Class CIM_Hdr8021Filter


  extends CIM_FilterEntryBase
8021Filter allows 802.1.source and destination MAC addresses, as well as the 802.1 protocol ID, priority, and VLAN identifier fields, to be expressed in a single object to classify and identify traffic.
Details...
This class is not implemented.

Class Qualifiers

NameData TypeValueScopeFlavors
Descriptionstring8021Filter allows 802.1.source and destination MAC addresses, as well as the 802.1 protocol ID, priority, and VLAN identifier fields, to be expressed in a single object to classify and identify traffic.None TRANSLATABLE= true
UMLPackagePathstringCIM::Network::FilteringNone None
Versionstring2.7.0TOSUBCLASS= falseTRANSLATABLE= true

Local Class Properties

NameData TypeQualifiers
NameData TypeValueScopeFlavors
Captionstring
DescriptionstringThe Caption property is a short textual description (one- line string) of the object.None TRANSLATABLE= true
MaxLenuint3264None None
CommunicationStatusuint16
DescriptionstringCommunicationStatus indicates the ability of the instrumentation to communicate with the underlying ManagedElement. CommunicationStatus consists of one of the following values: Unknown, None, Communication OK, Lost Communication, or No Contact. A Null return indicates the implementation (provider) does not implement this property. "Unknown" indicates the implementation is in general capable of returning this property, but is unable to do so at this time. "Not Available" indicates that the implementation (provider) is capable of returning a value for this property, but not ever for this particular piece of hardware/software or the property is intentionally not used because it adds no meaningful information (as in the case of a property that is intended to add additional info to another property). "Communication OK " indicates communication is established with the element, but does not convey any quality of service. "No Contact" indicates that the monitoring system has knowledge of this element, but has never been able to establish communications with it. "Lost Communication" indicates that the Managed Element is known to exist and has been contacted successfully in the past, but is currently unreachable.None TRANSLATABLE= true
ExperimentalbooleantrueTOSUBCLASS= falseNone
ValueMapstring0, 1, 2, 3, 4, .., 0x8000..None None
ValuesstringUnknown, Not Available, Communication OK, Lost Communication, No Contact, DMTF Reserved, Vendor ReservedNone TRANSLATABLE= true
CreationClassNamestring
DescriptionstringCreationClassName indicates the name of the class or the subclass used in the creation of an instance. When used with the other key properties of this class, this property allows all instances of this class and its subclasses to be uniquely identified.None TRANSLATABLE= true
KeybooleantrueNone OVERRIDABLE= false
MaxLenuint32256None None
Descriptionstring
DescriptionstringThe Description property provides a textual description of the object.None TRANSLATABLE= true
DetailedStatusuint16
DescriptionstringDetailedStatus compliments PrimaryStatus with additional status detail. It consists of one of the following values: Not Available, No Additional Information, Stressed, Predictive Failure, Error, Non-Recoverable Error, SupportingEntityInError. Detailed status is used to expand upon the PrimaryStatus of the element. A Null return indicates the implementation (provider) does not implement this property. "Not Available" indicates that the implementation (provider) is capable of returning a value for this property, but not ever for this particular piece of hardware/software or the property is intentionally not used because it adds no meaningful information (as in the case of a property that is intended to add additional info to another property). "No Additional Information" indicates that the element is functioning normally as indicated by PrimaryStatus = "OK". "Stressed" indicates that the element is functioning, but needs attention. Examples of "Stressed" states are overload, overheated, and so on. "Predictive Failure" indicates that an element is functioning normally but a failure is predicted in the near future. "Non-Recoverable Error " indicates that this element is in an error condition that requires human intervention. "Supporting Entity in Error" indicates that this element might be "OK" but that another element, on which it is dependent, is in error. An example is a network service or endpoint that cannot function due to lower-layer networking problems.None TRANSLATABLE= true
ExperimentalbooleantrueTOSUBCLASS= falseNone
ModelCorrespondencestringCIM_EnabledLogicalElement.PrimaryStatus, CIM_ManagedSystemElement.HealthStateNone None
ValueMapstring0, 1, 2, 3, 4, 5, .., 0x8000..None None
ValuesstringNot Available, No Additional Information, Stressed, Predictive Failure, Non-Recoverable Error, Supporting Entity in Error, DMTF Reserved, Vendor ReservedNone TRANSLATABLE= true
ElementNamestring
