the VixDiskLibConnectParams declared structure:

VixDiskLibConnectParams cnxParams = {0};

For connections to an ESXi host, credentials including user name and password must be correctly
supplied in the -user and -password command-line arguments. Both the -host name of the ESXi host
and its -vm inventory path (vmxSpec) must be supplied. When set, these values populate the cnxParams
structure. Initialize all parameters, especially vmxSpec, or else the connection might behave unexpectedly.

A call to VixDiskLib_Init() initializes the library. In a production application, you can supply
appropriate log, warn, and panic functions as parameters, in place of NULL.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 61

A call to VixDiskLib_Connect() creates a connection to disk. If host cnxParams.serverName is null, as
it is without the -host argument, a connection is made to hosted disk on the local host. Otherwise a
connection is made to managed disk on the remote host. With -ssmoref argument, advanced transport is
used.

Next, an appropriate function is called for the requested operation, followed by error information if
applicable. Finally, the main() function closes the library connection to disk and exits.

DoInfo()
This procedure calls VixDiskLib_GetInfo() for information about the virtual disk, displays results, and
calls VixDiskLib_FreeInfo() to reclaim memory. The parameter disk.Handle() comes from the
VixDisk wrapper class discussed in Wrapper Classes.

In this example, the sample program connects to an ESXi host named esx5 and displays virtual disk
information for a Red Hat Enterprise Linux client. For an ESXi host, path to disk is often something like
[datastore1] followed by the virtual machine name and the VMDK filename.

vix-diskLib-sample -info -host esx5 -user root -password secret "[datastore1] RHEL6/RHEL6.vmdk"

vix-diskLib-sample -info -host esx5 -user root -password secret "[datastore1] RHEL6/RHEL6.vmdk"

Disk "[datastore1] RHEL6/RHEL6.vmdk" is open using transport mode "nbdssl".

capacity = 4194304 sectors

number of links = 1

adapter type = LsiLogic SCSI

BIOS geometry = 0/0/0

physical geometry = 261/255/63

Transport modes supported by vixDiskLib: file:nbdssl

If you multiply physical geometry numbers (261 cylinders * 255 heads per cylinder * 63 sectors per head)
the result is a capacity of 4192965 sectors, although the first line says 4194304. A small discrepancy is
possible due to rounding. In general, you get at least the capacity that you requested. The number of links
specifies the separation of a child from its original parent in the disk chain (redo logs), starting at one. The
parent has one link, its child has two links, the grandchild has three links, and so forth.

DoCreate()
This procedure calls VixDiskLib_Create() to allocate virtual disk. Adapter type is SCSI unless
specified as IDE on the command line. Size is 100MB, unless set by -cap on the command line. Because
the sector size is 512 bytes, the code multiplies appGlobals.mbsize by 2048 instead of 1024. Type is
always monolithic sparse and Workstation 5. In a production application, progressFunc and callback
data can be defined rather than NULL. Type these commands to create a sample VMDK file (the first line
is for Linux only):

export LD_LIBRARY_PATH=/usr/lib/vmware-vix-disklib/lib64

vix-disklib-sample -create sample.vmdk

Virtual Disk Development Kit Programming Guide

VMware, Inc. 62

As a VMDK file, monolithic sparse (growable in a single file) virtual disk is initially 65536 bytes (2 ^ 16) in
size, including overhead. The first time you write to this type of virtual disk, as with DoFill() below, the
VMDK expands to 131075 bytes (2 ^ 17), where it remains until more space is needed. You can verify file
contents with the -dump option.

DoRedo()
This procedure calls VixDiskLib_CreateChild() to establish a redo log. A child disk records disk
sectors that changed since the parent disk or previous child. Children can be chained as a set of redo
logs.

The sample program does not demonstrate use of VixDiskLib_Attach(), which you can use to access
a link in the disk chain. VixDiskLib_CreateChild() establishes a redo log, with the child replacing the
parent for read/write access. Given a pre-existing disk chain, VixDiskLib_Attach() creates a related
child, or a cousin you might say, that is linked into some generation of the disk chain.

For a diagram of the attach operation, see Attach Child to Parent Disk.

Write by DoFill()
This procedure calls VixDiskLib_Write() to fill a disk sector with ones (byte value FF) unless otherwise
specified by -val on the command line. The default is to fill only the first sector, but this can be changed
with options -start and -count on the command line.

DoReadMetadata()
This procedure calls VixDiskLib_ReadMetadata() to serve the -rmeta command-line option. For
example, type this command to obtain the universally unique identifier:

vix-disklib-sample -rmeta uuid sample.vmdk

DoWriteMetadata()
This procedure calls VixDiskLib_WriteMetadata() to serve the -wmeta command-line option. For
example, you can change the tools version from 1 to 2 as follows:

vix-disklib-sample -wmeta toolsVersion 2 sample.vmdk

DoDumpMetadata()
This procedure calls VixDiskLib_GetMetadataKeys() then VixDiskLib_ReadMetadata() to serve the
-meta command-line option. Two read-metadata calls are needed for each key: one to determine length
of the value string and another to fill in the value. See Get Metadata Table from Disk.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 63

In the following example, the sample program connects to an ESXi host named esx3 and displays the
metadata of the Red Hat Enterprise Linux client’s virtual disk. For an ESXi host, path to disk might be
[storage1] followed by the virtual machine name and the VMDK filename.

vix-diskLib-sample -meta -host esx3 -user admin -password secret “[storage1]RHEL5/RHEL5.vmdk"

geometry.sectors = 63

geometry.heads = 255

geometry.cylinders = 522

adapterType = buslogic

toolsVersion = 1

virtualHWVersion = 7

Tools version and virtual hardware version appear in the metadata, but not in the disk information
retrieved by DoInfo(). Geometry information and adapter type are repeated, but in a different format.
Other metadata items not listed above might exist.

DoDump()
This procedure calls VixDiskLib_Read() to retrieve sectors and displays sector contents on the output
in hexadecimal. The default is to dump only the first sector numbered zero, but you can change this with
the -start and -count options. Here is a sequence of commands to demonstrate:

vix-disklib-sample -create sample.vmdk

vix-disklib-sample -fill -val 1 sample.vmdk

vix-disklib-sample -fill -val 2 -start 1 -count 1 sample.vmdk

vix-disklib-sample -dump -start 0 -count 2 sample.vmdk

od -c sample.vmdk

On Linux (or Cygwin) you can run the od command to show overhead and metadata at the beginning of
file, and the repeated ones and twos in the first two sectors. The -dump option of the sample program
shows only data, not overhead.

DoTestMultiThread()
This procedure employs the Windows thread library to make multiple copies of a virtual disk file. Specify
the number of copies with the -multithread command-line option. For each copy, the sample program
calls the CopyThread() procedure, which in turn calls a sequence of six Virtual Disk API routines.

On Linux the multithread option is unimplemented.

DoClone()
This procedure calls VixDiskLib_Clone() to make a copy of the data on virtual disk. A callback
function, supplied as the sixth parameter, displays the percent of cloning completed. For local hosted
disk, the adapter type is SCSI unless specified as IDE on the command line, size is 200MB, unless set by
-cap option, and type is monolithic sparse, for Workstation. For an ESXi host, adapter type is taken from
managed disk itself, using the connection parameters established by VixDiskLib_Connect().

If createParams.diskType is VIXDISKLIB_DISK_VMFS_THIN, clone converts the destination VMDK to
thin. This is an exception to ignoring createParams for the remote case.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 64

The final parameter TRUE means to overwrite if the destination VMDK exists.

The clone option is a good backup method. Sometimes a cloned virtual disk is smaller, because it can be
organized more efficiently. Moreover, a fully allocated flat file can be converted to sparse or thin
representation.

SSL Certificate Thumbprint
The sample program in the VDDK 5.1 release added the -thumb option to allow an SSL certificate
thumbprint to be provided and used. The thumbprint is used for authentication through vCenter Server.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 65

Practical Programming Tasks 6
This chapter presents some practical programming challenges not covered in the sample program,
including:

This chapter includes the following topics:
n Scan VMDK for Virus Signatures

n Creating Virtual Disks

n VMDK File Versions

n Working with Virtual Disk Data

n Managing Child Disks

n RDM Disks and Virtual BIOS

n Interfacing With VMware vSphere

Scan VMDK for Virus Signatures
One of the Use Cases for the Virtual Disk Library is to scan a VMDK for virus signatures. Using our
sample program framework, this example function implements the -virus command-line option, using
hypothetical library routine SecureVirusScan(), supplied by an antivirus software vendor. The library
routine scans a buffer against the vendor’s latest pattern library, returning TRUE if it identifies a virus.

extern int SecureVirusScan(const uint8 *buf, size_t n);

/*

* DoVirusScan - Scan the content of a virtual disk for virus signatures.

*/

static void DoVirusScan(void)

{

 VixDisk disk(appGlobals.connection, appGlobals.diskPath, appGlobals.openFlags);

 VixDiskLibDiskInfo info;

 uint8 buf[VIXDISKLIB_SECTOR_SIZE];

 VixDiskLibSectorType sector;

 VixError vixError = VixDiskLib_GetInfo(disk.Handle(), &info);

 CHECK_AND_THROW(vixError);

 cout << "capacity = " << info.capacity << " sectors" << endl;

 // read all sectors even if not yet populated

 for (sector = 0; sector < info.capacity; sector++) {

 vixError = VixDiskLib_Read(disk.Handle(), sector, 1, buf);

VMware, Inc. 66

 CHECK_AND_THROW(vixError);

 if (SecureVirusScan(buf, sizeof buf)) {

 printf("Virus detected in sector %d\n", sector);

 }

 }

 cout << info.capacity << " sectors scanned" << endl;

}

This function calls VixDiskLib_GetInfo() to determine the number of sectors allocated in the virtual
disk. The number of sectors is available in the VixDiskLibDiskInfo structure, but normally not in the
metadata. With SPARSE type layout, data can occur in any sector, so this function reads all sectors,
whether filled or not. VixDiskLib_Read() continues without error when it encounters an empty sector full
of zeroes.

The following difference list shows the remaining code changes necessary for adding the -virus option
to the vixDiskLibSample.cpp sample program:

43a44

> #define COMMAND_VIRUS_SCAN (1 << 10)

72a74

> static void DoVirusScan(void);

425a429

> printf(" -virus: scan source vmdk for virus signature \n");

519a524,525

> } else if (appGlobals.command & COMMAND_VIRUS_SCAN) {

> DoVirusScan();

564a571,572

> } else if (!strcmp(argv[i], "-virus")) {

> appGlobals.command |= COMMAND_VIRUS_SCAN;

Creating Virtual Disks
This section discusses the types of local VMDK files and how to create virtual disk for a remote ESXi
host.

Create Local Disk
The sample program presented in Chapter 5 Virtual Disk API Sample Code creates virtual disk of type
MONOLITHIC_SPARSE, in other words one big file, not pre-allocated. This is the default because modern
file systems, in particular NTFS, support files larger than 2GB, and can hold more than 2GB of total data.
This is not true of legacy file systems, such as FAT16 on MS-DOS and early Windows, or the ISO9660 file
system for writing files on CD, or NFS version 2, or Linux kernel 2.4. All are limited to 2GB per volume.
FAT and FAT32 were extended to 4GB in NT 3.51.

However, a SPLIT virtual disk might be safer than the MONOLITHIC variety, because if something goes
wrong with the underlying host file system, some data might be recoverable from uncorrupted 2GB
extents. VMware products do their best to repair a damaged VMDK, but having a split VMDK increases
the chance of salvaging files during repair. On the downside, SPLIT virtual disk involves higher overhead
(more file descriptors) and increases administrative complexity.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 67

When required for a FAT16 or early Linux file system, you can create SPLIT_SPARSE virtual disk. The
change is simple: the line highlighted in boldface. The sample program could be extended to have an
option for this.

static void DoCreate(void)

{

 VixDiskLibAdapterType adapter = strcmp(appGlobals.adapterType, "scsi") == 0 ?

 VIXDISKLIB_ADAPTER_SCSI_BUSLOGIC : VIXDISKLIB_ADAPTER_IDE;

 VixDiskLibCreateParams createParams;

 VixError vixError;

 createParams.adapterType = adapter;

 createParams.capacity = appGlobals.mbSize * 2048;

 createParams.diskType = VIXDISKLIB_DISK_SPLIT_SPARSE;

 vixError = VixDiskLib_Create(appGlobals.connection, appGlobals.diskPath, &createParams, NULL, NULL);

 CHECK_AND_THROW(vixError);

}

Note You can split VMDK files into smaller than 2GB extents, but created filenames still follow the
patterns shown in Table 3‑1.

This one-line change to DoCreate() causes creation of 200MB split VMDK files (200MB being the
capacity set on the previous line) unless the -cap command-line argument specifies otherwise.

Create Remote Disk
As stated in Support for Managed Disk, VixDiskLib_Create() does not support managed disk. To
create a managed disk on the remote ESXi host, first create a hosted disk on the local Workstation, then
convert the hosted disk into managed disk with VixDiskLib_Clone() over the network.

To create remote managed disk using the sample program, type the following commands:

./vix-disklib-sample -create -cap 1000000 virtdisk.vmdk

./vix-disklib-sample -clone virtdisk.vmdk -host esx3i -user root -password secret

vmfsdisk.vmdk

You could write a virtual-machine provisioning application to perform the following steps:

Procedure

1 Create a hosted disk VMDK with 2GB capacity, using VixDiskLib_Create().

2 Write image of the guest OS and application software into the VMDK, using VixDiskLib_Write().

3 Clone the hosted disk VMDK onto the VMFS file system of the ESXi host.

vixError = VixDiskLib_Clone(appGlobals.connection, appGlobals.diskPath,

 srcConnection, appGlobals.srcPath,

 &createParams, CloneProgressFunc, NULL, TRUE);

In this call, appGlobals.connection and appGolbals.diskPath represent the remote VMDK on
the ESXi host, while srcConnection and appGlobals.srcPath represent the local hosted VMDK.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 68

4 Power on the new guest OS to get a new virtual machine.

On Workstation, the VixVMPowerOn() function in the VIX API does this. For ESXi hosts, you must
use the PowerOnVM_Task method. As easy way to use this method is in the VMware vSphere Perl
Toolkit, which has the PowerOnVM_Task() call (non-blocking), and the PowerOnVM() call
(synchronous).

5 Provision and deploy the new virtual machine on the ESXi host.

Special Consideration for ESXi Hosts
No matter what virtual file type you create in Step 1, it becomes type VIXDISKLIB_DISK_VMFS_FLAT in
Step 3.

VMDK File Versions
Virtual disk programs must be able to cope with VMDK files up to version three (3).

Version 1 was the initial version of VMDK. All released builds of vixDiskLib can read and write this
version.

Version 2 added disk encryption for hosted products (Workstation and Fusion), although encrypted disks
were never implemented on ESXi. Version 2 VMDK files can be transferred to and appear on ESXi,
where they are treated like version 1 VMDK files.

Version 3 added support for persistent changed block tracking (CBT), and is set when CBT is enabled for
a virtual disk. CBT is supported on VMFS datastores. This version 3 first appeared in ESXi 4.0 and
continues unchanged in recent vSphere releases. When CBT is enabled, the version number is
incremented, and decremented when CBT is disabled.

If you look at the .vmdk descriptor file for a version 3 virtual disk, you can see a pointer to its *-ctk.vmdk
ancillary file. For example:

version=3

...

Change Tracking File

changeTrackPath="Windows-2008R2x64-2-ctk.vmdk"

The changeTrackPath setting references a file that describes changed areas on the virtual disk.

If you want to back up the changed area information, then your software should copy the *-ctk.vmdk file
and preserve the “Change Tracking File” line in the .vmdk descriptor file. If you do not want to back up the
changed area information, then you can discard the ancillary file, remove the “Change Tracking File” line,
read the VMDK file data as if it were version 1, and roll back the version number on restore.

Working with Virtual Disk Data
The virtual disk library reads and writes sectors of data. It has no interface for character or byte-oriented
I/O.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 69

Reading and Writing Local Disk
Demonstrating random I/O, this function reads a sector at a time backwards through a VMDK. If it sees
the string “VmWare” it substitutes the string “VMware” in its place and writes the sector back to VMDK.

#include <string>

static void DoEdit(void)/

{

 VixDisk disk(appGlobals.connection, appGlobals.diskPath, appGlobals.openFlags);

 uint8 buf[VIXDISKLIB_SECTOR_SIZE];

 VixDiskLibSectorType i;

 string str;

 for (i = appGlobals.numSectors; i >= 0; i--) {

 VixError vixError;

 vixError = VixDiskLib_Read(disk.Handle(), appGlobals.startSector + i, 1, buf);

 CHECK_AND_THROW(vixError);

 str = buf;

 if (pos = str.find("VmWare", 0)) {

 str.replace(pos, 5, "VMware");

 buf = str;

 vixError = VixDiskLib_Write(disk.Handle(), appGlobals.startSector + i, 1, buf);

 CHECK_AND_THROW(vixError);

 }

 }

}

Reading and Writing Remote Disk
The DoEdit() function is similar for remote managed virtual disk on ESXi hosts, but beforehand you
must call VixDiskLib_Connect() with authentication credentials instead of passing NULL parameters.

 if (appGlobals.isRemote) {

 cnxParams.vmxSpec = NULL;

 cnxParams.serverName = appGlobals.host;

 cnxParams.credType = VIXDISKLIB_CRED_UID;

 cnxParams.creds.uid.userName = appGlobals.userName;

 cnxParams.creds.uid.password = appGlobals.password;

 cnxParams.port = appGlobals.port;

 }

 VixError vixError = VixDiskLib_Init(1, 0, NULL, NULL, NULL, NULL);

 CHECK_AND_THROW(vixError);

 vixError = VixDiskLib_Connect(&cnxParams, &appGlobals.connection);

Deleting a Disk (Unlink)
The function to delete virtual disk files is VixDiskLib_Unlink(). It takes two arguments: a connection
and a VMDK filename.

vixError = VixDiskLib_Unlink(appGlobals.connection, appGlobals.diskPath);

Virtual Disk Development Kit Programming Guide

VMware, Inc. 70

Effects of Deleting a Virtual Disk
When you delete a VMDK, you lose all the information it contained. In most cases, the host operating
system prevents you from doing this when a virtual machine is running. However, if you delete a VMDK
with its virtual machine powered off, that guest OS becomes unbootable.

Renaming a Disk
The function to rename virtual disk files is VixDiskLib_Rename(). It takes two arguments: the old and
the new VMDK filenames.

vixError = VixDiskLib_Rename(oldGlobals.diskpath, newGlobals.diskpath);

Effects of Renaming a Virtual Disk
The server expects VMDK files of its guest OS virtual machines to be in a predictable location. Any file
accesses that occur during renaming might cause I/O failure and possibly cause a guest OS to fail.

Managing Child Disks
In the Virtual Disk API, redo logs are managed as a parent-child disk chain, each child being the redo log
of disk changes made since its inception. Trying to write on the parent after creating a child results in an
error. The library expects you to write on the child instead. See Attach Child to Parent Disk for a diagram.

Create Redo Logs
A redo log is created by taking a virtual machine snapshot, which contains both disk data and virtual
machine state. On hosted disk only, VixDiskLib_CreateChild() creates a redo log without virtual
machine state.

You could write a simple application to create redo logs, or snapshots on managed disk, at 3:00 AM
nightly. (although multiple snapshots have a performance impact). When you create a redo log while the
virtual machine is running, the VMware host re-arranges file pointers so the primary VMDK,
<vmname>.vmdk for example, keeps track of redo logs in the disk chain. Use the disk chain to re-create
data for any given day.

To re-create data for any given day

Procedure

1 Locate the <vmname>-<NNN>.vmdk redo log for the day in question.

<NNN> is a sequence number. You can identify this redo log or snapshot by its timestamp.

2 Initialize the virtual disk library and open the redo log to obtain its parent handle.

3 Create a child disk with the VixDiskLib_Create() function, and attach it to the parent:

vixError = VixDiskLib_Attach(parent.Handle(), child.Handle());

Virtual Disk Development Kit Programming Guide

VMware, Inc. 71

4 Read and write the virtual disk of the attached child.

This is just an example. On managed disk, multiple snapshots are not recommended for performance
reasons. Backup software on vSphere usually takes a snapshot, saves data to backup media, then
deletes the snapshot.

Virtual Disk in Snapshots
The Virtual Disk API provides the following features to deal with the disk component of snapshots:

n Attaching an arbitrary child in a disk chain

n Opening read-only virtual disks

n Ability to open snapshot disk on ESXi hosts through VMware vCenter

Windows 2000 Read-Only File System
Another use of parent-child disk chaining is to create read-only access for Windows 2000, which has no
option for mounting a read-only file system.

In Figure 6‑1, the gray circle represents a virtual disk that must remain read-only because it has children.
In this example, you want the Windows 2000 virtual machine to use that virtual disk, rather than the
newer ones C1 and C2. Create new child disk RO, attach to the gray virtual disk as parent, and mount
RO as the (mostly empty) read-only virtual disk of the Windows 2000 guest OS.

Figure 6‑1. Attaching Virtual Read/Write Disk for Windows 2000

Windows 2000

C1 C2 RO

RDM Disks and Virtual BIOS
This section outlines low-level procedures for restoring raw device mapping (RDM) disks and NVRAM.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 72

Restore RDM Disks
Backing up and restoring RDM disks presents unusual challenges. The original backed-up RDM
configuration might not apply, and is probably not appropriate, if users restore:

n A virtual machine to a different host or datastore.

n A virtual machine that was deleted, when its originally mapped RDM was also deleted, or the
containing LUN was repurposed and rewritten.

n The RDM to a different virtual machine, even if that virtual machine is on the same host and
datastore. Users might do this to access files on the disk, or to test a restore.

When performing a proxy backup of an RDM disk, you must present the same LUN ID to both the ESXi
host and the proxy server. (This restriction does not apply to VMFS disk because the virtual disk library
reads the VMFS header and matching UUID. But for RDM the host and proxy require the same LUN ID.)

Restoring RDM disks is appropriate if the original virtual machine’s VMX file and disk mapping is no
longer available, but the LUN containing the RDM is still available. In this case, the RDM image on the
LUN might still be valid, so it does not need to be restored. If this is true, do not make changes to the
RDM configuration during your restore operations. Instead, complete the restore process in two phases:

n Restore the virtual machine configuration (VMX) and system disk. This restores the virtual machine,
but does not restore the RDM.

n Add the RDM disk to the virtual machine. After doing so, you can complete normal restore operations
on the RDM disk.

Alternatively, it is possible to create a virtual machine that can host the RDM disk and access its contents.
After you create the virtual machine, restore its virtual machine configuration (VMX) from backup, and
then restore any selected disks.

Restore the Virtual BIOS or UEFI
The .nvram file stores the BIOS or UEFI customizations of a virtual machine. Usually the only important
items in this file are the boot drive setting and the boot order (in the case of multiple virtual disks).

Newer releases of vSphere can change the boot order using extended attribute settings, so boot order no
longer must be stored in the .nvram file. However some users want to preserve a virtual machine’s serial
port settings in the .nvram file, and possibly other items, so applications should back up and restore this
information.

To back up and restore NVRAM:

Procedure

1 For each virtual machine, make a separate copy of the .nvram file.

2 Back up each virtual machine using standard methods.

3 If necessary, restore the virtual machine using standard methods.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 73

4 Overwrite the virtual machine’s .nvram file with the saved copy of the original .nvram file.

Important VMware now recommends saving the .nvram file as part of virtual machine backup, a
change in recommendation since vSphere 4.1.

Interfacing With VMware vSphere
This section provides pointers to other vSphere programming interfaces.

The VIX API
The VIX API was a popular developer interface for VMware Workstation and other hosted products. It has
been deprecated for vSphere. See the VMware developer documentation for information about the VIX
API:

http://www.vmware.com/support/developer/vix-api

The VIX API Reference guide includes function reference pages for C++, Perl, and COM (component
object model) for Microsoft C#, VBScript, and Visual Basic. Most reference pages include helpful code
examples. Additionally, the vix-api Web guide includes examples for power on and off, suspending a
virtual machine, taking a snapshot, guest operations, virtual machine discovery, and asynchronous
callbacks.

Virus Scan all Hosted Disk
Suppose you want to run the antivirus software presented in Scan VMDK for Virus Signatures for all
virtual machines hosted on a VMware Workstation. Here is the high-level algorithm for an VIX-based
application that would scan hosted disk on all virtual machines.

To virus scan hosted virtual disk:

Procedure

1 Write an application including both the Virtual Disk API and the VIX API.

2 Initialize the virtual disk library with VixDiskLib_Init().

3 Connect VIX to the Workstation host with VixHost_Connect().

4 Call VixHost_FindItems() with item-type (second argument) VIX_FIND_RUNNING_VMS.

This provides to a callback routine (fifth argument) the name of each virtual machine, one at a time.
To derive the name of each virtual machine’s disk, append “.vmdk” to the virtual machine name.

5 Write a callback function to open the virtual machine’s VMDK.

Your callback function must be similar to the VixDiscoveryProc() callback function shown as an
example on the VixHost_FindItems() page in the VIX API Reference Guide.

6 Instead of printing “Found virtual machine” in the callback function, call the DoVirusScan() function
shown in Scan VMDK for Virus Signatures.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 74

http://www.vmware.com/support/developer/vix-api
http://www.vmware.com/support/developer/vix-api

7 Decontaminate any infected sectors that the virus scanner located.

The vSphere Web Services API
The VMware vSphere Web Services (WS) API is a developer interface for ESXi hosts and vCenter
Server. See the VMware developer documentation for information about the vSphere WS API:

http://www.vmware.com/support/developer/vc-sdk

The Developer’s Setup Guide for the VMware vSphere WS SDK has a chapter describing how to set up
your programming environment for Microsoft C# or Java. Some of the information applies to C++ also.

The Programming Guide for the vSphere SDK contains some sample code written in Microsoft C# but
most examples are written in Java, and based on the JAX-WS development framework.

ESXi hosts and the VMware vSphere WS API use a programming model based on Web services, in
which clients generate Web services description language (WSDL) requests that pass over the network
as XML messages encapsulated in simple object access protocol (SOAP). On ESXi hosts or vCenter
Server, the vSphere layer answers client requests, usually passing back SOAP responses. This is a
different programming model than the object-oriented function-call interface of C++ and the VIX API.

Virus Scan All Managed Disk
Suppose you want to run the antivirus software presented in Scan VMDK for Virus Signatures for all
virtual machines hosted on an ESXi host. Here is the high-level algorithm for a VMware vSphere solution
that can scan managed disk on all virtual machines.

To virus scan managed virtual disk:

Procedure

1 Using the VMware vSphere Perl Toolkit, write a Perl script that connects to a given ESXi host.

2 Call Vim::find_entity_views() to find the inventory of every VirtualMachine.

3 Call Vim::get_inventory_path() to get the virtual disk name in its appropriate resource.

The VMDK filename is available as diskPath in the GuestDiskInfo data object.

4 Using Perl’s system(@cmd) call, run the extended vixDiskLibSample.exe program with -virus
option.

For ESXi hosts you must specify -host, -user, and -password options.

5 Decontaminate any infected sectors that the virus scanner located.

Read and Write VMDK Using vSphere API
The VMware vSphere Web Services API (version 2 and later) offers some methods to manage VMDK
files. The VirtualDiskManager managed object defines more than a dozen methods similar to those in
the Virtual Disk API documented here.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 75

http://www.vmware.com/support/developer/vc-sdk

For more information, navigate to the latest VMware vSphere documentation center on the Web, search
for VirtualDiskManager, and follow the specific link. At top of page you can click Local Methods to see
a list of all methods defined by the VirtualDiskManager managed object.

VirtualDiskManager methods were not heavily used, and have not been updated to support object
oriented file systems such as vSAN and VVol, or storage profile based management (SPBM).

First Class Disk (FCD) Backup
First Class Disk (FCD), also known as Improved Virtual Disk, provides storage lifecycle management on
virtual disks, independent of virtual machines. An FCD may be created natively using the FCD interfaces
or an existing virtual disk may be promoted to an FCD.

First Class Disk is a named virtual disk not associated with a VM. The vSphere API for handling FCD is
called VSLM, virtual storage lifecycle management.

In vSphere 6.5, VDDK supported the backup of FCD in attached mode, but not in detached mode. To
back up FCD, programs had to attach the FCD to a dummy VM (such as one without a guest OS) and
then back up the VM.

In vSphere 6.7, VDDK supports the backup of detached FCD, in any transport mode. Detached FCD is
neither related to nor attached to a VM. It is identified by a combination of its UUID and the datastore ID
where it resides. An FCD must be attached to a VM for regular I/O, but not for snapshot based backup.

First Class Disks are identified by UUID. This UUID is globally unique and the primary identifier for the
FCD. The UUID remains valid even if its FCD is relocated or snapshotted. FCD operations are performed
using the VStorageObjectManagerBase managed object, extended for either ESXi hosts or vCenter
Server. See the vSphere API Reference for details.

FCD Workflows and Operations
Create and Delete: FCDs can be created using the createDisk_Task method. An existing VMDK can be
promoted to FCD using the registerDisk method. Once a disk has been registered as an FCD it cannot
be unregistered, however registering a disk as an FCD has no impact other than enabling the VSLM APIs
to manage them.

Snapshot: FCD snapshots use the same underlying mechanisms as regular snapshots and have the
same restrictions as regular snapshots. FCD snapshots are independent of VM snapshots. Each FCD
snapshot receives a separate snapshot ID. Snapshots are managed using the VStorageObjectManager
specific createSnapshot_Task and deleteSnapshot_Task methods. You can revert an FCD to a given
snapshot using the RevertVStorageObject_Task method. Reverting an FCD removes all snapshots
after the selected snapshot. To access data at the time of the snapshot without discarding subsequent
snapshots, you can use the VStorageObjectManagerCreateDiskFromSnapshot method or VADP
restore.

Backup and Restore: FCDs that are not attached to VMs can be backed up using the VADP interfaces.
For backup applications, the best practice is to back up VMDKs and FCDs attached to the VMs, and also
back up FCDs that are not attached to a VM.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 76

Discovering FCDs for Backup
FCDs can be listed on a per-datastore basis. The recommended practice is to iterate across the list of
datastores from vCenter, get the FCDs for each datastore, then perform a backup of each FCD. VADP
can back up both attached and detached FCDs.

Use the Datacenter managed object's datastore property to list all datastores in a datacenter. For each
datastore, use the listVStorageObject method to list the FCDs. For each FCD, use the
VStorageObject.getConfig.getId API to retrieve the FCD's ID. The FCD ID is used in connParams-
>vStorageObjSpec.id below. The FCD snapshot ID is used in the connParams-
>vStorageObjSpec.ssid to specify the snapshot to back up from.

New Connect Parameters and Functions
VDDK 6.7 has a new union in the VixDiskLibConnectParams structure, and new function calls to
allocate and free the structure, VixDiskLib_AllocateConnectParams() and
VixDiskLib_FreeConnectParams(). The new typedef is a union of:

n vmxSpec, the traditional specification string for a VM.

n VixDiskLibVStorageObjectSpec specifying the FCD's UUID, datastore MoRef, and snapshot
UUID.

VixDiskLib_AllocateConnectParams() is the recommended way to allocate an instance of
VixDiskLibConnectParams. Programs can allocate VixDiskLibConnectParams as before, although
then they cannot use new features in 6.7 such as detached FCD.

Except for connection parameters, VDDK code remains the same. All transport modes may be used.
Here is sample C++ code to allocate and initialize the connect parameters structure:

auto connParams = VixDiskLib_AllocateConnectParams();

connParams->specType = VIXDISKLIB_SPEC_VSTORAGE_OBJECT;

connParams->vStorageObjSpec.id = "XXXXXX" // FCD UUID

connParams->vStorageObjSpec.datastoreMoRef = "datastore-N" // datastore

connParams->vStorageObjSpec.ssid = "XXXXXX" // FCD snapshot UUID

...

VixDiskLib_FreeConnectParams(connParams); // free connect params near end

For a vmxSpec, here is a sample of legacy C++ code, and a revision:

// old:

VixDiskLibConnectParams connParams;

connParams.vmxSpec = "moref=vm-XX"; // vm moref

// new:

auto connParams = VixDiskLib_AllocateConnectParams;

connParams->specType = VIXDISKLIB_SPEC_VMX;

connParams->vmxSpec = "moref=vm-XX"; // vm moref

...

VixDiskLib_FreeConnectParams(connParams); // free connect params near end

Virtual Disk Development Kit Programming Guide

VMware, Inc. 77

Subsequently, VixDiskLib_Open ignores its disk path parameter because path location is determined by
VixDiskLibVStorageObjectSpec. The snapshot UUID is specified in
VixDiskLibVStorageObjectSpec, so the disk path is invisible to the customer anyway. Consequently
programs can pass NULL as the disk path parameter to VixDiskLib_Open. Programs can also pass an
FCD's UUID as the path parameter:

VixError

VixDiskLib_Open(const VixDiskLibConnection connection,

 const char *path,

 uint32 flags,

 VixDiskLibHandle *diskHandle);

However for the VixMntapi open disks call, passing a null diskNames parameter may cause a crash.
Programs should pass the FCD's UUID only, and specify numberOfDisks = 1.

VixError

VixMntapi_OpenDisks(VixDiskLibConnection connection,

 const char *diskNames[],

 size_t numberOfDisks,

 uint32 openFlags,

 VixDiskSetHandle *handle);

FCD Managed Objects and Tasks
The following managed objects and tasks are available in vSphere for manipulating FCD storage. For
details, see the vSphere Web Services API Reference on https://code.vmware.com under the vSphere
Management SDK.

n HostVStorageObjectManager manages FCD when connected to an ESXi host.

n VcenterVStorageObjectManager manages FCD when connected to a vCenter Server.

n VirtualMachine.AttachDisk_Task() attaches FCD to a VM.

n VirtualMachine.DetachDisk_Task() detaches FCD from the VM.

Behavior of FCD With Changed Block Tracking
The behavior of FCD with changed block tracking (CBT) differs from that of a regular VMDK disk.

1 Attaching an FCD with CBT disabled (the default) to a VM with CBT enabled causes CBT on the FCD
to become enabled. However, detaching that FCD from the VM does not disable CBT.

2 Attaching an FCD with CBT enabled to a VM with CBT disabled throws an error, unless the FCD is
attached as "independent nonpersistent" disk.

Use ReconfigVM_Task and connect the disk with the diskMode set to
independent_nonpersistent in the backing info. (VirtualDiskSeSparseBackingInfo,
VirtualDiskFlatVer2BackingInfo, VirtualDiskRawDiskMappingVer1BackingInfo and
VirtualDiskSparseVer2BackingInfo support this mode.)

Virtual Disk Development Kit Programming Guide

VMware, Inc. 78

https://code.vmware.com

Behavior of FCD with vMotion
An FCD can be attached to more than one VM.

When your program calls VixDiskLib_PrepareForAccess, VDDK disables the vSphere API method
RelocateVM_Task for all attached VMs, one after another. If an error occurs while disabling, VMs whose
relocate method was disabled remain disabled, whereas subsequent VMs can still be relocated.
Programs should call VixDiskLib_EndAccess to re-enable the relocate method, regardless of
VixDiskLib_PrepareForAccess return status. Otherwise vMotion or Storage vMotion could fail for the
remaining disabled VMs.

Code Sample for Connect Parameters
In the development kit, see lines in the vixDiskLibSample.cpp program where connection parameters
are allocated with the VixDiskLib_AllocateConnectParams() call.

In vSphere 6.7 and later, the Web Services SDK contains FCD code samples in Java for creating,
attaching, detaching, and deleting FCD.

In the vSphere 6.7 U2 release, Container Native Storage (CNS) supports FCD, and support for more
solutions will be added in the future.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 79

Backing Up Virtual Disks in
vSphere 7
This chapter documents how to write backup and restore software for virtual machines running in
vSphere, and contains the following sections about the vSphere Storage APIs – Data Protection (VADP):

For an overview of backup, and help designing your top-level program structure, read the first section
below. For details about implementing low-level backup code, read the remaining sections. You should be
familiar with virtual machines, snapshots, ESXi, vCenter, and Java.

This chapter includes the following topics:
n Design and Implementation Overview

n Low Level Backup Procedures

n Low Level Restore Procedures

n Tips and Best Practices

n Windows Backup Implementations

n Linux Backup Implementation

Design and Implementation Overview
On vSphere, backups are usually done by taking a snapshot, to efficiency obtain a static image of the
virtual machine. Snapshots are a view of a virtual machine at a certain point in time, and enable quick and
clean backup operation. Snapshots also provide an incremental backup mechanism called changed block
tracking.

To back up virtual machines on vSphere, VMware recommends a two-language solution. First use Java to
code the backup program that contacts the host, takes a temporary snapshot, records virtual machine
configuration, and (later) deletes the snapshot. Then use C++ or C to code the VDDK program that
transfers virtual disk data from the snapshot to backup media.

For restore, VMware recommends a two-language solution. First use Java to code the program that
instructs the virtual machine to halt, or re-creates the target virtual machine from recorded configuration.
Then use C or C++ to code the VDDK program that transfers saved data from backup media to virtual
disk.

The Backup Process
These are the high-level steps to back up a virtual machine running in vSphere:

VMware, Inc. 80

Procedure

1 Connect to the ESXi host containing the virtual machine targeted for backup.
A side-effect of this step is determining the arrangement and description of virtual machines on the
host.

2 Tell the host to take a snapshot of the target virtual machine, using the vSphere API. Use the
quiesce flag, but not the memory flag, which is incompatible with quiesce. The virtual machine
continues to run, while the snapshot provides a static (quiesced) view.

3 Capture the virtual disk data and virtual machine configuration information (vim.vm.ConfigInfo).

4 On the ESXi host, use the VDDK (programming in C or C++) to open and read the virtual disk and
snapshot files. Copy them to backup media, along with configuration information.

5 Tell the host to delete the backup snapshot, using the vSphere API.

Communicating With the Server
In a typical vSphere deployment with many ESXi hosts, an instance of vCenter Server manages the ESXi
hosts, and can move virtual machines from host to host (vMotion) to balance load and possibly save
electricity by powering off an ESXi host. VMware therefore recommends that backup applications
communicate with the vCenter Server instead of with individual ESXi hosts.

The vCenter Server provides location transparency for vSphere Web Services developers. The vCenter
Server tracks virtual machines as they move (through vMotion) from one ESXi host to another, and
vCenter Server directs SDK operations to the ESXi host that currently runs a virtual machine. Using the
vSphere Web Services API, it is possible to back up all the virtual disks associated with a virtual machine.

The handling of the vCenter or an individual ESXi host is essentially equivalent when using the vSphere
SDK. With vCenter management, there is no need to contact individual ESXi hosts directly. The
remainder of this chapter uses the term vSphere to indicate either a vCenter Server or an ESXi host.

To reduce the resources used by vSphere, VMware recommends that the number of connections (or
Sessions) be minimized. It is in the best interests of any program that communicates with vSphere to
create one Session and share it with all elements of the program that need to exchange information with
vSphere. This means that if your program supports multiple threads, your program should multiplex the
use of connection objects by use of access control locks (mutex and the like).

It is also important that all vSphere SDK operations proceed from one instance of the “Session” object
that your application requests after logging into vSphere. Using the vSphere API your application can
create objects that are “Session specific” and therefore would not be known to other portions of your
application that might use a different Session.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 81

Information Containers as Managed Objects
VMware documentation introduces you to the concept of the managed object and its handle, called a
managed object reference (moRef). You might be tempted to get configuration and status information of
managed objects using a piecemeal approach. This has the severe disadvantage of creating a lot of
chatter over the server connection, so it is very slow. A mechanism has been created to provide status
information efficiently: the PropertyCollector, discussed in PropertyCollector Data.

More About Managed Objects
The documentation for the vSphere API and object model introduces a large number of managed objects.
There are five basic types of managed objects that describe the organization of a server. Other managed
objects can be considered as details expanding on these five basic types:

n Folder

n Datacenter

n ComputeResource

n ResourcePool

n VirtualMachine

It is a characteristic of all managed objects that they have a moRef to the managed object that serves as
the parent to the managed object. This parent moRef allows you to reconstruct the object hierarchy
exposed by the vSphere SDK. In general the hierarchy is a tree-like structure along the lines of:

Root Folder > Datacenter > ComputeResource > ResourcePool > VirtualMachine

There are variations on this theme, depending on whether you connect to vCenter or directly to an ESXi
host, but the overall organization is like the structure above. Each managed object also has a Name
property.

The virtual machine that you want to back up, and the snapshot you take of it (the extensible managed
object VirtualMachineSnapshot) are both designated by their moRef.

Managed Object References
A managed object reference (moRef) is actually a handle and not the managed object itself. While it is
certain that a moRef always contains a unique value, the unique value is only relative to the instance of
vSphere to which you are connected. For example, if vCenter Server manages a cluster of ESXi hosts,
each ESXi host maintains its own managed object reference namespace and the vCenter must maintain
a managed object reference namespace representing all of its servers. So when an ESXi host is
represented by a vCenter, the vCenter must ensure that the managed object references are unique. The
vCenter accomplishes this by creating unique managed object reference names inside its own
namespace, which differ from the names that ESXi uses for the same managed objects.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 82

A vSphere instance (vCenter or ESXi) tries to keep the moRef for a virtual machine consistent across
sessions, however consistency is not guaranteed. For example, unregistering and reregistering a virtual
machine could result in a change to the moRef for the virtual machine. Thus, it is a bad idea to store a
moRef and expect it to work correctly in future sessions, or with a different vCenter Server.

Unique ID for a Different vCenter
On one vCenter Server, the moRef uniquely identifies a virtual machine. If you need to track and inventory
virtual machine backups across multiple vCenter Servers, you can use moRef together with
instanceUuid. You can see the instanceUuid at the following browser path:

https://<vcserver>/mob/?moid=ServiceInstance&doPath=content.about

For direct connections to ESXi, the host address and moRef uniquely identify a virtual machine. However
this moRef could be different from the one that vCenter Server returns, hence the fallback to
instanceUuid. The instanceUuid was new in VMware vSphere 4.0. In previous releases, the fallback
was to Uuid.

Gathering Status and Configuration Information
To save configuration of a virtual machine so you can restore it later, you can use the PropertyCollector to
get the virtual machine configuration.

The PropertyCollector is the most efficient mechanism to specify, at the top level, all of the managed
objects that are of interest to your application. It has methods for providing updates that indicate only
changes to the previous state of these objects. There are two mechanisms for acquiring these updates:

n Polling – Check for changes. The result is either “no change” or an object containing the changes.
One advantage of this mechanism is that it involves no network traffic except for a poll request and
reporting.

n Wait for updates – “Wait for updates” is basically a blocking call to the PropertyCollector. This is
only useful if you dedicate a program thread waiting for the call to unblock. The advantage of this
mechanism is that there is no traffic on the communications thread unless something must be
reported.

The PropertyCollector is powerful but requires great attention to detail. Backup-related features of the
PropertyCollector are covered in Low Level Backup Procedures of this document. The next section
provides some background about PropertyCollector.

PropertyCollector Data
This document assumes that you want to keep up with changes in the configuration of the vCenter
Server, and therefore plan to use the update tracking capability of the PropertyCollector.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 83

The PropertyCollector requires two fairly complex arguments: the PropertySpec and the
ObjectSpec. The ObjectSpec contains instructions to the PropertyCollector describing where to look
for the desired data. Because configuration information in vSphere is organized like a directory tree, the
ObjectSpec must describe how to traverse the tree to obtain the desired information. The net result is a
complex, nested, and recursive list of instructions. Fortunately, once you have determined the location of
all the desired information, the ObjectSpec needed to determine the layout of a vSphere object hierarchy
can be a static unvarying object. See the code example in section Understanding an ObjectSpec.

The PropertySpec is a list of desired property information. Formulating a list that includes all of the
desired information can take some effort to compile, but once determined, this can be a static object also.

The data returned from the PropertyCollector is a container class called PropertyFilterUpdate,
which contains an objectSet with an item-by-item list of changes to object properties. Every item in this
container is identified with one of the following keys: enter (add), leave (delete), and modify. On the first
data request, every data item is included, and “enter” is marked for every data item.

The PropertyCollector presents its results in what amounts to random order. Since all managed
objects have a “parent” property, you can reconstruct the configuration hierarchy by building a tree in
memory, using the parent identification to organize. The root folder is identified as the only folder without
a parent.

Useful Property Information
In the data returned from PropertyCollector, you can find most of the information that is useful for
backup in the Virtual Machine managed object, including the following:

n Virtual Disks – names, types, and capacities.

n Virtual Machine Type and Configuration – Whatever would be useful in (re)creating a virtual machine.
This list might include such information as memory size and number of CPUs.

n Display Names – These names appear in VMware products such as the vSphere Client. You should
keep track of these names and correlate them for consistency between your product and VMware
products.

VMware supports many virtual disk implementations. The disk implementation type is important because:

n On restore, you should re-create virtual disk with the same disk type as the original virtual machine
used.

n A disk backed by a pass-through raw device mapping (RDM) mostly bypasses the ESXi storage
stack. You cannot make a snapshot of this virtual disk type. Therefore, you cannot back up pass-
through RDM disk using the snapshot method described in this document.

For more information about the Java APIs, read the first several chapters of the VMware vSphere Web
Services SDK Programming Guide, and related pages of the Web-based VMware vSphere API
Reference Documentation. Both are available at http://www.vmware.com/support/developer/vc-sdk.
Examples in this chapter assume that you have set up the vSphere SDK as described in documentation.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 84

http://www.vmware.com/support/developer/vc-sdk

Doing a Backup Operation
After your program obtains information about what is available to back up, it can perform a backup. The
three steps to the backup process are:

n Create a Temporary Snapshot on the Target Virtual Machine

n Extract Backup Data from the Target Virtual Machine, and save configuration information.

n Delete the Temporary Snapshot

Prerequisites for Backup
To complete a backup, the calling program requires the permissions shown in Table 7‑1.

Table 7‑1. Required Permissions to Complete a Backup

Privilege Category Privilege Subcategory Privilege

Virtual Machine Provisioning Allow Virtual Machine Download

State Create Snapshot

Remove Snapshot

Configuration Disk Lease

Create a Temporary Snapshot on the Target Virtual Machine
The low-level procedure for creating a snapshot of a virtual machine is documented in the section
Creating a Snapshot. Set the quiesce flag True to make the file system quiescent, otherwise the
snapshot might represent a transitional system state, with inconsistent data. Restoring such data might
be destructive.

Another flag named memory allows you to include in the snapshot a dump of the powered on virtual
machine's in-memory state. This is not needed for backup, so set this flag to False.

Changed Block Tracking
This feature, first available in vSphere 4, provides the foundation for incremental (or differential) backup of
virtual disks. Your application can back up only changed data as indicated by the
QueryChangedDiskAreas method. Virtual machines with virtual hardware version 7 and later support
changed block tracking. These virtual machines contain changeTrackingSupported in the capability
field of the VirtualMachine managed object. See Changed Block Tracking on Virtual Disks for details.

Extract Backup Data from the Target Virtual Machine
Associated with the snapshot you just created are “versions” of the virtual disks. To identify these disks,
you obtain a moRef to the snapshot you just created. From this snapshot moRef, you can extract the disk
names and paths. How to do this is demonstrated in section Backing Up a Virtual Disk.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 85

To read the data in a virtual disk, it is necessary to use the VixDiskLib. This library isolates the
programmer from the details of extracting data from a virtual disk and its redo logs. For example, when
doing backup you call functions VixDiskLib_Open() and VixDiskLib_Read(), among others.
VixDiskLib allows access to disk data on sector boundaries only; the transfer size is some multiple of
the disk sector size.

When accessing disks on ESXi hosts, VixDiskLib release 1.0 transferred virtual disk data over the
network. Later VixDiskLib releases contain API enhancements so you can request more efficient data
paths, such as direct SAN access or HotAdding disks to a virtual backup appliance. These efficient data
paths requires minor code changes, such as calling VixDiskLib_ConnectEx() instead of plain connect.

Part of virtual disk information is metadata: a number of key/value pairs describing configuration of the
virtual disk. Metadata information can be extracted from a virtual disk using the VixDiskLib functions
VixDiskLib_GetMetadataKeys() and VixDiskLib_ReadMetadata(). You should save metadata keys
along with the backup, in case you need to re-create the virtual disk.

The VixDiskLib API allows a backup application to perform a full backup of a virtual machine. The
newer VixMntapi library can extract information about a guest operating system from its virtual disks, so
your backup application can determine the type of operating system that is involved. This allows mounting
the volumes to device nodes, so your application can perform file-oriented backups and restores.

Delete the Temporary Snapshot
As the last part of the backup process, you should delete the temporary snapshot. It is no longer needed,
worsens virtual machine performance, and takes up storage space that could be put to better use.

Restore a Virtual Machine
Your software can follow one of two restore scenarios: either revert to a saved state, or disaster recovery:

To bring an existing virtual machine to a previous state

1 Connect to the server and command it to halt and power off the target virtual machine.

2 Use the server to gain access to the virtual disks. With SAN transport (but not HotAdd or NBDSSL)
you must create a snapshot before restoring data.

3 Transfer the disk images from backup using VixDiskLib. Revert-to and delete the snapshot, if
created.

To completely re-create a virtual machine (disaster recovery)

1 Connect to the server.

2 Command the server to create a new virtual machine and its virtual disks using the configuration
information saved from vim.vm.ConfigInfo during backup.

3 Transfer virtual disk data to the newly created virtual disks using VixDiskLib. Virtual disk data
includes disk formatting information, so you do not need to build any kind of file system on the virtual
disks.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 86

Doing a Restore Operation
The two scenarios of restore operation are described below.

n Restore an Existing Virtual Machine to a Previous State

n Create a New Virtual Machine

Prerequisites for Restore
To complete a restore, the calling process requires the permissions in Table 7‑2.

Table 7‑2. Required permissions to complete a restore

Privilege Category Privilege Subcategory Privilege

Virtual Machine Inventory Create

Remove

Configuration Settings

Change Resource

Resource Assign Virtual Machine to Resource Pool

For security reasons, programs are not granted write access to the disks of a running virtual machine.
Before you shut it down, you should determine the run-state of the virtual machine.

Run-state information is available from the PropertyCollector, and if you keep this information up-to-
date, your application already knows the run-state of the virtual machine. To change the run-state you
must have the moRef of the virtual machine. Use this moRef in a PowerOnVM_Task call through the server
connection. For virtual machine shutdown, call the PowerOffVM_Task method.

Restore an Existing Virtual Machine to a Previous State
The following steps restore a virtual machine to a certain saved state:

Procedure

1 Shut down the virtual machine (if it is not already shut down).

2 For SAN transport mode, a snapshot is required for restoring virtual disk data, and writes must go to
the base disk only. The restore snapshot is optional (not necessary) for NBD(SSL) and HotAdd
transport modes. On VVol datastores, if a snapshot was taken, writes must go to the leaf disk
because the snapshot volume is read-only.

3 Restore contents of the virtual disk(s). If there were no pre-existing snapshots at backup time, just the
snapshot just created, restore only the base disks.

Restoring disk data requires that you obtain the current names of virtual disks. This process is similar
to the one described in Extract Backup Data from the Target Virtual Machine, except in this case you
obtain this information directly from the virtual machine and not from a snapshot. The target for the
saved disk data must be the actual disk name (including any sequence number) because the current
incarnation of a virtual machine may be derived from one or more snapshots.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 87

Restoring disk data requires use of VixDiskLib. The VixDiskLib_Write() function opens the
virtual disks so your program can write data. VixDiskLib functions transfer data to even-sector
boundaries only, and transfer length must be an even multiple of the sector size.

The virtual disk already exists, so it is not necessary to restore the disk configuration information
mentioned in Extract Backup Data from the Target Virtual Machine.

4 With SAN transport mode, revert-to and delete the snapshot that you created in step 2. Failing to
perform this step with SAN mode could yield a virtual machine that cannot be powered on.

Create a New Virtual Machine
The process of building a virtual machine from backup data involves the following steps:

Procedure

1 Create the virtual machine.

To create a new virtual machine, you use the information about virtual machine configuration that you
derived and saved during the backup process. You might allow users of restore software an
opportunity to rename the virtual machine during recovery in case they want to clone or move the
virtual machine. Also you might consider offering them an opportunity to change virtual machine
layout (for instance, storing virtual disks on a different datastore). Creating the virtual disks is also
done at the time when you create the virtual machine. This process is fairly complicated. See the
section Low Level Backup Procedures for details.

2 Restore the virtual disk data.

This process is similar to restoring the contents of virtual disks (step 3 under Restore an Existing
Virtual Machine to a Previous State) with the following exception: you must call the
VixDiskLib_WriteMetadata() function to write all the disk configuration key/value data into the
virtual disk before restoring any backed-up data to the virtual disk. Then call VixDiskLib_Write() to
restore the virtual disk data, as described in step 3.

3 Power on the virtual machine.

Access Files on Virtual Disks
It might be necessary for a backup application to access individual files or groups of files on the virtual
disks. For example, data protection applications might need to restore individual files on demand.

You can find the interfaces to accomplish this in the VixMntapi library associated with VixDiskLib. The
VixMntapi library allows disks or volumes of a virtual machine to be mounted and examined as needed.
VixMntapi provides access at the file system level, whereas VixDiskLib provides access at the sector
level.

To mount a virtual disk

Procedure

1 Locate the path names of all the virtual disks associated with a snapshot.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 88

2 Call VixDiskLib_Open() to open all of these virtual disks. This gives you a number of VixDiskLib
handles, which you should store in an array.