DescriptionstringA user-friendly name for the object. This property allows each instance to define a user-friendly name in addition to its key properties, identity data, and description information. Note that the Name property of ManagedSystemElement is also defined as a user-friendly name. But, it is often subclassed to be a Key. It is not reasonable that the same property can convey both identity and a user-friendly name, without inconsistencies. Where Name exists and is not a Key (such as for instances of LogicalDevice), the same information can be present in both the Name and ElementName properties.None TRANSLATABLE= true
Generationuint64
DescriptionstringGeneration is an optional, monotonically increasing property that may be used to identify a particular generation of the resource represented by this class. If Generation is supported by the implementation, its value shall not be null. Except as otherwise specified, a value (including null) of Generation specified at creation time shall be replaced by null if Generation is not supported by the implementation or shall be a, (possibly different), non-null value if the implementation does support Generation. After creation and if supported, Generation shall be updated, at least once per access, whenever the represented resource is modified, regardless of the source of the modification. Note: the Generation value only needs to be updated once between references, even if the resource is updated many times. The key point is to assure that it will be different if there have been updates, not to count each update. Note: unless otherwise specified, the value of Generation within one instance is not required to be coordinated with the value of Generation in any other instance. Note:the semantics of the instance, (as defined by its creation class), define the underlying resource. That underlying resource may be a collection or aggregation of resources. And, in that case, the semantics of the instance further define when updates to constituent resources also require updates to the Generation of the collective resource. Default behavior of composite aggregations should be to update the Generation of the composite whenever the Generation of a component is updated. Subclasses may define additional requirements for updates on some or all of related instances. For a particular instance, the value of Generation may wrap through zero, but the elapsed time between wraps shall be greater than 10's of years. This class does not require Generation to be unique across instances of other classes nor across instances of the same class that have different keys. Generation shall be different across power cycles, resets, or reboots if any of those actions results in an update. Generation may be different across power cycles, resets, or reboots if those actions do not result in an update. If the Generation property of an instance is non-null, and if any attempt to update the instance includes the Generation property, then if it doesn't match the current value, the update shall fail. The usage of this property is intended to be further specified by applicable management profiles. Typically, a client will read the value of this property and then supply that value as input to an operation that modifies the instance in some means. This may be via an explicit parameter in an extrinsic method or via an embedded value in an extrinsic method or intrinsic operation. For example: a profile may require that an intrinsic instance modification supply the Generation property and that it must match for the modification to succeed.None TRANSLATABLE= true
ExperimentalbooleantrueTOSUBCLASS= falseNone
HdrDestMACAddr8021uint8
DescriptionstringThis property is an OctetString of size 6, representing a 48-bit destination MAC address in canonical format. This value is compared to the DestinationAddress field in the MAC header, subject to the mask represented in the 8021HdrDestMACMask property. If a value for this property is not provided, then the filter does not consider 8021HdrDestMACAddr in selecting matching packets, i.e., 8021HdrDestMACAddr matches for all values.None TRANSLATABLE= true
OctetStringbooleantrueNone OVERRIDABLE= false
HdrDestMACMask8021uint8
DescriptionstringThis property is an OctetString of size 6, representing a 48-bit mask to be used in comparing the DestinationAddress field in the MAC header with the value represented in the 8021HdrDestMACAddr property. If a value for this property is not provided, then the filter does not consider 8021HdrDestMACMask in selecting matching packets, i.e., the value of 8021HdrDestMACAddr must match the destination MAC address in the packet exactly.None TRANSLATABLE= true
OctetStringbooleantrueNone OVERRIDABLE= false
HdrPriorityValue8021uint8
DescriptionstringThis property is an 8-bit unsigned integer, representing an 802.1Q priority. This value is compared to the Priority field in the 802.1Q header. Since the 802.1Q Priority field consists of 3 bits, the values for this property are limited to the range 0..7. If a value for this property is not provided, then the filter does not consider 8021HdrPriorityValue in selecting matching packets, i.e., 8021HdrPriorityValue matches for all values.None TRANSLATABLE= true
MaxValuesint647None None
MinValuesint640None None
HdrProtocolID8021uint16
DescriptionstringThis property is a 16-bit unsigned integer, representing an Ethernet protocol type. This value is compared to the Ethernet Type field in the 802.3 MAC header. If a value for this property is not provided, then the filter does not consider 8021HdrProtocolID in selecting matching packets, i.e., 8021HdrProtocolID matches for all values.None TRANSLATABLE= true