3 Call VixMntapi_OpenDiskSet() to create a VixDiskSetHandle, passing in the array of
VixDiskLib handles that you created in step 2.

4 Pass VixDiskSetHandle as a parameter to VixMntapi_GetVolumeHandles() to obtain an array of
VixVolumeHandle pointers to all volumes in the disk set.

5 Call VixMntapi_GetOsInfo() to determine what kind of operating system is involved, and decide
where important pieces of information are to be found.

6 For important volumes, call VixMntapi_MountVolume() then VixMntapi_GetVolumeInfo(), which
reveals how the volume is set up. (Unimportant volumes include swap partitions.)

7 If you need information about how the guest operating system sees the data on this volume, you can
look in the data structure VixVolumeInfo returned by VixMntapi_GetVolumeInfo(). For example,
VixVolumeInfo::symbolicLink, obtained using VixMntapi_GetVolumeInfo(), is the path on the
proxy where you can access the virtual disk’s file system using ordinary open, read, and write calls.

Once you are done accessing files in a mounted volume, there are VixMntapi procedures for taking
down the abstraction that you created. These calls are:

n VixMntapi_DismountVolume() for each volume handle

n VixMntapi_FreeOsInfo() and VixMntapi_FreeVolumeInfo()

n VixMntapi_CloseDiskSet()

This leaves the VixDiskLib handles that you obtained in the beginning; you must dispose of them
properly.

More VADP Details
The preceding sections explained how to contact vSphere and extract information from it, and how to
back up or restore virtual disks. The following sections cover the same information at a lower level.

Low Level Backup Procedures
This section describes low level details that may be helpful in coding a backup application. It is not the
intent of this material to impose a design, but only to serve as a guideline with examples and exposition.
The code samples provided below are not complete. They generally lack error handling and ignore critical
details.

Communicate with the Server
Connections to the server machine require credentials: user name, password, and host name (or IP
address). The following code connects to the server and extracts information useful for manipulating a
service:

Virtual Disk Development Kit Programming Guide

VMware, Inc. 89

Procedure

1 Create the service instance moRef:

ManagedObjectReference svcRef = new ManagedObjectReference();

svcRef.setType("ServiceInstance");

svcRef.setValue("ServiceInstance");

2 Locate the service:

VimServiceLocator locator = new VimServiceLocator();

locator.setMaintainSession(true);

VimPortType serviceConnection = locator.getVimPort("https://your_server/sdk");

3 Log in to the session manager:

ServiceInstanceContent serviceContent = serviceConnection.retrieveContent(svcRef);

ManagedObjectReference sessionManager = serviceInstance.getSessionManager();

UserSession us = serviceConnection.login(sessionManager, username, password, null);

The PropertyCollector
The PropertyCollector is used in this section to apply the above details to the backup task.

PropertyCollector Arguments
The PropertyCollector uses two relatively complicated argument structures. As was mentioned in
PropertyCollector Data, these arguments are PropertySpec and ObjectSpec. PropertySpec is a list of
the information desired, and ObjectSpec is a list of instructions indicating where to find the information. In
theory, you could directly address an object using its moRef. In that case an ObjectSpec can be very
simple. However, getting the initial moRef can be a challenge when a complicated ObjectSpec is
required. To formulate a complex ObjectSpec, you need to understand the structure of the available data.
This is complicated by the fact that an ObjectSpec can contain recursive elements.

Understanding an ObjectSpec

An ObjectSpec is a list of ObjectSpec elements, each specifying an object type, and giving a “selection
spec” for the object. More About Managed Objects describes five types of managed objects: Folder,
Datacenter, ComputeResource, ResourcePool, and VirtualMachine. VirtualApp (vApp) is a sixth type. You
can “traverse” objects, because one managed object leads to another.

n Folder – One of the items contained in the Folder is called childEntity, which is a list of moRefs
that can contain one of the five managed object types. A Folder can be parent to any of these
managed objects.

n Datacenter – This managed object has two items that lead to other managed objects:

n hostFolder – A moRef to a Folder containing a list of ComputeResources comprising a
Datacenter.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 90

n vmFolder – A moRef to a Folder containing the VirtualMachines that are part of the Datacenter. If
it is your objective to duplicate the display seen in a vSphere Client GUI, then this Folder is of
limited use because it does not describe the ResourcePool that is the parent of a virtual machine.

n ComputeResource – A ComputeResource is basically hardware. A ComputeResource can comprise
multiple systems. The hardware represents resources that can be used to implement a
VirtualMachine object. VirtualMachine is a child of ResourcePool, which controls the sharing of a
physical machine's resources among VirtualMachine objects. A ComputeResource contains an item
named resourcePool, which is a moRef to a ResourcePool.

n VirtualApp – A VirtualApp (vApp) is a collection of VirtualMachines that make up a single application.
This is a special form of ResourcePool (defined below). A VirtualApp may have three types of
children:

n VirtualMachine – A folder named vm contains a list of moRefs to child VirtualMachines.

n resourcePool – A folder containing a list of moRefs pointing to child ResourcePools or
VirtualApps.

n VirtualApp – A VirtualApp can be composed of other VirtualApps.

n ResourcePool – You can segment the resources of a VirtualApp using a ResourcePool.

n ResourcePool – This managed object contains two child items:

n resourcePool – A folder containing a list of moRefs pointing to child ResourcePools or
VirtualApps.

n vm – A list of moRefs to child VirtualMachines that employ the resources of the parent
ResourcPool. A VirtualMachine always lists a ResourcePool as its parent.

n VirtualMachine – The VirtualMachine is often considered an “end object” – so you do not need to
describe any traversal for this object.

The ObjectSpec does not have to lead you any farther than the moRef of a target object. You can gather
information about the managed object itself using the moRef and the PropertySpec. This is described in
detail in the section Understanding a PropertySpec.

A TraversalSpec extends SelectionSpec, a property of ObjectSpec, and contains the following
elements:

n Path – The element contained in the object that is used to steer traversal.

n SelectSet – An array containing either SelectionSpec or TraversalSpec elements.

n Skip – Whether or not to filter the object in the Path element.

n Type – The type of object being referenced.

n Name – Optional name you can use to reference the TraversalSpec, inherited from SelectionSpec.

SelectionSpec is a direct target for traversal, as is TraversalSpec (a class extending SelectionSpec).
It is in the SelectSet that recursion can occur.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 91

If you wish to traverse the entire configuration tree for a server, then you need only the “root node” moRef,
which is always a Folder. This root folder moRef is available in the property rootFolder of the
ObjectSpec service instance content. All of the above goes into this Java code sample.

// Traversal objects can use a symbolic name.

// First we define the TraversalSpec objects used to fill in the ObjectSpec.

//

// This TraversalSpec traverses Datacenter to vmFolder

TraversalSpec dc2vmFolder = new TraversalSpec();

dc2vmFolder.setType("Datacenter"); // Type of object for this spec

dc2vmFolder.setPath("vmFolder"); // Property name defining the next object

dc2vmFolder.setSelectSet(new SelectionSpec[] {"folderTSpec"});

//

// This TraversalSpec traverses Datacenter to hostFolder

TraversalSpec dc2hostFolder = new TraversalSpec();

dc2hostFolder.setType("Datacenter");

dc2hostFolder.setPath("hostFolder");

//

// We use the symbolic name "folderTSpec" which will be defined when we create the folderTSpec.

dc2vmFolder.setSelectSet(new SelectionSpec[] {"folderTSpec"});

//

// This TraversalSpec traverses ComputeResource to resourcePool

TraversalSpec cr2resourcePool = new TraversalSpec();

cr2resourcePool.setType("ComputeResource");

cr2resourcePool.setPath("resourcePool");

//

// This TraversalSpec traverses ComputeResource to host

TraversalSpec cr2host = new TraversalSpec();

cr2host.setType("ComputeResource");

cr2host.setPath("host");

//

// This TraversalSpec traverses ResourcePool to resourcePool

TraversalSpec rp2rp = new TraversalSpec();

rp2rp.setType("ResourcePool");

rp2rp.setPath("resourcePool");

//

// Finally, we tie it all together with the Folder TraversalSpec

TraversalSpec folderTS = new TraversalSpec();

folderTS.setName{"folderTSpec"); // Used for symbolic reference

folderTS.setType("Folder");

folderTS.setPath("childEntity");

folderTS.setSelectSet(new SelectionSpec[]{ "folderTSpec",

 dc2vmFolder, dc2hostFolder, cr2resourcePool, rp2rp});

ObjectSpec ospec = new ObjectSpec();

ospec.setObj(startingPoint); // This is where you supply the starting moRef (usually root folder)

ospec.setSkip(Boolean.FALSE);

ospec.setSelectSet(folderTS); // Attach the TraversalSpec we designed above

Virtual Disk Development Kit Programming Guide

VMware, Inc. 92

Understanding a PropertySpec

A PropertySpec is a list of individual properties that can be found at places identified by the ObjectSpec
and its TraversalSpec. Once the PropertyCollector has a moRef, it can then return the properties
associated with that moRef. This can include “nested” properties. Nested properties are properties that
can be found inside of properties identified at the top level of the managed object. Nested properties are
identified by a “dot” notation.

An example of nested properties can be drawn from the VirtualMachine managed object.A VirtualMachine
has the property identified as summary, which identifies a VirtualMachineSummary data object. The
VirtualMachineSummary contains property config, which identifies a VirtualMachineConfigSummary
data object. The VirtualMachineConfigSummary has a property called name, which is a string
containing the display name of the VirtualMachine. You can access this name property using the
summary.config.name string value. To address all the properties of the
VirtualMachineConfigSummary object, you would use the summary.config string value.

The PropertyCollector requires an array of PropertySpec elements. Each element includes:

n Type – The type of object that contains the enclosed list of properties.

n PathSet – An array of strings containing names of properties to be returned, including nested
properties.

It is necessary to add an element for each type of object that you wish to query for properties. The
following is a code sample of a PropertySpec:

// This code demonstrates how to specify a PropertySpec for several types of target objects:

PropertySpec folderSp = new PropertySpec();

folderSp.setType("Folder");

folderSp.setAll(Boolean.FALSE);

folderSp.setPathSet(new String [] {"parent", "name"});

PropertySpec dcSp = new PropertySpec();

dcSp.setType("Datacenter");

dcSp.setAll(Boolean.FALSE);

dcSp.setPathSet(new String [] {"parent","name"});

PropertySpec rpSp = new PropertySpec();

rpSp.setType("ResourcePool");

rpSp.setAll(Boolean.FALSE);

rpSp.setPathSet(new String [] {"parent","name","vm"});

PropertySpec crSp = new PropertySpec();

crSp.setType("ComputeResource");

crSp.setAll(Boolean.FALSE);

crSp.set:PathSet(new String [] {"parent","name"});

PropertySpec vmSp = new PropertySpec();

vmSp.setType("VirtualMachine");

vmSp.setAll(Boolean.FALSE);

vmSp.setPathSet(new String [] {"parent",

 "name", "summary.config", "snapshot", "config.hardware.device"});

// Tie it all together

PropertySpec [] pspec = new PropertySpec [] {folderSp, dcSp, rpSp, crSp, vmSp};

Virtual Disk Development Kit Programming Guide

VMware, Inc. 93

Getting the Data from the PropertyCollector
Now that we have defined ObjectSpec and PropertySpec (the where and what), we need to put them
into a FilterSpec that combines the two. An array of FilterSpec elements is passed to the
PropertyCollector (the minimum number of elements is one). Two mechanisms can retrieve data from
PropertyCollector:

n RetrieveProperties – A one-time request for all of the desired properties. This can involve a lot of
data, and has no refresh option. RetrievePropertiesEx has an additional options parameter.

n Update requests – PropertyCollector update requests take two forms: polling and waiting (see
below).

Requesting Updates

The update method is the way to keep properties up to date. In either Polling or Waiting, it is first
necessary to register your FilterSpec array object with the PropertyCollector. You do this using the
CreateFilter method, which sends a copy of your FilterSpec to the server. Unlike the
RetrieveProperties method, FilterSpec is retained after CreateFilter operation. The following
code shows how to set FilterSpec:

// We already showed examples of creating pspec and ospec in the examples above.

// The PropertyCollector wants an array of FilterSpec objects, so:

PropertyFilterSpec fs = new PropertyFilterSpec();

fs.setPropSet(pspec);

fs.setObjectSet(ospec);

PropertyFilterSpec [] fsa = new PropertyFilterSpec [] {fs};

ManagedObjectReference pcRef = serviceContent.getPropertyCollector();

// This next statement sends the filter to the server for reference by the PropertyCollector

ManagedObjectReference pFilter = serviceConnection.CreateFilter(pcRef, fsa, Boolean.FALSE);

If you wish to begin polling, you may then call the function CheckForUpdates, which on the first try (when
it must contain an empty string for the version number) returns a complete dump of all the requested
properties from all the eligible objects, along with a version number. Subsequent calls to
CheckForUpdates must contain this version number to indicate to the PropertyCollector that you seek
any changes that deviate from this version. The result is either a partial list containing only the changes
from the previous version (including a new version number), or a return code indicating no data has
changed. The following code sample shows how to check for updates:

String updateVersion = ""; // Start with no version

UpdateSet changeData = serviceConnection.CheckForUpdates(pcRef, updateVersion);

if (changeData != nil) {

 updateVersion = changeData.getVersion(); // Extract the version of the data set

}

// ...

// Get changes since the last version was sent.

UpdateSet latestData = serviceConnection.CheckForUpdates(pcRef, updateVersion);

Virtual Disk Development Kit Programming Guide

VMware, Inc. 94

If instead you wish to wait for updates to occur, you must create a task thread that blocks on the call
WaitForUpdates. This task thread would return changes only as they occur and not at any other time.
However if the request times out, you must renew it.

Note The order of property retrieval is not guaranteed. Multiple update requests may be needed.

Extracting Information from the Change Data

The data returned from CheckForUpdates (or WaitForUpdates) is an array of PropertyFilterUpdate
entries. Since a PropertyFilterUpdate entry is very generic, here is some code showing how to extract
information from the PropertyFilterUpdate.

// Extract the PropertyFilterUpdate set from the changeData

PropertyFilterUpdate [] updateSet = changeData.getFilterSet();

// There is one entry in the updateSet for each filter you registered with the PropertyCollector.

// Since we currently have only one filter, the array length should be one.

PropertyFilterUpdate myUpdate = updateSet[0];

ObjectUpdate [] changes = myUpdate.getObjectSet();

for (a = 0; a < changes.length; a++) {

 ObjectUpdate theObject = changes[a];

 String objName = theObject.getObj().getMoType().getName();

 // Must decide how to handle the value based on the name returned.

 // The only names returned are names found in the PropertySpec lists.

 // Get propertyName and value ...

}

Getting Specific Data

From time to time, you might need to get data that is relevant to a single item. In that case you can create
a simple ObjectSpec including the moRef for the item of interest. The PropertySpec can then be set to
obtain the properties you want, and you can use RetrieveProperties to get the data. Hopefully you can
deduce moRef from a general examination of the properties, by searching for information from the
rootFolder.

Identifying Virtual Disks for Backup and Restore
To back up a virtual machine, you first need to create a snapshot. Once the snapshot is created, you then
need to identify the virtual disks associated with this snapshot. A virtual machine might have multiple
snapshots associated with it. Each snapshot has a virtual “copy” of the virtual disks for the virtual
machine. These copies are named with the base name of the disk, and a unique decimal number
appended to the name. The format of the number is a hyphen character followed by a 6-digit zero-filled
number. An example a disk copy name might be mydisk-NNNNNN.vmdk where NNNNNN would be some
number like: 000032.

The vSphere API identifies virtual disk files by prefixing the datastore name onto the file system
pathname and the filename: [storageN] myvmname/mydisk-NNNNNN.vmdk. The name in square
brackets corresponds to the short name of the datastore that contains this virtual disk, while the
remainder of the path string represents the location relative to the root of this datastore.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 95

To get the name and characteristics of a virtual disk file, you use the PropertyCollector to select the
property: config.hardware.device from a VirtualMachine managed object. This returns an array of
virtual devices associated with a VirtualMachine or Snapshot. You must scan this list of devices to extract
the list of virtual disks. All that is necessary is to see if each VirtualDevice entry extends to
VirtualDisk. When you find such an entry, examine the BackingInfo property. You must extend the
type of the backing property to one of the following, or a VirtualMachineSnapshot managed object:

n VirtualDiskFlatVer1BackingInfo

n VirtualDiskFlatVer2BackingInfo

n VirtualDiskRawDiskMappingVer1BackingInfo

n VirtualDiskSparseVer1BackingInfo

n VirtualDiskSparseVer2BackingInfo

It is important to know which backing type is in use in order to be able to re-create the Virtual Disk.It is
also important to know that you cannot snapshot a disk of type
VirtualDiskRawDiskMappingVer1BackingInfo, and therefore you cannot back up this type of Virtual
Disk.

The properties of interest are the backing fileName and the VirtualDisk capacityInKB. Additionally,
when change tracking is in place, you should also save the changeID.

Creating a Snapshot
Before performing a backup operation, you must create a snapshot of the target virtual machine. Both full
and incremental backup rely on the snapshot in vSphere.

With SAN transport on VMFS volumes, the virtual machine should not have any pre-existing snapshots,
so that reporting of in-use disk sectors will work. For details see About Changed Block Tracking.

As a best practice, you should search for and delete any pre-existing snapshots with the same name that
you selected for the temporary snapshot. These snapshots are possibly remnants from failed backup
attempts.

Within a specific snapshot, the names of virtual disk files (with extension .vmdk) can be modified with a
zero-filled 6-digit decimal sequence number to ensure that the .vmdk files are uniquely named.
Depending on whether or not the current virtual machine had a pre-existing snapshot, the disk name for a
snapshot could have this format: <diskname>-<NNNNNN>.vmdk. This unique name is no longer valid after
the snapshot is destroyed, so any data for a snapshot disk should be stored in the backup program under
its base disk name.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 96

The following code sample shows how to create a snapshot on a specific virtual machine:

// At this point we assume the virtual machine is identified as ManagedObjectReference vmMoRef.

String SnapshotName = "Backup";

String SnapshotDescription = "Temporary Snapshot for Backup";

boolean memory_files = false;

boolean quiesce_filesystem = true;

ManagedObjectReference taskRef = serviceConnection.getservice().CreateSnapshot_Task(vmMoRef,

 SnapshotName, SnapshotDescription, memory_files, quiesce_filesystem);

You can use the taskRef return value as a moRef to track progress of the snapshot operation. After
successful completion, taskRef.info.result contains the moRef of the snapshot.

Backing Up a Virtual Disk
This section describes how to get data from the Virtual Disk after you have identified it. In order to access
a virtual disk, you must use the VixDiskLib. The following code shows how to initialize the VixDiskLib
and use it for accessing a virtual disk. All operations require a VixDiskLib connection to access virtual
disk data. At the present time VixDiskLib is not implemented for the Java language, so this code is C++
language:

VixDiskLibConnectParams connectParams;

VixDiskLibConnection srcConnection;

connectParams.serverName = strdup("TargetServer");

connectParams.creds.uid.userName = strdup("root");

connectParams.creds.uid.password = strdup("yourPasswd");

connectParams.port = 902;

VixError vixError = VixDiskLib_Init(1, 0, &logFunc, &warnFunc, &panicFunc, libDir);

vixError = VixDiskLib_Connect(&connectParams, &srcConnection);

This next section of code shows how to open and read a specific virtual disk:

VixDiskLibHandle diskHandle;

vixError = VixDiskLib_Open(srcConnection, diskPath, flags, &diskHandle);

uint8 mybuffer[some_multiple_of_512];

vixError = VixDiskLib_Read(diskHandle, startSector, numSectors, &mybuffer);

// Also getting the disk metadata:

size_t requiredLength = 1;

char *buf = new char [1];

// This next operation fails, but updates "requiredLength" with the proper buffer size

vixError = VixDiskLib_GetMetadataKeys(diskHandle, buf, requiredLength, &requiredLength);

delete [] buf;

buf = new char[requiredLength]; // Create a large enough buffer

vixError = VixDiskLib_GetMetadataKeys(diskHandle, buf, requiredLength, NULL);

// And finally, close the diskHandle:

vixError = VixDiskLib_Close(diskHandle);

// And if you are completely done with the VixDiskLib

VixDiskLib_Disconnect(srcConnection);

VixDiskLib_Exit();

Virtual Disk Development Kit Programming Guide

VMware, Inc. 97

Deleting a Snapshot
When you are done performing a backup, you need to delete the temporary snapshot. You can get the
moRef for the snapshot from taskRef.info.result as describe above for the create snapshot operation. The
following Java code demonstrates how to delete the snapshot:

ManagedObjectReference removeSnapshotTask;

ManagedObjectReference snapshot; // Already initialized.

removeSnapshotTask = serviceConnection.getservice().removeSnapshot_Task(snapshot, Boolean FALSE);

New Query Allocated Blocks Function
As of vSphere 6.7, developers can call VixDiskLib_QueryAllocatedBlocks to accelerate the backup
process, especially with large virtual disks. By knowing which blocks are allocated, an application can
avoid reading irrelevant sectors and thus reduce data transfer during backup.

Function Signatures
The VixDiskLib_QueryAllocatedBlocks function synchronously retrieves a list of allocated blocks. On
an open VMDK, it queries for allocated blocks by chunks. A chunk is a defined as a block of consecutive
sectors. The calling program can specify chunk size to control granularity, along with starting sector and
extent.

VixError

VixDiskLib_QueryAllocatedBlocks(VixDiskLibHandle diskHandle,

 VixDiskLibSectorType startSector,

 VixDiskLibSectorType numSectors,

 VixDiskLibSectorType chunkSize,

 VixDiskLibBlockList **blockList)

Parameters

n diskHandle [in] Handle to an open virtual disk.

n startSector [in] Absolute offset, possibly zero (0).

n numSectors [in] Number of sectors to query.

n chunkSize [in] Minimum number of sectors covered by a chunk containing data.

n blockList [out] Buffer containing a VixDiskLibBlockList.

Return: VIX_OK on success, otherwise a suitable VIX error code.

Backup programs must call the VixDiskLib_FreeBlockList function to deallocate the returned
blockList when done with it.

VixError

VixDiskLib_FreeBlockList(VixDiskLibBlockList *blockList)

Virtual Disk Development Kit Programming Guide

VMware, Inc. 98

Parameters

n blockList [out] Buffer with above returned VixDiskLibBlockList.

Return: VIX_OK on success, otherwise a suitable VIX error code.

About Query Allocated Blocks
This function supplements the QueryChangedDiskAreas function, which is the vSphere API for changed
block tracking (CBT). Backup software can start by calling VixDiskLib_QueryAllocatedBlocks to get a
list of allocated blocks, instead of calling QueryChangedDiskAreas with special change ID ("*") to return
only active portions of a virtual disk. Calling QueryAllocatedBlocks is easier, and its implementation is
simpler. Consequently the special change ID ("*") is deprecated in this release. It had issues with pre-
existing snapshots, and was slow when used with extremely large disks.

Query allocated blocks does not depend on CBT. You can enable CBT either before or after the call.
Although new in vSphere 6.7, QueryAllocatedBlocks works against vSphere 6.5 and 6.0 as well.

VixDiskLib_QueryAllocatedBlocks can be used on object-oriented datastores such as vSAN and
VVols (virtual volumes). It is especially helpful for backing up thin-provisioned disks. To skip copying non-
allocated regions, programs call QueryAllocatedBlocks to get the list of allocated blocks returned in the
final parameter. This works for large sparsely allocated virtual disks even when CBT is not enabled.

One limitation is that VixDiskLib_QueryAllocatedBlocks returns the whole VMDK for NFS, rather than
just the allocated blocks as for VMFS, vSAN, and VVol datastores.

In file transport mode, VixDiskLib_QueryAllocatedBlocks depends on the disk library to support local
VMDK files. In NBD(SSL) transport mode, an NFC message queries the bitmap of allocated sectors. In
SAN and HotAdd transport modes, raw disk in the guest OS does not contain allocated sector
information, so the function depends on the aforementioned NFC message to get a bitmap of allocated
sectors.

Use Cases for Query Allocated Blocks
To accelerate the initial full backup of allocated disk:

1 Open the VMDK file.

2 Query allocated blocks.

3 Read and save the allocated blocks.

4 Close the VMDK file. Repeat steps for subsequent VMDK files.

For an incremental or differential backup:

1 Call QueryChangedDiskAreas with changeId of the epoch (point in time of last backup) to find all
areas that have changed since the last backup. This is A1.

2 Use VixDiskLib_QueryAllocatedBlocks to find all valid data sectors. This is A2.

3 The intersection of the two sets (A1 ∩ A2) yields the regions that have changed and are allocated.
The backup application should save the data in these regions (the intersection).

Virtual Disk Development Kit Programming Guide

VMware, Inc. 99

4 The area A1 minus the intersection (A1 – (A1 ∩ A2)) yields the regions that were changed but
unmapped. The backup application can record those regions as zeroed without reading them.

This is highly useful when backing up an AUTO-UNMAP enabled VMDK. Since unmapped blocks can be
recorded as "changed block" by CBT, without the QueryAllocatedBlocks call, those unmapped blocks
get backed up unnecessarily. With the features together, as described in above, the real changed blocks
(namely excluding unmapped) can be calculated.

Code Sample for Query Allocated Blocks
In the development kit, see the vixDiskLibSample.cpp program for its sample code related to
chunkSize . The DoGetAllocatedBlocks routine calls the query allocated blocks function, after being
requested by the -getallocatedblocks command line argument.

Changed Block Tracking on Virtual Disks
On ESXi hosts release 4.0 and later, virtual machines can keep track of disk sectors that have changed.
This is called changed block tracking. Its method in the VMware vSphere API is
QueryChangedDiskAreas, which takes the following parameters:

n _this – Managed object reference to the virtual machine.

n snapshot – Managed object reference to a Snapshot of the virtual machine.

n deviceKey – Virtual disk for which to compute the changes.

n startOffset – Byte offset where to start computing changes to virtual disk. The length of virtual disk
sector(s) examined is returned in DiskChangeInfo.

n changeId – An identifier for the state of a virtual disk at a specific point in time. A new ChangeId
results every time someone creates a snapshot. You should retain this value with the version of
change data that you extract (using QueryChangedDiskAreas) from the snapshot’s virtual disk.

When you back up a snapshot for the first time, ChangeId should be unset, or unsaved, indicating that a
baseline (full) backup is required. If you have a saved ChangeId, it identifies the last time a backup was
taken, and tells the changed block tracking logic to identify changes that have occurred since the time
indicated by the saved ChangeId.

There are two ways to get this baseline backup:

n Directly save the entire contents of the virtual disk.

n Call the VixDiskLib_QueryAllocatedBlocks function, which returns the allocated portions of a
virtual disk. Usually this substantially reduces the amount of data to save, especially for thin
provisioned and sparse virtual disks.

To summarize, changeID is an identifier for a time in the past. It should be a changeId string saved at the
time when a pre-backup snapshot was taken. If a previous ChangeId does exist, then
QueryChangedDiskAreas returns the disk sectors that changed since the new ChangeId was collected.
Table 7‑3 shows the algorithm.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 100

Table 7‑3. Use of Change ID for Changed Block Tracking

New Change ID Old Change ID Used for Query Result

change 0 none null All sectors, use Query Allocated Sectors instead.

change 1 change 0 change 0 All sectors altered since change 0.

Enable Changed Block Tracking
This feature is disabled by default, because it reduces performance by a small but measurable amount. If
you query the virtual machine configuration, you can determine if it is capable of changed block tracking.
Use the property collector to retrieve the capability field from the VirtualMachineManagedObject. If the
capability field contains the flag changeTrackingSupported, then you can proceed. The virtual machine
version must be 7 or higher to support this. If the virtual machine version is lower than 7, upgrade the
virtual hardware.

If supported, you enable changed block tracking using an abbreviated form of
VirtualMachineConfigSpec, then use the ReconfigVM_Task method to reconfigure the virtual machine
with changed block tracking:

VirtualMachineConfigSpec configSpec = new VirtualMachineConfigSpec();

configSpec.changeTrackingEnabled = new Boolean(true);

ManagedObjectReference taskMoRef =

 serviceConnection.getService().ReconfigVm_Task(targetVM_MoRef, configSpec);

Powered-on virtual machines must go through a stun-unstun cycle (triggered either by power on, migrate,
resume after suspend, or snapshot create/delete/revert) before the virtual machine reconfiguration takes
effect.

To enable changed block tracking with the vSphere Client:

1 Select the virtual machine and ensure that Summary > VM Version says “7” or higher compatibility.

2 In the Summary tab, click Edit Settings > Options > Advanced > General.

3 In the right side of the dialog box, click Configuration Parameters...

4 In the new dialog box, locate or create a row with name ctkEnabled, and set its value to true not
false. See above concerning the stun-unstun cycle.

To enable changed block tracking and back up with the VMware vSphere API:

1 Query change tracking status of the virtual machine. If false, activate changed block tracking.

configSpec.changeTrackingEnabled = new Boolean(true);

2 Create a snapshot of the virtual machine. The snapshot operation causes a stun-unstun cycle.

CreateSnapshot_Task(VMmoRef, SnapshotName, Description, memory_files, quiesce_filesystem);

3 Starting from the snapshot’s ConfigInfo, work your way to the BackingInfo of all virtual disks in the
snapshot. This gives you the change IDs for all the disks of the virtual machine.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 101

4 Hold onto the change IDs and do a full backup of the snapshot, since this is the first time for backup.

VixDiskLib_Read(snapshotDiskHandle, startSector, numSectors, &buffer); /* C not Java */

5 Delete the snapshot when your backup has completed.

removeSnapshot_Task(SnapshotName, Boolean FALSE);

6 Next time you back up this virtual machine, create a snapshot and use QueryChangedDiskAreas
with the change IDs from your previous backup to take advantage of changed block tracking.

changes = theVM.queryChangedDiskAreas(SnapshotMoRef, diskDeviceKey, startPosition, changeId);

Gathering Changed Block Information
Associated with changed block tracking is changeId, an identifier for versions of changed block data.
Whenever a virtual machine snapshot is created, associated with that snapshot is a changeId that
functions as a landmark to identify changes in virtual disk data. So it follows that when a snapshot is
created for the purpose of creating an initial virtual disk backup, the changeId associated with that
snapshot can be used to retrieve changes that have occurred since snapshot creation.

To obtain the changeId associated with any disk in a snapshot, you examine the “hardware” array from
the snapshot. Any item in the devices table that is of type
vim.vm.device.VirtualDevice.VirtualDisk encloses a class describing the “backing storage”
(obtained using getBacking) that implements virtual disk. If backing storage is one of the following disk
types, you can use the changeId property of the BackingInfo data object to obtain the changeId:

vim.vm.device.VirtualDevice.VirtualDiskFlatVer2BackingInfo

vim.vm.device.VirtualDevice.VirtualDiskSparseVer2BackingInfo

vim.vm.device.VirtualDevice.VirtualDiskRawDiskMappingVer1BackingInfo

vim.vm.device.VirtualDevice.VirtualDiskRawDiskVer2BackingInfo

Information returned by the QueryChangedDiskAreas method is a DiskChangeInfo data object
containing an array of DiskChangeInfo.DiskChangeExtent items that enumerate the start offset and
length of various disk areas that changed, and the length and start offset of the entire disk area covered
by DiskChangeInfo.

When using QueryChangedDiskAreas to gather information about snapshots, enable change tracking
before taking a snapshot. Attempts to collect information about changes that occurred before change
tracking was enabled result in a FileFault error. Enabling change tracking provides the additional benefit
of saving space because it enables backup of only information that has changed. If change tracking is not
enabled, the entire virtual machine must be backed up each time, rather than incrementally.

Changed block tracking is supported whenever the I/O operations are processed by the ESXi storage
stack:

n For a virtual disk stored on VMFS, no matter what backs the VMFS volume (SAN or local disk).

n For a virtual disk stored on NFS (though thick vs thin might be an issue).

Virtual Disk Development Kit Programming Guide

VMware, Inc. 102

n For an RDM in virtual compatibility mode.

When I/O operations are not processed by the ESXi storage stack, changed block tracking is not usable:

n For an RDM in physical compatibility mode.

n A disk that is accessed directly from inside a VM. For example if you are running an iSCSI initiator
within the virtual machine to access an iSCSI LUN from inside the VM, vSphere cannot track it.

If the guest actually wrote to each block of a virtual disk (long format or secure erase), or if the virtual disk
is thick and eager zeroed, or cloned thick disk, then the query may report the entire disk as being in use.

To find change information, you can use the managed object browser at http://<ESXhost>/mob to follow
path content > rootFolder > datacenter > datastore > vm > snapshot > config > hardware >
virtualDisk > backing. Changed block tracking information (changeId) appears in the BackingInfo.

The following C++ code sample assumes that, in the past, you obtained a complete copy of the virtual
disk, and at the time when the changeId associated with the snapshot was collected, you stored it for use
at a later time, which is now. A new snapshot has been created, and the appropriate moRef is available:

String changeId; // Already initialized: changeId, snapshotMoRef, theVM

ManagedObjectReference snapshotMoRef;

ManagedObjectReference theVM;

int diskDeviceKey; // Identifies the virtual disk.

VirtualMachine.DiskChangeInfo changes;

long startPosition = 0;

do {

 changes = theVM.queryChangedDiskAreas(snapshotMoRef, diskDeviceKey, startPosition, changeId);

 for (int i = 0; i < changes.changedArea.length; i++) {

 long length = changes.changedArea[i].length;

 long offset = changes.changedArea[i].startOffset;

 //

 // Go get and save disk data here

 }

 startPosition = changes.startOffset + changes.length;

} while (startPosition < diskCapacity);

In the above code, QueryChangedDiskAreas is called repeatedly, as position moves through the virtual
disk. This is because the number of entries in the ChangedDiskArea array could occupy a large amount
of memory for describing changes to a large virtual disk. Some disk areas may have no changes for a
given changeId.

The changeId (changed block ID) contains a sequence number in the form <UUID>/<nnn>. If <UUID>
changes, it indicates that tracking information has become invalid, necessitating a full backup. Otherwise
incremental backups can continue in the usual pattern.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 103

Troubleshooting
If you reconfigure a virtual machine to set changeTrackingEnabled, but the property remains false,
check that you have queried the virtual machine status with VirtualMachine->config() after
reconfiguration with VirtualMachine->reconfigure() and not before. Also make sure that virtual
machine compatibility is hardware version 7 or higher, and that it has undergone a stun-unstun cycle
since reconfiguration.

Limitations on Changed Block Tracking
Changed block tracking does not work if the virtual hardware version is 6 or earlier, in physical
compatibility RDM mode, or when the virtual disk is attached to a shared virtual SCSI bus. ESXi 3.5
supported only up to virtual hardware version 4.

Changed block tracking can be enabled on virtual machines that have disks like these, but when queried
for their change ID, these disks always return an empty string. So if you have a virtual machine with a
regular system disk and a pass-through RDM as a data disk, you can track changes only on the system
disk.

Checking for Namespace
You can avoid using the queryChangedDiskAreas API on ESXi 3.5 based storage by parsing XML files
for the namespace. For prepackaged methods that do this, see these SDK code samples:

Axis/java/com/vmware/samples/version/displaynewpropertieshost/DisplayNewPropertiesHostV25.java

Axis/java/com/vmware/samples/version/getvirtualdiskfiles/GetVirtualDiskFilesV25.java

DotNet/cs/DisplayNewProperties/DisplayNewPropertiesV25.cs

DotNet/cs/GetVirtualDiskFiles/GetVirtualDiskFilesV25.cs

Low Level Restore Procedures
The following sections describe how to recover virtual machines and restore virtual disk data.

n Restoring a Virtual Machine and Disk

n Restore Incremental Backup Data

Restoring a Virtual Machine and Disk
You cannot get write access to a virtual disk that is in active use. For a full restore, you first must ensure
that the virtual disk is not in use by halting the parent virtual machine, then performing the “power off”
sequence. The following code sample demonstrates how to “power off” a Virtual Machine:

// At this point we assume that you have a ManagedObjectReference to the VM - vmMoRef.

// Power on would need a ManagedObjectReference to the host running the VM - hostMoRef.

ManagedObjectReference taskRef = serviceConnection.powerOffVm(vmMoRef);

Virtual Disk Development Kit Programming Guide

VMware, Inc. 104

With SAN transport mode, you must create a snapshot of the virtual machine before virtual disk restore.
See Creating a Snapshot. If at restore time the virtual machine had a pre-existing snapshot, you must
delete it, otherwise SAN mode restore will fail. For other transport modes, the restore snapshot is
optional.

With a VVol datastore, the restore snapshot is forbidden when restoring to the parent (backing disk). A
null MoRef is allowed as of vSphere 6.0 to minimize code changes when applications restore to a VVol
datastore. To get the unique ID of a VVol object in the MOB (managed object browser) click
VirtualMachine > Config > Hardware > Device (VirtualDisk) > Backing.

Table 7‑4 summarizes the snapshot requirements.

Table 7‑4. Summary of restore snapshot requirements

NBDSSL HotAdd SAN

Non-VVol datastore A snapshot is optional. If a snapshot is used,
writing to either the leaf disk or the parent disk is
supported. If writing to the parent disk, the
snapshot must be reverted and then deleted.

A snapshot is required. Writing to the leaf disk is
not supported, and writes must only go to the
base disk. The snapshot must be reverted and
then deleted.

VVol datastore A snapshot is optional. If a snapshot is used,
writing must be to the leaf disk only.

Not applicable, because SAN transport is not
supported on VVol datastores.

In this phase you use VixDiskLib to reload contents of the Virtual Disk, so the following code is C++ not
Java:

// At this point we assume that you already have a VixDiskLib connection to the server machine.

uint8 mybuffer[some_multiple_of_512];

int mylocalfile = open("localfile", openflags); // Contains backup copy of virtual disk.

read(mylocalfile, mybuffer, sizeof mybuffer);

vixError = VixDiskLib_Open(srcConnection, path, flags, &diskHandle);

VixDiskLib_Write(diskHandle, startsector, (sizeof mybuffer) / 512, mybuffer);

With SAN transport mode, you must revert-to and delete the snapshot. If you forget the snapshot revert,
snapshot delete will fail due to CID mismatch, so the virtual machine cannot be powered on. If you forget
the snapshot delete, the extraneous snapshot will cause restore problems for subsequent backups.

Creating a Virtual Machine
This section shows how to create a VirtualMachine object, which is complicated but necessary so you can
restore data into it. Before creating this object, you must create a VirtualMachineConfigSpec
describing the virtual machine and all of its supporting virtual devices. Almost all the required information
is available from the virtual machine property config.hardware.device, which is a table containing the
device configuration information. The relationships between devices are described by the value key,
which is a unique identifier for the device. In turn, each device has a controllerKey, which is the key
identifier of the controller where the device is connected. Use negative integers as temporary key values

Virtual Disk Development Kit Programming Guide

VMware, Inc. 105

in the VirtualMachineConfigSpec to guarantee that temporary key numbers do not conflict with real
key numbers when they are assigned by the server. When associating virtual devices with default
devices, the controllerKey property should be reset with the key property of the controller. Below are
the settings for a sample VirtualMachineConfigSpec used to create a virtual machine.

// beginning of VirtualMachineConfigSpec, ends several pages later

{

 dynamicType = <unset>,

 changeVersion = <unset>,

//This is the display name of the VM

 name = “My New VM“,

 version = "vmx-04",

 uuid = <unset>,

 instanceUuid = <unset>,

 npivWorldWideNameType = <unset>,

 npivDesiredNodeWwns = <unset>,

 npivDesiredPortWwns = <unset>,

 npivTemporaryDisabled = <unset>,

 npivOnNonRdmDisks = <unset>,

 npivWorldWideNameOp = <unset>,

 locationId = <unset>,

// This is advisory, the disk determines the O/S

guestId = "winNetStandardGuest",

 alternateGuestName = "Microsoft Windows Server 2008, Enterprise Edition",

 annotation = <unset>,

 files = (vim.vm.FileInfo) {

 dynamicType = <unset>,

 vmPathName = "[plat004-local]",

 snapshotDirectory = "[plat004-local]",

 suspendDirectory = <unset>,

 logDirectory = <unset>,

 },

 tools = (vim.vm.ToolsConfigInfo) {

 dynamicType = <unset>,

 toolsVersion = <unset>,

 afterPowerOn = true,

 afterResume = true,

 beforeGuestStandby = true,

 beforeGuestShutdown = true,

 beforeGuestReboot = true,

 toolsUpgradePolicy = <unset>,

 pendingCustomization = <unset>,

 syncTimeWithHost = <unset>,

 },

 flags = (vim.vm.FlagInfo) {

 dynamicType = <unset>,

 disableAcceleration = <unset>,

 enableLogging = <unset>,

 useToe = <unset>,

 runWithDebugInfo = <unset>,

 monitorType = <unset>,

 htSharing = <unset>,

 snapshotDisabled = <unset>,

 snapshotLocked = <unset>,

Virtual Disk Development Kit Programming Guide

VMware, Inc. 106

 diskUuidEnabled = <unset>,

 virtualMmuUsage = <unset>,

 snapshotPowerOffBehavior = "powerOff",

 recordReplayEnabled = <unset>,

 },

 consolePreferences = (vim.vm.ConsolePreferences) null,

 powerOpInfo = (vim.vm.DefaultPowerOpInfo) {

 dynamicType = <unset>,

 powerOffType = "preset",

 suspendType = "preset",

 resetType = "preset",

 defaultPowerOffType = <unset>,

 defaultSuspendType = <unset>,

 defaultResetType = <unset>,

 standbyAction = "powerOnSuspend",

 },

 // the number of CPUs

 numCPUs = 1,

 // the number of memory megabytes

 memoryMB = 256,

 memoryHotAddEnabled = <unset>,

 cpuHotAddEnabled = <unset>,

 cpuHotRemoveEnabled = <unset>,

 deviceChange = (vim.vm.device.VirtualDeviceSpec) [

 (vim.vm.device.VirtualDeviceSpec) {

 dynamicType = <unset>,

 operation = "add",

 fileOperation = <unset>,

 // CDROM

 device = (vim.vm.device.VirtualCdrom) {

 dynamicType = <unset>,

 // key number of CDROM

 key = -42,

 deviceInfo = (vim.Description) null,

 backing = (vim.vm.device.VirtualCdrom.RemotePassthroughBackingInfo) {

 dynamicType = <unset>,

 deviceName = "",

 useAutoDetect = <unset>,

 exclusive = false,

 },

 connectable = (vim.vm.device.VirtualDevice.ConnectInfo) {

 dynamicType = <unset>,

 startConnected = false,

 allowGuestControl = true,

 connected = false,

 },

 // connects to this controller

 controllerKey = 200,

 unitNumber = 0,

 },

 },

 (vim.vm.device.VirtualDeviceSpec) {

 dynamicType = <unset>,

 operation = "add",

 fileOperation = <unset>,

Virtual Disk Development Kit Programming Guide

VMware, Inc. 107

 // SCSI controller

 device = (vim.vm.device.VirtualLsiLogicController) {

 dynamicType = <unset>,

// key number of SCSI controller

 key = -44,

 deviceInfo = (vim.Description) null,

 backing = (vim.vm.device.VirtualDevice.BackingInfo) null,

 connectable = (vim.vm.device.VirtualDevice.ConnectInfo) null,

 controllerKey = <unset>,

 unitNumber = <unset>,

 busNumber = 0,

 hotAddRemove = <unset>,

 sharedBus = "noSharing",

 scsiCtlrUnitNumber = <unset>,

 },

 },

 (vim.vm.device.VirtualDeviceSpec) {

 dynamicType = <unset>,

 operation = "add",

 fileOperation = <unset>,

 // Network controller

 device = (vim.vm.device.VirtualPCNet32) {

 dynamicType = <unset>,

 // key number of Network controller

 key = -48,

 deviceInfo = (vim.Description) null,

 backing = (vim.vm.device.VirtualEthernetCard.NetworkBackingInfo) {

 dynamicType = <unset>,

 deviceName = "Virtual Machine Network",

 useAutoDetect = <unset>,

 network = <unset>,

 inPassthroughMode = <unset>,

 },

 connectable = (vim.vm.device.VirtualDevice.ConnectInfo) {

 dynamicType = <unset>,

 startConnected = true,

 allowGuestControl = true,

 connected = true,

 },

 controllerKey = <unset>,

 unitNumber = <unset>,

 addressType = "generated",

 macAddress = <unset>,

 wakeOnLanEnabled = true,

 },

 },

 (vim.vm.device.VirtualDeviceSpec) {

 dynamicType = <unset>,

 operation = "add",

 fileOperation = "create",

 // SCSI disk one

 device = (vim.vm.device.VirtualDisk) {

 dynamicType = <unset>,

 // key number for SCSI disk one

 key = -1000000,

Virtual Disk Development Kit Programming Guide

VMware, Inc. 108

 deviceInfo = (vim.Description) null,

 backing = (vim.vm.device.VirtualDisk.FlatVer2BackingInfo) {

 dynamicType = <unset>,

 fileName = "",

 datastore = <unset>,

 diskMode = "persistent",

 split = false,

 writeThrough = false,

 thinProvisioned = <unset>,

 eagerlyScrub = <unset>,

 uuid = <unset>,

 contentId = <unset>,

 changeId = <unset>,

 parent = (vim.vm.device.VirtualDisk.FlatVer2BackingInfo) null,

 },

 connectable = (vim.vm.device.VirtualDevice.ConnectInfo) {

 dynamicType = <unset>,

 startConnected = true,

 allowGuestControl = false,

 connected = true,

 },

 // controller for SCSI disk one

 controllerKey = -44,

 unitNumber = 0,

 // size in MB SCSI disk one

 capacityInKB = 524288,

 committedSpace = <unset>,

 shares = (vim.SharesInfo) null,

 },

 },

 (vim.vm.device.VirtualDeviceSpec) {

 dynamicType = <unset>,

 operation = "add",

 fileOperation = "create",

 // SCSI disk two

 device = (vim.vm.device.VirtualDisk) {

 dynamicType = <unset>,

// key number of SCSI disk two

 key = -100,

 deviceInfo = (vim.Description) null,

 backing = (vim.vm.device.VirtualDisk.FlatVer2BackingInfo) {

 dynamicType = <unset>,

 fileName = "",

 datastore = <unset>,

 diskMode = "persistent",

 split = false,

 writeThrough = false,

 thinProvisioned = <unset>,

 eagerlyScrub = <unset>,

 uuid = <unset>,

 contentId = <unset>,

 changeId = <unset>,

 parent = (vim.vm.device.VirtualDisk.FlatVer2BackingInfo) null,

 },

 connectable = (vim.vm.device.VirtualDevice.ConnectInfo) {

Virtual Disk Development Kit Programming Guide

VMware, Inc. 109

 dynamicType = <unset>,

 startConnected = true,

 allowGuestControl = false,

 connected = true,

 },

 // controller for SCSI disk two

 controllerKey = -44,

 unitNumber = 1,

 // size in MB SCSI disk two

 capacityInKB = 131072,

 committedSpace = <unset>,

 shares = (vim.SharesInfo) null,

 },

 }

 },

 cpuAllocation = (vim.ResourceAllocationInfo) {

 dynamicType = <unset>,

 reservation = 0,

 expandableReservation = <unset>,

 limit = <unset>,

 shares = (vim.SharesInfo) {

 dynamicType = <unset>,

 shares = 100,

 level = "normal",

 },

 overheadLimit = <unset>,

 },

 memoryAllocation = (vim.ResourceAllocationInfo) {

 dynamicType = <unset>,

 reservation = 0,

 expandableReservation = <unset>,

 limit = <unset>,

 shares = (vim.SharesInfo) {

 dynamicType = <unset>,

 shares = 100,

 level = "normal",

 },

 overheadLimit = <unset>,

 },

 cpuAffinity = (vim.vm.AffinityInfo) null,

 memoryAffinity = (vim.vm.AffinityInfo) null,

 networkShaper = (vim.vm.NetworkShaperInfo) null,

 swapPlacement = <unset>,

 swapDirectory = <unset>,

 preserveSwapOnPowerOff = <unset>,

 bootOptions = (vim.vm.BootOptions) null,

 appliance = (vim.vService.ConfigSpec) null,

 ftInfo = (vim.vm.FaultToleranceConfigInfo) null,

 applianceConfigRemoved = <unset>,

 vAssertsEnabled = <unset>,

 changeTrackingEnabled = <unset>,

}

// end of VirtualMachineConfigSpec

Virtual Disk Development Kit Programming Guide

VMware, Inc. 110

The information above is quite complex, but much of the input consists of defaulted values that are
assigned by the system. The remainder of the supplied information can be extracted from the output of
the config.hardware.device table returned from PropertyCollector. Borrowing heavily from an SDK
code example, the following code sets up the configuration specification:

// Duplicate virtual machine configuration

VirtualMachineConfigSpec configSpec = new VirtualMachineConfigSpec();

// Set the VM values

configSpec.setName("My New VM");

configSpec.setVersion("vmx-04");

configSpec.setGuestId("winNetStandardGuest");

configSpec.setNumCPUs(1);

configSpec.setMemoryMB(256);

// Set up file storage info

VirtualMachineFileInfo vmfi = new VirtualMachineFileInfo();

vmfi.setVmPathName("[plat004-local]");

configSpec.setFiles(vmfi);

vmfi.setSnapshotDirectory("[plat004-local]");

// Set up tools config info

ToolsConfigInfo tools = new ToolsConfigInfo();

configSpec.setTools(tools);

tools.setAfterPowerOn(new Boolean(true));

tools.setAfterResume(new Boolean(true));

tools.setBeforeGuestStandby(new Boolean(true));

tools.setBeforeGuestShutdown(new Boolean(true));

tools.setBeforeGuestReboot(new Boolean(true));

// Set flags

VirtualMachineFlagInfo flags = new VirtualMachineFlagInfo();

configSpec.setFlags(flags);

flags.setSnapshotPowerOffBehavior("powerOff");

// Set power op info

VirtualMachineDefaultPowerOpInfo powerInfo = new VirtualMachineDefaultPowerOpInfo();

configSpec.setPowerOpInfo(powerInfo);

powerInfo.setPowerOffType("preset");

powerInfo.setSuspendType("preset");

powerInfo.setResetType("preset");

powerInfo.setStandbyAction("powerOnSuspend");

// Now add in the devices

VirtualDeviceConfigSpec[] deviceConfigSpec = new VirtualDeviceConfigSpec [5];

configSpec.setDeviceChange(deviceConfigSpec);

// Formulate the CDROM

deviceConfigSpec[0].setOperation(VirtualDeviceConfigSpecOperation.add);

VirtualCdrom cdrom = new VirtualCdrom();

VirtualCdromIsoBackingInfo cdDeviceBacking = new VirtualCdromRemotePassthroughBackingInfo();

cdDeviceBacking.setDatastore(datastoreRef);

cdrom.setBacking(cdDeviceBacking);

cdrom.setKey(-42);

cdrom.setControllerKey(new Integer(-200)); // Older Java required type for optional properties

cdrom.setUnitNumber(new Integer(0));

deviceConfigSpec[0].setDevice(cdrom);

// Formulate the SCSI controller

deviceConfigSpec[1].setOperation(VirtualDeviceConfigSpecOperation.add);

VirtualLsiLogicController scsiCtrl = new VirtualLsiLogicController();

scsiCtrl.setBusNumber(0);

Virtual Disk Development Kit Programming Guide

VMware, Inc. 111

deviceConfigSpec[1].setDevice(scsiCtrl);

scsiCtrl.setKey(-44);

scsiCtrl.setSharedBus(VirtualSCSISharing.noSharing);

// Formulate SCSI disk one

deviceConfigSpec[2].setFileOperation(VirtualDeviceConfigSpecFileOperation.create);

deviceConfigSpec[2].setOperation(VirtualDeviceConfigSpecOperation.add);

VirtualDisk disk = new VirtualDisk();

VirtualDiskFlatVer2BackingInfo diskfileBacking = new VirtualDiskFlatVer2BackingInfo();

diskfileBacking.setDatastore(datastoreRef);

diskfileBacking.setFileName(volumeName);

diskfileBacking.setDiskMode("persistent");

diskfileBacking.setSplit(new Boolean(false));

diskfileBacking.setWriteThrough(new Boolean(false));

disk.setKey(-1000000);

disk.setControllerKey(new Integer(-44));

disk.setUnitNumber(new Integer(0));

disk.setBacking(diskfileBacking);

disk.setCapacityInKB(524288);

deviceConfigSpec[2].setDevice(disk);

// Formulate SCSI disk two

deviceConfigSpec[3].setFileOperation(VirtualDeviceConfigSpecFileOperation.create);

deviceConfigSpec[3].setOperation(VirtualDeviceConfigSpecOperation.add);

VirtualDisk disk2 = new VirtualDisk();

VirtualDiskFlatVer2BackingInfo diskfileBacking2 = new VirtualDiskFlatVer2BackingInfo();

diskfileBacking2.setDatastore(datastoreRef);

diskfileBacking2.setFileName(volumeName);

diskfileBacking2.setDiskMode("persistent");

diskfileBacking2.setSplit(new Boolean(false));

diskfileBacking2.setWriteThrough(new Boolean(false));

disk2.setKey(-100);

disk2.setControllerKey(new Integer(-44));

disk2.setUnitNumber(new Integer(1));

disk2.setBacking(diskfileBacking2);

disk2.setCapacityInKB(131072);

deviceConfigSpec[3].setDevice(disk2);

// Finally, formulate the NIC

deviceConfigSpec[4].setOperation(VirtualDeviceConfigSpecOperation.add);

com.VMware.vim.VirtualEthernetCard nic = new VirtualPCNet32();

VirtualEthernetCardNetworkBackingInfo nicBacking = new VirtualEthernetCardNetworkBackingInfo();

nicBacking.setNetwork(networkRef);

nicBacking.setDeviceName(networkName);

nic.setAddressType("generated");

nic.setBacking(nicBacking);

nic.setKey(-48);

deviceConfigSpec[4].setDevice(nic);

// Now that it is all put together, create the virtual machine.