HdrSrcMACAddr8021uint8
DescriptionstringThis property is an OctetString of size 6, representing a 48-bit source MAC address in canonical format. This value is compared to the SourceAddress field in the MAC header, subject to the mask represented in the 8021HdrSrcMACMask property. If a value for this property is not provided, then the filter does not consider 8021HdrSrcMACAddr in selecting matching packets, i.e., 8021HdrSrcMACAddr matches for all values.None TRANSLATABLE= true
OctetStringbooleantrueNone OVERRIDABLE= false
HdrSrcMACMask8021uint8
DescriptionstringThis property is an OctetString of size 6, representing a 48-bit mask to be used in comparing the SourceAddress field in the MAC header with the value represented in the 8021HdrSrcMACAddr property. If a value for this property is not provided, then the filter does not consider 8021HdrSrcMACMask in selecting matching packets, i.e., the value of 8021HdrSrcMACAddr must match the source MAC address in the packet exactly.None TRANSLATABLE= true
OctetStringbooleantrueNone OVERRIDABLE= false
HdrVLANID8021uint32
DescriptionstringThis property is an 32-bit unsigned integer, representing an 802.1Q VLAN Identifier. This value is compared to the VLAN ID field in the 802.1Q header. Since the 802.1Q VLAN ID field consists of 12 bits, the values for this property are limited to the range 0..4095. If a value for this property is not provided, then the filter does not consider 8021HdrVLANID in selecting matching packets, i.e., 8021HdrVLANID matches for all values.None TRANSLATABLE= true
MaxValuesint644095None None
MinValuesint640None None
HealthStateuint16
DescriptionstringIndicates the current health of the element. This attribute expresses the health of this element but not necessarily that of its subcomponents. The possible values are 0 to 30, where 5 means the element is entirely healthy and 30 means the element is completely non-functional. The following continuum is defined: "Non-recoverable Error" (30) - The element has completely failed, and recovery is not possible. All functionality provided by this element has been lost. "Critical Failure" (25) - The element is non-functional and recovery might not be possible. "Major Failure" (20) - The element is failing. It is possible that some or all of the functionality of this component is degraded or not working. "Minor Failure" (15) - All functionality is available but some might be degraded. "Degraded/Warning" (10) - The element is in working order and all functionality is provided. However, the element is not working to the best of its abilities. For example, the element might not be operating at optimal performance or it might be reporting recoverable errors. "OK" (5) - The element is fully functional and is operating within normal operational parameters and without error. "Unknown" (0) - The implementation cannot report on HealthState at this time. DMTF has reserved the unused portion of the continuum for additional HealthStates in the future.None TRANSLATABLE= true
ValueMapstring0, 5, 10, 15, 20, 25, 30, ..None None
ValuesstringUnknown, OK, Degraded/Warning, Minor failure, Major failure, Critical failure, Non-recoverable error, DMTF ReservedNone TRANSLATABLE= true
InstallDatedatetime
DescriptionstringA datetime value that indicates when the object was installed. Lack of a value does not indicate that the object is not installed.None TRANSLATABLE= true
MappingStringsstringMIF.DMTF|ComponentID|001.5None None
InstanceIDstring
DescriptionstringInstanceID is an optional property that may be used to opaquely and uniquely identify an instance of this class within the scope of the instantiating Namespace. Various subclasses of this class may override this property to make it required, or a key. Such subclasses may also modify the preferred algorithms for ensuring uniqueness that are defined below. To ensure uniqueness within the NameSpace, the value of InstanceID should be constructed using the following "preferred" algorithm: <OrgID>:<LocalID> Where <OrgID> and <LocalID> are separated by a colon (:), and where <OrgID> must include a copyrighted, trademarked, or otherwise unique name that is owned by the business entity that is creating or defining the InstanceID or that is a registered ID assigned to the business entity by a recognized global authority. (This requirement is similar to the <Schema Name>_<Class Name> structure of Schema class names.) In addition, to ensure uniqueness, <OrgID> must not contain a colon (:). When using this algorithm, the first colon to appear in InstanceID must appear between <OrgID> and <LocalID>. <LocalID> is chosen by the business entity and should not be reused to identify different underlying (real-world) elements. If not null and the above "preferred" algorithm is not used, the defining entity must assure that the resulting InstanceID is not reused across any InstanceIDs produced by this or other providers for the NameSpace of this instance. If not set to null for DMTF-defined instances, the "preferred" algorithm must be used with the <OrgID> set to CIM.None TRANSLATABLE= true