// Note that folderMo, resourcePool, and hostMo, are moRefs to

// the Folder, ResourcePool, and Host where the VM is to be created.

ManagedObjectReference taskMoRef =

 serviceConnection.getService().createVM_Task(folderMo, configSpec, resourcePool, hostMo);

Virtual Disk Development Kit Programming Guide

VMware, Inc. 112

Using the VirtualMachineConfigInfo
A backup application can also use information contained in a VirtualMachineConfigInfo. If at backup
time you preserve all the VirtualMachineConfigInfo details that describe the virtual machine, you can
transfer much of this information into a VirtualMachineConfigSpec to create a virtual machine at
restore time. However, some of the information in VirtualMachineConfigInfo is not needed, and if
used in the Spec, virtual machine creation can fail. For example, a VirtualMachineConfigSpec that
contains information about so called “Default Devices” usually fails. The list of default devices includes:

vim.vm.device.VirtualIDEController

vim.vm.device.VirtualPS2Controller

vim.vm.device.VirtualPCIController

vim.vm.device.VirtualSIOController

vim.vm.device.VirtualKeyboard

vim.vm.device.VirtualVMCIDevice

vim.vm.device.VirtualPointingDevice

However, other controllers and devices must be explicitly included in the VirtualMachineConfigSpec.

Some information about devices is unneeded and can cause problems if supplied. Each controller device
has its vim.vm.device.VirtualController.device field, which is an array of devices that report to
the controller. The server rebuilds this list when a virtual machine is created, using the (negative) device
key numbers supplied as a guide. The relationship between controller and device must be preserved
using negative key numbers in the same relationship as in the hardware array of
VirtualMachineConfigInfo.

The parent property for virtual disk backing information must be set to null. In the sample code for
creating a virtual machine, find vim.vm.device.VirtualDisk.FlatVer2BackingInfo under SCSI disk
one and SCSI disk two. The null setting is required because the pre-backup snapshot causes the parent
property to be populated with a reference to the base disk.

One other configuration needs substitution. VirtualMachineConfigInfo contains the cpuFeatureMask,
field, which is an array of HostCpuIdInfo. The array entries must be converted to ArrayUpdateSpec
entries containing the VirtualMachineCpuIdInfoSpec along with the “operation” field, which must
contain the value ArrayUpdateOperation::add. The VirtualMachineCpuIdInfoSpec also contains a
HostCpuIdInfo array that you can copy from the cpuFeatureMask array in
VirtualMachineConfigInfo. These items are not reflected in the sample code. Everything else can be
copied intact from VirtualMachineConfigInfo data.

To summarize: when creating a virtual machine in which to restore virtual disk:

n Exclude default devices, and VirtualController.device, from the VirtualMachineConfigSpec.

n Set the parent virtual disk backing information (VirtualDisk.FlatVer2BackingInfo) to null.

n Convert HostCpuIdInfo array entries to ArrayUpdateSpec, insert ArrayUpdateOperation::add,
and copy the HostCpuIdInfo array from cpuFeatureMask into VirtualMachineConfigInfo.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 113

Editing or Deleting a Device
If backup clients want to edit or delete a device, they must use the server-provided key when referring to
an existing device. For the definition of key, see Creating a Virtual Machine. For example, see the key
and controllerKey below comments in the source code under CDROM. The key uniquely identifies a
device, while the controllerKey uniquely identifies the controller where it is connected.

Restoring Virtual Disk Data
As in the section Low Level Restore Procedures, VixDiskLib functions provide interfaces for writing the
data to virtual disk, either locally or remotely.

Raw Device Mapping (RDM) Disks
To create an RDM disk using CreateVM_Task, use a LUN that is not occupied and thus is still available.
Developers sometimes use the same LUN uuid that is available in the configInfo object, which can
cause errors because the LUN uuid is datastore specific.

Call QueryConfigTarget to fetch the ConfigTarget.ScsiDisk.Disk.CanonicalName property, set in
VirtualDiskRawDiskMappingVer1BackInfo.deviceName. Also call QueryConfigTarget to fetch
ConfigTarget.ScsiDisk.Disk.uuid, set in VirtualDiskRawDiskMappingVer1BackInfo.lunUuid.
When creating the virtual machine, avoid host-specific properties of configInfo, which should be set
according to host configuration where the virtual machine is restored.

Restore Incremental Backup Data
At some point you might need to restore a virtual disk from the backup data that you gathered as
described in Changed Block Tracking on Virtual Disks. The essential procedure is as follows:

Procedure

1 Power off the virtual machine, if powered on.

2 Using VirtualMachineConfigInfo that corresponds to the last known good state of the guest
operating system, re-create the virtual machine as described in Using the VirtualMachineConfigInfo.

3 Completely reload the base virtual disk using the full backup that started the most recent series of
incremental backups.

4 Create a snapshot. This is mandatory for SAN mode restore.

A restore snapshot is forbidden when restoring to the parent (backing) disk on a VVol datastore.

5 For SAN mode restore, disable changed block tracking. SAN writes are not possible with it enabled

Virtual Disk Development Kit Programming Guide

VMware, Inc. 114

6 Sequentially restore the incremental backup data. You can do this either forwards or backwards. If
you work forwards, the restore might write some sectors more than once. If you work backwards, you
must keep track of which sectors were restored so as to avoid restoring them again from older data.

a From your backup records, get the change ID of the incremental backup to be restored. Your
software must also store the changed-block information, so it knows which sectors of virtual disk
to restore. Once you start restoring virtual disk, the change tracking mechanism will misreport.

b Restore only changed areas to the virtual disks referred to by the snapshot. This ensures that you
do not write the data to the redo log created by the snapshot. When restoring a thin provisioned
(sparse) disk, avoid writing zeroes to the unallocated blocks.

c Repeat steps a and b as necessary by applying incremental backup data sets in order.

7 If applicable (SAN mode) revert to the base virtual disk, thus eliminating the snapshot.

Restore with Direct Connection to ESXi Host
Sometimes you must restore a virtual machine directly to an ESXi host, for example in disaster recovery
when vCenter Server runs on ESXi as a virtual machine. A new vSphere 5 feature tries to prevent this if
the ESXi host is managed by vCenter. To circumvent this and restore the virtual machine, you must first
disassociate the host from vCenter. In earlier releases, vCenter management had less state but was
revocable only from vCenter.

Procedure

1 Using the vSphere Client, connect directly to the ESXi 5.0 or later host.

2 In the Inventory left-hand panel, select the host. In the right-hand panel, click Summary.

3 In the box titled Host Management, click Disassociate host from vCenter Server. You do not need
to put the host in Maintenance Mode.

4 After the vCenter Server has been restored and is back in service, use it to reacquire the host.

Currently there is no API to disassociate a host from vCenter Server.

Tips and Best Practices
This section discusses the various advanced transport mechanisms, and other backup issues.

VDDK 5.0 contained two new VixDiskLib calls (PrepareForAccess and EndAccess) to disable and
enable Storage vMotion during backup. This prevents stale disk images from being left behind if a virtual
machine has its storage moved while a backup is taking place. VMware strongly recommends use of
these calls.

When an ESXi host is managed by vCenter Server, vSphere API calls cannot contact the host directly:
they must go through vCenter. If necessary, especially during disaster recovery, the administrator must
disassociate the ESXi host from vCenter Server before the host can be contacted directly.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 115

Advanced transports allow programs to transfer data in the most efficient manner. SAN transport is
available only when the physical-machine host has SAN access. HotAdd works for the appliance model,
where backup is done from inside virtual machines. HotAdd requires the virtual machine datastore to be
accessible from the backup appliance. NBDSSL is a secure fallback when over-the-network backup is
your only choice.

SAN transport is supported only on physical machines, and HotAdd transport is supported only on virtual
machines. SAN requires a physical proxy to share a LUN with the ESXi host where a datastore resides,
enabling direct access to raw data, and bypassing the host altogether for I/O operations. HotAdd involves
attaching a virtual disk to the backup proxy just like attaching the disk to a virtual machine.

Best Practices for SAN Transport
For array-based storage, SAN transport is often the best performing choice for backups when running on
a physical proxy. It is disabled inside virtual machines, so use SCSI HotAdd instead on a virtual proxy.

SAN transport is not always the best choice for restores. It offers the best performance on thick disks, but
the worst performance on thin disks, because of round trips through two disk manager APIs,
AllocateBlock and ClearLazyZero. For thin disk restore, NBDSSL is usually faster. Changed Block
Tracking (CBT) must be disabled for SAN restores. SAN transport does not support writing to redo logs
(child disks including linked clones and snapshots), only to base disks. SAN transport is not supported on
VVol datastores.

Before vSphere 5.5, when writing to SAN during restore, disk size had to be a multiple of the underlying
VMFS block size, otherwise the write to the last fraction of a disk would fail. This was fixed in the ESXi 5.5
release.

Programs that open a local virtual disk in SAN mode might be able to read (if the disk is empty) but writing
will throw an error. Even if programs call VixDiskLib_ConnextEx() with NULL parameter to accept the
default transport mode, SAN is selected as the preferred mode if SAN storage is connected to the ESXi
host. VixDiskLib should, but does not, check SAN accessibility on open. With local disk, programs must
explicitly request NBDSSL mode.

For a Windows Server 2008 and later proxy, set SAN policy to onlineAll. Set SAN disk to read-only
except for restore. You can use the diskpart utility to clear the read-only flag. SAN policy varies by
Windows Server 2008 edition. For Enterprise and Datacenter editions, the default Windows SAN policy is
offline, which is unnecessary when vSphere mediates SAN storage.

For SAN transport, one major factor impacting performance is that the read buffer should be aligned with
the sector size, currently 512. You can specify three parameters for VixDiskLib_Read: start sector,
number of sectors to read, and the buffer to hold data. The proper read buffer size can be allocated using,
for example, _aligned_malloc on Windows or posix_memalign on Linux. SAN mode performs best
with about six concurrent streams per ESXi host; more than six streams usually results in slower total
throughput.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 116

Best Practices for HotAdd Transport
Deploy the proxy on VMFS-6 or VMFS-5 volumes, so that the proxy can back up very large virtual disks.
HotAdd is a SCSI feature and does not work for IDE disks. The paravirtual SCSI controller (PVSCSI) is
the recommended default for HotAdd, but other controller types work too.

A redo log is created for HotAdded disks, on the same datastore as the base disks. Do not remove the
target virtual machine (the one being backed up) while HotAdded disk is still attached. If removed,
HotAdd fails to properly clean up redo logs so virtual disks must be removed manually from the backup
appliance. Also, do not remove the snapshot until after cleanup. Removing it could result in an
unconsolidated redo log.

Removing all disks on a controller with the vSphere Client also removes the controller. You might want to
include some checks in your code to detect this in your appliance, and reconfigure to add controllers back
in.

HotAdded disks should be released with VixDiskLib_Cleanup() before snapshot delete. Cleanup might
cause improper removal of the change tracking (ctk) file. You can fix it by power cycling the virtual
machine.

Virtual disk created on Windows by HotAdd backup or restore may have a different disk signature than
the original virtual disk. The workaround is to reread or rewrite the first disk sector in NBDSSL mode.
Customers running a Windows Server 2008 or later proxy should make sure Windows automount is
disabled.

The HotAdd implementation assumes that proxy and target VMs are on the same datastore and
accessible from the same connection, that is, the same vCenter Server. This is so VADP can obtain a list
of all disks on the target VM from a connection. In vCloud environments where two vCenter Servers share
a single datastore, causing VADP to make two connections, there is no mechanism for informing one
connection of the disks available on the other connection. VMware needs to redesign HotAdd to support
multiple connections.

For unbuffered HotAdd restore, VMware recommends that programmers set the VDDK flag
VIXDISKLIB_FLAG_OPEN_UNBUFFERED when opening virtual disks before performing a restore with
HotAdd transport. In vSphere 6.7 releases and later, programs must allocate a data buffer whose memory
address is sector size aligned when setting this flag. Programmers may refer to posix_memalign on
Linux or _aligned_malloc on Windows. Buffer address alignment to sector size is recommended for
older VDDK releases as well.

Best Practices for NBDSSL Transport
Various versions of ESXi have different defaults for timeouts. Before ESXi 5.0 there were no default
network file copy (NFC) timeouts. Default NFC timeout values may change in future releases.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 117

VMware recommends that you specify default NFC timeouts in the VixDiskLib configuration file. If you do
not specify a timeout, older versions of ESXi hold the corresponding disk open indefinitely, until vpxa or
hostd is restarted. However if you do specify a timeout, you might need to perform some “keepalive”
operation to prevent the disk from being closed on the server side. Reading block 0 periodically is a good
keepalive operation. As a starting point, recommended settings are three minutes for Accept and
Request, one minute for Read, ten minutes for Write, and no timeouts (0) for nfcFssrvr and
nfcFssrvrWrite.

The best way to improve NBDSSL performance is to use a relatively small buffer size (2MB or less) to
improve concurrency. Also as of vSphere 6.7, asynchronous I/O is available.

General Backup and Restore
With SSL certificate checking in vSphere 5.1 and after, DNS services must be configured in the backup
proxy, otherwise SSL_Verify will fail with the “no host found” error.

For incremental backup of virtual disk, always enable changed block tracking (CBT) before the first
snapshot. When doing full restores of virtual disk, disable CBT for the duration of the restore. File-based
restores affect change tracking, but disabling CBT is optional for partial restore (file level restore), except
with SAN transport. CBT must be disabled for SAN writes because of thin-provisioning and clear-lazy-
zero operations.

Backup software should ignore independent disks (those not capable of snapshots). These virtual disks
are unsuitable for backup. They throw an error if a snapshot is attempted on them.

When using VMware Tools debug logging with quiesced snapshots, do not log vmtoolsd.data to a local
file on the VM, such as C:\Temp\vmtoolsd.log. Instead set vmtoolsd.handler=vmx to use the tools
service.

To back up thick disk, the proxy's datastore must have at least as much free space as the maximum
configured disk size for the backed-up virtual machine. Thick disk takes up all its allocated size in the
datastore. To save space, you can choose thin-provisioned disk, which consumes only the space actually
containing data.

If you do a full backup of lazy-zeroed thick disk with CBT disabled, the software reads all sectors,
converting data in empty (lazy-zero) sectors to actual zeros. Upon restore, this full backup data will
produce eager-zeroed thick disk. This is one reason why VMware recommends enabling CBT before the
first snapshot.

With CBT enabled for backups on an NFS datastore, thin-provisioned virtual disk may be turned thick
upon restore, unless the NFS server supports lseek(...SEEK_DATA), ioctl(...FS_IOC_FIEMAP), or
equivalent function.

Do not make verbatim copies of configuration files, which can change. For example, entries in the .vmx
file point to the snapshot, not the base disk. The .vmx file contains virtual-machine specific information
about current disks, and attempting to restore this information could fail. Instead use
PropertyCollector and keep a record of the ConfigInfo structure.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 118

Backup and Restore of Thin-Provisioned Disk
Thin-provisioned virtual disk is created on first write. So the first-time write to thin-provisioned disk
involves extra overhead compared to thick disk, whether using NBDSSL or HotAdd. This is due to block
allocation overhead, not VDDK advanced transports. However once thin disk has been created,
performance is similar to thick disk, as discussed in the Performance Study of VMware vStorage Thin
Provisioning.

When applications perform random I/O or write to previously unallocated areas of thin-provisioned disk,
subsequent backups can be larger than expected, even with CBT enabled. In some cases, disk
defragmentation might help reduce the size of backups.

About Changed Block Tracking
VixDiskLib_QueryAllocatedBlocks returns the sectors of a virtual disk that are in use.
QueryChangedDiskAreas returns the sectors that changed since the time of a specified changeId.

The current implementation depends on VMFS properties, similar to properties that SAN transport mode
uses to locate data on a SCSI LUN. Both rely on unallocated areas (file holes) in virtual disk, and the
LazyZero designation for VMFS blocks. Thus, changed block tracking yields best results on VMFS. On
other storage types, it could fail, or returns a single extent covering the entire disk.

You should enable changed block tracking in the order recommended by Enable Changed Block
Tracking. At first call VixDiskLib_QueryAllocatedBlocks to get allocated areas of virtual disk, and
back them up. Subsequently call QueryChangedDiskAreas to get changed areas, and back them up if
they were allocated. If you call QueryChangedDiskAreas after a snapshot but before you enable
changed block tracking, it also returns unallocated areas of virtual disk. With thin-provisioned virtual disk
this could be a large amount of zero data.

The guest operating system has no visibility of changed block tracking. Once a virtual machine has
written to a block on virtual disk, the block is considered in use. The information required for tracking is
computed when changed block tracking is enabled, and the .ctk file is pre-filled with allocated blocks.
The mechanism cannot report changes made to virtual disk before changed block tracking was enabled.

HotAdd and SCSI Controller IDs
When using HotAdd backup, always add SCSI controllers to virtual machines in numeric order.

Most systems lack an interface to report which SCSI controller is assigned to which bus ID. HotAdd
assumes that the unique ID for a SCSI controller corresponds to its bus ID. This assumption could be
false. For instance, if the first SCSI controller on a VM is assigned to bus ID 0, but you add a SCSI
controller and assign it to bus ID 3, HotAdd transport may fail because it expects unique ID 1. To avoid
problems, when adding SCSI controllers to a VM, the bus assignment for the controller must be the next
available bus number in sequence.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 119

Also note that VMware implicitly adds a SCSI controller to a VM if a bus:disk assignment for a newly
created virtual disk refers to a controller that does not yet exist. For instance, if disks 0:0 and 0:1 are
already in place, adding disk 1:0 is fine, but adding disk 3:0 breaks the bus ID sequence, implicitly
creating out-of-sequence SCSI controller 3. To avoid HotAdd problems, you should add virtual disks in
numeric sequence.

To deal with more disks than can fit on a single controller, you must add some permanent dummy disks to
the proxy VM, one on each additional controller that might be needed. Adding only the controller does not
cause the controller to remain attached to the proxy VM. A real VMDK must be added on the controller to
keep it attached to the proxy VM.

Encrypted VM Backup and Restore
Starting with vSphere 6.5, customers can take advantage of virtual machine encryption. This section
describes how to design backup and restore to handle VM encryption.

Encryption protects sensitive parts of a VM and some or all of its virtual disks. The vCenter Server
retrieves keys from a key management server and pushes them to ESXi hosts, which use the keys to
encrypt virtual disk data, NVRAM, portions of the VMX file, and so forth. See the vSphere Security
manual for details.

To back up encrypted virtual disks, VDDK obtains the encryption keys and decrypts virtual disk data
before copying to backup media, so virtual disk data on backup media are in the clear (not encrypted).
VMware recommends that backup agents use their own encryption to protect data on backup media.

Backup of encrypted disks is supported with NBDSSL and HotAdd transport modes, but not supported
with SAN transport. To back up encrypted virtual disks using HotAdd, the backup proxy VM must have
been encrypted as well. Both NBDSSL backup and HotAdd backup require Cryptographer.Access
permission, and HotAdd backup mode requires Cryptographer.AddDisk also.

Encrypted Virtual Disks
When customers restore virtual disks that were encrypted at backup time, they likely want them to remain
encrypted after restore. If a disk was encrypted when it was backed up, the backup agent can remember
the storage policy and apply it to the restored disk. If that storage policy no longer exists in the system,
the backup agent could ask the administrator what policy to apply for encrypted disks, or use the sample
VM encryption storage policy. Optionally the backup agent can remember a disk’s key ID and provide it at
restore time, which will result in the restored disk using the same key as the original disk. If not specified,
vCenter Server gets a new key from the key server.

Recommendations for VM Home
When a VM is encrypted, its VMX configuration file contains portions that are encrypted, and the entire
NVRAM file is encrypted. To completely recover a VM from backups, the NVRAM file must be restored,
and two additional properties from the VirtualMachine object's configuration must be restored: (1) the
encryption key identifier, found in the VirtualMachine ConfigInfo.keyId property, and (2) an encrypted
blob containing VM secrets, called the encryption.bundle, found in the VirtualMachine
ConfigInfo.extraConfig list.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 120

VMware recommends against directly copying the entire VMX configuration file, but instead using the
PropertyCollector to keep a record of configuration structures as documented earlier in this chapter.
When a VM is saved, the backup agent should include the ConfigInfo.keyId, the encryption.bundle
from ConfigInfo.extraConfig, and the current storage policy.

Later when the backup is restored, these values should be provided in the new VirtualMachine
ConfigSpec. This will ensure that the recovered VM metadata files are protected with the same key as
the original VM. If a VM is restored to a vCenter Server with key server access, the VM will boot. However
if the vCenter Server lacks key server access, the VM will not power on after restore, because vCenter
Server cannot push encryption keys to its ESXi host.

The NVRAM file can be handled as it was in previous releases, using HTTP download and upload, but
without saving the additional ConfigInfo properties described above, the NVRAM will be unusable. This is
because it is encrypted with the key that is found in the encryption.bundle, which is in turn sealed with
the key identified by ConfigInfo.keyId. The recovered VM must be created in a vCenter Server that
has access to the same key server as the original, or a replicated key server instance with the same
cluster name.

What If Something Fails
If the ConfigInfo.keyId and encryption.bundle were not saved, it will be impossible to encrypt the
recovered VM using its original encryption keys. However the VM may be encrypted with new keys from
the key server. If the NVRAM file was saved, it is unusable without the original ConfigInfo.keyId and
encryption.bundle information. If the NVRAM file was not saved, or unusable, a generic one can be
used instead. After NVRAM is lost and regenerated, UEFI enabled VMs may require Secure Boot to be
reconfigured, or the boot disk to be reconfigured.

If the vCenter Server has lost access to the original keys from the key server, then a restore operation
may remove the encryption.bundle from ConfigInfo.extraConfig and specify only a VM encryption
storage policy for the VM and its disks. Again this will cause any data present in the NVRAM to be
unusable.

Backup and Restore With vTPM
Trusted platform module (TPM) is the standard for a dedicated microchip that can store sensitive data,
perform cryptographic tasks, and ensure platform integrity by establishing a chain of trust for software
loaded onto a machine. It assures integrity by calculating a message digest for each software component
that gets loaded, storing the message digest in platform configuration register.

Enabling vTPM in a Virtual Machine
Virtual TPM (vTPM) is a software implementation of TPM provided in virtual hardware version 14. In other
words, vSphere 6.7 offers vTPM for newly created or upgraded VMs. Because vTPM is encrypted,
encryption services must be present on the network. Backup and restore of a vTPM enabled VM is similar
to backup and restore of an encrypted VM, with these additional requirements.

n Each involved vCenter Server must be configured with the same key management server (KMS).

Virtual Disk Development Kit Programming Guide

VMware, Inc. 121

n Before adding the vTPM device to a VM, the ConfigInfo.firmware type must be set to efi, not
bios. When you add a VM with encryption storage policy, vSphere encrypts the VM Home including
vTPM.

n To preserve vTPM in a restored VM, the ConfigInfo.keyId, encryption.bundle, NVRAM file, and
vTPM device of the source VM must be saved at backup time, for later restore. Saving an NVRAM file
requires use of the HTTP file service.

Backup with vTPM
To back up a vTPM enabled VM, follow these steps, as in the sample code below.

1 Back up the keyId and encryption.bundle of the source VM from configInfo.

2 Back up the vTPM device of the source VM from configInfo.

3 Back up property firmware of the source VM from configInfo.

// get source VM config

VirtualMachineConfigInfo sourceVmConfigInfo = ... ;

// save keyId

CryptoKeyId keyId = sourceVmConfigInfo.getKeyId();

// save encryption.bundle, which is in extraConfig

List<OptionValue> extraCfg = sourceVmConfigInfo .getExtraConfig();

// save firmware

String firmware = sourceVmConfigInfo.getFirmware();

// save vTPM device

VirtualDevice vtpmDevice = null;

for (VirtualDevice virtualDevice : sourceVmConfigInfo.getHardware().getDevice()) {

 if (virtualDevice instanceof VirtualTPM) {

 vtpmDevice = virtualDevice;

 }

 // save other devices

 // ...

}

// save nvram file

byte[] nvramByteAry = vsphereFileServiceClient.download(sourceVmNvramFilePath);

Restoring With vTPM
To restore a vTPM enabled VM, follow these steps, as in the sample code below.

1 Configure a VM with the same keyId and encryption.bundle as source (requires same KMS).

2 Make sure an encryption storage policy exists and is assigned to the VM. See "Create an Encryption
Storage Policy" in the vSphere Web Services SDK Programming Guide.

3 Configure this VM with the same firmware property and vTPM device as the source VM.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 122

4 Restore NVRAM using HTTP service. Again, see section "HTTP Access to vSphere Server Files" in
the vSphere Web Services SDK Programming Guide.

// create configSpec for VM to be created

VirtualMachineConfigSpec configSpec = new VirtualMachineConfigSpec() ;

// set keyId

CryptoSpecEncrypt cryptoSpec = new CryptoSpecEncrypt();

cryptoSpec.setCryptoKeyId(keyId);

configSpec.setCrypto(cryptoSpec);

// set encryption.bundle

configSpec.setExtraConfig(extraCfg);

//

// set PbmProfile for encryption

// For complete code, see Example: Java program to set storage policy for encryption.

// public class CreateVMEncryptionProfile extends ConnectedServiceBase {

// private PbmServiceInstanceContent spbmsc;

// private String profileName;

// ...

// for (PbmCapabilityVendorResourceTypeInfo vendor : vendorInfo)

// for (PbmCapabilityVendorNamespaceInfo vnsi : vendor .getVendorNamespaceInfo())

// if (vnsi.getNamespaceInfo().getNamespace().equals("vmwarevmcrypt")) {

// encryptionCapable = true;

// break;

// }

// ...

// set firmware

configSpec.setFirmware(firmware);

// set vTPM device

VirtualDeviceConfigSpec vtpmDeviceConfig = new VirtualDeviceConfigSpec();

vtpmDeviceConfig.setOperation(VirtualDeviceConfigSpecOperation.ADD);

vtpmDeviceConfig.setFileOperation(null);

vtpmDeviceConfig.setDevice(vtpmDevice);

configSpec.getDeviceChange().add(vtpmDeviceConfig);

// set other properties and then create restore VM

// ...

// upload nvram

vsphereFileServiceClient.upload(restoreVmNvramFilePath, nvramByteAry

Windows Backup Implementations
The following sections discuss issues when backing up Windows virtual machines.

Disable Automount in Windows Proxy
When using HotAdd transport from a Windows proxy, it can make unwanted changes to HotAdded
volumes. To prevent this, backup vendors and customers should disable Windows automount on the
backup proxy.

To disable Windows automount

Virtual Disk Development Kit Programming Guide

VMware, Inc. 123

Procedure

1 Start DiskPart.

C:\> diskpart

2 Disable automounting.

DISKPART> automount disable

3 Prevent any previously mounted volumes from being re-mounted the next time.

DISKPART> automount scrub

4 Exit DiskPart.

DISKPART> exit

Security and Remote Desktop
For security reasons, remote desktop protocol (RDP) should be disabled on a Windows proxy.

Working with Microsoft Shadow Copy
Microsoft Shadow Copy, also called Volume Snapshot Service (VSS), is a Windows Server data backup
feature for creating consistent point-in-time copies of data (called shadow copies).

The type of quiescing used varies depending on the operating system of the backed-up virtual machine,
as shown in Table 7‑5. ESXi 4.1 added support for Windows 2008 guests using application level
quiescing.

Table 7‑5. Driver Type and Quiescing Mechanisms Used According to Guest Operating
Systems

Guest Operating System Driver Type Used Quiescing Type Used

Windows XP 32-bit

Windows 2000 32-bit

Sync Driver File-system consistent quiescing.

Windows Vista 32- or 64-bit

Windows 7 32- or 64-bit

VMware VSS
component

File-system consistent quiescing.

Windows 2003 32- or 64-bit VMware VSS
component

Application-consistent quiescing.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 124

Table 7‑5. Driver Type and Quiescing Mechanisms Used According to Guest Operating
Systems (Continued)

Guest Operating System Driver Type Used Quiescing Type Used

Windows 2008 32- or 64-bit

Windows Server 2008 R2

VMware VSS
component

Application-consistent quiescing. For this to be available, several
conditions must be met:
n Virtual machine must be running on ESXi 4.1 or later.
n The UUID attribute must be enabled. It is enabled by default for

virtual machines created on 4.1 or later. For details see Enable
Virtual Machine Application Consistent Quiescing.

n The virtual machine must use SCSI disks only and have as
many free SCSI slots as the number of disks. Application-
consistent quiescing is not supported for virtual machines with
IDE disks.

n The Windows VM must not use dynamic disks. If the VM has
dynamic disks, the snapshot will be file-system consistent.

Windows Server 2012 VMware VSS
component

Same as for Windows 2008.

Windows Server 2016 VMware VSS
component

Same as for Windows 2008.

VMware Tools10.1.0 or later is required for quiescing support.

Application quiesced snapshots are not supported for virtual disks
managed by Storage Spaces. Use file-system quiescing as a
workaround.

Other guest operating system Not applicable Crash-consistent quiescing.

File-system consistent quiescing prevents file systems from becoming corrupted, for example, journaled
file systems are allowed to write out pending transactions. Crash-consistent quiescing is the ability to
restore an application as if it suddenly crashed and lost all stateful information. This involves minimal
effort because only data already written to disk is guaranteed safe. Application-consistent quiescing is the
ability to restore stateful information as well.

Restore must be done using the backup application’s guest agent. The vSphere APIs for Data Protection
provide no host agent support for this. Applications authenticating with SSPI might not work right because
HTTP access will demand a user name and password, unless the session was recently authenticated.

When performing VSS quiescing while creating the snapshot of a Windows virtual machine, VMware
Tools generate a vss-manifest.zip file containing the backup components document (BCD) and writer
manifests. The host agent stores this manifest file in the snapshotDir of the virtual machine. Backup
applications should get the vss-manifest.zip file so they can save it to backup media. There are
several ways to get this file:

n Using the datastore access HTTPS protocol, for example by browsing to https://<server-or-
host>/folder/ and continuing downward to the snapshot directory until you find the vss-
manifest.zip file.

n By calling the CopyDatastoreFile_Task method in the vSphere API. This method accepts the URL
formulated above for HTTPS, or a datastore path. (CopyVirtualDisk_Task is for VMDK files).

n With the vifs command in the vMA or vCLI.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 125

n With the Copy-DatastoreItem cmdlet in the PowerCLI (requires PowerShell and VMware snap-in).

Windows 2008 application level quiescing is performed using a hardware snapshot provider. After
quiescing the virtual machine, the hardware snapshot provider creates two redo logs per disk: one for the
live virtual machine writes and another for the VSS and writers in the guest to modify the disks after the
snapshot operation as part of the quiescing operations.

The snapshot configuration information reports this second redo log as part of the snapshot. This redo log
represented the quiesced state of all the applications in the guest. This redo log must be opened for
backup with VDDK 1.2 or later. The older VDDK 1.1 software cannot open the second redo log for
backup.

Application consistent quiescing of Windows 2008 virtual machines is only available when those virtual
machines are created in vSphere 4.1 or later. Virtual machines created in vSphere 4.0 can be updated to
enable application consistent quiescing by modifying a virtual machine’s enableUUID attribute.

For information about VSS, see the Microsoft TechNet article, How Volume Shadow Copy Service Works.
For information about Security Support Provider Interface (SSPI), see the MSDN Web site.

Enable Virtual Machine Application Consistent Quiescing
To enable virtual machine application consistent quiescing on Windows 2008 or later:

Procedure

1 Start the vSphere Client, and log in to a vCenter Server.

2 Select Virtual Machines and Templates and click the Virtual Machines tab.

3 Right-click the Windows 2008 virtual machine for which you are enabling the disk UUID attribute, and
select Power > Power Off. Wait for the virtual machine to power off.

4 Right-click the virtual machine, and click Edit Settings.

5 Click the Options tab, and select the General entry in the settings column.

6 Click Configuration Parameters... The Configuration Parameters window appears.

7 Click Add Row.

8 In the Name column, enter disk.EnableUUID. In the Value column, enter TRUE.

9 Click OK and click Save.

10 Power on the virtual machine.

Application consistent quiescing is available for this virtual machine after the UUID property is
enabled.

Application-Consistent Backup and Restore
Here is the approximate procedure for software to performs application-consistent backup and restore:

Virtual Disk Development Kit Programming Guide

VMware, Inc. 126

Procedure

1 Call CreateSnapshot_task with the quiescent flag set true.

2 Open the leaf node of the disk with VDDK and read both the base VMDK and the snapshot at once.

3 Delete the snapshots created in the first step.

4 During restore, create a new virtual machine.

5 Write the VMDK to disk with VDDK. It should have both base and quiesced information.

During backup, if the snapshot was created with quiesce flag set to true, and all the quiescing
conditions are met, so the snapshot is created involving VSS and the snapshot disks represent
application consistent state of the guest OS. You should be able to confirm this by downloading the
VSS manifest zip file, unzipping it to check if it has just the backup component document (in which
case file system quiescing was performed) or also writer manifests (in which case application
quiescing was performed).

Quiescing involves the VSS mechanism designed by Microsoft. So, regarding VSS backup-restore
verification, refer to the VSS documentation provided by Microsoft. VMware helps by providing a vss-
manifest.zip file that contains Backup/Writers Components details. This is generated by the VSS
mechanism after backup. By cross verifying these backup/writers components details according to
Microsoft VSS documentation, you can verify if a particular application-consistent quiescing was
completed successfully or not.

VMware Tools is responsible for initiating the VSS snapshot process as the VSS requester. Users
send a request to hostd for a quiesced snapshot of the virtual machine. The request goes from
hostd to the VMware Tools for a VSS snapshot. Once the VSS snapshot is completed (with success
or error) it communicates back to the hostd process. The VSS snapshot is created with the vss-
manifest file, or without this file in the error case.

The VSS requester sets up the overall configuration for the backup operation, including whether the
snapshot should be performed in component mode or not, whether to take a snapshot with a bootable
system state, and whether the snapshot should be for a full copy or differential backup. If application-
consistent quiescing is performed, then all writers and all components are involved.

VMware Tools initiates VSS quiescing using VSS_CTX_BACKUP context for application quiescing
capable guests with backup state set to select components, backup bootable system state with
backup type VSS_BT_COPY and no partial file support and VSS_CTX_FILE_SHARE_BACKUP for file
system quiescing capable guests. Currently there is no way to control any of these parameters.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 127

New VSS Support Added in vSphere 6.5
The vSphere 6.5 release includes additional volume shadow-copy service (VSS) configurations and
features. To support these new configuration and for more granular control over Windows guest OS
quiescing, the function CreateSnapshotEx_Task was added to the 6.5 vSphere API, superseding
CreateSnapshot_Task. CreateSnapshotEx_Task takes a quiesceSpec parameter, of type
VirtualMachineGuestQuiesceSpec or VirtualMachineWindowsQuiesceSpec. The latter type can
specify several important fields such as:

n vssBackupType – VSS_BT_COPY was previously used as the default for CreateSnapshot_Task but
now VSS_BT_FULL, VSS_BT_INCREMENTAL, VSS_BT_DIFFERENTIAL, and VSS_BT_LOG are available
also. Log truncation may be triggered according to application settings.

n vssBackupContext – this was introduced to enforce application (context VSS_CTX_BACKUP)
quiescing or file system (context VSS_CTX_FILE_SHARE_BACKUP) quiescing.

n The timeout (default 15 minutes) for quiescing virtual machines can now be configured anywhere
from five minutes to four hours.

CreateSnapshotEx_Task requires VMware Tools 10.1.0 or higher installed on the backed-up virtual
machine.

The VMware VSS Implementation
As of Windows Server 2008, disk UUIDs must be enabled for VSS quiesced snapshots. Disk UUIDs
might not be enabled if a virtual machine was upgraded from virtual hardware version 4.

VMware VSS does not support virtual machines with IDE disks, nor does it support virtual machines with
an insufficient number of free SCSI slots.

Before vSphere 5.1, reverting to a writable snapshot sometimes left orphaned virtual disks that the
system never removed. In the vSphere 5.1 release, writable snapshots are correctly accounted for as
sibling snapshots. This permits cleaner management, because the disk chain matches the snapshot
hierarchy, and it avoids orphaned disks. Linux backup software takes a read-only snapshot so is not
affected. On Windows, VSS backup software may create two snapshots, one made writable by calling
CreateSnapshot_task with the quiesce flag set true.

To add support for granular application control, specify:

n whether pre-freeze and post-thaw scripts get invoked

n whether quiescing gets invoked

n VSS snapshot context (application, file system quiescing, and so forth)

n VSS backup context (full, differential, incremental)

n writers/components to be involved during quiescing

n whether to fail quiescing or continue if one of the writers fails to quiesce

n retry count

Virtual Disk Development Kit Programming Guide

VMware, Inc. 128

A VSS quiesced snapshot reports as VSS_BT_COPY to VSS, hence no log truncation. The VSS manifest
can be downloaded with HTTP. By default, all VSS writers are involved, but a mechanism for excluding
writers exists; see the VMware KB article 1031200. For help troubleshooting, see KB article 1007696.

Linux Backup Implementation
On Linux virtual machines, VMware supports only crash-consistent backups, however application-
consistent backups are possible through the use of customer pre-freeze and post-thaw scripts.

Two methods are attempted sequentially when a quiesced snapshot is requested of a Linux virtual
machine:

Procedure

1 Using the ioctl(2) mechanisms FIFREEZE and FITHAW built into the Linux kernel.

This option is available in only with kernel versions newer than 2.6.32 on Linux virtual machines
running VMware Tools 5.x or higher (vSphere 5.0 and later).

2 Using the sync(2) system call.

The first method allows you define custom scripts that get called by VMware Tools before and after
quiesce. Here are two commands that can be called from pre-freeze and post-freeze scripts:

-f means freeze

 fsfreeze -f /

-u means unfreeze

 fsfreeze -u /

The mount point used in the scripts (root in the examples above) must be mounted with the noatime
option, meaning do not update inode access times on the file system, for freeze and unfreeze to
work.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 129

Backing Up vApps in vCloud
Director 8
This chapter introduces developers to the concepts and procedures for creating backup and restore
solutions for vCloud Director. This chapter is divided into the following main sections:

This chapter includes the following topics:
n Introduction to Tenant vApps

n Conceptual Overview

n Use Cases Overview

n vCloud API Operations

n Conclusion

Introduction to Tenant vApps
The vApp is a management construct that encapsulates one or more virtual machines running in the
vSphere environment. The tenant vApp is a higher-level construct that allows vCloud Director to manage
vApps and virtual machines running in a multi-tenant datacenter, or in a multi-tenant cloud, based on
vSphere.

Figure 8‑1 shows the objects within a single organization that you can access with the vCloud API.

VMware, Inc. 130

Figure 8‑1. vCloud API Object Taxonomy

Multi-tenant and self-service capabilities of vCloud Director provide multiple levels of protection for a
vApp. A service provider can offer vApp protection at the system level, the tenant level, or the end-user
level, managed by the system administrator, Organization administrator, and end user, respectively. This
chapter focuses on the protection provided at the system level, where service providers can employ
backup solutions from vendors of data protection software.

This chapter describes how to design software to back up and restore the vApps in a vCloud. To back up
or restore a vApp, you need to deal with both the vCloud configuration and the virtual machines that
belong to the vApp. In vSphere, a virtual machine is represented by configuration files and virtual disk
files.

Prerequisites
You should be familiar with programming concepts and techniques. You should also be familiar with
vCloud, vCloud API, vCloud SDK for .NET, and vSphere concepts. VMware also provides the vCloud
SDK for Java and the vCloud SDK for PHP, but this chapter focuses on .NET for the backup and restore
examples.

VMware recommends that you design backup and restore software for the vCloud environment using the
following APIs:

Table 8‑1. APIs Used To Back Up vApps

Product API Data

vCloud Director vCloud API or vCloud SDK wrapper vApp metadata

vSphere WS API virtual machine configuration

VDDK VixDiskLib API or VixMntapi virtual disk contents

Virtual Disk Development Kit Programming Guide

VMware, Inc. 131

You use the vCloud API or SDK to identify vApp targets for backup and restore operations. The vApp
metadata identifies the virtual machines that constitute the vApp. You use the WS API to back up and
restore virtual machine configurations. You use the VDDK API to back up and restore virtual disk files.

Note This chapter uses the term “metadata” in a general sense to mean all the vApp configuration data,
in addition to user-defined data that the vCloud REST API serializes in the <Metadata> element.

You should be familiar with the use of the WS API and the VDDK API for backup and restore of individual
virtual machines.

Other Information
This chapter does not, in general, duplicate information available in other documents. In particular, this
chapter does not provide details about any storage or data protection API that you need to use for
backing up and restoring virtual machines in vSphere. You should consult separate reference
documentation for details about specific API calls.

This chapter emphasizes the use of the vCloud API and SDK for the purpose of managing metadata of
the virtual machines and related artifacts in vCloud Director. The vCloud SDK for .NET translates your C#
code into REST operations using the vCloud API.

To learn about VMware vCloud and vSphere concepts and usage, refer to the vCloud Director
documentation available from the VMware Web site, http://www.vmware.com/support/sdk_pubs.html. You
can also visit the VMware SDK community forum at http://communities.vmware.com/community/vmtn.

Conceptual Overview
This section summarizes the backup and restore processes for vApps managed by vCloud Director. It
explains how to use VMware APIs to collect the metadata needed to control backup and restore
operations. The actual backup and restore operations are performed using the VMware vStorage APIs for
Data Protection (VADP).

VMware vCloud Director uses one or more vCenter servers to manage virtualized resources. At the same
time, it manages the vCloud feature of multi-tenancy by maintaining metadata related to various tenant
artifacts such as vApp, users, networks, storage, and so on.

When a system administrator chooses to back up a vApp, certain vApp metadata must be retrieved from
vCloud Director. The metadata includes general information about the vApp (name, description, virtual
machine descriptions), networking information (organization network connectivity, external network
connectivity), user information, lease, and quota. This information becomes particularly important when
restoring the vApp, in addition to the names of virtual disk files and .vmx files typically retrieved from
vSphere using the VADP.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 132

The Backup Process
The backup process requires the backup/restore software to collect and store information both from
vCloud Director and from vSphere. This process assumes that you use vCloud Director system
administrator credentials to connect to vCloud Director. System administrator credentials allow the
software to access vApps belonging to any Organization, and to access all the necessary information
about a vApp and associated vCloud constructs.

A vApp in vCloud Director can comprise one or more virtual machines. When you work with a single vApp
in vCloud Director, you might be working with a number of virtual machines in vSphere.

To back up a vApp or set of vApps:

Procedure

1 Connect to vCloud Director and access the organization where vApp (or vApps) will be backed up.

2 When backing up a vApp for a given Organization or VDC in vCloud Director, access the vCloud
Director inventory for a list of all desired vApps.

3 Select maintenance mode for each vApp to prevent updates during the backup process.

4 Collect all the metadata related to the vApp(s), including any user-defined metadata associated with
any given vApp.

5 Use the vApp metadata to identify the virtual machines associated with each vApp.

6 Connect to vCenter Server as a user with sufficient permissions to access the virtual machines. Use
the vSphere inventory to locate the virtual machine configuration and virtual disk files.

7 Use the VMware APIs for Data Protection to back up the vSphere virtual machine files:

a (optional) Save a snapshot of the virtual machine.

b Save the virtual machine configuration, using the WS API.

c Save the virtual disks using the VDDK API.

d (optional) Delete the virtual machine snapshot, if applicable.

8 Store the vApp metadata in an appropriate format along with the associated virtual machine files.

9 Deselect maintenance mode for each vApp.

The Restore Process
The restore process offers some options to the administrator.

When you restore a vApp, you can choose to overwrite an existing vApp. For instance, the restore
software might need to overwrite a vApp with data corruption. You can also choose to restore a vApp that
no longer exists, for instance, a vApp that was accidentally deleted.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 133

You can choose whether to keep the same vApp name and other vApp attributes, or you can choose to
change attributes during the restore process. If the attributes of the restored vApp no longer conform to
the environment because of changes since the backup was taken, you can select new values for the non-
conforming attributes.

You might want to restore an existing vApp to an earlier state, or you might want to replace it because it
has become corrupted.

To restore an existing vApp:

1 Identify the child virtual machines of the vApp, using the metadata stored with the backup.

2 Connect to vCenter Server as a user with sufficient permissions to access the virtual machines and
restore the virtual machines in the vSphere environment. This step restores the virtual disk files and
virtual machine configuration. If you are overwriting an existing vApp, you generally restore the files to
the same data store that vCloud Director currently uses for the vApp.

3 Connect to vCloud Director and authenticate as an administrator, which gives you backup and restore
privileges.

4 Locate the corrupted vApp, using the ID retrieved from the metadata in the backup store.

5 Select maintenance mode for the vApp, to prevent changes while restoring metadata.

6 Edit vApp settings such as network, user privileges, lease, and quota as needed. Make sure to
include any user-defined metadata from the backup store. If you restored a virtual machine to a
different location from the original, you might need to adjust the vApp settings.

7 Deselect maintenance mode for the vApp.

You might want to restore a missing vApp because somebody deleted it, or as part of disaster recovery.

To restore a missing vApp:

1 Identify the child virtual machines of the vApp, using the metadata stored with the backup.

2 Connect to vCenter Server as a user with sufficient permissions to access the virtual machines and
restore the virtual machines in the vSphere environment. This step restores the virtual disk files and
virtual machine configuration.

3 Connect to vCloud Director and authenticate as an administrator, which gives you backup and restore
privileges.

4 Compose a new vApp or import the virtual machine(s) into vCloud Director to create a new vApp with
these characteristics:

a It has the same name as the lost vApp.

b It belongs to the same Organization as the lost vApp.

c It obtains resources from the same provider VDC as the lost vApp.

5 Select maintenance mode for the vApp, to prevent changes while restoring metadata.

6 Edit vApp settings such as network, user privileges, lease, and quota as needed. Make sure to
include any user-defined metadata from the backup store.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 134

7 Deselect maintenance mode for the vApp.

Note This is a simplified view of the restore process. The exact process you use will depend on the
features provided by your software. For instance, if the datastore is full, the software could offer to migrate
the vApp to a different datastore.

Use Cases Overview
The following sections give an overview of use cases related to the backup and restore processes.

Managing Credentials
Backup software needs vCloud Director access to manage vApps at the metadata level, and vCenter
Server access to manage vApps at the virtual machine and virtual disk level. The backup software must
collect and retain authentication credentials for both vCloud Director and vCenter Server.

For information about vCloud Director authentication, see Getting Access to vCloud Director. For
information about vSphere authentication, see the vSphere Web Services SDK Programming Guide.

Finding a vApp
There are different ways to locate a vApp managed by vCloud Director. One way is to traverse the vCloud
Director inventory. Another way is to use the query service.

Inventory Traversal
Using the vCloud Director inventory to locate a vApp requires navigating a hierarchy of containers based
on organizational and resource divisions. The process is explained in Inventory Access.

Using the Query Service
The vCloud SDK for .NET also supports the query service of the vCloud API for finding vApps. Consult
the sample programs in the SDK for more information about how to use the query service in the SDK.

Protecting Specified vApps
Backup systems typically identify vApps to be backed up in a given Organization based on their identity,
using vApp attributes such as name and ID or user defined metadata. A set of vApps to be backed up can
also be created based on their Organization (for example, all vApps in the Human Resources
Organization), the VDC where they are deployed, and so forth.

In all these cases you must traverse the given Organization and its contents to locate and make a list of
vApps.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 135

Recovering an Older Version of a vApp
If a vApp has become corrupted, or if users need to revert to an older state of the vApp, the administrator
can restore a version of the vApp from backup storage even when the vApp still exists in vCloud Director.
The backup/restore application in these cases can access vCloud Director to get vApp identity
information and metadata before restoring the backup copy.

The backup/restore application has a choice between overwriting the current vApp instance or deleting it
and creating a new vApp. The choice to delete the vApp can be convenient when the vApp configuration
has changed since the last backup, especially when a virtual machine has been added to or deleted from
the vApp.

Recovering a Deleted vApp
When recovering a deleted vApp, the backup/restore application must identify the vApp from user input to
locate the vApp metadata and virtual machine files on the backup storage medium. After the virtual
machines have been restored using vSphere APIs, the vApp can be recomposed using the vCloud API.
The backup software must first create a vApp from one of the virtual machines, then import the remaining
virtual machines into the same vApp.

Recovering a Single Virtual Machine
The process of recovering a single virtual machine from the backup storage medium is a special case of
recovering a deleted vApp. In the case of a deleted vApp, the backup software must re-create the vApp in
vCloud Director, then import the remaining virtual machines. For a single lost virtual machine, the backup
software must only import the one virtual machine into the existing vApp.

Backing Up vCloud Director
The vCloud SDK for .NET does not offer any special features for backing up or restoring the vCloud
Director application and its data. Users should follow standard industry advice for protecting Tomcat
applications and Oracle or SQL Server databases.

vCloud API Operations
The following sections describe commonly used vCloud API operations using vCloud SDK for .NET. The
API descriptions in this chapter do not provide complete backup/restore implementation details, but focus
instead on identifying a set of vCloud API methods that facilitate certain operations that use vCloud
Director.

You should be familiar with vCloud Director and vCloud API concepts. Every resource in vCloud Director
can be accessed using either its unique ID or HREF (the reference URL) in the vCloud API. The .NET
SDK provides wrapper utility classes for commonly-used resources to make the programming easier.

The operations described in the following sections are:

n Getting Access to vCloud Director – Shows how to connect and authenticate with the vCloud API.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 136

n Inventory Access – Shows how to retrieve data for different Organization types.

n Retrieving Catalog information – Shows how to retrieve Catalog entries for backup.

n Retrieving vApp Configuration – Shows how to list virtual machines and vApp configuration data.

n Preventing Updates to a vApp During Backup or Restore – Shows how to use maintenance mode to
quiesce vApp configuration.

n Associating vCloud Resources with vSphere Entities – Shows how to get Managed Object
References of virtual machines and storage resources from vCloud Director.

n Restoring vApps – Shows how to import virtual machines into vApps.

Getting Access to vCloud Director
The backup/restore software component must use system administrator privileges to connect to vCloud
Director, so that it can access any Organization. The system administrator always logs into the System
organization. When Administrator@System is used as the user name for the API, Administrator is
the login name and System is the System Organization name.

Using system administrator privileges to connect to vCloud Director also allows the backup/restore
software to access additional information relating a vApp to the corresponding resources in vSphere. This
is described in Inventory Access.

The following example shows how to log in using C# with the vCloud SDK for .NET. After logging in, the
code shows how to access Organization data.

// vCloud Director login code sample using Administrator@System/<password>

using com.vmware.vcloud.sdk;

using com.vmware.vcloud.api.rest.schema;

public static vCloudClient client = null;

client = new vCloudClient(vCloudURL, com.vmware.vcloud.sdk.constants.Version.V1_5);

client.Login(username, password);

// Get references to all Organizations:

Dictionary<string,ReferenceType> organizationsMap = client.GetOrgRefsByName();

// Get reference to a specific Organization:

string orgName = "Org1";

ReferenceType orgRef = client.GetOrgRefByName(orgName);

// Convert Organization reference to Organization object:

Organization org = Organization.GetOrganizationByReference(client, orgRef);

Inventory Access
In general, you locate a desired vApp for backup in the context of a given Organization and VDC. To
locate a vApp that you want to back up, you first need a reference to its parent Organization.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 137

You use the Organization reference to get the Organization object, which you use to get a list of
references to the VDCs that belong to the Organization. You use a VDC reference to get a VDC object,
which you then use to get a list of references to the vApps that belong to the Organization. You convert
the desired vApp reference to a vApp object, which you use to list the virtual machines that belong to the
vApp.

The following example shows how to get a reference to the user view of an Organization, and how to get
a reference to the admin view of an Organization and a VDC.

// Get admin Org and vDC

public static vCloudClient client = null;

// Login

...

// Get admin view of Org

VcloudAdmin admin = client.GetVcloudAdmin();

string orgName = "Org1";

ReferenceType orgRef = admin.GetAdminOrgRefByName(orgName);

AdminOrganization adminOrg = Organization.AdminGetOrgByReference(client, orgRef);

// Get admin vDC

string vdcName = "VDC1";

ReferenceType vdcRef = adminOrg.GetAdminVdcRefByName(vdcName);

...

AdminVdc adminVdc = AdminVdc.GetAdminVdcByReference(client, vdcRef);

Admin Views
The admin view of resources such as Organization, VDC, and vApp provides extra information that is
useful to users with administrative privileges. For example, in the case of a vApp, admin view provides
information about vCenter and the virtual machines that belong to the vApp. The admin view provides
information such as Managed Object References that vCenter uses for those entities. See Associating
vCloud Resources with vSphere Entities for more information about getting vCenter Managed Object
References.

To access admin views, you use a method of the client connection object to create an admin client proxy.
The admin proxy has methods similar to those of the client connection object to get references to
Organizations and other vCloud objects. However, the objects you get from the admin proxy have
additional properties not present in user objects.