IsNegatedboolean
DescriptionstringBoolean indicating that the match condition described in the properties of the FilterEntryBase subclass should be negated. This property is defined for ease of use when filtering on simple negations - for example, to select all source ports except 162. It is not recommended that this Boolean be set to True when filtering on multiple criteria, such as defining an IPHeadersFilter based on source/destination addresses, ports, and DiffServ Code Points.None TRANSLATABLE= true
Namestring
DescriptionstringThe Name property defines the label by which the Filter Entry is known and uniquely identified.None TRANSLATABLE= true
KeybooleantrueNone OVERRIDABLE= false
MaxLenuint32256None None
OverridestringNameTOSUBCLASS= falseNone
OperatingStatusuint16
DescriptionstringOperatingStatus provides a current status value for the operational condition of the element and can be used for providing more detail with respect to the value of EnabledState. It can also provide the transitional states when an element is transitioning from one state to another, such as when an element is transitioning between EnabledState and RequestedState, as well as other transitional conditions. OperatingStatus consists of one of the following values: Unknown, Not Available, In Service, Starting, Stopping, Stopped, Aborted, Dormant, Completed, Migrating, Emmigrating, Immigrating, Snapshotting. Shutting Down, In Test A Null return indicates the implementation (provider) does not implement this property. "Unknown" indicates the implementation is in general capable of returning this property, but is unable to do so at this time. "None" indicates that the implementation (provider) is capable of returning a value for this property, but not ever for this particular piece of hardware/software or the property is intentionally not used because it adds no meaningful information (as in the case of a property that is intended to add additional info to another property). "Servicing" describes an element being configured, maintained, cleaned, or otherwise administered. "Starting" describes an element being initialized. "Stopping" describes an element being brought to an orderly stop. "Stopped" and "Aborted" are similar, although the former implies a clean and orderly stop, while the latter implies an abrupt stop where the state and configuration of the element might need to be updated. "Dormant" indicates that the element is inactive or quiesced. "Completed" indicates that the element has completed its operation. This value should be combined with either OK, Error, or Degraded in the PrimaryStatus so that a client can tell if the complete operation Completed with OK (passed), Completed with Error (failed), or Completed with Degraded (the operation finished, but it did not complete OK or did not report an error). "Migrating" element is being moved between host elements. "Immigrating" element is being moved to new host element. "Emigrating" element is being moved away from host element. "Shutting Down" describes an element being brought to an abrupt stop. "In Test" element is performing test functions. "Transitioning" describes an element that is between states, that is, it is not fully available in either its previous state or its next state. This value should be used if other values indicating a transition to a specific state are not applicable. "In Service" describes an element that is in service and operational.None TRANSLATABLE= true
ExperimentalbooleantrueTOSUBCLASS= falseNone
ModelCorrespondencestringCIM_EnabledLogicalElement.EnabledStateNone None
ValueMapstring0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, .., 0x8000..None None
ValuesstringUnknown, Not Available, Servicing, Starting, Stopping, Stopped, Aborted, Dormant, Completed, Migrating, Emigrating, Immigrating, Snapshotting, Shutting Down, In Test, Transitioning, In Service, DMTF Reserved, Vendor ReservedNone TRANSLATABLE= true
OperationalStatusuint16
ArrayTypestringIndexedNone OVERRIDABLE= false
DescriptionstringIndicates the current statuses of the element. Various operational statuses are defined. Many of the enumeration's values are self-explanatory. However, a few are not and are described here in more detail. "Stressed" indicates that the element is functioning, but needs attention. Examples of "Stressed" states are overload, overheated, and so on. "Predictive Failure" indicates that an element is functioning nominally but predicting a failure in the near future. "In Service" describes an element being configured, maintained, cleaned, or otherwise administered. "No Contact" indicates that the monitoring system has knowledge of this element, but has never been able to establish communications with it. "Lost Communication" indicates that the ManagedSystem Element is known to exist and has been contacted successfully in the past, but is currently unreachable. "Stopped" and "Aborted" are similar, although the former implies a clean and orderly stop, while the latter implies an abrupt stop where the state and configuration of the element might need to be updated. "Dormant" indicates that the element is inactive or quiesced. "Supporting Entity in Error" indicates that