Admin Extensions
Similar to the admin views, you can use a different method of the client connection object to create an
admin extension client proxy. You use the admin extension proxy to find provider VDC. A provider VDC
includes one or more resource pools and allocates resources from those pools to the Org VDCs that it
supports.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 138

The following example shows how to get a Provider VDC.

// Login

…

// Get dictionary of Provider vDCs:

AdminExtension.VcloudAdminExtension adminExt = client.GetVcloudAdminExtension();

string pvdcName = "ProvVDC1";

Dictionary<string, ReferenceType> refs = adminExt.GetVMWProviderVdcRefsByName();

…

// Get reference for pvdcName -> pvdcRef

ReferenceType pvdcRef = refs[pvdcName];

VMWProviderVdc vmwPvdc = VMWProviderVdc.GetVMWProviderVdcByReference(client, pvdcRef);

Using the vCloud SDK for .NET allows you to access vCloud Director from a C# development
environment. These examples show how to use .NET methods. The vCloud SDK for .NET simplifies
access to the vCloud API. For more information about using the SDK, see the vCloud SDK for .NET
Developer's Guide.

The vCloud API is REST-based. For more information about the vCloud API, see the vCloud API
Programming Guide. The following example shows the REST API calls that accomplish the tasks shown
in examples above, after logging in. RESA API Calls To Get Provider VDC:

GET https://vCloud/api/admin

GET https://vCloud/api/admin/org/id

GET https://vCloud/api/admin/vdc/id

GET https://vCloud/api/admin/extension

GET https://vCloud/api/admin/extension/providervdc/id

In general, if you do not need admin views or provider views, you can use an Organization reference to
get a VDC reference, and you can use the VDC reference to get a list of vApps belonging to the VDC.
The following example shows how to list the hierarchy of Organizations, VDCs, and vApps known to
vCloud Director. This example assumes you have already logged in to vCloud Director.

// List vApps in a VDC for a Given Organization

Dictionary<string, ReferenceType> organizationsMap = client.GetOrgRefsByName();

if (organizationsMap != null)

{

 foreach (string organizationName in organizationsMap.Keys)

 {

 ReferenceType organizationReference = organizationsMap[organizationName];

 Organization org = Organization.GetOrganizationByReference(client, organizationReference);

 string OrgID = org.Resource.id;

 Console.WriteLine("Organization Name:" + organizationName);

 Console.WriteLine("Organization Id :" + OrgID);

 }

 foreach (ReferenceType orgRef in organizationsMap.Values)

 {

 Organization org = Organization.GetOrganizationByReference(client, orgRef);

 foreach (ReferenceType vdcRef in org.GetVdcRefs())

 {

 Vdc vdc = Vdc.GetVdcByReference(client, vdcRef);

Virtual Disk Development Kit Programming Guide

VMware, Inc. 139

 string vdcId = vdc.Resource.id;

 Console.WriteLine("Org vDC Id:" + vdcId);

 Console.WriteLine("Org vDC Name:" + vdc.Reference.name);

 foreach (ReferenceType vAppRef in Vdc.GetVdcByReference(client, vdcRef).GetVappRefs())

 {

 Vapp vapp = Vapp.GetVappByReference(client, vAppRef);

 Console.WriteLine("vApp Id:" + vapp.Resource.id);

 Console.WriteLine("vApp Name:" + vapp.Resource.name);

 List<VM> vms = new List<VM>();

 try

 {

 vms = vapp.GetChildrenVms();

 }

 catch

 {

 // Handle exception here

 }

 foreach (VM vm in vms)

 {

 Console.WriteLine("VM Id : " + vm.Resource.id);

 Console.WriteLine("VM Name : " + vm.Resource.name);

 }

 }

 }

 }

}

The .NET SDK code in the following example translates to the API calls shown in the example below this
one. REST API Calls To List vApps in a VDC for a Given Organization:

GET https://vCloud/api/admin

GET https://vCloud/api/admin/org/id

GET https://vCloud/api/admin/vdc/id

GET https://vCloud/api/admin/extension

GET https://vCloud/api/admin/extension/providervdc/id

You can use a provider VDC reference to enumerate its associated datastores, as shown in the following
example, which assumes you have already logged in to vCloud Director. List Datastores:

/// <summary>

/// Returns list of Provider vDCs.

/// </summary>

/// <returns>ReferenceType</returns>

public static List<ReferenceType> GetProviderVdc()

{

 List<ReferenceType> vdcRefList = new List<ReferenceType>();

 foreach (ReferenceType vdcRef1 in

 client.GetVcloudAdminExtension().GetVMWProviderVdcRefsByName().Values)

 {

 vdcRefList.Add(vdcRef1);

 }

 return vdcRefList;

Virtual Disk Development Kit Programming Guide

VMware, Inc. 140

}

/// <summary>

/// Returns the list of DataStores

/// </summary>

/// <returns>ReferenceType</returns>

public static List<ReferenceType> GetDataStore()

{

 extension = client.GetVcloudAdminExtension();

 List<ReferenceType> vmDatastorelist = new List<ReferenceType>();

 foreach (ReferenceType datastoreRef in extension.GetVMWDatastoreRefs())

 {

 vmDatastorelist.Add(datastoreRef);

 }

 return vmDatastorelist;

}

// Get the datastores for the list of Provider vDCs.

foreach (ReferenceType providerVdcRef in GetProviderVdc())

{

 string providerVdcId = GetId(providerVdcRef.href);

 Console.WriteLine("Provider vDC Id:" + providerVdcId);

 Console.WriteLine("Provider vDC Name:" + providerVdcRef.name);

 foreach (string morefitem in

 VMWProviderVdc.GetResourcePoolsByMoref(client, providerVdcRef).Keys)

 {

 Console.WriteLine("Moref :" + morefitem);

 }

 foreach (VMWProviderVdcResourcePoolType VcResourcePool in

 VMWProviderVdc.GetResourcePoolsByMoref(client, providerVdcRef).Values)

 {

 string VcResourcePoolId = GetId(VcResourcePool.ResourcePoolVimObjectRef.VimServerRef.href);

 Console.WriteLine("VcResourcePoolId :" + VcResourcePoolId);

 }

}

foreach (ReferenceType item in GetDataStore())

{

 string DatastoreId = GetId(item.href);

 Console.WriteLine("Data Store ID:" + DatastoreId);

 Console.WriteLine("DataStore:" + item.name);

}

Retrieving Catalog information
Catalogs on vCloud Director store vApp templates and ISO images as Catalog items. Backup solutions
can be asked to back up the items in the Catalog for a given Organization. Catalogs can be shared or
private. A user can choose to back up all items or only selected items in the given catalog. For this it is
necessary to traverse the given Catalog in an Organization to access the contents and extract the various
metadata associated with the vApp.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 141

The following example shows inventory traversal to access the Catalog items in a given Organization,
and assumes you have logged in to vCloud Director and obtained a map of Organizations, as in
examples above.

// List catalogs and catalog items for a given organization:

Console.WriteLine();

if (organizationsMap != null && organizationsMap.Count > 0)

{

 foreach (string organizationName in organizationsMap.Keys)

 {

 ReferenceType organizationReference = organizationsMap[organizationName];

 Console.WriteLine(organizationName);

 Console.WriteLine(organizationReference.href);

 Organization organization = Organization.GetOrganizationByReference(client,

organizationReference);

 List<ReferenceType> catalogLinks = organization.GetCatalogRefs();

 if (catalogLinks != null && catalogLinks.Count > 0)

 {

 foreach (ReferenceType catalogLink in catalogLinks)

 {

 Catalog catalog = Catalog.GetCatalogByReference(client, catalogLink);

 CatalogType catalogType = catalog.Resource;

 Console.WriteLine(" " + catalogType.name);

 Console.WriteLine(“ " + catalogLink.href);

 List<ReferenceType> catalogItemReferences = catalog.GetCatalogItemReferences();

 if (catalogItemReferences != null && catalogItemReferences.Count > 0)

 {

 foreach (ReferenceType catalogItemReference in catalogItemReferences)

 {

 Console.WriteLine(“ " + catalogItemReference.name);

 Console.WriteLine(" " + catalogItemReference.href);

 }

 Console.WriteLine();

 }

 else

 {

 Console.WriteLine("No CatalogItems

Found");

 }

 }

 Console.WriteLine();

 }

 else

 {

 Console.WriteLine("No Catalogs Found");

 }

 }

}

else

{

 Console.WriteLine("No Organizations");

}

Virtual Disk Development Kit Programming Guide

VMware, Inc. 142

The following example shows REST API calls that accomplish some of the tasks shown in the example
above. REST API calls to list catalog items:

GET https://vCloud/api/catalog/id

GET https://vCloud/api/catalog/id/catalogItems

GET https://vCloud/api/catalogitem/id

Retrieving vApp Configuration
For a typical user, a vApp is the basic unit of backup specified in vCloud Director. The current generation
of backup software maps vApps to their associated virtual machines in vSphere, and thus the virtual
machine becomes an actual artifact. Virtual disk and virtual machine configuration files need to be stored
in a backup. Along with the associated virtual machine artifacts, the user needs to back up the metadata
and properties associated with every vApp to successfully restore it in vCloud Director when needed.

When a vApp is lost or deleted from vCloud Director, backup software can restore the vApp by composing
a new vApp using virtual machines restored in vSphere. In such a case it becomes imperative to restore
the properties and metadata associated with the vApp in vCloud Director.

The SDK includes a number of methods that you can use to get vApp configuration information. Although
some of this information is included in the OVF used to upload the vApp to vCloud Director, the
information might have subsequently been modified either by using the vCloud API or through the user
interface.

All of these methods apply to an object of type Vapp.

Methods To Retrieve vApp Configuration
n GetChildrenVms()

Gets a list of all child virtual machines that constitute a given vApp. Returns List<VM>.

n GetStartupSection()

Get virtual machine startup information. Returns StartupSectionType.

n GetNetworksByName()

Get mapping of all the network sections using their name. Returns Dictionary<string,
NetworkSection_TypeNetwork>.

n GetNetworkConfigSection()

Get network configuration details for a vApp. The information typically contains IP scope (gateway,
netmask, DNS settings, IP range), Parent network, Fence Mode settings, and so on. Returns
NetworkConfigSectionType.

n GetLeaseSettingSection()

Get lease settings information. It includes deployment and storage lease settings for the vApp.
Returns LeaseSettingsSectionType.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 143

n GetOwner()

Get owner information for the vApp. Returns ReferenceType.

n GetMetadata()

Every resource in vCloud API can be associated with user-defined metadata. This method returns
user-defined metadata associated with a vApp. Returns MetadataType.

The following example shows REST API calls used to get vApp configuration data.

GET https://vCloud/api/vapp/id

GET https://vCloud/api/vapp/id/startupSection

GET https://vCloud/api/vapp/id/networkConnectionSection

GET https://vCloud/api/vapp/id/networkConfigSection

GET https://vCloud/api/vapp/id/leaseSettingsSection

GET https://vCloud/api/vapp/id/owner

GET https://vCloud/api/vapp/id/metadata

Virtual Machine Information
vCloud Director also stores virtual machine configuration information uploaded from an OVF file into a
vApp template. If you have not modified a virtual machine configuration since uploading, you can use this
information to verify the configuration of the virtual machine before restoring it.

The following methods, applied to an object of type VM, retrieve configuration data structures from vCloud
Director.

Configuration Data for a Virtual Machine

n GetVirtualHardwareSection()

Get hardware requirements of the virtual machine. Returns VirtualhardwareSection_Type.

n GetOperatingSystemSection()

Get information about the guest operating system installed on this virtual machine. Returns
OperatingSystemSectionType.

n GetNetworkConnectionSection()

Get information about virtual network devices used by this virtual machine. Returns
NetworkConnectionSectionType.

n GetRuntimeInfoSection()

Get version of VMware Tools installed on the virtual machine. Returns RuntimeInfoSectionType.

The following example shows the REST API calls corresponding to the virtual machine configuration
sections available from the SDK for .NET. REST API calls to get virtual machine configuration data:

GET https://vCloud/api/vapp/id/virtualhardwaresection

GET https://vCloud/api/vapp/id/operatingSystemSection

GET https://vCloud/api/vapp/id/networkConnectionSection

GET https://vCloud/api/vapp/id/runtimeInfoSection

Virtual Disk Development Kit Programming Guide

VMware, Inc. 144

Preventing Updates to a vApp During Backup or Restore
While you are backing up or restoring a vApp, you need to prevent updates to the vApp configuration and
metadata so that the vApp remains internally consistent. To prevent updates during the backup/restore
process, the vCloud API allows the vApp to be placed in maintenance mode, which rejects any new
updates to the configuration and metadata.

The backup software must select maintenance mode for the vApp before starting backup or restore
operations, and deselect maintenance mode for the vApp after the operations are completed. The
following example shows how to protect a vApp by selecting and deselecting maintenance mode.

using com.vmware.vcloud.sdk;

using com.vmware.vcloud.api.rest.schema;

...

VApp vapp; // VApp utility class from vCloud SDK

// Identify vApp

vapp.EnableMaintenance(); // Enter maintenance mode

// Perform backup/restore here

...

vapp.DisableMaintenance(); // Exit maintenance mode

The following lines show corresponding REST API calls to select and deselect maintenance mode for a
vApp.

POST https://vCloud/api/vapp/id/action/enterMaintenancemode

POST https://vCloud/api/vapp/id/action/exitMaintenanceMode

Note Selecting maintenance mode does not affect current or pending tasks associated with the vApp.
Current or pending tasks will run to completion concurrent with the backup or restore operation. If these
tasks involve configuration changes, they could result in an inconsistent vApp configuration. The backup
system must ensure that such tasks are complete before storing the vApp properties and metadata.

Associating vCloud Resources with vSphere Entities
The admin view of vCloud Director resources provides additional information about the corresponding
entities relevant to the vSphere platform. This information is available only when administrative
credentials are used to log in to vCloud Director. The additional information does not replace the use of
the vSphere API to provide comprehensive information about the entities. It merely provides the bridge
between the vCloud and vSphere by mapping the IDs known to the respective systems.

For example, any given virtual machine is known in vCloud Director by a URN that contains the UUID and
resource type. The same resource is identified in vSphere using its native identification, a MoRef
(Managed object reference). Additional information provided in the vCloud API makes the necessary link
between the two entities by mapping their ID in the two systems. The mapping context is shown in the
following figure.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 145

Figure 8‑2. Mapping vApp to virtual machine

vCloud Director

Org

Provider vDC

vDC

vApp

vCenter Server

Datacenter

ComputeResource

ResourcePool

VirtualMachine

MORef

The vCloud API describes the mapping in terms of XML elements, shown in the following example. The
box in the example highlights XML data that maps a virtual machine from vCloud Director to vSphere.
The MoRef of the virtual machine is in bold type.The object type is shown as VIRTUAL_MACHINE.

// XML Mapping a Virtual Machine URL to a MoRef

<Vm needsCustomization="false" deployed="false" status="3" name="RedHat6"

id="urn:vcloud:vm:f487ba71-058a-47a9-9e9a-def458c63fd5" type="application/vnd.vmware.vcloud.vm+xml"

href="https://10.20.140.167/api/vApp/vm-f487ba71-058a-47a9-9e9a-def458c63fd5">

 <VCloudExtension required="false">

 <vmext:VmVimInfo>

 <vmext:VmVimObjectRef>

 <vmext:VimServerRef type="application/vnd.vmware.admin.vmwvirtualcenter+xml"

name="dao_w2k8_vc"

href="https://10.20.140.167/api/admin/extension/vimServer/e7026985-19f6-4b9a-9d0d-588629e63347"/>

 <vmext:MoRef>vm-63</vmext:MoRef>

 <vmext:VimObjectType>VIRTUAL_MACHINE</vmext:VimObjectType>

 </vmext:VmVimObjectRef>

 <vmext:DatastoreVimObjectRef>

 <vmext:VimServerRef type="application/vnd.vmware.admin.vmwvirtualcenter+xml"

Virtual Disk Development Kit Programming Guide

VMware, Inc. 146

name="dao_w2k8_vc"

href="https://10.20.140.167/api/admin/extension/vimServer/e7026985-19f6-4b9a-9d0d-588629e63347"/>

 <vmext:MoRef>datastore-29</vmext:MoRef>

 <vmext:VimObjectType>DATASTORE</vmext:VimObjectType>

 </vmext:DatastoreVimObjectRef>

 <vmext:HostVimObjectRef>

 <vmext:VimServerRef type="application/vnd.vmware.admin.vmwvirtualcenter+xml"

name="dao_w2k8_vc"

href="https://10.20.140.167/api/admin/extension/vimServer/e7026985-19f6-4b9a-9d0d-588629e63347"/>

 <vmext:MoRef>host-28</vmext:MoRef>

 <vmext:VimObjectType>HOST</vmext:VimObjectType>

 </vmext:HostVimObjectRef>

 <vmext:VirtualDisksMaxChainLength>1</vmext:VirtualDisksMaxChainLength>

 </vmext:VmVimInfo>

 </VCloudExtension>

</Vm>

Besides the virtual machine object itself, the VmVIMInfo element encapsulated in the VCloudExtension
element of the example lists a datastore object and a host object. Each section provides the vSphere
entity reference (MoRef) for the corresponding entity, along with its type. The types are DATASTORE and
HOST, respectively. In vCloud Director, the virtual machine can be described as virtual machine vm-63
stored in datastore datastore-29 and managed by vCenter Server dao_w2k8_vc.

Similarly, the following example shows the administrative view of a VDC wherein the VCloudExtension
element provides additional information about the corresponding entities in vSphere. In this particular
case, the VDC in the example is based on a resource pool configured in vCenter Server, named
dao_w2k8_vc. More information on this server can be obtained by using the vCloud API and its reference
URL, which is available as the href property. The MoRef element provides the ID of the resource pool
that backs the given VDC, as known to vSphere. Since a MoRef is treated as an opaque value, the
VimObjectType element specifies the type of object that the MoRef points to. Combining these elements
enables you to use the vSphere API and to locate the Resource Pool served by the specified vCenter
Server. XML mapping a datacenter URL to a MoRef:

<AdminVdc … >

 <VCloudExtension required="false">

 <vmext:VimObjectRef>

 <vmext:VimServerRef

type="application/vnd.vmware.admin.vmwvirtualcenter+xml" name="dao_w2k8_vc"

href="https://10.20.140.167/api/admin/extension/vimServer/e7026985-19f6-..."/>

 <vmext:MoRef>resgroup-52</vmext:MoRef>

 <vmext:VimObjectType>RESOURCE_POOL</vmext:VimObjectType>

 </vmext:VimObjectRef>

 </VCloudExtension>

...

</AdminVdc … >

The following example shows how to use SDK helper methods to access the vSphere specific information
for the virtual machines of a given vApp.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 147

The return value of the methods has type VimObjectRefType, which provides a reference to a vCenter
Server, a MoRef to the vSphere entity, and the type of the entity it is referring to.

// Using the SDK for .NET To Access MoRefs

using com.vmware.vcloud.sdk;

using com.vmware.vcloud.api.rest.schema;

…

// Log in with admin privileges and get admin view of vDC containing the vApp.

…

VApp vapp; // VApp utility class from vCloud SDK

// Identify vApp.

…

List<VM> Vms;

// Get list of children VM(s)

Vms = vapp.GetChildrenVms();

foreach (VM vm in Vms)

{

 Console.WriteLine();

 // Access vSphere information for VM

 …

 // VM Info from vSphere

 VimObjectRefType vmRef = vm.GetVMVimRef();

 Console.WriteLine(“VirtualMachine: “ + vmRef.moRefField);

 // Datastore Info from vSphere for VM

 VimObjectRefType datastoreRef = vm.GetVMDatastoreVimRef();

 Console.WriteLine(“Datastore: “ + datastoreRef.moRefField);

 // Host info form vSphere for VM

 VimObjectRefType hostRef = vm.GetVMHostVimRef();

 Console.WriteLine(“Host: “ + hostRef.moRefField);

}

Restoring vApps
During the restore process, the backup software typically restores a virtual machine in vSphere using the
virtual machine configuration and disk files. In situations where the vApp has been lost from the vCloud
Director inventory, the backup software needs to first restore the virtual machine in vSphere, and then
import the virtual machine into vCloud Director.

Although the vApp may contain multiple virtual machines in the view of vCloud Director, the virtual
machines are known individually to vSphere. To complete the restore operation, the backup software
needs to re-create the restored vApp so that all the member virtual machines are created as child virtual
machines of the vApp.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 148

To re-create the vApp using the vCloud SDK for .NET, the backup software must use two method calls:
ImportVmAsVapp and ImportVmIntoVapp. Use the ImportVmAsVapp method to create a vApp from any
one of the child virtual machines. Then call the ImportVmIntoVapp method once for each remaining child
virtual machine. The following example shows how to use both methods to create a vApp using the
vCloud SDK.

// Importing Virtual Machines into vApps

/// <summary>

/// Reference to hold the vCloud Client reference

/// </summary>

private static VcloudAdminExtension extension = null;

vcloudClient.login(user, password);

extension = vcloudClient.getVcloudAdminExtension();

// Get references for known VIM Servers

Dictionary<string, ReferenceType> vimServerRefsByName = extension.GetVMWVimServerRefsByName();

// Select VIM Server Reference

VMWVimServer vimServer = VMWVimServer.GetVMWVimServerByReference(vcloudClient,

vimServerRefsByName[vimServerName]);

...

// Import first VM from VIM server as vApp:

ImportVmIntoVAppParamsType importVmIntoVAppParamsType = new ImportVmIntoVAppParamsType();

importVmIntoVAppParamsType.vmMoRefField = moref; // vSphere ID from backup data.

importVmIntoVAppParamsType.vdcField = vdcRef; // vDC where the new vApp will be created.

Vapp vapp = vimServer.ImportVmAsVApp(importVmAsVAppParamsType); // Task is embedded in vapp.

...

foreach (VM vm in vms)

{

 // Import remaining VMs from VIM Server into existing vApp:

 …

 importVmIntoVAppParamsType.vmMoRefField = moref; // vSphere ID from backup data.

 importVmIntoVAppParamsType.vAppField = vapp; // vApp to hold restored VMs.

 Task task = vimServer.ImportVmIntoVApp(importVmIntoVAppParamsType);

 …

};

The following example shows the corresponding REST API calls used to rebuild a vApp in vCloud
Director.

POST https://vCloud/api/admin/extension/vimServer/id/importVmAsVApp

POST https://vCloud/api/admin/extension/vimServer/id/importVmIntoExistingVApp

Conclusion
This chapter provided an overview of how to use the vCloud SDK for .NET to back up and restore vApps
in vCloud Director. This information serves as a guide to using the vCloud SDK for writing backup and
restore software. Other documentation is require to supplement aspects not described in this chapter.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 149

The examples in this chapter are not intended to be complete. They are intended only to illustrate the
method calls you would use during backup and restore operations with vCloud Director and vCenter
Server. For more detail about the SDK methods and examples of their use, see the vCloud SDK for .NET
Developer's Guide.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 150

Virtual Disk Mount API 9
To perform file based restore, you can use the disk mount API (vixMntapi) for local and remote mounting
of virtual disks. VixMntapi involves a separate library for programs to load.

Note As of VDDK 6.7.1, the VixMntapi library for Windows and Linux supports NBDSSL, HotAdd, and
SAN transport. For earlier VDDK versions, and when used with earlier vSphere releases, the vixMntapi
library for Linux supported only file and NBD transport.

This chapter includes the following topics:

n The VixMntapi Library

n Programming with VixMntapi

n Sample VixMntapi Code

n Restrictions on Virtual Disk Mount

The VixMntapi Library
The VixMntapi library supports guest operating systems on multiple platforms. On POSIX systems it
requires FUSE mount, available on recent Linux systems, and freely available on the SourceForge Web
site. Definitions are contained in the following header file, installed in the same directory as
vixDiskLib.h:

#include "vixMntapi.h"

Types and Structures
This section summarizes the important types and structures.

Operating System Information
The VixOsInfo structure encapsulates the following information:

n Family of the guest operating system, VixOsFamily, one of the following:

n Windows (NT-based)

n Linux

VMware, Inc. 151

n Netware

n Solaris

n FreeBSD

n OS/2

n Mac OS X (Darwin)

n Major version and minor version of the operating system

n Whether it is 64-bit or 32-bit

n Vendor and edition of the operating system

n Location where the operating system is installed

Disk Volume Information
The VixVolumeInfo structure encapsulates the following information:

n Type of the volume, VixVolumeType, one of the following:

n Basic partition.

n GPT – GUID Partition Table.

n Dynamic volume, including Logical Disk Manager (LDM).

n LVM – Logical Volume Manager disk storage. Not supported with Linux.

n Whether the guest volume is mounted on the proxy.

n Path to the volume mount point on the proxy, or NULL if the volume is not mounted.

n On Windows, numGuestMountPoints is the number of times a basic volume is mapped to a drive
letter, or 0 if the volume is not mounted. IDE and boot disk come first. Unimplemented on Linux.

n Mount points for the volume in the guest.

Function Calls
To obtain these functions, load the vixMntapi library separately from the vixDiskLib library. On Windows,
compile with the vixMntapi.lib library so your program can load the vixMntapi.dll runtime.

These calls can be used to mount and read Windows virtual disks on Windows hosts (with at least one
NTFS volume) or Linux virtual disks on Linux hosts. Cross-mounting is restricted, though it is possible to
mount a virtual disk with a mix of formats, if the mounted partition was formatted with Windows.

You should run only one vixMntapi program at a time on a virtual machine, to avoid conflict between
registry hives. See Multithreading Considerations for advice on worker threads.

Available functions in the library are listed below. Under parameters, [in] indicates input, and [out]
indicates output parameters. Functions that return vixError return VIX_OK on success, otherwise a VIX
error code.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 152

VixMntapi_Init()
Initializes the library. This is similar to VixDiskLib_InitEx() – see Initialize Virtual Disk API. You should
call VixMntapi_Init() only once per process.

VixError

VixMntapi_Init(uint32 majorVersion,

 uint32 minorVersion,

 VixDiskLibGenericLogFunc *log,

 VixDiskLibGenericLogFunc *warn,

 VixDiskLibGenericLogFunc *panic,

 const char *libDir,

 const char *configFile);

Parameters:

n majorVersion [in] VixMntapi major version number, currently must be 1 (one).

n minorVersion [in] VixMntapi minor version number, currently must be 0 (zero).

n log [in] Callback function to write log messages.

n warn [in] Callback function to write warning messages.

n panic [in] Callback function to report fatal errors.

n libDir [in] and configFile [in] as for VixDiskLib_InitEx(), allowing you to tmpDirectory.

VixMntapi_Exit()
Cleans up the VixMntapi library. You should call VixMntapi_Exit() only once per process

void VixMntapi_Exit();

VixMntapi_OpenDiskSet()
Opens the set of disks for mounting on a Windows virtual machine. All the disks for a dynamic volume or
Logical Disk Manager (LDM) must be opened together.

VixError

VixMntapi_OpenDiskSet(VixDiskLibHandle diskHandles[],

 int numberOfDisks,

 uint32 openMode,

 VixDiskSetHandle *diskSet);

The VixDiskLibHandle type, defined in vixDiskLib.h, is the same as for the diskHandle parameter in
the VixDiskLib_Open() function, but here it is an array instead of a single value.

Parameters:

n diskHandles [in] Array of handles to open disks.

n numberOfDisks [in] Number of disk handles in the array.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 153

n openMode [in] Must be 0 (zero).

n diskSet [out] Disk set handle to be filled in.

If you want to mount disks on a Windows system, first call VixDiskLib_Open() for every disk, then use
the returned disk handle array to call VixMntapi_OpenDiskSet(), which returns a disk set handle.

If you want to mount disks on a Linux system, call the function VixMntapi_OpenDisks(), which opens
and creates the disk set handle, all in one function.

VixMntapi_OpenDisks()
Opens disks for mounting on a Linux virtual machine, or disk sets on a Windows virtual machine.
VixMntapi supports whatever file systems the proxy supports. On Linux, VixMntapi does not support
Logical Volume Manager (LVM), although vendors can write their own scripts to support LVM disks.

VixError

VixMntapi_OpenDisks(VixDiskLibConnection connection,

 const char *diskNames[],

 size_t numberOfDisks,

 uint32 openFlags,

 VixDiskSetHandle *handle);

Parameters:

n connection [in] The VixDiskLibConnection to use for opening the disks. Calls
VixDiskLib_Open() with the specified flags for each disk to open.

n diskNames [in] Array of disk names to open.

n numberOfDisks [in] Number of disk handles in the array. Must be 1 for Linux.

n flags [in] Flags to open the disk.

n handle [out] Disk set handle to be filled in.

VixMntapi_GetDiskSetInfo()
Retrieves information about the disk set.

VixError

VixMntapi_GetDiskSetInfo(VixDiskSetHandle handle,

 VixDiskSetInfo **diskSetInfo);

Parameters:

n handle [in] Handle to an open disk set.

n diskSetInfo [out] Disk set information to be filled in.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 154

VixMntapi_FreeDiskSetInfo()
Frees memory allocated by VixMntapi_GetDiskSetInfo().

void VixMntapi_FreeDiskSetInfo(VixDiskSetInfo *diskSetInfo);

Parameter:

n diskSetInfo [in] OS info to be freed.

VixMntapi_CloseDiskSet()
Closes the disk set. Note, vixDiskLib_Disconnect() invalidates open file handles, so call this function
first.

VixError

VixMntapi_CloseDiskSet(VixDiskSetHandle diskSet);

Parameter:

n diskSet [in] Handle to an open disk set.

VixMntapi_GetVolumeHandles()
Retrieves handles to volumes in the disk set. The third parameter VixVolumeHandle can be a volume
handle or an array of volume handles. If you pass an array this function returns the volume handle for the
first volume only. If you pass a pointer (such as VixVolumeHandle *volumeHandles) it returns all the
volume handles.

VixError

VixMntapi_GetVolumeHandles(VixDiskSetHandle diskSet,

 int *numberOfVolumes,

 VixVolumeHandle **volumeHandles);

Parameters:

n diskSet [in] Handle to an open disk set.

n numberOfVolumes [out] Number of volume handles.

n volumeHandles [out] Volume handles to be filled in.

VixMntapi_FreeVolumeHandles()
Frees memory allocated by VixMntapi_GetVolumeHandles().

void VixMntapi_FreeVolumeHandles(VixVolumeHandle *volumeHandles);

Parameter:

n volumeHandles [in] Volume handle to be freed.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 155

VixMntapi_GetOsInfo()
Retrieves information about the default operating system in the disk set.

To get operating system information, VixMntapi_GetOsInfo() requires the system and boot volumes to
be already mounted. It does not dismount the system volume at the end of this function. Your application
should be prepared to handle the “volume already mounted” error gracefully.

This function is effective only when used with operating systems of the same type. For instance, a
VixMntapi program running on Windows can provide information about the VMDK of a Windows virtual
machine, but not about the VMDK of a Linux virtual machine.

VixError

VixMntapi_GetOsInfo(VixDiskSetHandle diskSet,

 VixOsInfo **info);

Parameters:

n diskSet [in] Handle to an open disk set.

n info [out] OS information to be filled in.

VixMntapi_FreeOsInfo()
Frees memory allocated by VixMntapi_GetOsInfo().

void VixMntapi_FreeOsInfo(VixOsInfo* info);

Parameter:

n info [in] OS info to be freed.

VixMntapi_MountVolume()
Mounts the volume. After mounting the volume, use VixMntapi_GetVolumeInfo() to obtain the path to
the mounted volume. This mount call locks the source disks until you call
VixMntapi_DismountVolume(). The VixMntapi_MountVolume() function cannot mount Linux swap or
extended partitions.

VixError

VixMntapi_MountVolume(VixVolumeHandle volumeHandle,

 Bool isReadOnly);

Parameters:

n volumeHandle [in] Handle to a volume.

n isReadOnly [in] Whether to mount the volume in read-only mode. Does not override openMode.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 156

VixMntapi_DismountVolume()
Unmounts the volume.

VixError

VixMntapi_DismountVolume(VixVolumeHandle volumeHandle,

 Bool force);

Parameters:

n volumeHandle [in] Handle to a volume.

n force [in] Force unmount even if files are open on the volume.

VixMntapi_GetVolumeInfo()
Retrieves information about a disk volume. Some information, such as the number of mount points,
requires you to set the open read-only flag. Some information is available only if a volume was previously
mounted by VixMntapi_MountVolume(). The Windows registry returns volume information only for
mounted disks. On Windows the VixMntapi_GetVolumeInfo() call returns a symbolic link from the
VixVolumeInfo structure in the form \\.\vstor2-mntapi10-shared-<longhexnum>\. You can
transform this symbolic link into a target path by replacing \\. with \Device and deleting the final
backslash, then map a drive letter with DefineDosDevice(DDD_RAW_TARGET_PATH,...) and proceed as
if you have a local drive. Alternatively on Windows, you can open a volume with CreateFile() and
traverse the file system with FindFirstFile().

VixError

VixMntapi_GetVolumeInfo(VixVolumeHandle volumeHandle,

 VixVolumeInfo **info);

Parameters:

n volumeHandle [in] Handle to a volume.

n info [out] Volume information to be filled in.

VixMntapi_FreeVolumeInfo()
Frees memory allocated in VixMntapi_GetVolumeInfo().

void VixMntapi_FreeVolumeInfo(VixVolumeInfo *info);

Parameter:

n info [in] Volume info to be freed.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 157

Programming with VixMntapi
At the top of your program, include vixMntapi.h along with any other header files you need. Structures
and type definitions are declared in the include file, so you do not need to create them or allocate memory
for them.

Call VixMntapi_Init() to initialize the library in your application. This function takes major and minor
version number to account for future extensions. You can provide your own logging, warning, or panic
functions to substitute for the default VixMntapi handlers, and custom library and temporary directories.

Call VixMntapi_OpenDiskSet() to open a set of virtual disks for mounting. Pass a set of disk handles
obtained from the VixDiskLib_Open() call. The VixMntapi_OpenDiskSet() function also expects
number of disks to open, an optional open mode, and a parameter to pass back the resulting disk-set
handle.

File System Support
Traditional Windows file systems (including FAT, FAT32, and NTFS) are supported. ReFS is supported but
read-only for VixMntapi. Linux file systems (including ext2, ext3, ext4) are supported if the proxy machine
supports them. VixMntapi depends on an operating system for file attributes such as compression,
encryption, hidden files, ACL, and alternate streams. If a vixMntapi-linked application runs on a virtual
machine that supports these attributes, vixMntapi can support them. Windows basic volumes and simple
dynamic volumes are supported for writing, but spanned, striped (RAID-0), mirrored (RAID-1) and parity
(RAID-5) volumes are supported read-only for VixMntapi.

You must open a disk set read/write to obtain the OS information for dynamic volume types including LDM
and LVM. If you cannot open a base disk read/write, create a child disk in front, and open it read/write. In
a multi-boot setup, only the first entry #0 is opened.

The order of mounting is important. For instance, mount top-level directories before subdirectories, and
drives with dependencies after drives that they depend on. Mount points are not enumerated, nor are they
restored. When you mount one volume, the other volumes are not implicitly mounted also.

Diagnostic Logging for VixMntapi
As of VDDK 6.7.1, logging is available to help diagnose behavior of the VixMntapi library. Currently this
facility is available for Linux but not Windows.

The output file is named vixMntapi.log and appears in the same directory as other log files, as set by
the tmpDirectory line in the VDDK configuration file passed as the seventh parameter to
VixDiskLib_InitEx. Logging levels are the same as for vixDiskLib.transport:

n 0 = Panic (failure)

n 1 = Error

n 2 = Warning

n 3 = Audit

Virtual Disk Development Kit Programming Guide

VMware, Inc. 158

n 4 = Info

n 5 = Verbose

n 6 = Trivia

Read-Only Mount on Linux
As of VDDK 6.7.1, read-only mount is supported on Linux, as it was previously on Windows. This section
describes a Linux solution for earlier VDDK releases. Now applications can mount the base disk of a
snapshot with the read-only flag.

Here are possible use cases for read-only mounting of virtual disks:

n Avoid accidentally writing data to the disk, which is opened read/write mode.

n Retain current disk data after the VM is powered off.

n Use previous VM as a restore point by reverting to its original snapshot.

In VDDK 6.7.0 and before, Linux VixMntapi did not support read-only access. To mount a disk read-only,
applications had to either mount the virtual disk of a powered off virtual machine, or mount the snapshot
of a powered on virtual machine. The VixMntapi library can combine the two techniques to create read-
only disk, as below.

To mount disks while saving a read-only copy:

1 Power off the VM if it is on.

2 Create a snapshot. Optionally revert to a previous snapshot if you want.

3 Connect to the VM for read/write access with VixDiskLib_Connect or VixDiskLib_ConnectEx.

4 Call VixMntapi_OpenDisks to open the current (not the snapshot) VM disk in read/write mode.

5 Mount volumes to access files. Write operations can be performed, but they write to the redo log of
the current VM disk, not to the snapshot.

6 Close the disk and disconnect.

7 Revert to the snapshot created in step 2, to eliminate any write changes. Delete the snapshot.

8 Power on the VM if it was on before.

Sample VixMntapi Code
You call the VixMntapi functions after initializing VixDiskLib, connecting to a virtual machine, and opening
a disk handle. The following example shows test code for Windows with the correct order of function calls.

MountTest() {

 vixError = VIX_ERR_CODE(VixDiskLib_Init());

 vixError = VIX_ERR_CODE(VixMntapi_Init());

 VixDiskLib_ConnectEx(&connectParams, TRUE, NULL, NULL, &connection));

 diskHandles = GetMyDiskHandles(diskPaths, connection, &connectParams, flags, &numberOfDisks);

 vixError = VIX_ERR_CODE(VixMntapi_OpenDiskSet(diskHandles, numberOfDisks, flags, &diskSet));

 GetOsInfo(diskSet);

Virtual Disk Development Kit Programming Guide

VMware, Inc. 159

 vixError = VIX_ERR_CODE(VixMntapi_GetVolumeHandles(diskSet, &numberOfVolumes, &volumeHandles));

 for(size_t i = 0; i < numberOfVolumes; i++) {

 VixVolumeHandle volumeHandle = volumeHandles[i];

 VixVolumeInfo *volumeInfo;

 vixError = VIX_ERR_CODE(VixMntapi_MountVolume(volumeHandle, TRUE));

 vixError = VIX_ERR_CODE(VixMntapi_GetVolumeInfo(volumeHandle, &volumeInfo));

 VixMntapi_FreeVolumeInfo(volumeInfo);

 VerifyMountedVolume();

 CleanUpMountedVolume(volumeHandle, volumeInfo);

 }

 VixMntapi_FreeVolumeHandles(volumeHandles);

 vixError = VIX_ERR_CODE(VixMntapi_CloseDiskSet(diskSet));

 FreeMyDiskHandles(diskHandles, numberOfDisks);

 VixMntapi_Exit();

 VixDiskLib_Exit();

}

Restrictions on Virtual Disk Mount
The following limitations apply when mounting virtual disks:

n You cannot mount virtual disks that are in use by a running or suspended virtual machine. You can
mount virtual disks from any powered off virtual machine, or base disks when a virtual machine is
running read-only off a snapshot.

n You can mount the last snapshot in a chain read/write, but you must mount previous snapshots read-
only.

n If you specify a virtual disk with snapshots on a powered off virtual machine, VixMntapi locates and
mounts the last snapshot in the disk chain. While a disk is mounted, do not revert to a previous
snapshot using another VMware interface – this would make it impossible to unmount the partition.

n You cannot mount virtual disk if any of its .vmdk files are encrypted, compressed, or read-only.
However you can change these attributes and then mount the virtual disk.

n With Windows, you must mount virtual disks on drive D: or greater, and choose a drive letter not in
use.

n With Linux, kernel version 2.6 or higher is required to run the FUSE (file system in user space)
module. You cannot mount Linux swap or extended partitions. Logical Volume Manager (LVM) is not
supported.

n On Linux virtual machines before VDDK 5.5, you could not mount previous snapshots in the chain.

n You can mount Windows virtual disks on Windows hosts (with an NTFS volume) or Linux virtual disks
on Linux hosts. Cross-mounting is restricted but may be allowed for cross-formatted file systems.

n The C: boot driver should be on scsi:0:0, and all disks should be opened in SCSI order (0:0, 0:1,
0:2, 1:0, 1:1, 1:2, etc.) before mounting any of them.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 160

Errors Codes and Open Source 10
This chapter includes the following topics:

n Recent Changes

n Finding Error Code Documentation

n Troubleshooting Dynamic Libraries

n Open Source Components

Recent Changes
In vSphere 6.0, the VDDK libraries were changed to return VIX_E_OUT_OF_MEMORY when an ESXi host
runs out of memory for network file copy (NFC). Previously, VDDK would hang during I/O operations.

Error 2 – VIX_E_OUT_OF_MEMORY

Memory allocation failed. Out of memory.

Finding Error Code Documentation
For a list of Virtual Disk API error codes, see the online reference guide Introduction to the VixDiskLib
API:

n Windows – C:\Program Files\VMware\VMware Virtual Disk Development
Kit\doc\intro.html

n Linux – /usr/share/doc/vmware-vix-disklib/intro.html

In a Web browser, click the Error Codes link in the upper left frame, and click any link in the lower left
frame. The right-hand frame displays an alphabetized list of error codes, with explanations.

Association With VIX API Errors
The Virtual Disk API shares many errors with the VIX API, which explains the VIX prefix. The error codes
for the VIX API are likely to be the same, or almost the same as, a comparable release of the VDDK.

For information about the VIX API, including its online reference guide to functions and error codes, see
the developer support section of the VMware Web site:

https://www.vmware.com/support/developer/vix-api/index.html

VMware, Inc. 161

https://www.vmware.com/support/developer/vix-api/index.html

Interpreting Errors Codes
A VIX error is a 64-bit value. A value of VIX_OK indicates success, but otherwise (if there is an error),
several bit regions in the 64-bit value might be set. The least significant 16 bits are set to the error code
described for VIX errors. More significant bit fields might be set to other values.

As for the VIX API, use the macro VIX_ERROR_CODE(err) to mask off bit fields not used by the VDDK.

Troubleshooting Dynamic Libraries

Problem

On Windows, the SSL library is placed in the same directory as other vixDiskLib dynamically loaded
libraries. On Linux, functions that load the libraries libssl.so.0.9.8 and libcrypto.so.0.9.8 do the
following:

1 Attempt to load them from the environment’s LD_LIBRARY_PATH location.

2 Next, attempt to load them from the directory where libvixDiskLib.so is located.

3 Next, attempt to load them from the directory where the executable is located.

4 Failing that, exit with an error.

On install, VDDK creates the directory /usr/lib/vimware-vix-disklib, populated with 64-bit
executables and libraries placed into subdirectories bin64 and lib64. On determining the OS type,
VDDK copies the vixDiskLib and vixMntapi libraries into /usr/lib. It does not copy libssl.so.0.9.8 or
libcrypto.so.0.9.8 into /usr/lib.

On execution, the root user normally has no LD_LIBRARY_PATH, and /usr/lib is ahead
of /opt/vmware/lib in the path. Running the ldd command can help diagnose where a program is
getting libvixDiskLib.so and other libraries. The /opt/vmware/lib directory is neither created nor
updated by the VDDK install script.

If you see the error “Failed to load library libcrypto.so.0.9.8” there are several solutions:

Solution

n Set or reset the LD_LIBRARY_PATH environment so it contains one of the directories above, /lib64
and possibly /bin64, before it contains /usr/lib.

n Change the symbolic link in /opt/vmware/lib (or elsewhere) so it points to the directory
above, /lib64.

n Copy the libssl and libcrypto libraries from /usr/lib/vmware-vix-disklib/lib64
into /usr/lib.

Virtual Disk Development Kit Programming Guide

VMware, Inc. 162

Open Source Components
VDDK contains the following open source components, with license types indicated:

n Boost (BSD style license)

n Curl (MIT/X derivative license)

n Expat (BSD style license)

n FreeBSD (BSD license)

n ICU, International Components for Unicode (BSD style license)

n LibXML2 (MIT style license)

n OpenLDAP (OpenLDAP v 2.8 license)

n OpenSSL (OpenSSL license)

n Zlib (BSD license)

These open source components have the GNU library general public license:

n GetText (LGPL2.0)

n Glib (LGPL 2.0)

n LibFuse (LGPL2.0)

n LibIconv (LGPL2.0)

Virtual Disk Development Kit Programming Guide

VMware, Inc. 163

	Virtual Disk Development Kit Programming Guide
	Contents
	About This Book
	Introduction to the Virtual Disk API
	About the Virtual Disk API
	VDDK Components
	Virtual Disk Library
	Disk Mount Library
	Virtual Disk Utilities
	Backup and Restore on vSphere
	Backup Design for vCloud Director

	Use Cases for the Virtual Disk Library
	Developing for VMware Platform Products
	Managed Disk and Hosted Disk
	Advanced Transports
	VDDK and VADP Compared
	Platform Product Compatibility
	Redistributing VDDK Components

	Installing the Development Kit
	Prerequisites
	Development Systems
	Programming Environments
	Visual Studio on Windows
	C++ and C on Linux
	Java Development for VADP

	VMware Platform Products
	Storage Device Support

	Installing the VDDK Package
	Repackaging VDDK Libraries
	How to Find VADP Components

	Virtual Disk Interfaces
	VMDK File Location
	Virtual Disk Types
	Persistence Disk Modes
	VMDK File Naming
	Thin Provisioned Disk
	Internationalization and Localization
	Virtual Disk Internal Format
	Grain Directories and Grain Tables

	Data Structures in Virtual Disk API
	Credentials and Privileges for VMDK Access
	Adapter Types

	Virtual Disk Transport Methods
	Local File Access
	SAN Transport
	HotAdd Transport
	About the HotAdd Proxy

	NBDSSL Transport
	Asynchronous Mode NBDSSL
	NFC Session Limits and Timeouts
	SSL Certificates and Security

	Virtual Disk API Functions
	Virtual Disk Library Functions
	Alphabetic Table of Functions

	Start Up
	Initialize the Library
	Connect to a Workstation or Server
	VMX Specification

	Disk Operations
	Create a New Hosted Disk
	Open a Local or Remote Disk
	Read Sectors From a Disk
	Write Sectors To a Disk
	Close a Local or Remote Disk
	Get Information About a Disk
	Free Memory from Get Information

	Metadata Handling
	Read Metadata Key from Disk
	Get Metadata Table from Disk
	Write Metadata Table to Disk
	Check and Repair Sparse Disk Metadata

	Disk Chaining and Redo Logs
	Create Child from Parent Disk
	Attach Child to Parent Disk
	Opening in a Chain
	Redo Logs and Linked Clone Backup

	Cloning a Virtual Disk
	Compute Space Needed for Clone
	Clone a Disk by Copying Data

	Error Handling
	Return Error Description Text
	Free Error Description Text

	Administrative Disk Operations
	Rename an Existing Disk
	Grow an Existing Local Disk
	Defragment an Existing Disk
	Shrink an Existing Local Disk
	Unlink Extents to Remove Disk

	Shut Down
	Disconnect from Server
	Clean Up and Exit

	Advanced Transport APIs
	Initialize Virtual Disk API
	Phone Home Support
	Location of Log Files
	List Available Transport Methods
	Connect to VMware vSphere
	Get Selected Transport Method
	Prepare For Access and End Access
	SAN Mode on Linux Uses Direct Mode
	Clean Up After Disconnect

	Ordering of Function Calls in Sequence
	Updating Applications for Advanced Transport
	Algorithm for vSphere Backup
	Backup and Recovery Example

	Multithreading Considerations
	Multiple Threads and VixDiskLib

	Capabilities of Library Calls
	Support for Managed Disk
	Support for Hosted Disk

	Virtual Disk API Sample Code
	Compiling the Sample Program
	Visual C++ on Windows
	SLN and VCPROJ Files

	C++ on Linux Systems
	Makefile

	Library Files Required

	Usage Message
	Walk-Through of Sample Program
	Include Files
	Definitions and Structures
	Dynamic Loading
	Wrapper Classes
	Command Functions
	DoInfo()
	DoCreate()
	DoRedo()
	Write by DoFill()
	DoReadMetadata()
	DoWriteMetadata()
	DoDumpMetadata()
	DoDump()
	DoTestMultiThread()
	DoClone()

	SSL Certificate Thumbprint

	Practical Programming Tasks
	Scan VMDK for Virus Signatures
	Creating Virtual Disks
	Create Local Disk
	Create Remote Disk
	Special Consideration for ESXi Hosts

	VMDK File Versions
	Working with Virtual Disk Data
	Reading and Writing Local Disk
	Reading and Writing Remote Disk
	Deleting a Disk (Unlink)
	Effects of Deleting a Virtual Disk

	Renaming a Disk
	Effects of Renaming a Virtual Disk

	Managing Child Disks
	Create Redo Logs
	Virtual Disk in Snapshots
	Windows 2000 Read-Only File System

	RDM Disks and Virtual BIOS
	Restore RDM Disks
	Restore the Virtual BIOS or UEFI

	Interfacing With VMware vSphere
	The VIX API
	Virus Scan all Hosted Disk
	The vSphere Web Services API
	Virus Scan All Managed Disk
	Read and Write VMDK Using vSphere API
	First Class Disk (FCD) Backup

	Backing Up Virtual Disks in vSphere
	Design and Implementation Overview
	The Backup Process
	Communicating With the Server
	Information Containers as Managed Objects
	More About Managed Objects
	Managed Object References
	Unique ID for a Different vCenter

	Gathering Status and Configuration Information
	PropertyCollector Data
	Useful Property Information

	Doing a Backup Operation
	Prerequisites for Backup
	Create a Temporary Snapshot on the Target Virtual Machine
	Changed Block Tracking
	Extract Backup Data from the Target Virtual Machine
	Delete the Temporary Snapshot

	Restore a Virtual Machine
	Doing a Restore Operation
	Prerequisites for Restore
	Restore an Existing Virtual Machine to a Previous State
	Create a New Virtual Machine

	Access Files on Virtual Disks
	More VADP Details

	Low Level Backup Procedures
	Communicate with the Server
	The PropertyCollector
	PropertyCollector Arguments
	Getting the Data from the PropertyCollector
	Identifying Virtual Disks for Backup and Restore

	Creating a Snapshot
	Backing Up a Virtual Disk
	Deleting a Snapshot
	New Query Allocated Blocks Function
	Changed Block Tracking on Virtual Disks
	Enable Changed Block Tracking
	Gathering Changed Block Information
	Troubleshooting
	Limitations on Changed Block Tracking
	Checking for Namespace

	Low Level Restore Procedures
	Restoring a Virtual Machine and Disk
	Creating a Virtual Machine
	Using the VirtualMachineConfigInfo
	Editing or Deleting a Device
	Restoring Virtual Disk Data
	Raw Device Mapping (RDM) Disks

	Restore Incremental Backup Data
	Restore with Direct Connection to ESXi Host

	Tips and Best Practices
	Best Practices for SAN Transport
	Best Practices for HotAdd Transport
	Best Practices for NBDSSL Transport
	General Backup and Restore
	Backup and Restore of Thin-Provisioned Disk
	About Changed Block Tracking
	HotAdd and SCSI Controller IDs
	Encrypted VM Backup and Restore
	Backup and Restore With vTPM

	Windows Backup Implementations
	Disable Automount in Windows Proxy
	Security and Remote Desktop
	Working with Microsoft Shadow Copy
	Enable Virtual Machine Application Consistent Quiescing
	Application-Consistent Backup and Restore
	New VSS Support Added in vSphere 6.5
	The VMware VSS Implementation

	Linux Backup Implementation

	Backing Up vApps in vCloud Director
	Introduction to Tenant vApps
	Prerequisites
	Other Information

	Conceptual Overview
	The Backup Process
	The Restore Process

	Use Cases Overview
	Managing Credentials
	Finding a vApp
	Inventory Traversal
	Using the Query Service

	Protecting Specified vApps
	Recovering an Older Version of a vApp
	Recovering a Deleted vApp
	Recovering a Single Virtual Machine
	Backing Up vCloud Director

	vCloud API Operations
	Getting Access to vCloud Director
	Inventory Access
	Admin Views
	Admin Extensions

	Retrieving Catalog information
	Retrieving vApp Configuration
	Methods To Retrieve vApp Configuration
	Virtual Machine Information

	Preventing Updates to a vApp During Backup or Restore
	Associating vCloud Resources with vSphere Entities
	Restoring vApps

	Conclusion

	Virtual Disk Mount API
	The VixMntapi Library
	Types and Structures
	Operating System Information
	Disk Volume Information

	Function Calls
	VixMntapi_Init()
	VixMntapi_Exit()
	VixMntapi_OpenDiskSet()
	VixMntapi_OpenDisks()
	VixMntapi_GetDiskSetInfo()
	VixMntapi_FreeDiskSetInfo()
	VixMntapi_CloseDiskSet()
	VixMntapi_GetVolumeHandles()
	VixMntapi_FreeVolumeHandles()
	VixMntapi_GetOsInfo()
	VixMntapi_FreeOsInfo()
	VixMntapi_MountVolume()
	VixMntapi_DismountVolume()
	VixMntapi_GetVolumeInfo()
	VixMntapi_FreeVolumeInfo()

	Programming with VixMntapi
	File System Support
	Diagnostic Logging for VixMntapi
	Read-Only Mount on Linux

	Sample VixMntapi Code
	Restrictions on Virtual Disk Mount

	Errors Codes and Open Source
	Recent Changes
	Finding Error Code Documentation
	Association With VIX API Errors
	Interpreting Errors Codes

	Troubleshooting Dynamic Libraries
	Open Source Components