this element might be "OK" but that another element, on which it is dependent, is in error. An example is a network service or endpoint that cannot function due to lower-layer networking problems. "Completed" indicates that the element has completed its operation. This value should be combined with either OK, Error, or Degraded so that a client can tell if the complete operation Completed with OK (passed), Completed with Error (failed), or Completed with Degraded (the operation finished, but it did not complete OK or did not report an error). "Power Mode" indicates that the element has additional power model information contained in the Associated PowerManagementService association. OperationalStatus replaces the Status property on ManagedSystemElement to provide a consistent approach to enumerations, to address implementation needs for an array property, and to provide a migration path from today's environment to the future. This change was not made earlier because it required the deprecated qualifier. Due to the widespread use of the existing Status property in management applications, it is strongly recommended that providers or instrumentation provide both the Status and OperationalStatus properties. Further, the first value of OperationalStatus should contain the primary status for the element. When instrumented, Status (because it is single-valued) should also provide the primary status of the element.None TRANSLATABLE= true
ModelCorrespondencestringCIM_ManagedSystemElement.StatusDescriptionsNone None
ValueMapstring0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, .., 0x8000..None None
ValuesstringUnknown, Other, OK, Degraded, Stressed, Predictive Failure, Error, Non-Recoverable Error, Starting, Stopping, Stopped, In Service, No Contact, Lost Communication, Aborted, Dormant, Supporting Entity in Error, Completed, Power Mode, DMTF Reserved, Vendor ReservedNone TRANSLATABLE= true
PrimaryStatusuint16
DescriptionstringPrimaryStatus provides a high level status value, intended to align with Red-Yellow-Green type representation of status. It should be used in conjunction with DetailedStatus to provide high level and detailed health status of the ManagedElement and its subcomponents. PrimaryStatus consists of one of the following values: Unknown, OK, Degraded or Error. "Unknown" indicates the implementation is in general capable of returning this property, but is unable to do so at this time. "OK" indicates the ManagedElement is functioning normally. "Degraded" indicates the ManagedElement is functioning below normal. "Error" indicates the ManagedElement is in an Error condition.None TRANSLATABLE= true
ExperimentalbooleantrueTOSUBCLASS= falseNone
ModelCorrespondencestringCIM_ManagedSystemElement.DetailedStatus, CIM_ManagedSystemElement.HealthStateNone None
ValueMapstring0, 1, 2, 3, .., 0x8000..None None
ValuesstringUnknown, OK, Degraded, Error, DMTF Reserved, Vendor ReservedNone TRANSLATABLE= true
Statusstring
DeprecatedstringCIM_ManagedSystemElement.OperationalStatusTOSUBCLASS= falseNone
DescriptionstringA string indicating the current status of the object. Various operational and non-operational statuses are defined. This property is deprecated in lieu of OperationalStatus, which includes the same semantics in its enumeration. This change is made for 3 reasons: 1) Status is more correctly defined as an array. This definition overcomes the limitation of describing status using a single value, when it is really a multi-valued property (for example, an element might be OK AND Stopped. 2) A MaxLen of 10 is too restrictive and leads to unclear enumerated values. 3) The change to a uint16 data type was discussed when CIM V2.0 was defined. However, existing V1.0 implementations used the string property and did not want to modify their code. Therefore, Status was grandfathered into the Schema. Use of the deprecated qualifier allows the maintenance of the existing property, but also permits an improved definition using OperationalStatus.None TRANSLATABLE= true
MaxLenuint3210None None
ValueMapstringOK, Error, Degraded, Unknown, Pred Fail, Starting, Stopping, Service, Stressed, NonRecover, No Contact, Lost Comm, StoppedNone None
StatusDescriptionsstring
ArrayTypestringIndexedNone OVERRIDABLE= false
DescriptionstringStrings describing the various OperationalStatus array values. For example, if "Stopping" is the value assigned to OperationalStatus, then this property may contain an explanation as to why an object is being stopped. Note that entries in this array are correlated with those at the same array index in OperationalStatus.None TRANSLATABLE= true
ModelCorrespondencestringCIM_ManagedSystemElement.OperationalStatusNone None
SystemCreationClassNamestring
DescriptionstringThe scoping ComputerSystem's CreationClassName.None TRANSLATABLE= true
KeybooleantrueNone OVERRIDABLE= false
MaxLenuint32256None None
PropagatedstringCIM_ComputerSystem.CreationClassNameNone OVERRIDABLE= false
SystemNamestring
DescriptionstringThe scoping ComputerSystem's Name.None TRANSLATABLE= true
KeybooleantrueNone OVERRIDABLE= false
MaxLenuint32256None None
PropagatedstringCIM_ComputerSystem.NameNone OVERRIDABLE= false

Copyright © 2008-2010 VMware, Inc. All rights reserved.